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Abstract—In real-world applications, data-driven classifiers
often grapple with a three-pronged challenge: data arrives in a
continuous stream, most data in the wild are often unlabeled, and
there is a critical need to maintain fairness in predictions across
different sub-groups. Existing methods falter when addressing
all these three factors concurrently. This work tackles this
challenge by addressing a novel paradigm: Fairness-Aware Active
Online Learning. We introduce a simple yet effective approach
– FACTION, which actively selects the most crucial data points
for labeling, going beyond traditional methods by considering
both model uncertainty (epistemic uncertainty) and a newly
introduced fairness notion derived from this very uncertainty.
Additionally, FACTION leverages a system adept at identify-
ing out-of-distribution samples within online learning environ-
ments. Extensive evaluations on real-world datasets, coupled
with theoretical analysis, demonstrate FACTION’s effectiveness
in handling this complex challenge. Our model demonstrably
outperforms relevant baselines adapted for this new setting.

Index Terms—Group Fairness, Data Selection, Active Learn-
ing, Online Learning, Epistemic Uncertainty

I. INTRODUCTION

Data-driven classifiers face multifaceted challenges in the
real world. In dynamic environments, such as online learning
systems, models must continuously adapt to evolving data
streams while addressing distributional shifts and operating
under resource constraints. Simultaneously, the prevalence of
unlabeled data in the wild necessitates efficient strategies
for data labeling. These challenges are further amplified by
the growing societal emphasis on fairness, which requires
equitable outcomes across diverse demographic groups. Ad-
dressing these issues in tandem is essential for developing
robust and ethical machine learning systems.

Consider the example of a pedestrian detection system
deployed in real-world urban settings. Live camera feeds gen-
erate continuous streams of data, with characteristics that vary
depending on factors such as time, location, and population de-
mographics. For instance, cameras near schools may capture a
higher proportion of children during certain hours and adults at

other times. This variability introduces significant distribution
shifts. Moreover, the raw data is largely unlabeled, making
manual annotation of all images both time and resource-
intensive. Compounding these challenges is the need to ensure
fairness in decision-making, as pedestrian detection models
often exhibit biases against specific demographic groups, such
as age and gender [6], [7]. This creates an urgent need for
systems that can adapt to new data, select the most informative
samples for labeling, and do so while mitigating bias.

Prior research addresses subsets of these challenges but
rarely integrates them holistically. Fairness-aware learning
frameworks [5] aim to reduce disparities in outcomes across
demographic groups, yet often assume static datasets. Active
Learning (AL) algorithms [1] prioritize the most informative
samples for labeling to maximize model performance but
overlook fairness considerations. Online learning frameworks
[2], [4] dynamically adapt models to new data but are not
inherently fairness-aware. Active Online Learning [2], [47]
combines aspects of online learning and active learning but
does not address fairness. To fill this critical gap, we propose
a unified system called FACTION (Fair Active Online Learn-
ing) that integrates these concerns into a cohesive solution.

FACTION leverages uncertainty quantification to guide its
active learning process. Notably, epistemic uncertainty is a
form of uncertainty [9] that arises from a lack of relevant
training data. This is crucial for active learning as it identifies
areas where acquiring labels can significantly improve model
performance. Importantly, samples that are out-of-distribution
(OOD) with respect to the current model also often exhibit
high epistemic uncertainty [45], [46], making it particularly
effective in dynamic environments with distribution shifts. By
focusing on epistemic uncertainty and leveraging recent ad-
vances in disentangling uncertainty types [45], [46], FACTION
acquires highly informative samples to enhance performance.

Furthermore, FACTION incorporates a novel fairness metric
into the sample selection process. This metric estimates the



fairness of a data sample by employing a fairness-sensitive
density estimator based on features learned from a deep neural
network. FACTION identifies discrepancies in the density
distribution across different sensitive attributes within the
same class. Extending the traditional active learning paradigm,
which prioritizes the most uncertain samples, FACTION in-
corporates fairness by selecting the most unfair samples. A
fairness constraint is incorporated into the loss function to
further regularize the mode. Since we are concerned with
treating diverse demographic groups equitably, FACTION fo-
cuses on group fairness. A detailed explanation of the fairness
measures is provided in Section IV. Additionally, we provide
theoretical bounds for FACTION, establishing guarantees on
query complexity, regret, and fairness violation under certain
key assumptions: (1) convexity of the domain, loss, and
fairness functions, (2) Lipschitz continuity, and (3) bounded
gradients. These are detailed in Section IV-G.
Challenges. Some key challenges for FACTION include:

• Balancing Fairness and Performance: Achieving opti-
mal model performance while ensuring fairness is chal-
lenging, especially with evolving, unlabeled data.

• Strategic Label Acquisition: Fairness considerations re-
quire the AL process to balance data informativeness with
fairness, making the label acquisition strategy complex.

• Real-Time Adaptation: Adapting to both shifting data
distributions and evolving fairness requirements in real-
time demands algorithms capable of quickly updating
their strategies to maintain both performance and fairness.

Contributions. Our contributions can be summarized as:
• The Fairness-Aware Active Online Learning

Paradigm: We introduce the practical and novel
paradigm of Fairness-Aware Active Online Learning,
that addresses real-world challenges.

• Integrating Epistemic Uncertainty and Fairness No-
tions: We create a new AL query function that integrates
epistemic uncertainty and a new fairness notion.

• An Effective and Practical System: We introduce FAC-
TION1, a simple yet effective approach that involves
selecting the most unfair samples and regularizing for
fairness in the loss function.

By bridging fairness, active learning, and online adaptivity,
FACTION addresses a key challenge in data-driven systems.
Through a novel fairness-aware sample selection approach that
remains robust to distribution shifts, FACTION contributes to
the body of work on responsible and efficient data engineering.

II. RELATED WORK

Fairness-Aware Active Online Learning. To our knowledge,
prior work has not simultaneously addressed active learning,
online learning, and fairness-awareness. However, significant
progress has been made in various intersections of these areas.
Traditional Active Learning [1] focuses on maximizing model
accuracy by selecting the most informative labeled training in-
stances. This often involves choosing samples with the highest

1https://github.com/acesadaf/FACTION

uncertainty, such as those with the lowest model confidence
[43]. Techniques like margin sampling, which compares the
probabilities of the top two classes [42], and information
entropy-based measures [41] are commonly employed. Re-
cently, measures of epistemic uncertainty [44], [46] have also
become effective heuristics for selecting unlabeled samples.

