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ABSTRACT

The endeavor to preserve the generalization of a fair and invariant
classifier across domains, especially in the presence of distribution
shifts, becomes a significant and intricate challenge in machine
learning. In response to this challenge, numerous effective algo-
rithms have been developed with a focus on addressing the prob-
lem of fairness-aware domain generalization. These algorithms are
designed to navigate various types of distribution shifts, with a
particular emphasis on covariate and dependence shifts. In this con-
text, covariate shift pertains to changes in the marginal distribution
of input features, while dependence shift involves alterations in
the joint distribution of the label variable and sensitive attributes.
In this paper, we introduce a simple but effective approach that
aims to learn a fair and invariant classifier by simultaneously ad-
dressing both covariate and dependence shifts across domains. We
assert the existence of an underlying transformation model can
transform data from one domain to another, while preserving the
semantics related to non-sensitive attributes and classes. By aug-
menting various synthetic data domains through the model, we
learn a fair and invariant classifier in source domains. This classifier
can then be generalized to unknown target domains, maintaining
both model prediction and fairness concerns. Extensive empirical
studies on four benchmark datasets demonstrate that our approach
surpasses state-of-the-art methods. The code repository is available
at https://github.com/jk-kaijiang/FDDG.
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1 INTRODUCTION

While modern fairness-aware machine learning techniques have
demonstrated significant success in various applications [31, 54, 56,
58-64], their primary objective is to facilitate equitable decision-
making, ensuring algorithmic fairness across all demographic groups
characterized by sensitive attributes, such as race and gender. Nev-
ertheless, the generalization of a fair classifier learned in the source
domain to a target domain during inference often demonstrates
severe limitations in many state-of-the-art methods. The poor gen-
eralization can be attributed to the data distribution shifts from
source to target domains, resulting in catastrophic failures.

There are two main lines of data distribution shifts [41]: general
and fairness-specific shifts. The former focuses on shifts involving
input features and labels. Specifically, covariate shift [45] and label
shift [52] refer to variations due to different marginal distributions
over feature and class variables, respectively. Concept shift [53] in-
dicates "functional relation change" due to the change amongst the
instance-conditional distributions [40]. Moreover, fairness-specific
shifts consider additional sensitive attributes and hence place a
greater emphasis on ensuring algorithmic fairness. Demographic
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Figure 1: Illustration of the problem in generalizing fair clas-
sifiers across different data domains under covariate and
dependence shifts simultaneously. (Upper) Images in source
and target domains have different styles (Photos and Arts).
Each data domain is linked to a distinct correlation between
class labels (NC and C) and sensitive attributes (Male and Fe-
male). (Lower) We consider x = [x1,x2]7 a simple example of
a two-dimensional feature vector. A fair classifier f learned
using source data is applied to data sampled from various
types of shifted target domains, resulting in misclassification
and unfairness. f* represents the true classifier in the target
domain.

shift! [15] refers to certain sensitive population subgroups becom-
ing more or less probable during inference. Dependence shift [41]
captures the correlation change between the class variable and
sensitive attributes. Within these distribution shifts, a trained fair
classifier from source domains is directly influenced and may de-
grade when adapted to target domains.

To simplify, we narrow the scope of distribution shifts to two
prominent ones: covariate shift, which has been extensively inves-
tigated in the context of out-of-distribution (OOD) generalization
[40, 57], and dependence shift, a topic that has gained attention
in recent research. In the illustrative example shown in Fig. 1, the
source and target domains exhibit variations stemming from differ-
ent image styles (Photos and Arts) and correlations between labels
(No-cooking and Cooking) and sensitive attributes (Male and Fe-
male). Specifically, in the source domain, most males in the kitchen
are not cooking, whereas in the target domain, a distinct correlation
is observed with most males engaging in cooking. To learn a classi-
fier that is both fair and accurate under such hybrid shifts, a variety
of domain generalization approaches have been explored. Predomi-
nantly, these methods often exhibit two specific limitations: they (1)
address either covariate shift [26, 40, 57] or dependence shift [8, 36],
or (2) solely focus on covariate shift but not explicitly indicate the
existence of dependence shift [37]. Therefore, there is a need for
research that explores the problem of fairness-aware domain gener-
alization (FDG), considering both covariate and dependence shifts
simultaneously across source and target domains.

IDependence shift is named as correlation shift in [15].
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In this paper, we introduce a novel framework, namely Fair dis-
Entangled DOmain geneRAlization (FEDORA). The key idea in our
framework revolves around learning a fair and accurate classifier
that can generalize from given source domains to target domains,
which remain unknown and inaccessible during training. The vari-
ations in these domains result from the concurrent presence of
covariate and dependence shifts. Notice that, unlike the settings in
some works involving covariate shift [32, 38, 48], we assert each
domain possesses a distinct data style (Photos and Arts), result-
ing in an alternation in feature spaces. Technically, we assert the
existence of a transformation model that can disentangle input
data to a semantic factor that remains invariant across domains, a
style factor that characterizes covariate-related information, and
a sensitive factor that captures attributes of a sensitive nature. To
enhance the generalization of the training classifier and adapt it
to unknown target domains, we augment the data by generating
them through the transformation model. It utilizes semantic factors
associated with various style and sensitive factors sampled from
their respective prior distributions. Furthermore, we leverage this
framework to systematically define the FDG problem as a semi-
infinite constrained optimization problem. Theoretically, we apply
this re-formulation to demonstrate that a tight approximation of the
problem can be achieved by solving the empirical, parameterized
dual for this problem. Moreover, we develop a novel interpretable
bound focusing on fairness within a target domain, considering the
domain generalization arising from both covariate and dependence
shifts. Finally, extensive experimental results on the proposed new
algorithm show that our algorithm significantly outperforms state-
of-the-art baselines on several benchmarks. Our main contributions
are summarized.

