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Abstract—Generalizing to out-of-distribution data with being
aware of model fairness is a significant and challenging problem
in meta-learning. The goal of this problem is to find a set of
fairness-aware invariant parameter of classifier that is trained
using data drawn from a family of related training domains with
distribution shift on non-sensitive features as well as different
levels of dependence between model predictions and sensitive
features so that the classifier can achieve good generalization
performance on unknown but distinct test domains. To tackle
this challenge, existing state-of-the-art methods either address the
domain generalization problem but completely ignore learning
with fairness, or solely specify shifted domains with various
fairness levels. This paper introduces an approach to fairness-
aware meta-learning that significantly enhances domain gener-
alization capabilities. Our framework, Fairness-Enhanced Meta-
Learning for Domain Generalization (FEED), disentangles latent
data representations into content, style, and sensitive vectors. This
disentanglement facilitates the robust generalization of machine
learning models across diverse domains while adhering to fairness
constraints. Unlike traditional methods that focus primarily on
domain invariance or sensitivity to shifts, our model integrates
a fairness-aware invariance criterion directly into the meta-
learning process. This integration ensures that the learned pa-
rameters uphold fairness consistently, even when domain charac-
teristics vary widely. We validate our approach through extensive
experiments across multiple benchmarks, demonstrating not only
superior performance in maintaining high accuracy and fairness
but also significant improvements over existing state-of-the-art
methods in domain generalization tasks.

Index Terms—Fairness-aware Meta-Learning, Domain Gener-
alization.

I. INTRODUCTION

The widespread adoption of machine learning across various
sectors has underscored the critical importance of developing
algorithms that can perform well across diverse domains. This
challenge, often termed domain generalization, is crucial in
environments that differ from the training settings, a common
scenario in real-world applications such as healthcare, finance,
and social justice. In these applications, not only is high ac-
curacy essential, but fairness cannot be overlooked, especially
when sensitive attributes like gender or ethnicity are involved
[6].

Recent advancements in domain generalization techniques
[2], [12] have aimed at learning domain-invariant features.
However, these methods often fail to address changes in
distributions of sensitive attributes across domains, leading to
potential fairness issues when deployed in varied real-world
settings [16].
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Fig. 1. Tllustration of fairness-aware domain generalization problems using
the ccMNIST digit dataset. The domains correspond to different digit colors
(red/green/blue). Each image has a black or white background color as the
sensitive label. For simplicity, digits 2 and 9 are used as toy examples to
demonstrate the setting. Each domain is associated with various group fairness
levels estimated using the demographic parity metric.

Recent approaches in fairness-aware meta-learning have
shown promise in addressing this gap by not only adapting
models to new tasks with minimal data but also by potentially
incorporating fairness directly into the learning process. How-
ever, existing approaches such as [7], [8] focus predominantly
on online learning scenarios or specific types of domain shifts,
thus limiting their applicability in a broader range of domain
generalization contexts.

Different from existing settings for the problem of fairness-
aware domain generalization, we define the same problem but
in a more general way. We illustrate our setting using the
ccMNIST image dataset. In this example, data domains are
specified by various digit colors, but we do not assume group
fairness levels for domains are different or the same. The
goal of this problem is to learn an invariant classifier across
observed training domains and achieve good generalization
performance on testing domains with unknown non-sensitive
variation and an unknown group fairness level. To address the
challenges, our work introduces a novel fairness-aware meta-
learning framework specifically tailored for domain general-
ization. This framework is designed to learn a robust set of
initial parameters that are optimized for effective adaptation
across a range of diverse domains, embedding fairness con-
siderations directly at the meta-parameter level. This allows
the model to rapidly adapt to new domains while adhering to
stringent fairness constraints, thereby pushing the boundaries
of traditional domain generalization approaches. Our main
following contributions are:



« We introduce a meta-learning framework for fairness
across domains, innovatively incorporating fairness at the
meta-parameter level. It enables our model maintaining
fairness while outperforming traditional domain general-
ization approaches.

e We formulate a fairness-aware invariance criterion for
meta-learning settings. This criterion ensures that the
learned initial parameters are consistent and fair across
domain shifts, significantly enhancing the fairness level of
machine-learning models across various unseen domains.

« We empirically validate our method on multiple domain
generalization benchmarks, where it demonstrates the
ability to maintain high accuracy and fairness. Our rigor-
ous testing against state-of-the-art domain generalization
and fairness methods highlights the critical role of initial
parameter in meta-learning for achieving fairness across
different domain shifts.

II. RELATED WORK

Fairness-aware domain generalization. Fairness consider-
ations in domain generalization have emerged as a concern due
to challenges posed by domain shifts and the unavailability of
out-of-distribution (OOD) data, which are traditionally tackled
by several leading techniques [2], [9]-[11], [13], [14]. These
methods strive to enhance the innate generalizability of ma-
chine learning models across source domains, each character-
ized by distinct but potentially overlapping distributions [22].
A prevalent approach involves aligning distributions across
multiple sources to foster domain-invariant feature represen-
tations, crucial for stable pattern recognition across domains
without target domain data access [23], [24]. Notably, some
strategies incorporate meta-learning paradigms to acclimate
the model to domain shifts during the training phase [12] or
use domain analytic data augmentation techniques to broaden
the model’s exposure to potential shifts [24].

Despite these advancements, the integration of fairness into
domain generalization remains scant. Most research in domain
generalization [13], [14], [25], has predominantly focused on
leveraging diverse source data to uncover invariant patterns. As
[25] articulates, the principal goal is to derive representations
that are robust to the marginal distributions of data features,
thereby eschewing reliance on target data. However, this line of
inquiry largely overlooks the nuances of ensuring that fairness
across varying domains. Addressing this gap could enhance
the robustness and ethical alignment of models deployed
in real-world settings. A recent method for disentangling
sensitive attributes, as proposed by Zhao et al. (2024) [15],
focuses on learning domain-invariant parameters from training
domains. These parameters are fixed and directly applied to
new domains. However, the method lacks adaptability when
applied to new domains with only a few examples. These
methods optimize parameters for multiple domains but are
limited in rapidly adapting to unseen tasks. In contrast, our
method, based on meta-learning, learns initial parameters that
quickly adapt to new domains while ensuring fairness.

Fairness-aware meta-learning. In the context of fairness-
aware meta-learning, research efforts primarily focus on devel-
oping adaptable frameworks that can effectively handle shifts
in domain characteristics while maintaining fairness standards.
Strategies such as equality-aware monitoring [26] have been
developed. These approaches continuously observe the outputs
of a model to detect any deviations from fairness norms and
adjust accordingly by modifying the model’s parameters or its
structure. However, these methods traditionally operate under
the assumption that fairness metrics remain consistent across
different domains, an assumption often contradicted by the
complexities encountered in practical scenarios. Zeng et al.
[31] introduced a Nash Bargaining solution to enhance fairness
in meta-learning models. However, their approach sometimes
struggled with the robustness of fairness across drastic domain
shifts due to an overemphasis on bargaining outcomes in
homogeneous domains. In contrast, our framework enhances
domain generalization by disentangling latent representations
into content, style, and sensitive factors, thereby maintaining
fairness even when domain characteristics vary significantly.
Furthermore, alternative approaches in the literature [16], [17]
attempt to evaluate a model’s fairness by recognizing changes
in fairness benchmarks as indicative of domain shifts, yet they
tend to overlook variations in the distribution of non-sensitive
attributes, which can lead to inadequate generalization capa-
bilities.

