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Abstract—Generalizing to out-of-distribution data with being
aware of model fairness is a significant and challenging problem
in meta-learning. The goal of this problem is to find a set of
fairness-aware invariant parameter of classifier that is trained
using data drawn from a family of related training domains with
distribution shift on non-sensitive features as well as different
levels of dependence between model predictions and sensitive
features so that the classifier can achieve good generalization
performance on unknown but distinct test domains. To tackle
this challenge, existing state-of-the-art methods either address the
domain generalization problem but completely ignore learning
with fairness, or solely specify shifted domains with various
fairness levels. This paper introduces an approach to fairness-
aware meta-learning that significantly enhances domain gener-
alization capabilities. Our framework, Fairness-Enhanced Meta-
Learning for Domain Generalization (FEED), disentangles latent
data representations into content, style, and sensitive vectors. This
disentanglement facilitates the robust generalization of machine
learning models across diverse domains while adhering to fairness
constraints. Unlike traditional methods that focus primarily on
domain invariance or sensitivity to shifts, our model integrates
a fairness-aware invariance criterion directly into the meta-
learning process. This integration ensures that the learned pa-
rameters uphold fairness consistently, even when domain charac-
teristics vary widely. We validate our approach through extensive
experiments across multiple benchmarks, demonstrating not only
superior performance in maintaining high accuracy and fairness
but also significant improvements over existing state-of-the-art
methods in domain generalization tasks.

Index Terms—Fairness-aware Meta-Learning, Domain Gener-
alization.

I. INTRODUCTION

The widespread adoption of machine learning across various

sectors has underscored the critical importance of developing

algorithms that can perform well across diverse domains. This

challenge, often termed domain generalization, is crucial in

environments that differ from the training settings, a common

scenario in real-world applications such as healthcare, finance,

and social justice. In these applications, not only is high ac-

curacy essential, but fairness cannot be overlooked, especially

when sensitive attributes like gender or ethnicity are involved

[6].

Recent advancements in domain generalization techniques

[2], [12] have aimed at learning domain-invariant features.

However, these methods often fail to address changes in

distributions of sensitive attributes across domains, leading to

potential fairness issues when deployed in varied real-world

settings [16].

Fig. 1. Illustration of fairness-aware domain generalization problems using
the ccMNIST digit dataset. The domains correspond to different digit colors
(red/green/blue). Each image has a black or white background color as the
sensitive label. For simplicity, digits 2 and 9 are used as toy examples to
demonstrate the setting. Each domain is associated with various group fairness
levels estimated using the demographic parity metric.

Recent approaches in fairness-aware meta-learning have

shown promise in addressing this gap by not only adapting

models to new tasks with minimal data but also by potentially

incorporating fairness directly into the learning process. How-

ever, existing approaches such as [7], [8] focus predominantly

on online learning scenarios or specific types of domain shifts,

thus limiting their applicability in a broader range of domain

generalization contexts.

Different from existing settings for the problem of fairness-

aware domain generalization, we define the same problem but

in a more general way. We illustrate our setting using the

ccMNIST image dataset. In this example, data domains are

specified by various digit colors, but we do not assume group

fairness levels for domains are different or the same. The

goal of this problem is to learn an invariant classifier across

observed training domains and achieve good generalization

performance on testing domains with unknown non-sensitive

variation and an unknown group fairness level. To address the

challenges, our work introduces a novel fairness-aware meta-

learning framework specifically tailored for domain general-

ization. This framework is designed to learn a robust set of

initial parameters that are optimized for effective adaptation

across a range of diverse domains, embedding fairness con-

siderations directly at the meta-parameter level. This allows

the model to rapidly adapt to new domains while adhering to

stringent fairness constraints, thereby pushing the boundaries

of traditional domain generalization approaches. Our main

following contributions are:



• We introduce a meta-learning framework for fairness

across domains, innovatively incorporating fairness at the

meta-parameter level. It enables our model maintaining

fairness while outperforming traditional domain general-

ization approaches.

• We formulate a fairness-aware invariance criterion for

meta-learning settings. This criterion ensures that the

learned initial parameters are consistent and fair across

domain shifts, significantly enhancing the fairness level of

machine-learning models across various unseen domains.

• We empirically validate our method on multiple domain

generalization benchmarks, where it demonstrates the

ability to maintain high accuracy and fairness. Our rigor-

ous testing against state-of-the-art domain generalization

and fairness methods highlights the critical role of initial

parameter in meta-learning for achieving fairness across

different domain shifts.

II. RELATED WORK

Fairness-aware domain generalization. Fairness consider-

ations in domain generalization have emerged as a concern due

to challenges posed by domain shifts and the unavailability of

out-of-distribution (OOD) data, which are traditionally tackled

by several leading techniques [2], [9]–[11], [13], [14]. These

methods strive to enhance the innate generalizability of ma-

chine learning models across source domains, each character-

ized by distinct but potentially overlapping distributions [22].

A prevalent approach involves aligning distributions across

multiple sources to foster domain-invariant feature represen-

tations, crucial for stable pattern recognition across domains

without target domain data access [23], [24]. Notably, some

strategies incorporate meta-learning paradigms to acclimate

the model to domain shifts during the training phase [12] or

use domain analytic data augmentation techniques to broaden

the model’s exposure to potential shifts [24].

Despite these advancements, the integration of fairness into

domain generalization remains scant. Most research in domain

generalization [13], [14], [25], has predominantly focused on

leveraging diverse source data to uncover invariant patterns. As

[25] articulates, the principal goal is to derive representations

that are robust to the marginal distributions of data features,

thereby eschewing reliance on target data. However, this line of

inquiry largely overlooks the nuances of ensuring that fairness

across varying domains. Addressing this gap could enhance

the robustness and ethical alignment of models deployed

in real-world settings. A recent method for disentangling

sensitive attributes, as proposed by Zhao et al. (2024) [15],

focuses on learning domain-invariant parameters from training

domains. These parameters are fixed and directly applied to

new domains. However, the method lacks adaptability when

applied to new domains with only a few examples. These

methods optimize parameters for multiple domains but are

limited in rapidly adapting to unseen tasks. In contrast, our

method, based on meta-learning, learns initial parameters that

quickly adapt to new domains while ensuring fairness.

Fairness-aware meta-learning. In the context of fairness-

aware meta-learning, research efforts primarily focus on devel-

oping adaptable frameworks that can effectively handle shifts

in domain characteristics while maintaining fairness standards.

Strategies such as equality-aware monitoring [26] have been

developed. These approaches continuously observe the outputs

of a model to detect any deviations from fairness norms and

adjust accordingly by modifying the model’s parameters or its

structure. However, these methods traditionally operate under

the assumption that fairness metrics remain consistent across

different domains, an assumption often contradicted by the

complexities encountered in practical scenarios. Zeng et al.

[31] introduced a Nash Bargaining solution to enhance fairness

in meta-learning models. However, their approach sometimes

struggled with the robustness of fairness across drastic domain

shifts due to an overemphasis on bargaining outcomes in

homogeneous domains. In contrast, our framework enhances

domain generalization by disentangling latent representations

into content, style, and sensitive factors, thereby maintaining

fairness even when domain characteristics vary significantly.

Furthermore, alternative approaches in the literature [16], [17]

attempt to evaluate a model’s fairness by recognizing changes

in fairness benchmarks as indicative of domain shifts, yet they

tend to overlook variations in the distribution of non-sensitive

attributes, which can lead to inadequate generalization capa-

bilities.