On the other hand, fairness in machine learning is another
well-explored area of research, with various techniques for
fair pre-processing [56], [55] and fairer feature engineering
of data [54], as well as various fair learning algorithms
[53], [52]. However, we are more specifically interested in
fairness in more constrained settings, such as with dynamic
and unlabeled data. Recently, incorporating fairness into Ac-
tive Learning has become a significant research focus. Fair
Active Learning (FAL) [33] integrates entropy and fairness
measures to guide sample selection. This approach uses a
metric called Expected Fairness to assess the impact of each
sample on the model’s fairness if included in the labeled set.
This helps identify samples that most enhance model fairness,
showing promising results. Another approach, FAL-CUR [34],
combines Fair Clustering with uncertainty sampling, selecting
the most uncertain and representative samples from clusters
for labeling. D-FA2L [12] introduces the idea of decoupled
models for better fairness-aware active learning, leveraging
disagreements between models to identify the most promis-
ing samples. Research has also explored improving minimax
fairness in active learning [35], [37], aiming to minimize the
largest group’s error rate, which differs from traditional group
fairness metrics like Demographic/Statistical Parity (DP) [32]
and Equalized Odds (EO) [31], [51]. While minimax fairness
is crucial in high-risk applications like healthcare, our work
focuses on traditional group fairness concerns such as DP and
EO, aiming to treat all population sub-groups equally.

Online Learning, extensively studied in prior research [3],
[4], aims to develop an optimal model by adapting to new
data in batches or individually, focusing on minimizing regret.
A key challenge is managing distribution shifts in both data
and label distributions [29], [30]. Active Online Learning adds
complexity by handling unlabeled data, requiring the learner
to selectively acquire labels within a specified budget and
time frame. Algorithms must decide whether to query the
label of each incoming sample, often using a probabilistic
approach. For instance, QuFUR [2] estimates the uncertainty
of each sample to determine the query probability, effectively
managing hidden domain shifts. Similarly, another approach
[47] uses a Bernoulli random variable to decide on querying,
with the probability based on the prediction margin. Prior work
has explored fair online learning using Blackwell approach-
ability [59] to enforce demographic parity and group-wise
calibration. Other approaches, such as fairness-aware online
allocation in continuous-time [60], aim to balance fairness and
efficiency, while FABBOO [61] addresses class imbalance and
cumulative discrimination in streaming data. These methods
offer theoretical guarantees for fairness in online learning.
However, none incorporate an active strategy for acquiring
unlabeled data, limiting their effectiveness in our paradigm.

https://github.com/acesadaf/FACTION


Uncertainty. Quantifying uncertainty is a significant challenge
in research. State-of-the-art methods to address this issue
include Deep Ensembles [20], [23], feature space density char-
acterization [13], [15], and Bayesian methods [44]. Epistemic
and Aleatoric uncertainties are two fundamental types of un-
certainty in predictive modeling [9], [21], [22], [46]. Epistemic
uncertainty, or model uncertainty, arises from our lack of
knowledge about the true underlying model that generated the
data. It is associated with uncertainty in the model parameters
and can be reduced with more data. Conversely, aleatoric
uncertainty is inherent in the variability of the observed
data, stemming from inherent stochasticity in the underlying
processes, and cannot be eliminated with additional data.

III. PRELIMINARIES

A. Group Fairness

Group fairness criteria usually focus on relationships be-
tween sensitive attributes and model outputs [24], [25]. This
study considers a binary sensitive attribute (e.g., young vs.
old), but can extend to multi-valued sensitive attributes. Given
a data space P = X × S × Y × E , where X ∈ Rd is the input
feature space, S ∈ {−1, 1} is the sensitive space, Y ∈ {0, 1}
is the binary output space, and E ∈ N is the environment
space. For a task D = {(xi, si, yi, ei)}ni=1 ∈ P in environment
e ∈ E , a detailed measure to ensure group fairness in class
label prediction involves designing fair classifiers. This is done
by regulating notions of fairness between sensitive subgroups
{si = 1}n1

i=1 and {si = −1}n−1

i=1 where n1 + n−1 = n, using
methods like demographic parity [24], [27].

Definition 1 (Notions of Fairness [24], [27], [28]). A classifier
h : Rd × Θ → R is fair when its predictions, y = {ŷi}ni=1,
are independent of the sensitive attribute s = {si}ni=1. To
get rid of the indicator function and relax the exact values, a
linear approximated form of the difference between sensitive
subgroups is defined [27],

v(D,θ) = E(x,s,y,e)∼P

[ 1

p̂1(1− p̂1)

(s+ 1

2
− p̂1

)
h(x,θ)

]
(1)

where p̂1 is an empirical estimate of pr1. pr1 is the proportion
of samples in group s = 1 and correspondingly 1− pr1 is the
proportion of samples in group s = −1.

In eq. (1), when p̂1 = P(x,s,y,e)∈P(s = 1), the fairness no-
tion v(D,θ) is defined as the difference of demographic parity
(DDP). Similarly, when p̂1 = P(x,s,y,e)∈P(y = 1, s = 1),
v(D,θ) is defined as the difference of equality of opportunity
(DEO). Thus, parameters θ are considered feasible if they
strictly satisfy the fairness constraint v(D,θ) = 0.

B. Active Learning (AL)

Let DU be a pool of unlabeled data, and Dlabeled be a set of
initially labeled instances. The goal of AL [1] is to iteratively
select a subset Dquery ⊂ DU for annotation by an oracle. The
learner has a budget B, for the maximum number of labels
it can query. Samples are typically selected by some measure
of the model’s uncertainty about an unlabeled sample, such as

entropy or margin of the predicted probabilities [41]–[43]. An
AL loop consists of these steps:

1) Train the model on Dlabeled.
2) Evaluate uncertainty on each data point in DU .
3) Select Dquery based on the most informative instances.
4) Query the oracle to obtain labels for Dquery.
5) Update Dlabeled with the newly acquired labels.
6) Repeat Steps (1) to (5) until |Dlabeled| = B.
For instance, in a digit recognition task with 10,000 hand-

written samples (DU = 10000) and a budget of 100 (B = 100),
Active Learning (AL) selects the 100 most uncertain samples
(e.g., ambiguous strokes, poor contrast) for annotation.