To address these challenges, our meta-learning framework
innovatively partitions data attributes into sensitive and non-
sensitive categories. Such a distinction is pivotal for the meta-
learning algorithm, which is designed not merely to react to
explicit domain labels but also to respond to more nuanced
shifts in the distributions of data features. This approach
enables our meta-learning algorithm to refine its strategy for
learning initial parameters, ensuring domain generalization and
fairness. By effectively distinguishing between these attribute
categories, the algorithm can prioritize the learning of initial
parameters that maintain high performance and fairness stan-
dards across a spectrum of environments.

III. PRELIMINARIES

Notations. Consider the data space P = X x Z x )/, where
X C R? denotes a feature space, Z C {—1,1} denotes binary
sensitive attributes!, and ) C {0,1} denotes the binary output
space for binary classification. Define the parameterized latent
spaces: C for content, S for style, and A for sensitivity factors.

The function d(-,-) is a distance measure across the space
Y x Y. Variables and parameters in our framework are sym-
bolically denoted as follows: vectors in boldface lowercase
letters, and scalars in italic lowercase letters.

Problem setting. Given a dataset D, we consider a set of
data domains £ = {e;}}_; where each domain corresponds
to a distinct data subset D¢ = (X?i,z;i,y;i)mel‘

=1
P, and D = |J,_, .., D. Data domains are partitioned

over

'In this study, we focus on a single binary sensitive attribute for clarity.
Extensions to multiple sensitive attributes of various categories can be
seamlessly integrated.



into multiple training domains &g, & € and testing do-
mains Eest = € \ Etrain. The corresponding datasets are
Dirain = Ui:17---7nt,,. D¢ where e; € gt'r'ain and Dyest =
Uizl,“ e D¢ where e; € Eest- Given samples from finite
training domains &yqin, the goal of fairness-aware domain
generalization problems is to learn initial parameters 8 € ©
of classifier f that is generalizable across all possible domains.

Meta-learning. Define task 7 ~ p(7) where p(T) =
{(B“P, BYY) | BS“P U BYY C Dypgin, BSP N BIY = P}
The goal of meta-learning is to learn initial parameters on the
training dataset, and it can be quickly adapted to the testing

dataset (understream task).

Model-agnostic meta-learning (MAML) [30], as a state-of-
the-art approach in the meta-learning landscape, exemplifies a
robust framework designed for such tasks. In MAML, a unique
set of model parameters ' is trained for each task 7 on its
support set B°“P. These parameters are specifically adapted
from a shared set of meta-parameters @, which are iteratively
updated based on the aggregate loss observed across all query
sets B9V,

0 =0 —aVeLlpssur (), ()
0+ 60—pVe > Lparu(6) )
T~p(T)

where « is the task-specific learning rate and S denotes the

meta-learning rate. Lgsu»(0) represents the loss calculated
on the support set using the initial meta-parameters 8, and
Lpary(0") denotes the loss calculated on the query set using
the parameters 6.

A. Assumptions

Assumption 1 (Latent Spaces). Given a batch B =
{(x;‘,zj,yj)}‘fill sampled from a specific domain ¢e; € &,
as illustrated in Fig. 2, we postulate that each data point x;’i
within the task originates from:

o a latent content factor ¢ € C, where C denotes a content
space that is invariant across all domains E;
o a latent style factor s € S that is unique to the specific
domain e;;
o a latent sensitive factor a € A.
where CNSNA = (). Each domain e; is uniquely characterized
by its style factors, denoted as e; :=s.

Assumps. 1 echoes the assumptions made in prior works
such as [13], [14], [18], [27]. Specifically, UNIT [18] hypoth-
esizes a fully shared latent space across all factors, whereas
MUNIT [27] suggests a hybrid latent space model where some
components are shared across domains and others are domain-
specific. In our framework, considering group fairness, we
extend these concepts to include three distinct latent spaces:
a content space C, a style space S, and a sensitive space
A. Additionally, we posit that domain labels are typically
unattainable in both training and testing phases due to practical
limitations or excessive costs, as supported by [28].

It is essential for fairness that the labels remain indepen-
dent of variations across domains. This requirement trans-
lates to a scenario where instance conditional distributions
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Fig. 2. Causal interpretation of fairness-aware domain generalization tasks.
We assume that the raw features (x) and class label (y) of each example are
generated by the latent content factor (c), style factor (s), and sensitive factor
(a). The sensitive factor (a) is dependent on the sensitive attribute (z) of this
example and may or may not be dependent on the domain. The style factor s
depends on the domain, but the content factor c is independent of the domain
e. Each domain label is unobserved.

{P(Y%|X®, 6 Z%)}¢,ece differ by domain, reflective of inher-
ent domain-specific characteristics. Within the context of this
research, we posit that differences across domains, termed
as domain shifts, are governed exclusively by a transfor-
mation model 7" : X x Zx & — X x Z. Specifically, if
two samples (x%, 2°) and (x%, 2% ) from different domains
ei,e; € £, where ¢ # j, exhibit identical content factors, then
the sample from domain e; can be reconstructed from the
sample of domain e; using the transformation 7. This process
involves T extracting the invariant content from (x¢, 2¢) and
subsequently applying domain-specific style and sensitivity
information encoded in e; to regenerate (x%, z%).

Assumption 2 (Fairness-aware Domain Invariance). We hy-
pothesize that the variations observed between domains are
primarily driven by changes in the marginal distributions
P(X*®) and P(Z°) for each domain e € £. Consequently, we
posit that the conditional distribution P(Y €| X¢, Z¢€) remains
consistent across different domains. With a domain trans-
Sformation function T, we assert that for any feature vector
x € X, sensitive attribute z € Z, and class label y € Y:

P(Y® = y| X =x, 2% =2) =P(YY = y|(X,Z%)
= T(X5i726ivej)) Vei,e; €E,1# ]

In relation to existing literature, Robey et al. [14] describe
a version of T that incorporates content and style factors, but
overlooks the sensitive factors which are crucial for ensuring
fairness in domain generalization. The domain shift driven by
T effectively represents how the distinct distributions P(X )
and P(Z¢) map to the corresponding distributions P(X¢)
and P(Z%) in domains. Moreover, it is fundamental in our
framework that class labels y ~ Y should remain invariant to
changes in fairness-sensitive attributes across domains. In this
context, inter-domain variation is exclusively defined by the
transformations dictated by 7.

Our approach delves into the domain generalization prob-
lem, where inter-domain variability is specifically attributed
to domain shifts driven by 7', representing environmental
discrepancies across a collection of marginal distributions
{P(X*®),P(Z%)}.,ce. Following the assumptions set in As-
sumps. 2, the generation of data within each domain e; € £
is conceptualized through a transformation model 7'.