To address these challenges, our meta-learning framework

innovatively partitions data attributes into sensitive and non-

sensitive categories. Such a distinction is pivotal for the meta-

learning algorithm, which is designed not merely to react to

explicit domain labels but also to respond to more nuanced

shifts in the distributions of data features. This approach

enables our meta-learning algorithm to refine its strategy for

learning initial parameters, ensuring domain generalization and

fairness. By effectively distinguishing between these attribute

categories, the algorithm can prioritize the learning of initial

parameters that maintain high performance and fairness stan-

dards across a spectrum of environments.

III. PRELIMINARIES

Notations. Consider the data space P = X × Z × Y , where

X ¦ Rd denotes a feature space, Z ¦ {−1, 1} denotes binary

sensitive attributes1, and Y ¦ {0, 1} denotes the binary output

space for binary classification. Define the parameterized latent

spaces: C for content, S for style, and A for sensitivity factors.

The function d(·, ·) is a distance measure across the space

Y × Y . Variables and parameters in our framework are sym-

bolically denoted as follows: vectors in boldface lowercase

letters, and scalars in italic lowercase letters.

Problem setting. Given a dataset D, we consider a set of

data domains E = {ei}
n
i=1

where each domain corresponds

to a distinct data subset Dei = (xei
j , zeij , yeij )

|Dei |

j=1
over

P , and D =
⋃

i=1,··· ,n D
ei . Data domains are partitioned

1In this study, we focus on a single binary sensitive attribute for clarity.
Extensions to multiple sensitive attributes of various categories can be
seamlessly integrated.



into multiple training domains Etrain ª E and testing do-

mains Etest = E \ Etrain. The corresponding datasets are

Dtrain =
⋃

i=1,··· ,ntr
Dei where ei ∈ Etrain and Dtest =⋃

i=1,··· ,nte
Dei where ei ∈ Etest. Given samples from finite

training domains Etrain, the goal of fairness-aware domain

generalization problems is to learn initial parameters θ ∈ Θ
of classifier f that is generalizable across all possible domains.

Meta-learning. Define task T ∼ p(T ) where p(T ) =
{(Bsup,Bqry) | Bsup ∪ Bqry ¦ Dtrain,B

sup ∩ Bqry = ∅}.

The goal of meta-learning is to learn initial parameters on the

training dataset, and it can be quickly adapted to the testing

dataset (understream task).
Model-agnostic meta-learning (MAML) [30], as a state-of-

the-art approach in the meta-learning landscape, exemplifies a
robust framework designed for such tasks. In MAML, a unique
set of model parameters θ′ is trained for each task T on its
support set Bsup. These parameters are specifically adapted
from a shared set of meta-parameters θ, which are iteratively
updated based on the aggregate loss observed across all query
sets Bqry .

θ
′ = θ − ³∇θLBsup(θ), (1)

θ ← θ − ´∇θ

∑

T ∼p(T )

LBqry (θ′) (2)

where ³ is the task-specific learning rate and ´ denotes the

meta-learning rate. LBsup(θ) represents the loss calculated

on the support set using the initial meta-parameters θ, and

LBqry (θ′) denotes the loss calculated on the query set using

the parameters θ′.

A. Assumptions

Assumption 1 (Latent Spaces). Given a batch B =

{(xei
j , zeij , yeij )}

|B|
j=1

sampled from a specific domain ei ∈ E ,

as illustrated in Fig. 2, we postulate that each data point xei
j

within the task originates from:

• a latent content factor c ∈ C, where C denotes a content

space that is invariant across all domains E;

• a latent style factor s ∈ S that is unique to the specific

domain ei;

• a latent sensitive factor a ∈ A.

where C∩S∩A = ∅. Each domain ei is uniquely characterized

by its style factors, denoted as ei := s.

Assumps. 1 echoes the assumptions made in prior works

such as [13], [14], [18], [27]. Specifically, UNIT [18] hypoth-

esizes a fully shared latent space across all factors, whereas

MUNIT [27] suggests a hybrid latent space model where some

components are shared across domains and others are domain-

specific. In our framework, considering group fairness, we

extend these concepts to include three distinct latent spaces:

a content space C, a style space S , and a sensitive space

A. Additionally, we posit that domain labels are typically

unattainable in both training and testing phases due to practical

limitations or excessive costs, as supported by [28].

It is essential for fairness that the labels remain indepen-

dent of variations across domains. This requirement trans-

lates to a scenario where instance conditional distributions

Fig. 2. Causal interpretation of fairness-aware domain generalization tasks.
We assume that the raw features (x) and class label (y) of each example are
generated by the latent content factor (c), style factor (s), and sensitive factor
(a). The sensitive factor (a) is dependent on the sensitive attribute (z) of this
example and may or may not be dependent on the domain. The style factor s
depends on the domain, but the content factor c is independent of the domain
e. Each domain label is unobserved.

{P(Y ei |Xei , Zei)}ei∈E differ by domain, reflective of inher-

ent domain-specific characteristics. Within the context of this

research, we posit that differences across domains, termed

as domain shifts, are governed exclusively by a transfor-

mation model T : X × Z × E → X ×Z . Specifically, if

two samples (xei , zei) and (xej , zej ) from different domains

ei, ej ∈ E , where i ̸= j, exhibit identical content factors, then

the sample from domain ej can be reconstructed from the

sample of domain ei using the transformation T . This process

involves T extracting the invariant content from (xei , zei) and

subsequently applying domain-specific style and sensitivity

information encoded in ej to regenerate (xej , zej ).

Assumption 2 (Fairness-aware Domain Invariance). We hy-
pothesize that the variations observed between domains are
primarily driven by changes in the marginal distributions
P(Xe) and P(Ze) for each domain e ∈ E . Consequently, we
posit that the conditional distribution P(Y e|Xe, Ze) remains
consistent across different domains. With a domain trans-
formation function T , we assert that for any feature vector
x ∈ X , sensitive attribute z ∈ Z , and class label y ∈ Y:

P(Y ei = y|Xei = x
ei , Z

ei = z
ei) = P(Y ej = y|(Xej , Z

ej )

= T (xei , z
ei , ej)) ∀ei, ej ∈ E , i ̸= j

In relation to existing literature, Robey et al. [14] describe

a version of T that incorporates content and style factors, but

overlooks the sensitive factors which are crucial for ensuring

fairness in domain generalization. The domain shift driven by

T effectively represents how the distinct distributions P(Xei)
and P(Zei) map to the corresponding distributions P(Xej )
and P(Zej ) in domains. Moreover, it is fundamental in our

framework that class labels y ∼ Y should remain invariant to

changes in fairness-sensitive attributes across domains. In this

context, inter-domain variation is exclusively defined by the

transformations dictated by T .

Our approach delves into the domain generalization prob-

lem, where inter-domain variability is specifically attributed

to domain shifts driven by T , representing environmental

discrepancies across a collection of marginal distributions

{P(Xei),P(Zei)}ei∈E . Following the assumptions set in As-

sumps. 2, the generation of data within each domain ei ∈ E
is conceptualized through a transformation model T .



To address the challenges of domain-specific variation, our

methodology introduces a rigorous definition of invariance,

predicated on maintaining fairness across domains as defined

by the transformation model T .