C. Active Online Learning

Active online learning merges the active and online learning
paradigms, processing unlabeled sequential data batches (DU

t ,
or tasks) at each time step t. The learner uses an active
selection strategy with a fixed budget B per task. The learner,
faced with a loss function ft : Rd × Θ → R at each time
step, aims to adapt its model parameters to new information
in real-time. The learner queries labels from DU

t until the
budget is exhausted to form Dlabeled

t . This is added to the
existing labeled task pool, Dt = {Dlabeled

i }t−1
i=1 , and the learner

learns from these samples and proceeds to the next task. The
goal is to determine a sequence of model parameters {θt}Tt=1

that maximizes performance within the given budget. For
example, in a traffic monitoring system, active online learning
prioritizes labeling uncertain pedestrian crossing events, such
as cases with obstructed views, while continuously adapting
to changing daylight and traffic patterns.

IV. METHODOLOGY

A. Fair Active Online Learning

We consider a sequential setting where a learner encounters
tasks {DU

t }Tt=1 over time t ∈ [T ], with each task arriving unla-
beled. Using an active selection strategy, the learner selects B
samples from DU

t for labeling, forming Dlabeled
t . At each time

step, the model parameters θt are updated using the labeled
task pool Dt = {Dlabeled

i }t−1
i=1 , ensuring both performance

and fairness i.e. the fair constraint vt(Dt,θt) = 0 is strictly
satisfied and the loss ft(Dt,θt) is minimized. For example,
in pedestrian detection systems at busy intersections, the
learner must adapt to changing weather and lighting conditions
while ensuring consistent detection across age groups and
demographics. The overall protocol is:

1) The learner selects parameters θt, using the existing
labeled task pool, Dt.

2) The learner receives the loss function ft and fairness
metric vt.

3) The learner incurs an instantaneous loss ft(DU
t ,θt) and

fairness estimation vt(DU
t ,θt).

4) The learner uses an intelligent querying strategy to ac-
quire labels for the current task DU

t , to get Dlabeled
t of

size B, which is added to Dt.
5) Advance to the next time step.



Regret. Assume H = {h : X → [0, 1]} is a fair hypothesis
class. Consider a setting where yi = h∗(xi) + Ei for some
fair classifier h∗ ∈ H, where Ei refers to a random noise Et,
which are independent sub-Gaussian random variables with a
mean of 0 and and a variance of η2. Each task in {DU

t }Tt=1

provides samples. For the task at time t, we have, DU
t =

{xi}
|DU

t |
i=1 . When a new task DU

t arrives, the learner incurs an
instantaneous loss ft(DU

t ,θt). Assume that f∗
t (DU

t ) represents
the best loss possible at each task t using the most optimal
parameters for task t. We define the regret as:

R =
∑T

t=1
(ft(DU

t ,θt)− f∗
t (DU

t )) (2)

While DU
t is unlabeled for the learner, we assume that labels

are visible to the loss, ft, only to compute and track the regret.
The learner’s objective at each time step t, is to query the
unlabeled incoming dataset DU

t , for labels within a budget
B, to minimize the overall regret R, while subject to fairness
constraints vt(Dt,θt) = 0.

B. Fair Epistemic Uncertainty

As discussed in Sections I and II, Epistemic Uncertainty
is an effective heuristic in AL and in OOD detection when
data distributions shift. We first disentangle uncertainty into
Epistemic and Aleatoric Uncertainty, removing the latter as
it results from data ambiguity. Next, we derive a fairness
metric based on epistemic uncertainty. To first estimate this
uncertainty, we employ a deterministic neural network with a
carefully regularized feature space, to extract feature vectors.
Inspired by prior work [46], for our image experiments, we
train a ResNet-18 architecture with spectral normalization,
which prevents feature collapse in feature spaces by ensuring
smoothness and sensitivity [19]. For tabular data, we use
a simple MLP. The extracted feature vector is given by
z = r(x, θ), where r uses weights θ to extract the feature
representation of x at the final convolutional layer (for the
ResNet) or a linear layer (for the MLP). Both architectures
are detailed in Section V-A3.

In previous work, a density estimator, G(z), is created
using labeled training data. It uses class-specific components,
{Gy(z)}Cy=1, where C is the number of classes. Each com-
ponent, Gy(z), is fitted using feature vectors derived from
samples belonging to that class. Here, Gy(z) estimates the
density of a test sample’s feature representation, z with respect
to class y, i.e., g(z|y). The overall density is calculated
by summing over the class-specific densities, weighted by
the prior class probabilities. Prior work [46] showed that
this density measures epistemic uncertainty, while aleatoric
uncertainty is computed from softmax outputs. Epistemic
uncertainty is low for familiar test samples and high for unseen
ones. Consider a loan approval system: if the model has mostly
seen young applicants, it would likely show high epistemic
uncertainty (low density) when evaluating applications from
older individuals. A density estimator, fitted with the mean
and covariance of previously seen samples, will assign high
density to similar (low uncertainty) samples and low density to

unfamiliar ones. While previous work focuses on uncertainty,
we address both uncertainty and fairness. Thus, we propose a
new formulation for the density estimator:
1) For each class label y, and sensitive attribute value s, create

a component Gy,s(z) in the density estimator. If there are
C classes and S possible sensitive values, this creates C×S
components. The entire set of components is thus given by:
{Gy,s(z) | for all y ∈ C and for all s ∈ S}

2) Each component Gy,s(z) returns the density of a feature
vector z with respect to both the sensitive attribute s and
the class label y. That is, Gy,s(z) returns g(z|y, s)

3) The overall density is now calculated as:

g(z) =
∑

y

∑
s
g(z | y, s) · p(y, s) (3)

where p(y, s) = 1
N

∑N
i=1 I(yi = y and si = s). Here,

N is the total number of samples in the dataset, and
I is the indicator function, returning 1 if the conditions
are true and 0 otherwise. The overall density, g(z), for a
feature vector z measures the model’s epistemic uncertainty
regarding z. Here, g(z) is calculated by summing over
all components created from combinations of classes and
sensitive attributes, as opposed to only classes. Low density
implies high epistemic uncertainty regarding a sample.

The density estimator can be built using techniques like
Gaussian Processes [17], Normalizing Flows [16], or Gaussian
Discriminant Analysis (GDA) [18]. Like prior work [18],
[46], we use GDA to create a Gaussian Mixture Model
(GMM) as the density estimator G(z). A Gaussian mixture
component is created for each combination of class label and
sensitive attribute by computing the mean and covariance from
the feature vectors of all labeled training samples with the
corresponding class label and sensitive attribute. The feature
vector, z, is extracted from a sample x.