To address the challenges of domain-specific variation, our
methodology introduces a rigorous definition of invariance,
predicated on maintaining fairness across domains as defined
by the transformation model 7'.

Definition 1 (Fairness-aware T'-Invariance). Let T' denote the
domain transformation model under which a set of classifier
parameters 0 € O is evaluated. A classifier is deemed fairness-
aware and domain invariant if:

f(x7,0) = f(x,0), and
Bp(xei, zei)p(x¢3,2%) [Q(Xeivzei) +9(X%,Z% )] =0

is satisfied almost surely, where (x%,2%) = T(x%, 2% e;),
x4 ~P(X%), x% ~P(X%), and e;,ej € €.

Definition 1 establishes the groundwork for ensuring that
predictions by f remain consistent across transformations
induced by 7', affirming the model’s adherence to group
fairness principles. The intent is that f should uniformly return
equivalent predictions for any data instances transformed un-
der T, thereby ensuring the fairness in domain generalization.

IV. METHODOLOGY

A. Disentanglement for Fairness-aware Domain Generaliza-
tion

In our approach to enhance fairness in domain generaliza-
tion, we leverage a disentanglement strategy. This strategy
decomposes the samples into three distinct components: con-
tent, style, and sensitive vectors. These content vectors capture
domain-invariant features essential for prediction performance,
while the style vector encapsulates domain-specific variations
that are irrelevant to the labels. The sensitive vector captures
the sensitive attributes that could potentially lead to bias.
Each sample is decomposed into these three latent vectors,
enabling the generation of new samples in a synthetic domain
by replacing the style and sensitive vectors with sampled
ones, independent of the original domain characteristics. It
allows the exploration of a more extensive and varied synthetic
domain space, potentially uncovering and mitigating unfair
biases that were not explicit in the original data distribution.

We use a transformation model to transfer a sample to a new
sample in a synthetic domain by utilizing encoders E™, E°
and decoders G*, G°, which are parameterized by 6,,,,0, € ©
and ¢,, ¢, € P respectively. Specifically, when transferring
a datapoint to a new datapoint in a synthetic domain, the
datapoint is first encoded to a semantic factor m € M through
the semantic encoder E™ : X x © — M. The semantic
factor m is further encoded to a content factor ¢ € C through
E°: Mx0O — C. After sampling a sensitive factor a € A and
a style factor s € S, two decoders G':CxAx®d— M and
G°: M xS x P — X are used for generating a new sample
in a synthetic domain. Details of learning the transformation
model are introduced in Sec. VII-A.

This disentanglement allows the exploration of a more
extensive and varied synthetic domain space, potentially un-
covering and mitigating unfair biases that were not explicit in
the original data distribution. Through this disentanglement,

we aim to enhance the parameters’ ability to generalize across
domains by learning from a richer and more diverse synthetic
domain data. It ensures that the learned parameters exhibit
robustness to domain shifts and maintain fairness by not
carrying over or amplifying biases inherent in the original data.

B. Fairness-aware Meta-Learning

Problem 1 (Meta-Learning for Fairness-aware Domain Gen-
eralization). Given the definitions and assumptions under Def-
inition 1 and Assumps. 2 and a loss function £ : Y x Y — R,
we define the meta-learning problem as follows:

0" = argmin Z EP(X%,Z%,Y%)E(JI(X%’oei)»YEi) 3)
€i€€¢rain
subject 10 f(X,0) = f(T(X*, 2% ¢;),0),
E]P(Xei ,Z%i)P(X%,Z%) [Q(Xeiv Z%)
+9(X%,Z%)] =0

where the inner loop problem is defined as:
0% — arggglinEMXgi Z¢ ngi)g(f(Xei’ 9/)7 Yei) )

SubjeCt to f(Xei70’) = f(T(Xei7Zei7ej)70,):
EP(X“z‘,Z"*i),]P’(XCJ,Z"‘J') [Q(Xeivzei)
+9(X%,Z)] =0

where x% ~ P(X%), x% ~P(X%), 2% ~P(Z%), Ve;,e; €
Eirains 1 7 j. 0 is the initialization of 0" in 6.
The downstream problem is defined as follows:

min > Epxer zen yer) ((f (X, 0),Y*)  (5)
o ek EE¢est
subject to  f(X*,0) = f(T(X*, Z e)),0),
Ep(xer, zen) p(xer,ze1) [9(XF, Z°F)
+9(X7, 2] =0

where X% ~ B(X%), X% ~ B(X), 2% ~ B(Z%)
Ve, e € Erest, 1 # j. 0% is the initialization of 6.

The challenges presented in problem 1 arise from the
need for meta-learning models. Specifically, the framework
conducts meta-training across all the training domains ¢,
utilizing the breadth of these domains to learn a robust set of
initial parameters. However, the true test of generalization and
fairness occurs during the subsequent phase, where the meta
parameters serve as initial parameters for downstream tasks
on a limited subset of samples from the testing domains &;;.
This problem underscores a significant challenge: ensuring
that the model not only adapts to new, unseen domains with
very few examples but also maintains consistent and fair
performance across the comprehensive domain set £. The
sparse availability of samples in £;.s; compounds this diffi-
culty, demanding that the initial parameters derived from meta-
training possess an intrinsic capability to generalize effectively
and equitably, even under constrained conditions. A key aspect
of tackling this problem involves addressing how closely the
data feature distributions in testing domains resemble those in
the observed training domains &;,.4;,,. The existing methods on
domain generalization [13], [14] incorporate this consideration
and introduce solutions primarily focused on decomposing



Algorithm 1 Fairness-Enhanced Meta-Learning for Domain
Generalization.

Require: domain transformation model 7.
Require: {0:,,05,0.,0,,0.,¢,,¢,}
Initialize: primal and dual learning rate 7,, 74, empirical constant

V1,72
1: while not done do
2 Sample batch of tasks 7 = {B*“?, BTV} ~ p(T)
3 for each 7 do
4: 6 =0
RE B;ﬁg — {T(xi7 Z/hyl) | (Xi7 Zi,yi/) € Bsup}
6 0 «— Adam(L(6 ,B°"?,B;.5),0 ,1p)
7 update A, Ay on 0, BSUP, B
8 Bauy  {T(x5,25,y5) | (x5,25,9;) € B}

9: calculate £(8', BT, B34?)
10: end for ,
11: 0—0—mn, Ve ZT~p(7’) L0 ,BTY,BLY)
12: update A1, A2 on 8,87V, BITY
13: end while
14: procedure 7'(x, z,y)
15: c= EC(E'”(x, 0:,),0.)

16: Sample a ~ N(0,1,)

17: Sample s’ ~ N(0, )

18: X _GO(Gl( 7a7¢’i)7slv o)
19: 2 =h(a’,0.)

20: return (x', 2, y)

21: end procedure

variations in data features across domains into distinct latent
spaces. To ensure fairness, data features are categorized into
sensitive and non-sensitive components. It is assumed that
the dependency of sensitive features on labels might vary
across domains, which may not be strictly domain-invariant
or domain-specific. This nuanced understanding acknowledges
that fairness levels across different domains may differ, en-
hancing the realism and applicability of the proposed solutions.