Definition 1 (Fairness-aware T -Invariance). Let T denote the
domain transformation model under which a set of classifier
parameters θ ∈ Θ is evaluated. A classifier is deemed fairness-
aware and domain invariant if:

f(xei ,θ) = f(xej ,θ), and

E
P(Xei ,Zei ),P(X

ej ,Z
ej )

[

g(Xei , Z
ei) + g(Xej , Z

ej )
]

= 0

is satisfied almost surely, where (xej , zej ) = T (xei , zei , ej),
x
ei ∼ P(Xei), xej ∼ P(Xej ), and ei, ej ∈ E .

Definition 1 establishes the groundwork for ensuring that

predictions by f remain consistent across transformations

induced by T , affirming the model’s adherence to group

fairness principles. The intent is that f should uniformly return

equivalent predictions for any data instances transformed un-

der T , thereby ensuring the fairness in domain generalization.

IV. METHODOLOGY

A. Disentanglement for Fairness-aware Domain Generaliza-

tion

In our approach to enhance fairness in domain generaliza-

tion, we leverage a disentanglement strategy. This strategy

decomposes the samples into three distinct components: con-

tent, style, and sensitive vectors. These content vectors capture

domain-invariant features essential for prediction performance,

while the style vector encapsulates domain-specific variations

that are irrelevant to the labels. The sensitive vector captures

the sensitive attributes that could potentially lead to bias.

Each sample is decomposed into these three latent vectors,

enabling the generation of new samples in a synthetic domain

by replacing the style and sensitive vectors with sampled

ones, independent of the original domain characteristics. It

allows the exploration of a more extensive and varied synthetic

domain space, potentially uncovering and mitigating unfair

biases that were not explicit in the original data distribution.

We use a transformation model to transfer a sample to a new

sample in a synthetic domain by utilizing encoders Em, Ec

and decoders Gi, Go, which are parameterized by θm,θc ∈ Θ
and φi,φo ∈ Φ respectively. Specifically, when transferring

a datapoint to a new datapoint in a synthetic domain, the

datapoint is first encoded to a semantic factor m ∈ M through

the semantic encoder Em : X × Θ → M. The semantic

factor m is further encoded to a content factor c ∈ C through

Ec : M×Θ → C. After sampling a sensitive factor a ∈ A and

a style factor s ∈ S , two decoders Gi : C ×A×Φ → M and

Go : M×S ×Φ → X are used for generating a new sample

in a synthetic domain. Details of learning the transformation

model are introduced in Sec. VII-A.

This disentanglement allows the exploration of a more

extensive and varied synthetic domain space, potentially un-

covering and mitigating unfair biases that were not explicit in

the original data distribution. Through this disentanglement,

we aim to enhance the parameters’ ability to generalize across

domains by learning from a richer and more diverse synthetic

domain data. It ensures that the learned parameters exhibit

robustness to domain shifts and maintain fairness by not

carrying over or amplifying biases inherent in the original data.

B. Fairness-aware Meta-Learning

Problem 1 (Meta-Learning for Fairness-aware Domain Gen-
eralization). Given the definitions and assumptions under Def-
inition 1 and Assumps. 2 and a loss function ℓ : Y × Y → R,
we define the meta-learning problem as follows:

θ
∗ = argmin

θ

∑

ei∈Etrain

EP(Xei ,Zei ,Y ei )ℓ(f(X
ei ,θ

ei), Y ei) (3)

subject to f(Xei ,θ) = f(T (Xei , Z
ei , ej),θ),

E
P(Xei ,Zei ),P(X

ej ,Z
ej )

[

g(Xei , Z
ei)

+ g(Xej , Z
ej )

]

= 0

where the inner loop problem is defined as:

θ
ei = argmin

θ′

EP(Xei ,Zei ,Y ei )ℓ(f(X
ei ,θ

′), Y ei) (4)

subject to f(Xei ,θ
′) = f(T (Xei , Z

ei , ej),θ
′),

E
P(Xei ,Zei ),P(X

ej ,Z
ej )

[

g(Xei , Z
ei)

+ g(Xej , Z
ej )

]

= 0

where x
ei ∼ P(Xei), xej ∼ P(Xej ), zei ∼ P(Zei), ∀ei, ej ∈

Etrain, i ̸= j. θ is the initialization of θ′ in θei .
The downstream problem is defined as follows:

min
θ̃

∑

ek∈Etest

EP(Xek ,Zek ,Y ek )ℓ(f(X
ek , θ̃), Y ek ) (5)

subject to f(Xek , θ̃) = f(T (Xek , Z
ek , el), θ̃),

EP(Xek ,Zek ),P(Xel ,Zel )

[

g(Xek , Z
ek )

+ g(Xel , Z
el)

]

= 0

where x
ek ∼ P(Xek), x

el ∼ P(Xel), z
ek ∼ P(Zek),

∀ek, el ∈ Etest, i ̸= j. θ∗ is the initialization of θ̃.

The challenges presented in problem 1 arise from the

need for meta-learning models. Specifically, the framework

conducts meta-training across all the training domains Etrain,

utilizing the breadth of these domains to learn a robust set of

initial parameters. However, the true test of generalization and

fairness occurs during the subsequent phase, where the meta

parameters serve as initial parameters for downstream tasks

on a limited subset of samples from the testing domains Etest.
This problem underscores a significant challenge: ensuring

that the model not only adapts to new, unseen domains with

very few examples but also maintains consistent and fair

performance across the comprehensive domain set E . The

sparse availability of samples in Etest compounds this diffi-

culty, demanding that the initial parameters derived from meta-

training possess an intrinsic capability to generalize effectively

and equitably, even under constrained conditions. A key aspect

of tackling this problem involves addressing how closely the

data feature distributions in testing domains resemble those in

the observed training domains Etrain. The existing methods on

domain generalization [13], [14] incorporate this consideration

and introduce solutions primarily focused on decomposing



Algorithm 1 Fairness-Enhanced Meta-Learning for Domain

Generalization.
Require: domain transformation model T .
Require: {θm,θs,θc,θa,θz,φi,φo}
Initialize: primal and dual learning rate ¸p, ¸d, empirical constant
µ1, µ2.

1: while not done do
2: Sample batch of tasks T = {Bsup,Bqry} ∼ p(T )
3: for each T do
4: θ

′

= θ
5: Bsup

aug ← {T (xi, zi, yi) | (xi, zi, yi) ∈ B
sup}

6: θ
′

← Adam(L(θ
′

,Bsup,Bsup
aug),θ

′

, ¸p)

7: update ¼
′

1, ¼
′

2 on θ′,Bsup,Bsup
aug

8: Bqry
aug ← {T (xj , zj , yj) | (xj , zj , yj) ∈ B

qry}

9: calculate L(θ
′

,Bqry,Bsup
aug)

10: end for
11: θ ← θ − ¸p · ∇θ

∑

T ∼p(T ) L(θ
′

,Bqry,Bqry
aug)

12: update ¼1, ¼2 on θ,Bqry,Bqry
aug

13: end while
14: procedure T (x, z, y)
15: c = Ec(Em(x,θm),θc)
16: Sample a

′ ∼ N (0, Ia)
17: Sample s

′ ∼ N (0, Is)
18: x

′ = Go(Gi(c,a′,φi), s
′,φo)

19: z′ = h(a′,θz)
20: return (x′, z′, y)
21: end procedure

variations in data features across domains into distinct latent

spaces. To ensure fairness, data features are categorized into

sensitive and non-sensitive components. It is assumed that

the dependency of sensitive features on labels might vary

across domains, which may not be strictly domain-invariant

or domain-specific. This nuanced understanding acknowledges

that fairness levels across different domains may differ, en-

hancing the realism and applicability of the proposed solutions.