Our formulation for density estimation creates components
based on combinations of class labels and sensitive attributes.
This formulation helps create a new metric for assessing
how fair samples are. We use densities with respect to each
class/sensitive component to derive this measure. We propose
that if a data sample is fair, then the difference in its calculated
density with respect to two components having the same class
but different sensitive attribute values should be low. Assuming
two classes (binary classification), and two possible values for
the sensitive attribute, we have:

△g0(z) = |g(z | y = 0, s = 1)− g(z | y = 0, s = −1)| (4)
△g1(z) = |g(z | y = 1, s = 1)− g(z | y = 1, s = −1)| (5)

Here, for a feature vector z derived from a sample, △g0(z)
is the absolute difference between the densities of two com-
ponents with the same class (y = 0) but different sensitive
attributes. Similarly, △g1(z) is computed for class y = 1.
For fairness, if a sample belongs to class y = 0, it should
have a low value for △g0(z), indicating that it is equally
likely to belong to either density component within this class,
irrespective of the sensitive attribute. This implies that the



sample’s sensitive attribute is independent of its class label.
Conversely, unfair samples will have large values for △g0(z)
or △g1(z). For example, for a sample in class y = 0, a large
△g0(z) suggests a significant preference for one component
over another, i.e., for one sensitive group over the other.

This analysis can extend to a multi-class paradigm by using
C different △gc(z) values, {△gc(z)}Cc=1, where C is the
number of classes. However, we focus on binary classification
with binary sensitive attributes, leaving extensions to future
work. To conclude, these {△gc}Cc=1 values for each class
form our fairness notion based on epistemic uncertainty, where
higher values are more unfair. Specifically, for feature vectors
z1 and z2 from samples in class c:

∆gc(z1) > ∆gc(z2) =⇒ z1 is more unfair than z2

Fair Epistemic Uncertainty compared to other Group
Fairness Metrics. Traditional group fairness metrics like
Difference of Demographic Parity (DDP) or Equalized Odds
Difference (EOD) [26] rely on correlations between predicted
outcomes and sensitive attributes. In contrast, Fair Epistemic
Uncertainty estimates fairness from the feature space by den-
sity estimation, directly leveraging the data. Our experiments
validate the effectiveness of this feature-based approach.

C. Using Fair Epistemic Uncertainty for Fairness-Aware Ac-
tive Online Learning

In Fair Active Online Learning, tasks arrive sequentially
with unlabeled samples, i.e., {DU

t }Tt=1. At each time step t,
the learner uses a Fair AL strategy to update the fair classifier
ht : Rd × Θ → R. For each incoming task, the learner
decides which samples to query for their labels to maximize
information gain, ensure fairness, and adapt to environmental
shifts. For each sample x, we propose a score u(x) (explained
shortly) to determine which samples to query:

u(x) = g(z)− λ
∑C

c=1
pxc ∗ △gc(z) (6)

where z = r(x, θt−1) and r extracts the feature repre-
sentation of x using parameters θt−1 learned at the previous
time step, C is the number of classes, and λ is a parameter
controlling the trade-off between epistemic uncertainty, g(z),
and the fairness notions △gc(z). Finally, pxc is the softmax
probability of sample x belonging to class c, based on the most
recent classifier, ht−1 trained by the learner in the previous
time step. In this formulation for u(x), we say lower is better,
so the best sample to query would be one that minimizes u(x).

We now explain our score, u(x). The term
∑C

c=1 p
x
c ∗

△gc(z) is a weighted sum of all △gc(z) values, where c is the
class label. If the class labels were known, we would use only
the △gc(z) value corresponding to the class of x for fairness
estimation (as discussed in Section IV-B), instead of summing
over all △gc(z) values as they would be irrelevant. But since
this is active online learning, we do not know the class of
an incoming sample. Thus, we use the softmax probability of
the classifier ht−1 from the last time-step to estimate the most

Fig. 1: Sample selection in FACTION: A Density Estimator,
G(z), is created from the available labeled training data. Next,
each unlabeled example is scored using Epistemic Uncertainty
and Fairness measures from the Density Estimator, which is
converted to a probability. Finally, a Bernoulli trial using this
probability determines whether to query for labels.

probable class for x. We then weigh each △gc(z) value by
multiplying with pxc , the probability of x belonging to class c.

Traditional AL focuses on identifying samples with high
uncertainty and learning from them by backpropagating their
losses. Similarly, for fairness, we identify highly unfair sam-
ples and regularize them with a fairness constraint in the loss
to enhance fair predictions on unseen inputs. Lower density,
g(z), indicates higher epistemic uncertainty, while a high value
of

∑C
c=1 p

x
c ∗△gc(z) indicates higher unfairness. To prioritize

both, we negate the
∑C

c=1 p
x
c ∗ △gc(z) term in u(x), and

select samples with low u(x) values, i.e., with high epistemic
uncertainty and high unfairness.

As an example, consider a stop-and-frisk policy evaluation,
where a model is trained to predict whether a stop leads to an
arrest. Historical data shows racial disparities in stop decisions
[62], with certain demographics overrepresented. A new stop
instance involving an individual from an underrepresented
demographic in a previously unobserved zip code would likely
generate high epistemic uncertainty (low g(z)) due to a lack
of similar samples in past training data. If this instance also
produces large ∆gc(z) values, it may suggest bias in how the
model associates certain zip codes with racial groups. FAC-
TION prioritizes querying labels for such cases, improving
both environmental adaptation (new locations, demographics)
and fairness (reducing racial bias in stop predictions).

The Role of Epistemic Uncertainty. Using the epistemic
uncertainty, g(z), in u(x), offers several advantages: In the
presence of an environment shift in a new task, g(z) prioritizes
samples that are most out-of-distribution (OOD) (featuring
high epistemic uncertainty [45], [46]), facilitating quick adap-
tation to new environments. In the absence of a shift, it serves
as an effective AL heuristic.

D. A Practical Design for Selection

We use a selection framework similar to prior work [2],
[47], where the score u(x) produces a probability of querying



for the label of sample x. Scores are normalized to a 0-1 range
and then subtracted from 1, to prioritize lower-scoring samples
by assigning higher probability. Thus, the probability, ω(x), is:

ω(x) = 1−Normalize(u(x)) (7)

Next, starting from samples with the highest probability in a
batch, we perform Bernoulli trials, denoted by Bernoulli(p),
where p = min(α ∗ ω(x), 1). Here α is a hyperparameter
that controls the querying rate for samples. If Bernoulli(p)
returns 1, we query the label of a sample. In practice, if a
sample x has a normalized score of 0.2 and α is set to 0.9,
we have ω(x) = 1− 0.2 = 0.8, and it would be selected by a
Bernoulli trial with probability p = min(0.9 ∗ 0.8, 1) = 0.72.
We conduct trials until the acquisition batch size for each AL
iteration is reached. Fig. 1 shows the selection process.