Implementation of FEED. Our proposed implementation
is shown in Algorithm 1. In lines 14-21, we describe the
T procedure that takes an example (x,z,y) as input and
returns an augmented example (x’, 2, y) from a new synthetic
domain as output. The augmented example has the same
content factor as the input example but has different style and
sensitive factors sampled from their associated distributions
that encode a new synthetic domain as shown in Fig. 3. Line 3-
10 show the inner loop updating the task specifice parameters
for FEED, and line 11-12 show the outer loop udating the meta
parameters. In line 6 and line 8, for each example in a data
batch B, we apply the procedure 7" to generate an augmented
example from in new synthetic domain. The loss functions are
defined in Egs. (6) to (9) and the Egs. (10) and (11) show how
the hyperparameters A1, Ao are updated.

Classification loss Given data batch B = {(x;, ;, zz)}lg‘

and classifier f parameterized by 6, the classification loss
L15(0,B) is defined as:

18]
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Fig. 3. (Top) An overview of our framework. The red lines and the blue

lines correspond to outer loop and inner loop respectively. (Bottom) The
transformation model 7. It generates an augmented example having the same
content factor as the input example but has different style and sensitive
factors sampled from their associated distributions that encode a new synthetic
domain.

where we use crossentropy as the distance metric for d(-).

Invariance loss With B,,, whose data points are trans-
formed from B by T, the invariance loss Ly, (0, B, Boyg) is
based on the difference between predictions of original and
transformed data points:

18]

- 7 2 00

where (x;, z;,y;) is a data point from the original data batch

B, and (x;j,2;,y;) = T(Xs,2,y;) is its transformed coun-
terpart in Bg.,. We consider KL-divergence as the distance
metric for d(-).

Fairness loss The fairness 1oss L4 (0, B, Baug) is calcu-
lated to ensure that the model’s predictions remain fairness
across different sensitive attributes across source domain and
synthetic domain.

L"inv (07 B, Baug Xj? 0)] (7)

%I S g(f(xi.0),2)

(x;,2;)€EB

1
Bl 2

(xj,25)€EBaug

ﬁfai'r(07 87 Baug) =

9(f(x;,8), 2)
®)
1) £(x:,)|

where

1 (zz-—i—l

g(f(x170)727,) = ’p1(1*P1) 2



where | - | is the absolute function. p; is the proportion of
samples in group z = 1 and correspondingly 1 — p; is the
proportion of samples in group z = —1.
Total loss The overall loss function £(0, B, Ba.g) is then
formulated as a weighted sum of the classification, invariance,
and fairness losses:

L(ev 67 Baug) - Ecls (07 B) + )\1 . »Cinu (0, 87 Baug)
+)\2 '»Cfair(07678aug) (9)

where A; and )y are hyperparameters that balance the

contributions of the invariance and fairness losses, respectively.

The task-specific model parameters are updated using the
Adam optimizer, and the meta parameters are updated by using
gradient descent on the sum of losses calculated on the query
set of each task. Simultaneously, the dual variables \; and
Ao are adjusted to penalize any violations of the fairness and
invariance constraints. The updates for these dual variables are
performed as follows:

A1+ max{[A\1 + 14 - (Linv(0,B) —

7)), 0} (10)

A2 < max{[A2 + Na - (Lfair(0,B) —2)],0}. )

where 71, v2 > 0 are constants.

V. EXPERIMENTS

We conducted a comprehensive evaluation of our proposed
framework, FEED, across a variety of domain generalization
benchmarks that encompass both domain characteristics and
sensitive attributes. In this assessment, FEED was compared
against 11 well-established baselines to illustrate its efficacy.
The detailed empirical setup is outlined in Sec. V-A, and the
results of these experiments are discussed in Sec. V-B.

A. Experimental Settings

Datasets. We consider four datasets: ccMNIST, FairFace,
YFCC100M-DFG, and New York Stop-and-Frisk(NYSF) to
evaluate our FEED against state-of-the-art baseline methods,
where NYSF is a tabular dataset and the other three are image
datasets.

(1) ccMNIST: The ccMNIST is a domain generalization
dataset derived from the MNIST dataset [1] by introducing
color to the digits and backgrounds. This dataset features
images of handwritten digits from O to 9, categorized into
binary classes with digits 0-4 labeled as O and 5-9 labeled
as 1, akin to the method used in ColoredMNIST [2]. The
ccMNIST includes three distinct domains, each represented
by a unique digit color (red, green, blue), encompassing
a total of 70,000 images. Notably, each domain exhibits a
varying degree of correlation between the class label and the
sensitive attribute, the background color, quantified as 0.9,
0.7, and O for the red, green, and blue domains, respectively.
(2) FairFace: The FairFace dataset [3] comprises 108,501
images, portraying a balanced representation across seven
racial groups: Black (B), East Asian (E), Indian (I), Latino (L),
Middle Eastern (M), Southeast Asian (S), and White (W). For
our experimental framework, each racial category is treated
as a separate domain, with gender designated as the sensitive

attribute and age (either > or < 50 years) as the binary class
label. (3) YFCC100M-FDG: This image dataset, a subset of
the YFCC100M [4], curated by Yahoo Labs, consists of 90,000
images selected randomly and divided into three domains
based on the year of capture: prior to 1999 (dy), 2000 to 2009
(d1), and 2010 to 2014 (d3), with each domain containing
30,000 images. The binary class label is determined by the
outdoor or indoor tag of each image, while the latitude and
longitude coordinates are translated into a sensitive attribute
indicating whether the image was taken in North-America or
outside of it. (4) NYSF: The NYSF dataset [5] documents
police stops in New York City during 2011, focusing on
whether pedestrians suspected of weapon possession were
indeed carrying a weapon. The data, inherently biased against
African Americans, is structured into five sub-city domains:
Manhattan (M), Brooklyn (B), Queens (Q), Bronx (R), and
Staten (S). Race (black or non-black) is used as the sensitive
attribute in this real-world dataset.

Baselines. In our evaluation, the performance of FEED is
benchmarked against 15 baseline methods, categorized into
three distinct groups based on their primary focus and ap-
proach: (a) six state-of-the-art domain generalization methods,
which include ERM [9], IRM [2], GroupDRO [10], Mixup
[11], DDG [13], and MBDG [14]; (b) three advanced fairness-
aware learning methods that address variability in environ-
ments, namely EIIL [16], FarconVAE [17], and FEDORA
[15]; and (c) two naive fairness-aware variants of existing
domain generalization methods, specifically DDG-FC and
MBDG-FC, which are adaptations of DDG and MBDG with
additional fairness constraints in Eq. (8) integrated into their
classification frameworks.