Implementation of FEED. Our proposed implementation

is shown in Algorithm 1. In lines 14-21, we describe the

T procedure that takes an example (x, z, y) as input and

returns an augmented example (x′, z′, y) from a new synthetic

domain as output. The augmented example has the same

content factor as the input example but has different style and

sensitive factors sampled from their associated distributions

that encode a new synthetic domain as shown in Fig. 3. Line 3-

10 show the inner loop updating the task specifice parameters

for FEED, and line 11-12 show the outer loop udating the meta

parameters. In line 6 and line 8, for each example in a data

batch B, we apply the procedure T to generate an augmented

example from in new synthetic domain. The loss functions are

defined in Eqs. (6) to (9) and the Eqs. (10) and (11) show how

the hyperparameters ¼1, ¼2 are updated.

Classification loss Given data batch B = {(xi, yi, zi)}
|B|
i=1

and classifier f parameterized by θ, the classification loss
Lcls(θ,B) is defined as:

Lcls(θ,B) =
1

|B|

|B|
∑

i=1

ℓ(yi, f(xi,θ)) (6)

Fig. 3. (Top) An overview of our framework. The red lines and the blue
lines correspond to outer loop and inner loop respectively. (Bottom) The
transformation model T . It generates an augmented example having the same
content factor as the input example but has different style and sensitive
factors sampled from their associated distributions that encode a new synthetic
domain.

where we use crossentropy as the distance metric for d(·).
Invariance loss With Baug whose data points are trans-

formed from B by T , the invariance loss Linv(θ,B,Baug) is
based on the difference between predictions of original and
transformed data points:

Linv(θ,B,Baug) =
1

|B|

|B|
∑

i=1

d[f(xi,θ), f(xj ,θ)] (7)

where (xi, zi, yi) is a data point from the original data batch

B, and (xj , zj , yj) = T (xi, zi, yi) is its transformed coun-

terpart in Baug . We consider KL-divergence as the distance

metric for d(·).
Fairness loss The fairness loss Lfair(θ,B,Baug) is calcu-

lated to ensure that the model’s predictions remain fairness
across different sensitive attributes across source domain and
synthetic domain.

Lfair(θ,B,Baug) =

∣

∣

∣

∣

∣

∣

1

|B|

∑

(xi,zi)∈B

g(f(xi,θ), zi)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

|Baug|

∑

(xj ,zj)∈Baug

g(f(xj ,θ), zj)

∣

∣

∣

∣

∣

∣

(8)

where g(f(xi,θ), zi) =
∣

∣

∣

1

p1(1− p1)

(

zi + 1

2
− p1

)

f(xi,θ)
∣

∣

∣



where | · | is the absolute function. p1 is the proportion of

samples in group z = 1 and correspondingly 1 − p1 is the

proportion of samples in group z = −1.
Total loss The overall loss function L(θ,B,Baug) is then

formulated as a weighted sum of the classification, invariance,
and fairness losses:

L(θ,B,Baug) = Lcls(θ,B) + ¼1 · Linv(θ,B,Baug)

+ ¼2 · Lfair(θ,B,Baug) (9)

where ¼1 and ¼2 are hyperparameters that balance the

contributions of the invariance and fairness losses, respectively.
The task-specific model parameters are updated using the

Adam optimizer, and the meta parameters are updated by using
gradient descent on the sum of losses calculated on the query
set of each task. Simultaneously, the dual variables ¼1 and
¼2 are adjusted to penalize any violations of the fairness and
invariance constraints. The updates for these dual variables are
performed as follows:

¼1 ← max{[¼1 + ¸d · (Linv(θ,B)− µ1)], 0} (10)

¼2 ← max{[¼2 + ¸d · (Lfair(θ,B)− µ2)], 0}. (11)

where µ1, µ2 > 0 are constants.

V. EXPERIMENTS

We conducted a comprehensive evaluation of our proposed

framework, FEED, across a variety of domain generalization

benchmarks that encompass both domain characteristics and

sensitive attributes. In this assessment, FEED was compared

against 11 well-established baselines to illustrate its efficacy.

The detailed empirical setup is outlined in Sec. V-A, and the

results of these experiments are discussed in Sec. V-B.

A. Experimental Settings

Datasets. We consider four datasets: ccMNIST, FairFace,

YFCC100M-DFG, and New York Stop-and-Frisk(NYSF) to

evaluate our FEED against state-of-the-art baseline methods,

where NYSF is a tabular dataset and the other three are image

datasets.

(1) ccMNIST: The ccMNIST is a domain generalization

dataset derived from the MNIST dataset [1] by introducing

color to the digits and backgrounds. This dataset features

images of handwritten digits from 0 to 9, categorized into

binary classes with digits 0-4 labeled as 0 and 5-9 labeled

as 1, akin to the method used in ColoredMNIST [2]. The

ccMNIST includes three distinct domains, each represented

by a unique digit color (red, green, blue), encompassing

a total of 70,000 images. Notably, each domain exhibits a

varying degree of correlation between the class label and the

sensitive attribute, the background color, quantified as 0.9,

0.7, and 0 for the red, green, and blue domains, respectively.

(2) FairFace: The FairFace dataset [3] comprises 108,501

images, portraying a balanced representation across seven

racial groups: Black (B), East Asian (E), Indian (I), Latino (L),

Middle Eastern (M), Southeast Asian (S), and White (W). For

our experimental framework, each racial category is treated

as a separate domain, with gender designated as the sensitive

attribute and age (either g or < 50 years) as the binary class

label. (3) YFCC100M-FDG: This image dataset, a subset of

the YFCC100M [4], curated by Yahoo Labs, consists of 90,000

images selected randomly and divided into three domains

based on the year of capture: prior to 1999 (d0), 2000 to 2009

(d1), and 2010 to 2014 (d2), with each domain containing

30,000 images. The binary class label is determined by the

outdoor or indoor tag of each image, while the latitude and

longitude coordinates are translated into a sensitive attribute

indicating whether the image was taken in North-America or

outside of it. (4) NYSF: The NYSF dataset [5] documents

police stops in New York City during 2011, focusing on

whether pedestrians suspected of weapon possession were

indeed carrying a weapon. The data, inherently biased against

African Americans, is structured into five sub-city domains:

Manhattan (M), Brooklyn (B), Queens (Q), Bronx (R), and

Staten (S). Race (black or non-black) is used as the sensitive

attribute in this real-world dataset.

Baselines. In our evaluation, the performance of FEED is

benchmarked against 15 baseline methods, categorized into

three distinct groups based on their primary focus and ap-

proach: (a) six state-of-the-art domain generalization methods,

which include ERM [9], IRM [2], GroupDRO [10], Mixup

[11], DDG [13], and MBDG [14]; (b) three advanced fairness-

aware learning methods that address variability in environ-

ments, namely EIIL [16], FarconVAE [17], and FEDORA

[15]; and (c) two naive fairness-aware variants of existing

domain generalization methods, specifically DDG-FC and

MBDG-FC, which are adaptations of DDG and MBDG with

additional fairness constraints in Eq. (8) integrated into their

classification frameworks.