With data arriving in batches, we normalize scores into
probabilities using the maximum and minimum scores in each
batch. This can extend to other settings not explored here, like
samples arriving individually, where the normalization range
can be updated incrementally with all gathered scores.

E. A Fairness-Regularized Loss Function

We utilize a simple fairness regularization in the loss
function. On a dataset Dt whose labels have been acquired
(as defined in Section IV-A), and with parameters θt at time
t, we define the fairness loss:

Lfair = [v(Dt,θt)]+ (8)

where v is the general fairness notion from Section III-A,
i.e., v(D, θ) and [·]+ is the projection onto the non-negative
space. In our experiments, we instantiate v(D, θ) as the relaxed
form of DDP, from Section III-A. In practice, strict constraints
such as v(D, θ) = 0 are hard to enforce. Instead, we relax
these constraints with an empirical constant ϵ, such that
Lfair ≤ ϵ. Thus, the total loss is:

Ltotal = LCE + µ ∗ (Lfair − ϵ) (9)

where LCE refers to cross entropy loss, and the hyperpa-
rameter µ controls the trade-off between fairness and accuracy.

F. The Full Algorithm

Algorithm 1 summarizes FACTION. For each new task,
we first record the learner’s performance. Each incoming
task, DU

t , arrives unlabeled, with labels available only for
calculating test metrics. Each task has a budget, B. While B
is not exhausted, we do as follows for each task: first, train
the classifier on all labeled data available so far, i.e., Dt, using
Ltotal and learning rate γt. For simplicity, we keep γt constant
in our experiments. Next, we fit a density estimator G(z) as
shown in Section IV-B. Using this, the score for each unlabeled
sample in DU

t is calculated using Eq. 6, and is converted to a
probability. Next, until the acquisition batch size for each AL
iteration, A, is reached, we conduct Bernoulli trials to decide
on querying a sample’s label, starting with the most probable
sample. After acquiring A labels, we move to the next AL

Algorithm 1 FACTION
1: Input: Budget B, Acquisition Batch Size A, Labeled Samples
Dt, Query Parameter α, Classes C, Sensitive Values S

2: Randomly initialize θt−0 ∈ Θ,
3: for each task, t ∈ [T ] do
4: Record the performance of θt−1 on DU

t

5: TaskBudget = B
6: while TaskBudget > 0 do
7: Update model parameters to θtemp by training
8: on Dt using Ltotal (Eq. 9) and learning rate γt
9: for each labeled sample, l ∈ Dt do

10: Retrieve feature vector zl using θtemp

11: end for
12: Initialize density estimator G(z) as a GMM
13: for each y ∈ C do
14: for each s ∈ S do
15: Create component Gy,s(z), in G(z)
16: following Sec. IV-B using feature vector z
17: end for
18: end for
19: Probs← [ ]
20: for each x in DU

t do
21: Calculate u(x) using G(z) and Eq. 6
22: w(x)← 1−Normalize(u(x))
23: Add (x,w(x)) to Probs
24: end for
25: Sort Probs in descending order of w(x)
26: Acquired← 0
27: while Acquired < A do
28: for each (x,w(x)) in Probs do
29: Query ← Bernoulli(min(α ∗ w(x), 1))
30: if Query == 1 then
31: Dt ← Dt ∪ {x}
32: DU

t ← DU
t − {x}

33: Acquired← Acquired+ 1
34: end if
35: end for
36: end while
37: TaskBudget← TaskBudget−A
38: end while
39: θt ← θtemp

40: end for

iteration within the same task, repeating the above steps. This
continues until we exhaust the total task budget, B. Then, we
move to a new task.

G. Analysis

For the problem formulation in Section IV-A, we make
the following standing assumptions on the loss and constraint
functions.

Assumption 1 (Convexity). Domain Θ is convex and closed.
The loss function ft and the fair function v are convex.

Assumption 2 (F−Lipschitz). There exists a positive constant
F such that

|ft(·,θ1)− ft(·,θ2)| ≤ F, ||v(·,θ1)|| ≤ F,

∀θ1,θ2 ∈ Θ, ∀t ∈ [T ]

Assumption 3 (Bounded gradient). The gradients ∇ft(θ) and
∇v(θ) exist, and they are bounded by a positive constant H
on Θ, i.e.,



||∇ft(·,θ)|| ≤ H, ||∇v(·,θ)|| ≤ H, ∀θ ∈ Θ, ∀t ∈ [T ]

Examples where these assumptions hold include logistic re-
gression and L2 regression over a bounded domain. Regarding
constraints, a family of fairness notions, such as DDP and
DEO introduced in Definition 1, are applicable [27]. Suppose
Assumption 1-3 holds, Theorem 1 provides the bounds for the
query complexity, regret, and violation of cumulative fairness.
The detailed proof for Theorem 1 is present in Section VII.

Theorem 1 (Bounds for Query Complexity, Regret, and
Violation of Cumulative Fairness). Under Assumptions 1-3,
suppose the task sequence {Dt}Tt=1 can be partitioned into m
disjoint nonempty subsets {Iu}mu=1, where each Iu consists
of a number of Dt characterized by a distinct environmental
variation. For samples in the task sequence, they lie in an input
space of dimension d. With the noise level η̃ = max{η, 1} and
parameter α,

1) We define qt as the number of queries needed at t ∈ [T ] to
satisfy the budget B. The query complexity of Algorithm
1 is

Q =

T∑
t=1

qt = O
( m∑

u=1

min
{
|Iu|, η̃

√
αd|Iu|

}
+ 1

)
2) The learner’s regret (Eq. 2) is bounded.

R = O
( m∑

u=1

max
{
η̃2d, η̃

√
d|Iu|
α

})
3) Given a non-increasing sequence {γt} ⊆ (0,+∞), with

γt =
γ0√
m|Iu|

, where γ0 > 0 is a constant, we have the

bound of the violation of cumulative fairness that

V =

T∑
t=1

∣∣∣∣∣∣[v(Dt,θt)]+

∣∣∣∣∣∣
= O

( m∑
u=1

max
{
η̃2d, η̃

√
dγ0β|Iu|

α

})
,

where β =
H2γ0√
m|Iu|

+
F 2

γ0m|Iu|
+ 2F

Discussion. In the context of changing environments, The-
orem 1 provides bounds for query complexity, loss regret, and
violation of fairness. However, these bounds on R and V can
be extended to a stationary environment, where R and V are
required to grow sublinearly in T . In this scenario, the number
of non-empty set m is set to 1 and |Iu| = T . We thus derive
R = O(

√
T ) and V = O(T

1
4 ).