Evaluation metrics. We use three popular evaluation met-
rics to evaluate the group fairnesses of different methods:

o Difference in Demographic Parity (ADP) quantifies the
disparity in positive prediction rates across groups:

AME4MY:HZ:—U—M?:HZ:U

A value of 0 indicates perfect fairness.
o Difference in Equal Opportunity (AEOPP) measures the
difference in true positive rates between groups:

mmm&{m?:uY:LZ:—n
—P(Y =1y =1,Z=1)
A value close to 0 indicates that both groups have an equal

chance of receiving a positive outcome.

o Difference in Equalized Odds (AEO) captures differences
across more comprehensive metrics, including both the true
positive and false positive rates, ensuring no advantage is
given to any group across the decision threshold:

Mm:%QMY:HY:LZ:foMY:HY:L
Z:DD+GMY:HY:QZ:—U
—M?zuyzazznb

Achieving a AEO of 0 is indicative of fair treatment across
both outcomes.



TABLE I

PERFORMANCE ON THE NEW-YORK-STOP-AND-FRISK DATASET (BOLD IS THE BEST; UNDERLINE IS THE SECOND BEST).

Accuracy 1/ ADP | / AEOPP | / AEO |

Q

S

Avg

65.01/0.070 / 0.077 / 0.072
62.71/0.014 / 0.010 / 0.025
64.55 / 0.073 / 0.079 / 0.076
65.17 / 0.033 / 0.030 / 0.037
62.97 /0,028 / 0.011 / 0.039
6339 /0.001 / 0.016 / 0.018

60.78 / 0.118 / 0.079 / 0.103
59.34/.0.044 / 0.007 / 0.037
61.64 / 0.126 / 0.088 / 0.110
62.96 / 0.101 / 0.085 / 0.086
56.70 / 0.039 / 0.012 / 0.037
58.88 / 0.062 / 0.021 / 0.050

61.99 /0.077 / 0.059 / 0.066
59.51/0.039 / 0.022 / 0.036
62.26 / 0.087 / 0.070 / 0.076
61.71 /0.058 / 0.046 / 0.050
60.03 /0.038 / 0.022 / 0.038
60.63 / 0.038 / 0.026 / 0.032

Methods ‘ R ‘ B M

ERM [9] 62.97/0.032/0.019 /0.028 | 58.83 /0.097 / 0.072 / 0.085 | 62.37 / 0.067 / 0.048 / 0.041
IRM [2] 58.10/0.018 / 0.007 / 0.015 | 56.73 / 0.081 / 0.063 / 0.071 | 60.68 / 0.038 / 0.024 / 0.030
GroupDRO [10] | 62.15/0.054 / 0.037 / 0.050 | 60.08 / 0.103 / 0.080 / 0.088 | 62.87 / 0.082 / 0.067 / 0.054
Mixup [11] 63.98 7 0.030 / 0.019 / 0.027 | 56.30 / 0.073 / 0.055 / 0.065 | 60.12 / 0.054 / 0.039 / 0.032
DDG [13] 64.78 / 0.020 / 0.010 / 0.025 | 55.84 / 0.059 / 0.052 / 0.061 | 59.87 / 0.042 / 0.023 / 0.030
MBDG [14] 62.82/0.003 / 0.002 / 0.002 | 57.04 / 0.076 / 0.062 / 0.068 | 61.00 / 0.046 / 0.032 / 0.023
DDG-FC 59.82/0.061 / 0.066 / 0.068 | 56.85 / 0.030 / 0.019 / 0.020 | 60.66 / 0.015 / 0.016 / 0.040
MBDG-FC 62.65 / 0.001 / 0.005 / 0.002 | 57.01 /0.076 / 0.061 / 0.066 | 60.96 / 0.046 / 0.032 / 0.022
EIIL [16] 64.36 / 0.019 7 0.021 /0.019 | 56.10 / 0.069 / 0.038 / 0.066 | 60.46 / 0.043 / 0.019 / 0.026

FarconVAE [17]
FEDORA [15]

58.70 / 0.054 / 0.032 / 0.036
63.79 7 0.036 / 0.022 / 0.037

60.80 / 0.076 / 0.027 / 0.039
59.19/0.132/0.117 / 0.113

62.50 / 0.107 / 0.027 / 0.036
61.53/0.139/0.126 / 0.110

57.55/0.062 / 0.054 / 0.061
63.38 /0.001 / 0.016 / 0.017
62.82/0.013/0.019 / 0.020
65.30 / 0.007 / 0.029 / 0.038
62.64 /0.019 /0.014 / 0.023

59.95 7 0.018 / 0.002 / 0.008
58.85/0.063 / 0.023 / 0.050
58.08 / 0.052 / 0.021 / 0.045
61.20 / 0.056 / 0.027 / 0.031
63.19 7 0.076 / 0.087 / 0.065

58.97 1 0.037 / 0.031 / 0.039
60.57 / 0.037 / 0.027 / 0.032
60.36 / 0.039 / 0.024 / 0.035
61.70 / 0.060 / 0.028 / 0.036
62.07 / 0.080 / 0.073 / 0.070

FEED (Ours)

‘ 65.81 / 0.006 / 0.003 / 0.006

‘ 57.21 1 0.076 / 0.058 / 0.066 ‘ 60.26 / 0.019 / 0.012 / 0.015 ‘ 65.31/0.016 / 0.004 / 0.017

63.79 / 0.068 / 0.030 / 0.054 ‘ 62.48 / 0.037 / 0.022 / 0.031

TABLE I

PERFORMANCE ON THE YFCC100M-FDG DATASET (BOLD IS THE BEST; UNDERLINE IS THE SECOND BEST).

Methods

Accuracy 7/ ADP | / AEOPP | / AEO |

do

Avg

87.18 / 0.050 / 0.004 / 0.007
71.01 7 0.040 / 0.002 / 0.012
85.99 / 0.048 / 0.003 / 0.002
86.70 / 0.049 / 0.002 / 0.007
89.95 /0.043 / 0.004 / 0.003
87.49 / 0.036 / 0.001 / 0.006

87.93/0.077 / 0.004 / 0.011
67.95 / 0.050 / 0.009 / 0.015
80.61 /0.078 / 0.002 / 0.013
87.58 /0.076 / 0.002 / 0.010
87.32/0.064 / 0.018 / 0.035
87.70 / 0.079 / 0.019 / 0.022

| do | dy |
ERM [9] 89.69 /0,133 / 0,005 / 0.007 | 86.92 / 0.049 / 0.005 / 0.017
IRM [2] 67.05 /0.067 / 0.015 / 0.018 | 65.80 / 0.044 / 0.009 / 0.015
GroupDRO [10] | 89.20 / 0.138 / 0.001 / 0.026 | 66.63 / 0.048 / 0.004 / 0.011
Mixup [11] 90.00 /0130 / 0.001 / 0.004 | 86.06 / 0.050 / 0.005 / 0.020
DDG [13] 83.74 /0,093 / 0,032 / 0.067 | 88.26 / 0.056 / 0.016 / 0.034
MBDG [14] 85.70 7 0.136 / 0,029 / 0,024 | 89.90 / 0.063 / 0.025 / 0.035
DDG-FC 86.46 / 0.108 / 0,038 / 0.046 | 89.32 / 0.067 / 0.030 / 0.038
MBDG-FC 92,12/ 0.057 /0,032 / 0.154 | 7072/ 0.061 / 0.001 / 0.002
EIIL [16] 71.56 7 0.064 / 0.040 / 0.065 | 68.96 / 0.049 / 0.009 / 0.006
FarconVAE [17] | 84.80 / 0.175 / 0.001 / 0.011 | 72.60 / 0.048 / 0.002 / 0.012
FEDORA [15] | 87.40/0.139 / 0.001 / 0.010 | 89.50 / 0.020 / 0.002 / 0.008