Evaluation metrics. We use three popular evaluation met-

rics to evaluate the group fairnesses of different methods:

• Difference in Demographic Parity (∆DP) quantifies the
disparity in positive prediction rates across groups:

∆DP =
∣

∣

∣
P(Ŷ = 1|Z = −1)− P(Ŷ = 1|Z = 1)

∣

∣

∣

A value of 0 indicates perfect fairness.
• Difference in Equal Opportunity (∆EOPP) measures the

difference in true positive rates between groups:

∆EOPP =
∣

∣

∣
P(Ŷ = 1|Y = 1, Z = −1)

− P(Ŷ = 1|Y = 1, Z = 1)
∣

∣

∣

A value close to 0 indicates that both groups have an equal

chance of receiving a positive outcome.
• Difference in Equalized Odds (∆EO) captures differences

across more comprehensive metrics, including both the true
positive and false positive rates, ensuring no advantage is
given to any group across the decision threshold:

∆EO =
1

2

(
∣

∣

∣
P(Ŷ = 1|Y = 1, Z = −1)− P(Ŷ = 1|Y = 1,

Z = 1)
∣

∣

∣

)

+
(
∣

∣

∣
P(Ŷ = 1|Y = 0, Z = −1)

− P(Ŷ = 1|Y = 0, Z = 1)
∣

∣

∣

)

Achieving a ∆EO of 0 is indicative of fair treatment across

both outcomes.



TABLE I
PERFORMANCE ON THE NEW-YORK-STOP-AND-FRISK DATASET (BOLD IS THE BEST; UNDERLINE IS THE SECOND BEST).

Accuracy ↑ / ∆DP ³ / ∆EOPP ³ / ∆EO ³

Methods
R B M Q S Avg

ERM [9] 62.97 / 0.032 / 0.019 / 0.028 58.83 / 0.097 / 0.072 / 0.085 62.37 / 0.067 / 0.048 / 0.041 65.01 / 0.070 / 0.077 / 0.072 60.78 / 0.118 / 0.079 / 0.103 61.99 / 0.077 / 0.059 / 0.066

IRM [2] 58.10 / 0.018 / 0.007 / 0.015 56.73 / 0.081 / 0.063 / 0.071 60.68 / 0.038 / 0.024 / 0.030 62.71 / 0.014 / 0.010 / 0.025 59.34 / 0.044 / 0.007 / 0.037 59.51 / 0.039 / 0.022 / 0.036

GroupDRO [10] 62.15 / 0.054 / 0.037 / 0.050 60.08 / 0.103 / 0.080 / 0.088 62.87 / 0.082 / 0.067 / 0.054 64.55 / 0.073 / 0.079 / 0.076 61.64 / 0.126 / 0.088 / 0.110 62.26 / 0.087 / 0.070 / 0.076

Mixup [11] 63.98 / 0.030 / 0.019 / 0.027 56.30 / 0.073 / 0.055 / 0.065 60.12 / 0.054 / 0.039 / 0.032 65.17 / 0.033 / 0.030 / 0.037 62.96 / 0.101 / 0.085 / 0.086 61.71 / 0.058 / 0.046 / 0.050

DDG [13] 64.78 / 0.020 / 0.010 / 0.025 55.84 / 0.059 / 0.052 / 0.061 59.87 / 0.042 / 0.023 / 0.030 62.97 / 0.028 / 0.011 / 0.039 56.70 / 0.039 / 0.012 / 0.037 60.03 / 0.038 / 0.022 / 0.038

MBDG [14] 62.82 / 0.003 / 0.002 / 0.002 57.04 / 0.076 / 0.062 / 0.068 61.00 / 0.046 / 0.032 / 0.023 63.39 / 0.001 / 0.016 / 0.018 58.88 / 0.062 / 0.021 / 0.050 60.63 / 0.038 / 0.026 / 0.032

DDG-FC 59.82 / 0.061 / 0.066 / 0.068 56.85 / 0.030 / 0.019 / 0.020 60.66 / 0.015 / 0.016 / 0.040 57.55 / 0.062 / 0.054 / 0.061 59.95 / 0.018 / 0.002 / 0.008 58.97 / 0.037 / 0.031 / 0.039

MBDG-FC 62.65 / 0.001 / 0.005 / 0.002 57.01 / 0.076 / 0.061 / 0.066 60.96 / 0.046 / 0.032 / 0.022 63.38 / 0.001 / 0.016 / 0.017 58.85 / 0.063 / 0.023 / 0.050 60.57 / 0.037 / 0.027 / 0.032

EIIL [16] 64.36 / 0.019 / 0.021 / 0.019 56.10 / 0.069 / 0.038 / 0.066 60.46 / 0.043 / 0.019 / 0.026 62.82 / 0.013 / 0.019 / 0.020 58.08 / 0.052 / 0.021 / 0.045 60.36 / 0.039 / 0.024 / 0.035

FarconVAE [17] 58.70 / 0.054 / 0.032 / 0.036 60.80 / 0.076 / 0.027 / 0.039 62.50 / 0.107 / 0.027 / 0.036 65.30 / 0.007 / 0.029 / 0.038 61.20 / 0.056 / 0.027 / 0.031 61.70 / 0.060 / 0.028 / 0.036

FEDORA [15] 63.79 / 0.036 / 0.022 / 0.037 59.19 / 0.132 / 0.117 / 0.113 61.53 / 0.139 / 0.126 / 0.110 62.64 / 0.019 / 0.014 / 0.023 63.19 / 0.076 / 0.087 / 0.065 62.07 / 0.080 / 0.073 / 0.070

FEED (Ours) 65.81 / 0.006 / 0.003 / 0.006 57.21 / 0.076 / 0.058 / 0.066 60.26 / 0.019 / 0.012 / 0.015 65.31 / 0.016 / 0.004 / 0.017 63.79 / 0.068 / 0.030 / 0.054 62.48 / 0.037 / 0.022 / 0.031

TABLE II
PERFORMANCE ON THE YFCC100M-FDG DATASET (BOLD IS THE BEST; UNDERLINE IS THE SECOND BEST).

Accuracy ↑ / ∆DP ³ / ∆EOPP ³ / ∆EO ³

Methods
d0 d1 d2 Avg

ERM [9] 89.69 / 0.133 / 0.005 / 0.007 86.92 / 0.049 / 0.005 / 0.017 87.18 / 0.050 / 0.004 / 0.007 87.93 / 0.077 / 0.004 / 0.011

IRM [2] 67.05 / 0.067 / 0.015 / 0.018 65.80 / 0.044 / 0.009 / 0.015 71.01 / 0.040 / 0.002 / 0.012 67.95 / 0.050 / 0.009 / 0.015

GroupDRO [10] 89.20 / 0.138 / 0.001 / 0.026 66.63 / 0.048 / 0.004 / 0.011 85.99 / 0.048 / 0.003 / 0.002 80.61 / 0.078 / 0.002 / 0.013

Mixup [11] 90.00 / 0.130 / 0.001 / 0.004 86.06 / 0.050 / 0.005 / 0.020 86.70 / 0.049 / 0.002 / 0.007 87.58 / 0.076 / 0.002 / 0.010

DDG [13] 83.74 / 0.093 / 0.032 / 0.067 88.26 / 0.056 / 0.016 / 0.034 89.95 / 0.043 / 0.004 / 0.003 87.32 / 0.064 / 0.018 / 0.035

MBDG [14] 85.70 / 0.136 / 0.029 / 0.024 89.90 / 0.063 / 0.025 / 0.035 87.49 / 0.036 / 0.001 / 0.006 87.70 / 0.079 / 0.019 / 0.022