Limitations of Theoretical Analysis. While our theoretical
analysis provides performance guarantees for FACTION, it has
limitations. Specifically, Assumption 1 (convexity) may not
hold in real-world scenarios, especially with deep networks
and non-convex loss landscapes. However, FACTION per-
forms well empirically despite this assumption. Future work
could extend these guarantees by relaxing convexity con-
straints and leveraging advances in non-convex optimization.

H. Alternative Fairness Paradigms and Data Types

While FACTION focuses on group fairness, it could poten-
tially extend to individual and counterfactual fairness. With an
appropriate similarity metric, FACTION could enforce indi-
vidual fairness by penalizing inconsistent treatment of similar
samples. For counterfactual fairness, prior work [58] links it
to demographic parity, which FACTION already optimizes.
Extending our framework explicitly for counterfactual fairness
would require modifying our density estimator (Equations
3–5) to compare samples with their counterfactual variants,
a challenge that depends on effective counterfactual image
generation—a promising direction for future research.

Extensions to other data types. We show that FACTION
generalizes to image and tabular data. Since its selection
relies on feature representations, extensions to other types of
data such as text requires constructing a robust feature space,
after which FACTION’s density-based uncertainty and fairness
estimation can apply naturally.

V. EXPERIMENTS

A. Experimental Setting

1) Datasets: We evaluate FACTION on 5 datasets.
The Rotated Colored MNIST [38] extends RotatedMNIST

with 10,000 digits (0-9) rotated by {0, 15, 30, 45} degrees,
with the rotation angles representing different environments.
For binary classification, digits 0-4 are labeled as 0, and 5-9
as 1. Following prior fairness works [48]–[50], we use digit
color (green/red) as the sensitive attribute. We create deliberate
label-color correlations for each rotation with coefficients {0.9,
0.8, 0.7, 0.6}, where 0.5 indicates unbiased assignment and 0.9
indicates high bias. Data from each rotation angle is split into
3 equal subsets (tasks), resulting in 12 sequential tasks.

The CelebA [39] dataset contains over 200,000 celebrity
images. Following prior work [14], [36], we use binary at-
tributes—Young, Male, Attractiveness, and Smiling. To create
4 environments, we combine Young and Smiling. Data from
each environment is split into 3 subsets, forming 12 sequential
tasks. Similar to prior work [14], Male is the sensitive attribute
(gender), and Attractiveness is the class label.

FairFace [40] consists of 108,501 face images across 7
racial groups. Each race defines an environment, with data
split into three subsets per race, forming 21 sequential tasks.
Gender is the sensitive attribute, and age (binary: 1 for over
50, 0 otherwise) is the target label.

The FFHQ-Features dataset: This dataset is an annotated
variant of FFHQ [10], providing images of individuals with
annotations for facial expression, age, and gender. We use
the four most common facial expressions as environments
(additional details in Section V-A3). We set age as a binary
classification target (greater than 50 or less), and gender as
the sensitive attribute. Each environment is split into 3 tasks,
giving a total of 12 tasks.

The New York Stop-and-Frisk [11] dataset tracks whether
pedestrians stopped on suspicion of weapon possession ac-
tually had a weapon. We consider race (black/non-black) as



Fig. 2: Results on RCMNIST, CelebA, FFHQ-Features, FairFace and NYSF. Higher is better for accuracy, lower is better for
fairness metrics. FACTION provides superior fairness compared to baselines on most tasks while maintaining strong accuracy.



Fig. 3: Trade-offs for the fairness-aware models. As accuracy
improves (higher is better), the EOD score tends to worsen
(lower is better). Points near the top-left are preferred.

the sensitive attribute. The data is divided by geographic
area to create different distributions, with each area’s data
further grouped by yearly quarters (Jan-Mar, Apr-Jun, etc.)
to introduce temporal shifts. This creates 16 tasks (more
details in Section V-A3). Our classification target is whether
an individual was frisked.

Fairness Metrics. We use 3 popular group fairness metrics,
Difference of Demographic Parity (DDP) [52], [27], Equalized
Odds Difference (EOD) [51], and Mutual Information (MI)
[33], [53], where lower absolute value is better for all.

2) Baselines: To our knowledge, no prior work directly
addresses Fair Active Online Learning. Thus, we adapted
seven baselines from various perspectives. For Fair AL, FAL
[33] introduces a notion called “Expected Fairness”. FAL-
CUR [34] is another fairness-aware active learning method,
using fair clustering and a representative score for each sample
to ensure fairness. D-FA2L [12] employs decoupled models
for fairness-aware AL, leveraging disagreements between them
to identify promising data points. We refer to D-FA2L as
Decoupled in all results for clarity. We adapt FAL, FAL-
CUR, and Decoupled to the online setting by applying them
sequentially at each time step. QuFUR [2] addresses active
online learning, balancing regret and the number of labels to
query. DDU [46] (Deep Deterministic Uncertainty) leverages

epistemic uncertainty to achieve strong performance in AL
and OOD detection. Entropy-based Active Learning (Entropy-
AL) [1] is a classical AL approach using Shannon entropy for
selection. We also include a naive Random baseline, selecting
samples at random. Finally, we have our approach, FACTION.

3) Hyperparameters and Additional Details: FACTION’s
hyperparameters were tuned within the following ranges: λ
(Eq. 6): {0.0001, 0.001, 0.01, 0.1, 1, 5, 10, 100}; µ (Eq. 9):
{0.1, 0.3, 0.5, 0.7, 0.9, 1, 1.2, 1.4, 1.8, 2, 2.4, 2.8, 3}; ϵ (Eq.
9): {0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.5}; and α (Algorithm
1, line 29): {0.1, 0.5, 1, 3, 5, 10}. The acquisition batch size,
A, for each iteration in AL, is a parameter common to all
baselines and FACTION. Given the large number of tasks in
each dataset (up to 21 in FairFace), we perform batch AL
(A > 1) as it is significantly faster. For all methods, we set
A = 50. All methods were warm-started with an initial labeled
set of 100 randomly selected samples. When testing at each
time step with an incoming task, DU

t , the full dataset is used
for evaluation. Experiments were repeated five times, and the
mean and standard deviation are reported.