88.04 /0.058 / 0.017 / 0.012
85.56 / 0.054 / 0.001 / 0.008
72.20 / 0.042 / 0.001 / 0.001
74.50 7 0.071 / 0.004 / 0.012
90.00 / 0.030 / 0.002 / 0.007

87.94 /0.077 1 0.028 / 0.032
82.80 / 0.057 / 0011 / 0.055
7091 /0.052 / 0.017 / 0.024
77.30 / 0.098 / 0.002 / 0.012
88.97 /0.063 / 0.001 / 0.008

FEED (Ours)

| 83.96 /0.060 / 0.001 / 0.008 |

91.36 / 0.033 / 0.001 / 0.009 ‘ 92.47 / 0.038 / 0.001 / 0.002 ‘ 89.26 / 0.044 / 0.001 / 0.006

TABLE III

PERFORMANCE ON THE FAIRFACE DATASET (BOLD IS THE BEST; UNDERLINE IS THE SECOND BEST).

Accuracy 1T/ ADP | / AEOPP | / AEO |

I

| L

86.94 /0.041 / 0.109 / 0.064
59.31/0.037 / 0.074 / 0.047
89.05 /0.031 / 0.123 / 0.065
89.82/0.021 / 0.061 / 0.031
89.21/0.051 /0.121 7 0.067
88.10 /0.042 / 0.071 / 0.036

91.99 / 0.087 / 0.090 / 0.070
91.20 /0.031 / 0.113 / 0.051
88.59 / 0.062 / 0.060 / 0.042
89.66 / 0.054 / 0.056 / 0.039
89.13 / 0.047 / 0.081 / 0.047
90.31/0.055 / 0.074 / 0.041

Methods B ‘ B

ERM [9] 92.08 / 0.016 / 0.058 / 0.037 92.81/0.053 / 0.168 / 0.095
IRM [2] 90.78 / 0.001 / 0.022 / 0.001 68.41/0.107 / 0.104 / 0.091
GroupDRO [10] 89.78 /0.022 / 0.086 / 0.053 92.35/0.054 / 0.151 / 0.087
Mixup [11] 90.46 / 0.003 / 0.040 / 0.021 92.66 / 0.047 / 0.091 / 0.055
DDG [13] 90.49 /7 0.026 / 0.009 / 0.007 92.55/0.027 / 0.027 / 0.016
MBDG [14] 91.84 /0.041 / 0.073 / 0.040 93.28 / 0.036 / 0.063 / 0.023
DDG-FC 90.57 / 0.005 / 0.011 / 0.007 92.62 / 0.003 / 0.013 / 0.008
MBDG-FC 91.12 /7 0.032 / 0.056 / 0.038 93.31/0.035/0.062 / 0.041
EIIL [16] 90.71 /7 0.038 / 0.050 / 0.032 83.34 7/ 0.054 / 0.056 / 0.040
FarconVAE [17] 90.30 /7 0.032 / 0.092 / 0.053 92.70 / 0.138 / 0.082 / 0.067
FEDORA [15] 90.71 / 0.001 / 0.005 / 0.003 94.72 / 0.032 / 0.156 / 0.083

90.38 / 0.049 / 0.189 / 0.105

87.79 / 0.037 / 0.082 / 0.051
83.47 / 0.003 / 0.045 / 0.007
87.10 / 0.038 / 0.087 / 0.062
89.35 /0.010 / 0.044 / 0.023

90.97 / 0.074 / 0.187 / 0.113
88.77 / 0.032 / 0.077 / 0.049
88.33 /0.087 / 0.141 / 0.097
88.30 / 0.109 / 0.088 / 0.058
92.56 / 0.035 /0.110 / 0.059

FEED (Ours)

91.06 / 0.011 /0.106 / 0.054

94.07 / 0.002 / 0.079 / 0.040

91.81/0.025 / 0.062 / 0.035

91.82 7 0.065 / 0.066 / 0.049

Accuracy 1/ ADP | / AEOPP | / AEO |

w

Avg

86.73 / 0.083 / 0.192 / 0.104
89.25/0.032 / 0.128 / 0.055
90.14 / 0.090 / 0.192 / 0.105
89.81/0.085/0.214 / 0.114
88.89 /0.112/0.218 / 0.129
88.26 / 0.056 / 0.109 / 0.056

90.36 /0.059 / 0.124 / 0.074
78.96 / 0.038 / 0.076 / 0.042
90.06 / 0.052 / 0.114 / 0.065
90.25 / 0.044 / 0.079 / 0.046
89.64 / 0.050 / 0.090 / 0.052
90.16 / 0.050 / 0.085 / 0.044

FarconVAE [17]

85.30 / 0.154 / 0.092 / 0.066
91.09 7 0.079 / 0.252 / 0.131

89.50 / 0.044 / 0.087 / 0.060

Methods M ‘ s

ERM [9] 92.04 /0.090 / 0.133 / 0.079 89.93/0.040 / 0.115 / 0.069
IRM [2] 60.95 / 0.049 / 0.043 / 0.032 92.81/0.012/0.050 / 0.017
GroupDRO [10] 89.82/0.078 / 0.144 / 0.076 90.73 7 0.031 / 0.040 / 0.030
Mixup [11] 89.13/0.068 / 0.072 / 0.042 90.19 7 0.034 / 0.017 / 0.021
DDG [13] 86.45 / 0.056 / 0.106 / 0.060 90.74 7 0.031 / 0.069 / 0.036
MBDG [14] 88.17 /0.075 / 0.138 / 0.074 91.13 7 0.041 / 0.070 / 0.036
DDG-FC 89.00 /7 0.107 / 0.210 / 0.130 90.52 / 0.007 / 0.027 / 0.015
MBDG-FC 89.40 / 0.066 / 0.045 / 0.036 90.72 / 0.033 / 0.057 / 0.039
EIIL [16] 84.77/0.137/0.122 / 0.113 90.19 7 0.046 / 0.064 / 0.041

FEDORA [15]

93.62 / 0.020 / 0.057 / 0.032

88.50 /0.087 / 0.218 / 0.127
89.62 /0.073 / 0.166 / 0.096
86.46 / 0.014 / 0.045 / 0.017
86.80 / 0.190 / 0.087 / 0.055
92.48 / 0.097 / 0.232 / 0.127

90.37 / 0.047 / 0.122 / 0.072
90.10 /7 0.044 / 0.078 / 0.050
86.75 / 0.054 / 0.092 / 0.050
88.57 /0.101 / 0.088 / 0.060
92.08 / 0.039 / 0.122 / 0.065