DDG-FC 86.46 / 0.108 / 0.038 / 0.046 89.32 / 0.067 / 0.030 / 0.038 88.04 / 0.058 / 0.017 / 0.012 87.94 / 0.077 / 0.028 / 0.032

MBDG-FC 92.12 / 0.057 / 0.032 / 0.154 70.72 / 0.061 / 0.001 / 0.002 85.56 / 0.054 / 0.001 / 0.008 82.80 / 0.057 / 0.011 / 0.055

EIIL [16] 71.56 / 0.064 / 0.040 / 0.065 68.96 / 0.049 / 0.009 / 0.006 72.20 / 0.042 / 0.001 / 0.001 70.91 / 0.052 / 0.017 / 0.024

FarconVAE [17] 84.80 / 0.175 / 0.001 / 0.011 72.60 / 0.048 / 0.002 / 0.012 74.50 / 0.071 / 0.004 / 0.012 77.30 / 0.098 / 0.002 / 0.012

FEDORA [15] 87.40 / 0.139 / 0.001 / 0.010 89.50 / 0.020 / 0.002 / 0.008 90.00 / 0.030 / 0.002 / 0.007 88.97 / 0.063 / 0.001 / 0.008

FEED (Ours) 83.96 / 0.060 / 0.001 / 0.008 91.36 / 0.033 / 0.001 / 0.009 92.47 / 0.038 / 0.001 / 0.002 89.26 / 0.044 / 0.001 / 0.006

TABLE III
PERFORMANCE ON THE FAIRFACE DATASET (BOLD IS THE BEST; UNDERLINE IS THE SECOND BEST).

Accuracy ↑ / ∆DP ³ / ∆EOPP ³ / ∆EO ³

Methods
B E I L

ERM [9] 92.08 / 0.016 / 0.058 / 0.037 92.81 / 0.053 / 0.168 / 0.095 86.94 / 0.041 / 0.109 / 0.064 91.99 / 0.087 / 0.090 / 0.070

IRM [2] 90.78 / 0.001 / 0.022 / 0.001 68.41 / 0.107 / 0.104 / 0.091 59.31 / 0.037 / 0.074 / 0.047 91.20 / 0.031 / 0.113 / 0.051

GroupDRO [10] 89.78 / 0.022 / 0.086 / 0.053 92.35 / 0.054 / 0.151 / 0.087 89.05 / 0.031 / 0.123 / 0.065 88.59 / 0.062 / 0.060 / 0.042

Mixup [11] 90.46 / 0.003 / 0.040 / 0.021 92.66 / 0.047 / 0.091 / 0.055 89.82 / 0.021 / 0.061 / 0.031 89.66 / 0.054 / 0.056 / 0.039

DDG [13] 90.49 / 0.026 / 0.009 / 0.007 92.55 / 0.027 / 0.027 / 0.016 89.21 / 0.051 / 0.121 / 0.067 89.13 / 0.047 / 0.081 / 0.047

MBDG [14] 91.84 / 0.041 / 0.073 / 0.040 93.28 / 0.036 / 0.063 / 0.023 88.10 / 0.042 / 0.071 / 0.036 90.31 / 0.055 / 0.074 / 0.041

DDG-FC 90.57 / 0.005 / 0.011 / 0.007 92.62 / 0.003 / 0.013 / 0.008 90.38 / 0.049 / 0.189 / 0.105 90.97 / 0.074 / 0.187 / 0.113

MBDG-FC 91.12 / 0.032 / 0.056 / 0.038 93.31 / 0.035 / 0.062 / 0.041 87.79 / 0.037 / 0.082 / 0.051 88.77 / 0.032 / 0.077 / 0.049

EIIL [16] 90.71 / 0.038 / 0.050 / 0.032 83.34 / 0.054 / 0.056 / 0.040 83.47 / 0.003 / 0.045 / 0.007 88.33 / 0.087 / 0.141 / 0.097

FarconVAE [17] 90.30 / 0.032 / 0.092 / 0.053 92.70 / 0.138 / 0.082 / 0.067 87.10 / 0.038 / 0.087 / 0.062 88.30 / 0.109 / 0.088 / 0.058

FEDORA [15] 90.71 / 0.001 / 0.005 / 0.003 94.72 / 0.032 / 0.156 / 0.083 89.35 / 0.010 / 0.044 / 0.023 92.56 / 0.035 / 0.110 / 0.059

FEED (Ours) 91.06 / 0.011 / 0.106 / 0.054 94.07 / 0.002 / 0.079 / 0.040 91.81 / 0.025 / 0.062 / 0.035 91.82 / 0.065 / 0.066 / 0.049

Accuracy ↑ / ∆DP ³ / ∆EOPP ³ / ∆EO ³

Methods
M S W Avg

ERM [9] 92.04 / 0.090 / 0.133 / 0.079 89.93 / 0.040 / 0.115 / 0.069 86.73 / 0.083 / 0.192 / 0.104 90.36 / 0.059 / 0.124 / 0.074

IRM [2] 60.95 / 0.049 / 0.043 / 0.032 92.81 / 0.012 / 0.050 / 0.017 89.25 / 0.032 / 0.128 / 0.055 78.96 / 0.038 / 0.076 / 0.042

GroupDRO [10] 89.82 / 0.078 / 0.144 / 0.076 90.73 / 0.031 / 0.040 / 0.030 90.14 / 0.090 / 0.192 / 0.105 90.06 / 0.052 / 0.114 / 0.065

Mixup [11] 89.13 / 0.068 / 0.072 / 0.042 90.19 / 0.034 / 0.017 / 0.021 89.81 / 0.085 / 0.214 / 0.114 90.25 / 0.044 / 0.079 / 0.046

DDG [13] 86.45 / 0.056 / 0.106 / 0.060 90.74 / 0.031 / 0.069 / 0.036 88.89 / 0.112 / 0.218 / 0.129 89.64 / 0.050 / 0.090 / 0.052

MBDG [14] 88.17 / 0.075 / 0.138 / 0.074 91.13 / 0.041 / 0.070 / 0.036 88.26 / 0.056 / 0.109 / 0.056 90.16 / 0.050 / 0.085 / 0.044

DDG-FC 89.00 / 0.107 / 0.210 / 0.130 90.52 / 0.007 / 0.027 / 0.015 88.50 / 0.087 / 0.218 / 0.127 90.37 / 0.047 / 0.122 / 0.072

MBDG-FC 89.40 / 0.066 / 0.045 / 0.036 90.72 / 0.033 / 0.057 / 0.039 89.62 / 0.073 / 0.166 / 0.096 90.10 / 0.044 / 0.078 / 0.050

EIIL [16] 84.77 / 0.137 / 0.122 / 0.113 90.19 / 0.046 / 0.064 / 0.041 86.46 / 0.014 / 0.045 / 0.017 86.75 / 0.054 / 0.092 / 0.050

FarconVAE [17] 85.30 / 0.154 / 0.092 / 0.066 89.50 / 0.044 / 0.087 / 0.060 86.80 / 0.190 / 0.087 / 0.055 88.57 / 0.101 / 0.088 / 0.060

FEDORA [15] 91.09 / 0.079 / 0.252 / 0.131 93.62 / 0.020 / 0.057 / 0.032 92.48 / 0.097 / 0.232 / 0.127 92.08 / 0.039 / 0.122 / 0.065