Model Architecture For all experiments and all methods
in Figures 2, 3, 4 and 5, we use a standard ResNet-18 with
spectral normalization for images and a simple two-layer MLP
(hidden dimension 512, ReLU activation) for tabular data.
Features are extracted from the first linear layer in the MLP.

Additional Dataset Details. For all datasets, each task must
contain more unlabeled samples than the AL budget B (200,
consistent with prior work in Section V-B), for AL to be
meaningful. Most tasks across all datasets have over 10 times
more samples than the budget. However, for some exceptions,
we removed environments with insufficient samples, such as
specific quarters of the year in “Staten-Island” (NYSF dataset)
and certain emotions like “Contempt” (FFHQ-Features), where
task sample counts fell below the budget.

B. Results

In our experiments, performance is sequentially evaluated
on each task as it arrives. As unlabeled data batches from
each task arrive, the learner acquires samples within a limited
budget, B to learn efficiently, while adapting to the new
environment and maintaining fairness. We set B = 200, in line
with our baselines using identical [33] or similar [34] values.
We report accuracy and 3 fairness metrics in Figure 2. Here,
each row of images represents different metrics evaluated on
tasks of a single dataset. FACTION, represented by the black
line in all figures, exhibits superior performance compared to
baselines across all datasets. Our algorithm is able to achieve
better fairness results across metrics on a large majority of the
tasks in each dataset, without sacrificing accuracy compared to
baselines. In terms of accuracy, competitors like QuFUR and
DDU show comparable performance, adapting to new tasks
without significant drops in performance unlike some other
baselines. Guided by an epistemic uncertainty based selection
system, our model is able to match these competitors in
accuracy and adapt quickly. However, FACTION far outstrips
them in fairness metrics as they are naturally not fairness-



Fig. 4: Ablation experiments on all datasets. Simplified variants exhibit inferior fairness performance.



aware. On the other hand, fairness-aware baselines like FAL-
CUR often outperform the non-fairness aware baselines in
terms of fairness. Nonetheless, in most cases, FACTION is
significantly more fair. We think this is because the fairness-
aware baselines only look for fair samples in the selection
step, but do not regularize for fairness when learning from
them. If the dataset is inherently biased, it is unlikely that the
learner will find enough unbiased samples to learn from. Thus,
we instead identify unfair or biased samples first through our
approach using △gc(z) values from Section IV-B, and then
learn from them through a simple fairness regularizer in the
loss function, to make fairer predictions at test time. This
approach often leads to large differences in fairness, such as
in CelebA, where FACTION achieves a DDP score of 0.05 in
the final task, when no competing baseline is able to do better
than 0.20. Finally, the fairness-aware baselines often suffer
from large accuracy drops on new tasks due to environment
shifts, unlike FACTION.

Sensitivity Analysis. We analyze fairness-accuracy trade-
offs among fairness-aware methods (FACTION, FAL, FAL-
CUR, and Decoupled) across all datasets. Fig. 3 shows how
varying fairness parameters affects performance, with pre-
ferred models positioned at top-left (higher accuracy, lower
EOD). We vary each method’s key fairness parameter (for
space constraints, please refer to the respective papers for
parameter details): FAL’s l {64, 96, 128, 196, 256}, FAL-
CUR’s β {0.3, 0.4, 0.5, 0.6, 0.7}, Decoupled’s threshold
α {0.1, 0.2, 0.4, 0.6, 0.8}, and FACTION’s µ {0.3, 0.5,
0.7, 1.4, 2.8} which directly controls the fairness-accuracy
tradeoff through regularization strength. Results show mean
and standard deviation from 5 runs per configuration.

Ablation. We conduct ablation studies on all datasets, as
shown in Figure 4. Here, “w/o Fair Select” removes fairness
criteria from the selection step,“w/o Fair Reg” removes the
Fairness Regularizer from the loss function, and “w/o Fair
select & Fair Reg” removes both. We see that all variants
exhibit inferior fairness.

Runtimes. We measured empirical runtimes to investigate
computational costs of fairness methods. Figure 5a shows
average total runtimes across 5 runs on a Tesla V100 GPU with
Intel(R) Xeon(R) E5-2680 CPU. FACTION runs faster than
FAL and FAL-CUR, with FAL’s expected fairness calculation
being very expensive. While FACTION is slightly slower than
Decoupled (which uses a simpler model disagreement-based
selection approach), it achieves significantly better fairness
results on all datasets (Figure 2). Figure 5b compares FAC-
TION with simplified variants, including “Random” (every-
thing removed), “w/o fair select & fair reg” (only epistemic
uncertainty), and other variants are defined similarly to the
ablation. Evidently, runtimes increase as we add components,
but remain reasonable, with the full system requiring less
than twice the runtime of random selection on all datasets.
Table I shows the runtime and performance of FACTION
variants on NYSF, reporting the mean across 16 tasks. The full
FACTION system significantly improves fairness while main-
taining competitive accuracy. Compared to its non-fairness-

(a) Runtimes of all fairness-aware models.

(b) Runtimes of FACTION with ablated variants.

Fig. 5: Runtime comparisons for FACTION.

Model Runtime(m) Acc(↑) / DDP(↓) / EOD(↓) / MI(↓)
Random 65.2 81.44 / 0.114 / 0.101 / 0.011
w/o fair sel. & fair reg 82.6 84.51 / 0.118 / 0.084 / 0.009
w/o fair reg 90.2 84.50 / 0.138 / 0.091 / 0.012
w/o fair select 110.0 82.73 / 0.110 / 0.078 / 0.010
FACTION 122.6 83.41 / 0.089 / 0.059 / 0.006

TABLE I: FACTION compared to its ablated variants on
runtime and performance (mean across all tasks) in NYSF.

aware variant (w/o fair select & fair reg), it sacrifices just
over 1% accuracy for substantial gains in DDP (0.118 vs
0.089, 24.5% improvement), EOD (0.084 vs 0.059, 29.8%
improvement), and MI (0.009 vs 0.006, 33.3% improvement).

Additional Results. To assess FACTION’s generality, we
test it with Wide ResNet-50 (WRN-50) [57] on the CelebA
dataset, applying it to both FACTION and all baselines.
Figure 6 shows that FACTION consistently improves fairness
while maintaining competitive accuracy with other methods.