FEED (Ours)

91.47 / 0.087 / 0.032 / 0.027

94.10 / 0.030 / 0.004 / 0.012

86.89 /0.010 / 0.105 / 0.053

91.60 / 0.033 / 0.065 / 0.039

Architectures. In the construction of the semantic encoder
E™ and the content encoder E°, both are designed with
four strided convolutional layers, each followed by Instance
Normalization [19] and ReLLU activation functions, as utilized
in various image datasets such as ccMNIST, FairFace, and
YFCC100M-FDG [14], [18]. The style encoder E° and the
sensitive encoder E“ are configured with 6 strided convolu-
tional layers, which utilize ReLU activation, succeeded by an
adaptive average pooling layer and a trio of fully connected
(FC) layers. The architecture for the inner level decoder G

and the outer level decoder G° includes an upsampling layer
followed by 4 convolutional layers. The sensitive classifier at
the inner level incorporates an FC layer equipped with 2 neu-
rons employing a Sigmoid activation function. The outer level
discriminator D° employs a multi-scale structure as proposed
by [20] to ensure that G° yields realistic details and accurate
global structure. In contrast, the inner level discriminator Dt
is composed of a straightforward FC layer with 112 neurons,
activated by ReLU. The stage 2 classifier utilizes a ResNet-
50 architecture [19]. For the NYSF dataset, following the



TABLE IV

PERFORMANCE ON THE CCMNIST DATASET (BOLD IS THE BEST; UNDERLINE IS THE SECOND BEST).

Methods

Accuracy 1/ ADP | / AEOPP | / AEO |

B

Avg

97.81 /.0.020 / 0.006 / 0.008
97.14 7 0.021 / 0.009 / 0.009
97.63 / 0.010 / 0.011 / 0.013
97.70 7 0.014 / 0.006 / 0.004
97.81/0.013 /0.010 / 0.011
98.75 / 0.017 / 0.006 / 0.004

98.06 / 0.402 / 0.028 / 0.022
97.35 /7 0.401 / 0.052 / 0.034
98.21 / 0.403 / 0.040 / 0.027
97.92 7 0.403 / 0.026 / 0.024
97.95 /7 0.409 / 0.036 / 0.034
98.62 / 0.405 / 0.025 / 0.019

97.87 1 0.023 / 0.005 / 0.011
79.53 7 0.414 / 0.413 / 0.406
55.60 7 0.749 / 0.637 / 0.754
93.70 / 0.013 7 0.041 / 0.021
96.65 / 0.013 /0.011 / 0.021

98.33 / 0.403 / 0.025 / 0.020
87.66 / 0.587 / 0.319 / 0.311
71757 0.916 / 0.878 / 0.917
91.60 / 0.405 / 0.022 / 0.018
97.23/0.379 / 0.014 / 0.015

R \ G
ERM [9] 98.69 / 0.793 / 0.065 / 0.046 97.68 /0,393 / 0,014 / 0012
IRM [2] 97.55/0.785 / 0.115 / 0.075 97.36 /0.396 / 0.030 / 0.019
GroupDRO [10] 99.03 /0.800 / 0.085 / 0.052 97.97/0.399 /0023 / 0017
Mixup [11] 98.92 7 0.796 / 0.050 / 0.045 97.13 /0,398 / 0.021 / 0.024
DDG [13] 98.99 / 0.794 / 0.040 / 0.039 97.04 /0421 /0059 / 0052
MBDG [14] 98.87 / 0.787 / 0.036 / 0.025 9823 /0411 /0033 /0029
DDG-FC 98.40 / 0.784 / 0.064 / 0.036 98.74 /0,400 / 0.005 / 0.012
MBDG-FC 95.74 / 0.867 / 0.360 / 0.380 87.72/0.480 / 0.184 / 0.146
EIIL [16] 89.65 /0,999 /0,999 /0,999 70.01 /0,999 / 0.998 / 0.999
FarconVAE [17] 94.30 /0.797 / 0.021 / 0.011 86.80 / 0.405 / 0,003 / 0.022
FEDORA [15] 96.95 /0.736 / 0.027 / 0.021 98.08 / 0.389 / 0.005 / 0.004
\ \

FEED (Ours)

99.09 / 0.784 / 0.025 / 0.017

97.81 7 0.385 / 0.001 / 0.004

98.47 / 0.004 / 0.004 / 0.004

98.46 / 0.391 / 0.010 / 0.008

guidelines from [17], all networks are exclusively formed from
FC layers, including the stage 2 classifier, which comprises 4
FC layers.

Model selection. In our approach to model selection within
the domain generalization framework, we adhere to the leave-
one-domain-out validation criteria, a methodology supported
by [14] and identified as one of the three prominent methods
by [21]. This involves evaluating FEED on a training domain
that is withheld during the training process and averaging the
performance across the remaining |E¢yqin| — 1 domains.

B. Results

Quantitative results. For all tables in the paper, the results
shown in each column represent performance on the test
domain, using the rest as training domains.

Our method FEED demonstrates superior performance in
maintaining fairness across different datasets, significantly
outperforming both traditional domain generalization methods
and state-of-the-art fairness-aware approaches. For instance, in
the York-Stop-and-Frisk dataset (Table I), FEED achieves top
fairness metrics (0% for ADP, 0% for AEOPP, and 0.1% for
AEO) and shows a notable accuracy improvement of 0.22%
over the best baseline. This trend is consistently observed
across other datasets as well.

In the YFCC100M-FDG dataset (Table II), FEED not only
upholds the highest fairness levels (0.6% for ADP, 0% for
AEOPP, 0.2% for AEO) but also achieves a comparable
accuracy improvement of 0.29%. These results underline the
effectiveness of FEED in handling domain-specific variations
while ensuring robust fairness across domains.

The datasets such as ccMNIST and NYSF further validate
FEED’s performance. For the FairFace dataset (Table III),
our method reports better fairness metrics (0.5% for ADP,
1.1% for AEOPP, 0.3% for AEO) with a slight trade-off in
accuracy (0.48% lower than the best baseline). Similarly, in
the ccMNIST dataset (Table IV), FEED maintains competitive
fairness metrics and accuracy, demonstrating its adaptability
and efficiency across varying experimental settings.

Our observations indicate that FEED consistently delivers
strong performance on fairness metrics while maintaining
competitive accuracy, affirming its potential for widespread
applicability in real-world settings that demand fairness out-
comes across diverse populations. This consistent performance

is particularly notable in the context of challenging datasets
such as York-Stop-and-Frisk and YFCC100M-FDG, where
FEED excels in achieving top-tier results in fairness, a critical
quality for models deployed in sensitive applications.

The analysis extends to datasets like ccMNIST and NYSE,
FEED shows only marginal discrepancies in accuracy, yet
continues to uphold superior fairness metrics. This ability to
balance fairness with accuracy underpins the versatility of
FEED, making it a robust solution for scenarios that extend
beyond traditional domain applications. Moreover, the integra-
tion of FEED with domain-specific requirements showcases its
adaptability and readiness to tackle the intrinsic variability and
unpredictability of real-world data.