FEED (Ours) 91.47 / 0.087 / 0.032 / 0.027 94.10 / 0.030 / 0.004 / 0.012 86.89 / 0.010 / 0.105 / 0.053 91.60 / 0.033 / 0.065 / 0.039

Architectures. In the construction of the semantic encoder

Em and the content encoder Ec, both are designed with

four strided convolutional layers, each followed by Instance

Normalization [19] and ReLU activation functions, as utilized

in various image datasets such as ccMNIST, FairFace, and

YFCC100M-FDG [14], [18]. The style encoder Es and the

sensitive encoder Ea are configured with 6 strided convolu-

tional layers, which utilize ReLU activation, succeeded by an

adaptive average pooling layer and a trio of fully connected

(FC) layers. The architecture for the inner level decoder Gi

and the outer level decoder Go includes an upsampling layer

followed by 4 convolutional layers. The sensitive classifier at

the inner level incorporates an FC layer equipped with 2 neu-

rons employing a Sigmoid activation function. The outer level

discriminator Do employs a multi-scale structure as proposed

by [20] to ensure that Go yields realistic details and accurate

global structure. In contrast, the inner level discriminator Di

is composed of a straightforward FC layer with 112 neurons,

activated by ReLU. The stage 2 classifier utilizes a ResNet-

50 architecture [19]. For the NYSF dataset, following the



TABLE IV
PERFORMANCE ON THE CCMNIST DATASET (BOLD IS THE BEST; UNDERLINE IS THE SECOND BEST).

Accuracy ↑ / ∆DP ³ / ∆EOPP ³ / ∆EO ³

Methods
R G B Avg

ERM [9] 98.69 / 0.793 / 0.065 / 0.046 97.68 / 0.393 / 0.014 / 0.012 97.81 / 0.020 / 0.006 / 0.008 98.06 / 0.402 / 0.028 / 0.022

IRM [2] 97.55 / 0.785 / 0.115 / 0.075 97.36 / 0.396 / 0.030 / 0.019 97.14 / 0.021 / 0.009 / 0.009 97.35 / 0.401 / 0.052 / 0.034

GroupDRO [10] 99.03 / 0.800 / 0.085 / 0.052 97.97 / 0.399 / 0.023 / 0.017 97.63 / 0.010 / 0.011 / 0.013 98.21 / 0.403 / 0.040 / 0.027

Mixup [11] 98.92 / 0.796 / 0.050 / 0.045 97.13 / 0.398 / 0.021 / 0.024 97.70 / 0.014 / 0.006 / 0.004 97.92 / 0.403 / 0.026 / 0.024

DDG [13] 98.99 / 0.794 / 0.040 / 0.039 97.04 / 0.421 / 0.059 / 0.052 97.81 / 0.013 / 0.010 / 0.011 97.95 / 0.409 / 0.036 / 0.034

MBDG [14] 98.87 / 0.787 / 0.036 / 0.025 98.23 / 0.411 / 0.033 / 0.029 98.75 / 0.017 / 0.006 / 0.004 98.62 / 0.405 / 0.025 / 0.019

DDG-FC 98.40 / 0.784 / 0.064 / 0.036 98.74 / 0.400 / 0.005 / 0.012 97.87 / 0.023 / 0.005 / 0.011 98.33 / 0.403 / 0.025 / 0.020

MBDG-FC 95.74 / 0.867 / 0.360 / 0.380 87.72 / 0.480 / 0.184 / 0.146 79.53 / 0.414 / 0.413 / 0.406 87.66 / 0.587 / 0.319 / 0.311

EIIL [16] 89.65 / 0.999 / 0.999 / 0.999 70.01 / 0.999 / 0.998 / 0.999 55.60 / 0.749 / 0.637 / 0.754 71.75 / 0.916 / 0.878 / 0.917

FarconVAE [17] 94.30 / 0.797 / 0.021 / 0.011 86.80 / 0.405 / 0.003 / 0.022 93.70 / 0.013 / 0.041 / 0.021 91.60 / 0.405 / 0.022 / 0.018

FEDORA [15] 96.95 / 0.736 / 0.027 / 0.021 98.08 / 0.389 / 0.005 / 0.004 96.65 / 0.013 / 0.011 / 0.021 97.23 / 0.379 / 0.014 / 0.015

FEED (Ours) 99.09 / 0.784 / 0.025 / 0.017 97.81 / 0.385 / 0.001 / 0.004 98.47 / 0.004 / 0.004 / 0.004 98.46 / 0.391 / 0.010 / 0.008

guidelines from [17], all networks are exclusively formed from

FC layers, including the stage 2 classifier, which comprises 4

FC layers.

Model selection. In our approach to model selection within

the domain generalization framework, we adhere to the leave-

one-domain-out validation criteria, a methodology supported

by [14] and identified as one of the three prominent methods

by [21]. This involves evaluating FEED on a training domain

that is withheld during the training process and averaging the

performance across the remaining |Etrain| − 1 domains.

B. Results

Quantitative results. For all tables in the paper, the results

shown in each column represent performance on the test

domain, using the rest as training domains.

Our method FEED demonstrates superior performance in

maintaining fairness across different datasets, significantly

outperforming both traditional domain generalization methods

and state-of-the-art fairness-aware approaches. For instance, in

the York-Stop-and-Frisk dataset (Table I), FEED achieves top

fairness metrics (0% for ∆DP, 0% for ∆EOPP, and 0.1% for

∆EO) and shows a notable accuracy improvement of 0.22%

over the best baseline. This trend is consistently observed

across other datasets as well.

In the YFCC100M-FDG dataset (Table II), FEED not only

upholds the highest fairness levels (0.6% for ∆DP, 0% for

∆EOPP, 0.2% for ∆EO) but also achieves a comparable

accuracy improvement of 0.29%. These results underline the

effectiveness of FEED in handling domain-specific variations

while ensuring robust fairness across domains.

The datasets such as ccMNIST and NYSF further validate

FEED’s performance. For the FairFace dataset (Table III),

our method reports better fairness metrics (0.5% for ∆DP,

1.1% for ∆EOPP, 0.3% for ∆EO) with a slight trade-off in

accuracy (0.48% lower than the best baseline). Similarly, in

the ccMNIST dataset (Table IV), FEED maintains competitive

fairness metrics and accuracy, demonstrating its adaptability

and efficiency across varying experimental settings.

Our observations indicate that FEED consistently delivers

strong performance on fairness metrics while maintaining

competitive accuracy, affirming its potential for widespread

applicability in real-world settings that demand fairness out-

comes across diverse populations. This consistent performance

is particularly notable in the context of challenging datasets

such as York-Stop-and-Frisk and YFCC100M-FDG, where

FEED excels in achieving top-tier results in fairness, a critical

quality for models deployed in sensitive applications.

The analysis extends to datasets like ccMNIST and NYSF,

FEED shows only marginal discrepancies in accuracy, yet

continues to uphold superior fairness metrics. This ability to

balance fairness with accuracy underpins the versatility of

FEED, making it a robust solution for scenarios that extend

beyond traditional domain applications. Moreover, the integra-

tion of FEED with domain-specific requirements showcases its

adaptability and readiness to tackle the intrinsic variability and

unpredictability of real-world data.