VI. CONCLUSION

Our research proposes FACTION, to effectively handle
the unique challenges of the practical and novel Fairness-
Aware Active Online Learning paradigm. Through extensive
experiments on both images and tabular data, and with robust
theoretical guarantees, we demonstrate that FACTION adapts
to changing data distributions while intelligently querying for a
limited budget of labels and ensuring fairness in its predictions.
This is achieved by a lightweight combination of epistemic
uncertainty, a novel fairness notion and simple regularization,
which enables FACTION to perform fair, effective and effi-
cient sample selection in dynamic environments.



Fig. 6: Performance of all methods on the CelebA dataset using the WRN-50 model.

VII. PROOFS OF THEORETICAL RESULTS
Before presenting the proof of Theorem 1, two Lemmas are provided.

Lemma 1. In the setting of Theorem 1, with probability 1 − δ
2 , we have ft(Dt) −

f∗
t (Dt) = O(ω(Dt)), ∀t ∈ [T ].

Lemma 2. Let a1, · · · , ak be k vectors in Rp. For i ∈ [k], define Ni = λI +∑i=1
j=1 aja

T
j . Then for any S ⊆ [k],

∑
i∈S ω(ai) ≤ ln

det(λI+
∑

i∈S aia
T
i )

det(λI)
.

Lemma 1 upper bounds the regret with the sum of score estimates ω(Dt). Lemma 2
bounds the sum of estimated scores using ω(·) for k queried samples in an environment.
The proofs of Lemma 1 and 2 are omitted, as they are extended from [2]. We now give
the proof of Theorem 1.

Proof. Let pt = min{1, αω(xt)} be the learner’s query probability at
time t. It is easy to see that Et−1[qt|xt, Ht−1] = pt, where qt =
Bernoulli(min{1, αω(xt)}) and Ht−1 = {x1:t, h1:t, ξ1:t}. For simplicity, we
denote Et−1 := Et−1[qt|xt, Ht−1]. Let random variable Zt = qtω(xt). We have
the following simple facts:

Zt ≤ η̃
2
; Et−1Zt = ptω(xt);

Et−1Z
2
t ≤ η̃

2Et−1Zt ≤ η̃
2
ptω(xt)

For every u ∈ [m], define event

Fu =
{∣∣∣ ∑

t∈Iu

ptω(xt) −
∑
t∈Iu

qtω(xt)
∣∣∣ (10)

≤ O
(
η̃

√√√√∑
t∈Iu

ptω(xt) ln
T

δ
+ ln

T

δ

)}
(11)

Applying Freedman’s inequality to {Zt}t∈Iu , we have P(Fu) ≥ 1− δ
4m . Similarly,

G =
{∣∣∣ ∑

t∈Iu

pt −
∑
t∈Iu

qt

∣∣∣ ≤ O
(
η̃

√√√√∑
t∈Iu

pt ln
T

δ
+ ln

T

δ

)}
(12)

Applying Freedman’s inequality to {qt}t∈Iu , we have P(G) ≥ 1 − δ
4 .

By the definition of Fu, solving for
∑

t∈It
ptω(xt) in Eq.(10), we have

∑
t∈It

ptω(xt) = O
( ∑

t∈It

qtω(xt) + η̃
2
)

Using Lemma 2 with {ai}k
i=1 = {xt}t∈Qt where Qt is the set of labeled samples

seen up to time t − 1, and S = Iu ∩ QT , we have

∑
t∈Iu

qtω(xt) ≤η̃
2
ln det

(
I + C

2
∑

t∈Iu∩QT

xtx
T
t

)
≤2η̃

2
d ln(1 + C

2 |Iu|
d

) = O(η̃
2
d)

By combining with
∑

t∈It
ptω(xt), we have

∑
t∈It

ptω(xt) = O(η̃2d).
We divide the samples in environment u into high and low risk subsets with index

sets Iu,+ and Iu,−. For simplicity, we omit the subscript u hereafter.

I+ = {t ∈ Iu : αω(xt) > 1}, I = I\I+

We consider bounding the regrets and the query complexities in these two sets:

(1) For every t ∈ I+, pt = 1, label yt is queried,

∑
t∈I+

ω(xt) =
∑

t∈I+

qtω(xt) ≤
∑
t∈Iu

qtω(xt) = O(η̃
2
d)

Since for every t in I−, ω(xt) > 1
α , we have

∑
t∈I+

ω(xt) >
|I+|
α . This implies

that
∑

t∈I+
pt = |I+| = O(αη̃2d).

(2) For every t ∈ I−, pt = αω(xt). Therefore,

∑
t∈I−

αω(xt)
2
=
∑

t∈I−

ptω(xt) ≤
∑
t∈Iu

ptω(xt) = O(η̃
2
d)

By Cauchy-Schwarz, and the fact that |I−| ≤ |Iu|, we have

∑
t∈I−

ω(xt) ≤
√

|I−|(
∑
t∈I

ω(xt)2) = O(η̃

√
d
|Iu|
α

)

Consequently,
∑

t∈I−
pt =

∑
t∈I−

αω(xt) ≤ O(η̃
√

αd|Iu|). Summing over
the two cases, we have

∑
t∈Iu

pt ≤ O(αη̃
d
+ η̃
√

αd|Iu|)

∑
t∈Iu

ω(xt) ≤ O(η̃
2
d + η̃

√
d
|Iu|
α

)

If α ≤ |Iu|
η̃2d

, we have αη̃2d ≤ η̃
√

αd|Iu|, otherwise we use the trivial bound∑
t∈Iu

pt ≤ |Iu|. The above bounds can be simplified to

∑
t∈Iu

pt ≤ O(min{|Iu|, η̃
√

αd|Iu|}) (13)

∑
t∈Iu

ω(xt) ≤ O(max{η̃2
d, η̃

√
d
|Iu|
α

}) (14)

For the query complexity, from the definition of event G, applying AM-GM inequality
on Eq.(12), we have

Q =
T∑

t=1

qt = O
( T∑

t=1

pt + 1
)

= O
(

m∑
u=1

min
{
|Iu|, η̃

√
αd|Iu|

}
+ 1

)
Similarly, the regret guarantee is derived by using the definition of event E, Lemma 1,

and Eq. (14).
Furthermore, with the Lemma 1 presented in [8], it yields ||µ||2 ≤ βm|Iu|, where

β =
H2γ0√
m|Iu|

+ F2

γ0m|Iu| +2F . Together this inequality with γt =
γ0√

m|Iu|
, ∀t ∈

[T ], we have

V ≤
η̃
√

m|Iu|γ0

αm|Iu|
||µ|| ≤ η̃

√
dγ0β|Iu|

α

which yields the bounds for the violation of the long-term constraints.
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