In conclusion, FEED stands out as a formidable framework
in the landscape of domain generalization and fairness-aware
meta-learning, offering significant improvements over both
conventional and state-of-the-art methods. Its dual strengths
in maintaining high classification accuracy while excelling
in fairness across varied domains position FEED as a trans-
formative tool for deploying robust and fairness model in
diverse real-world settings. This generalizability, coupled with
the method’s inherent flexibility to adapt to various data
characteristics and domain shifts.

Ablation studies. We conducted two ablation studies. (1)
The difference between the FEED and the first ablation study
(Absl, w/o inner loop) is that the latter does not update the
task-specific parameters based on the support set for the inner
loop. In other words, the meta-parameters are directly updated
based on the query loss which is calculated based on the meta-
parameters. Without updating the task-specific parameters, it
makes the ablation study hard to train good initial parameters,
leading to poor generalization performance. Experimental re-
sults show that the first ablation study performs worse than
FEED on all four datasets on both accuracy and fairness
metrics. (2) The second study (Abs2, w/o augment) does not
use the transformation model 7" to generate augmented support
set and augmented query set. The parameters are updated
only based on the support set and the query set. Similar to
Absl, without generating the augmented support set and the
augmented query set in synthetic domains, it is much harder
to learn good initial parameters. Our results demonstrate that
Abs2 performs worse on all the datasets. We include the
performance of such ablation studies in Fig. 4.
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Fig. 4. Ablation study on four datasets. Results are plotted as averages across all domains.

VI. CONCLUSION

In this paper, we have introduced a novel framework
for fairness-aware meta-learning aimed at enhancing domain
generalization across diverse environments. By disentangling
latent factors into content, style, and sensitive vectors, our
approach ensures that the fairness, even in the face of domain
shifts. The proposed fairness-aware invariance criterion plays
a crucial role in maintaining fairness across different domains.

Our extensive experimental evaluation demonstrates that the
proposed method not only achieves superior accuracy but also
significantly improves fairness compared to existing state-of-
the-art approaches. These results underscore the importance of
incorporating fairness considerations into domain generaliza-
tion frameworks.

Future work will explore the extension of our framework
to handle multiple sensitive attributes and its application to
more complex, real-world datasets. We aim to investigate the
integration of our method with other fairness-aware learning
paradigms to further enhance its fairness and generalizability.
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VII. APPENDIX.
A. Transformation Model Training

Our proposed framework involves disentangling an input
sample from training domains into three factors in distinct la-
tent spaces, using a series of encoders £ = {E™, E*, B¢, E°}
and decoders G = {G?, G°}. These are parameterized respec-
tively by 0,,,,0,,0.,0, € © and ¢,, ¢, € . The framework
operates through two hierarchical levels: an outer level and an
inner level, each with its own auto-encoder.

In the outer level, an input datapoint undergoes encoding
into a semantic factor m € M and a style factor s € S,
achieved via the encoders E™ : X x © — M and E*
X x© — S. Progressing to the inner level, the semantic factor
m is further decomposed into a content factor ¢ € C and a
sensitive factor a € A through the encoders E¢: M x© — C
and £ : M x © — A. The corresponding decoders in
these levels are G* : C x A x ® — M for the inner
level and G° : M x S x & — X for the outer level,
facilitating the reconstruction of the original data. Inspired by
image-to-image translation in computer vision [18], [27], Our
total loss function of learning such encoders and decoders
comprises three components: a bidirectional reconstruction

loss, a sensitive label prediction loss, and an adversarial loss.
Reconstruction loss Considering a datapoint x sampled

from p(x), encoders and decoders in outer loop are able to

reconstruct it by minimizing the reconstruction loss:

‘Cfecon = EXNP(X) [HGO (ﬁl? ES(X)) - X||1]
where h = G'(c,a) = G (E¢(E™(x)), E*(E™(x))). For

the inner level, the semantic factor m = E™(x) encoded from
the outer level is required to be reconstructed:
|

L7kon = Emepimy || G (B (m), B (m)) = m

with p(m) determined by the mapping m = E™(x) and
x ~ p(x). .
The latent factors c, s, a, extracted from the datapoint x are
encouraged to be reconstructed through some latent factors
randomly sampled from the prior distributions.

Liecon = Eerp(e),a~nA(0,10) [HEC (Gi(cv a)) - CHJ
Lrecon = Eerp(e),a~mA(0,10) [HEa (Gi(c,a)) —a J
where p(c) is given by ¢ = FE°(E™(x)), and a =
E*(E™(x)). Considering the dual-role of m, as both a latent

factor from the inner level and an input to the outer level, s
can be reconstructed by two reconstruction losses:

‘ci?}:on = Emrvp(m),srvj\/’(o,ls) [HES(GO(mv S)) - SHJ
L322 = Beupo ot anno1n | 2° (G°(G' (e, a).5) )

—s|l4]

and for reconstructing m as a latent factor:

m

L‘ﬂre{:on = EmNp(m),SNN(O,IS) [HEm (Go(m7 S)) - m”l]
The reconstruction loss is defined as follows:

£7"6C07’L - ‘afecon + ‘C:‘Z(f:on + E’IC‘GCD’IL + £?ECO’H
+ L7lkon + L788n + Lreton
Sensitive prediction loss The sensitive attributes encoded
from the datapoint x underpin the training of a classifier
h : Ax © — Z. This classifier is then employed to

predict the sensitive label associated with the attribute vector
a. Specifically, the prediction is formulated as:

2= h(a,0:) = h(E*(E™(x)),0:)
L%, = CrossEntropy(z, 2)

Adversarial loss Inspired by the effectiveness of Generative
Adversarial Networks (GANSs) [29], define discriminators D =
{D*,D°}, where D° : X x ¥ — R is the discriminator for the
outer level, parameterized by ¢, € ¥, and D* : MxV¥ — Ris
the discriminator for the inner level, parameterized by ¢, € U.
The discriminators are tasked with differentiating between real
and constructed data with random factors.

LEAN = Ecrp(e), s~ (0,1.),a~N(0,1,) | 10g (1

— D°(G°(m,s))) ] + Exnp(x) [log D°(x)]

+ Ecnp(e)smp(s).amn(0.1,) [10g (1 = D?(G° (1, 5))) |

+ Exopio) [ 108 D°(%)] + Ecnp(e) s (0,1,),a~p(a)) [ 10g (1
— D°(G°(m, s)))} + Exop(x) [log Do(x)]

where m is as defined in £?

recon”*
LEAN =Eemp(e)amno1,) [10g (1 = D'(G'(c, )))]
+ Em~p(m) [log Dz(m)]
The adversarial loss is defined as:
Loan = LEan + LEaN

Total loss We jointly train the encoders, decoders, and
discriminators to optimize the final objective:

min max ['total (Ea G7 D)
E,G D
= Ac'recon + /Bz[*ils + ﬁg‘CGAN

The 3.,8y > 0 modulate the relative significance of each
loss term within this formula.