In conclusion, FEED stands out as a formidable framework

in the landscape of domain generalization and fairness-aware

meta-learning, offering significant improvements over both

conventional and state-of-the-art methods. Its dual strengths

in maintaining high classification accuracy while excelling

in fairness across varied domains position FEED as a trans-

formative tool for deploying robust and fairness model in

diverse real-world settings. This generalizability, coupled with

the method’s inherent flexibility to adapt to various data

characteristics and domain shifts.

Ablation studies. We conducted two ablation studies. (1)

The difference between the FEED and the first ablation study

(Abs1, w/o inner loop) is that the latter does not update the

task-specific parameters based on the support set for the inner

loop. In other words, the meta-parameters are directly updated

based on the query loss which is calculated based on the meta-

parameters. Without updating the task-specific parameters, it

makes the ablation study hard to train good initial parameters,

leading to poor generalization performance. Experimental re-

sults show that the first ablation study performs worse than

FEED on all four datasets on both accuracy and fairness

metrics. (2) The second study (Abs2, w/o augment) does not

use the transformation model T to generate augmented support

set and augmented query set. The parameters are updated

only based on the support set and the query set. Similar to

Abs1, without generating the augmented support set and the

augmented query set in synthetic domains, it is much harder

to learn good initial parameters. Our results demonstrate that

Abs2 performs worse on all the datasets. We include the

performance of such ablation studies in Fig. 4.



Fig. 4. Ablation study on four datasets. Results are plotted as averages across all domains.

VI. CONCLUSION

In this paper, we have introduced a novel framework

for fairness-aware meta-learning aimed at enhancing domain

generalization across diverse environments. By disentangling

latent factors into content, style, and sensitive vectors, our

approach ensures that the fairness, even in the face of domain

shifts. The proposed fairness-aware invariance criterion plays

a crucial role in maintaining fairness across different domains.

Our extensive experimental evaluation demonstrates that the

proposed method not only achieves superior accuracy but also

significantly improves fairness compared to existing state-of-

the-art approaches. These results underscore the importance of

incorporating fairness considerations into domain generaliza-

tion frameworks.

Future work will explore the extension of our framework

to handle multiple sensitive attributes and its application to

more complex, real-world datasets. We aim to investigate the

integration of our method with other fairness-aware learning

paradigms to further enhance its fairness and generalizability.
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VII. APPENDIX.

A. Transformation Model Training

Our proposed framework involves disentangling an input

sample from training domains into three factors in distinct la-

tent spaces, using a series of encoders E = {Em, Es, Ec, Ea}
and decoders G = {Gi, Go}. These are parameterized respec-

tively by θm,θs,θc,θa ∈ Θ and φi,φo ∈ Φ. The framework

operates through two hierarchical levels: an outer level and an

inner level, each with its own auto-encoder.

In the outer level, an input datapoint undergoes encoding

into a semantic factor m ∈ M and a style factor s ∈ S ,

achieved via the encoders Em : X × Θ → M and Es :
X×Θ → S . Progressing to the inner level, the semantic factor

m is further decomposed into a content factor c ∈ C and a

sensitive factor a ∈ A through the encoders Ec : M×Θ → C
and Ea : M × Θ → A. The corresponding decoders in

these levels are Gi : C × A × Φ → M for the inner

level and Go : M × S × Φ → X for the outer level,

facilitating the reconstruction of the original data. Inspired by

image-to-image translation in computer vision [18], [27], Our

total loss function of learning such encoders and decoders

comprises three components: a bidirectional reconstruction

loss, a sensitive label prediction loss, and an adversarial loss.
Reconstruction loss Considering a datapoint x sampled

from p(x), encoders and decoders in outer loop are able to
reconstruct it by minimizing the reconstruction loss:

Lx
recon = Ex∼p(x)

[

∥Go (m̂, E
s(x))− x∥1

]

where m̂ = Gi(c,a) = Gi (Ec(Em(x)), Ea(Em(x))). For
the inner level, the semantic factor m = Em(x) encoded from
the outer level is required to be reconstructed:

Lmd
recon = Em∼p(m)

[
∥

∥

∥
G

i (Ec(m), Ea(m))−m

∥

∥

∥

1

]

with p(m) determined by the mapping m = Em(x) and

x ∼ p(x).
The latent factors c, s,a, extracted from the datapoint x are

encouraged to be reconstructed through some latent factors
randomly sampled from the prior distributions.

Lc
recon = Ec∼p(c),a∼N (0,Ia)

[
∥

∥

∥
E

c
(

G
i(c,a)

)

− c

∥

∥

∥

1

]

La
recon = Ec∼p(c),a∼N (0,Ia)

[
∥

∥

∥
E

a
(

G
i(c,a)

)

− a

∥

∥

∥

1

]

where p(c) is given by c = Ec(Em(x)), and a =
Ea(Em(x)). Considering the dual-role of m, as both a latent
factor from the inner level and an input to the outer level, s
can be reconstructed by two reconstruction losses:

Lsin
recon = Em∼p(m),s∼N (0,Is)

[

∥Es(Go(m, s))− s∥1
]

Lsout
recon = Ec∼p(c),s∼N (0,Is),a∼N (0,Ia)[∥E

s
(

G
o(Gi(c,a), s)

)

− s∥1]

and for reconstructing m as a latent factor:

L
mf
recon = Em∼p(m),s∼N (0,Is)

[

∥Em (Go(m, s))−m∥1
]

The reconstruction loss is defined as follows:

Lrecon = Lx
recon + Lmd

recon + Lc
recon + La

recon

+ Lsin
recon + Lsout

recon + L
mf
recon

Sensitive prediction loss The sensitive attributes encoded
from the datapoint x underpin the training of a classifier
h : A × Θ → Z . This classifier is then employed to
predict the sensitive label associated with the attribute vector
a. Specifically, the prediction is formulated as:

ẑ = h(a,θz) = h(Ea(Em(x)),θz)

Lz
cls = CrossEntropy(z, ẑ)

Adversarial loss Inspired by the effectiveness of Generative
Adversarial Networks (GANs) [29], define discriminators D =
{Di, Do}, where Do : X ×Ψ → R is the discriminator for the
outer level, parameterized by ψo ∈ Ψ, and Di : M×Ψ → R is
the discriminator for the inner level, parameterized by ψi ∈ Ψ.
The discriminators are tasked with differentiating between real
and constructed data with random factors.

Lx
GAN = Ec∼p(c),s∼N (0,Is),a∼N (0,Ia)

[

log
(

1

−D
o(Go(m̂, s))

)]

+ Ex∼p(x)

[

logDo(x)
]

+ Ec∼p(c),s∼p(s),a∼N (0,Ia)

[

log
(

1−D
o(Go(m̂, s))

)]

+ Ex∼p(x)

[

logDo(x)
]

+ Ec∼p(c),s∼N (0,Is),a∼p(a))

[

log
(

1

−D
o(Go(m̂, s))

)]

+ Ex∼p(x)

[

logDo(x)
]

where m̂ is as defined in Lx
recon.

Lm
GAN =Ec∼p(c),a∼N (0,Ia)

[

log
(

1−D
i(Gi(c,a))

)]

+ Em∼p(m)

[

logDi(m)
]

The adversarial loss is defined as:

LGAN = Lx
GAN + Lm

GAN

Total loss We jointly train the encoders, decoders, and
discriminators to optimize the final objective:

min
E,G

max
D
Ltotal(E,G,D)

= Lrecon + ´zL
z
cls + ´gLGAN

The ´z, ´g > 0 modulate the relative significance of each

loss term within this formula.