e We introduce a fairness-aware domain generalization problem
within a framework that accommodates inter-domain variations
arising from covariate and dependence shifts simultaneously. We
also give a brief survey by comparing the setting of related works.

o We reformulate the problem to a novel constrained learning prob-
lem. We further establish duality gap bounds for the empirically
parameterized dual of this problem and develop a novel upper
bound that specifically addresses fairness within a target domain
while accounting for the domain generalization stemming from
both covariate and dependence shifts.

e We present a novel algorithm, FEDORA, that enforces invariance

across unseen target domains by utilizing generative models

derived from the observed source domains.

Comprehensive experiments are conducted to verify the effec-

tiveness of FEDORA. We empirically show that it significantly

outperforms state-of-the-art baselines on four benchmarks.

2 RELATED WORKS

Domain generalization. Addressing the challenge of domain shift
and the absence of OOD data has led to the introduction of sev-
eral state-of-the-art methods in the domain generalization field
[3, 40, 50, 57]. These methods are designed to enable deep learning
models to possess intrinsic generalizability, allowing them to adapt
effectively from one or multiple source domains to target domains
characterized by unknown distributions [51]. They encompass var-
ious techniques, such as aligning source domain distributions to
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Table 1: Different Types of Distribution Shifts.

Type of Shifts Notations, Vs € &g

Covariate Shift (Cov.) [45] PS, # P}

XL pf
Label Shift (Lab.) [52] P, #PL
Concept Shift (Con.) [53] P;\X # P%/\X
Demographic Shift (Dem.) [15] P} * ]P’tz
i S 13 s —pl . S 3 s _— pt
Dependence Shift (Dep.) [41] PY\Z # pY\Z and PZ = PZ’ or, ]PZ\Y # PZIY and Py = PY

Hybrid Shift Any combination of the shifts above.

Table 2: An overview of different settings of existing ap-
proaches in mitigating unfairness under distribution shifts.

Refs. Distribution Shifts Spaces Change: Vs e & &5 Access
Cov. Lab. Con. Dem. Dep. X° # Xt ys Yyt Z5+ Z! to Target
[32,38,48] o 1 No
[9] . M No
[10, 39] . 1 Yes
[37] . . M No
[4] . 1 Yes
[20, 21] . 1 Yes
[15, 44] . . 1 Yes
[8] . M No
[36] . 1 No
[41] . 1 Yes
[22] . ) 1 Yes
[46] . . 1 Yes
[43] . . . 1 Yes
[18] ) ) . 1 No
[7] ) ) ) 1 Yes
FEDORA . . . M No

"YS £ Yland Z$ # Z* indicate the introduction of new labels and new sensitive attributes. A
change in X denotes a shift in feature variation, such as transitioning from photo images to arts.

facilitate domain-invariant representation learning [29], subjecting
the model to domain shift during training through meta-learning
[28], and augmenting data with domain analysis, among others [65],
and so on. In the context of the number of source domains, a signif-
icant portion of research [5, 40, 57] has focused on the multi-source
setting. This setting assumes the availability of multiple distinct
but relevant domains for the generalization task. As mentioned in
[5], the primary motivation for studying domain generalization
is to harness data from multiple sources in order to unveil stable
patterns. This entails learning representations invariant to the mar-
ginal distributions of data features, all while lacking access to the
target data. Nevertheless, existing domain generalization methods
tend to overlook the aspect of learning with fairness, where group
fairness dependence patterns may not change domains.

Fairness learning for changing environments. Two primary
research directions aim to tackle fairness-aware machine learning
in dynamic or changing environments. The first approach involves
equality-aware monitoring methods [1, 7, 15, 24, 37, 39, 46], which
strive to identify and mitigate unfairness in a model’s behavior by
continuously monitoring its predictions. These methods adapt the
model’s parameters or structure when unfairness is detected. How-
ever, a significant limitation of such approaches is their assumption
of invariant fairness levels across domains, which may not hold
in real-world applications. The second approach [8, 36] focuses on
assessing a model’s fairness in a dynamic environment exclusively
under dependence shifts. However, it does not consider other types
of distribution shifts.
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In response to these limitations, this paper adopts a novel ap-
proach by attributing the distribution shift from source to target
domains to both covariate shift and fairness dependence shift si-
multaneously. The objective is to train a fairness-aware invariant
classifier capable of effective generalization across domains, ensur-
ing robust performance in terms of both model accuracy and the
preservation of fair dependence between predicted outcomes and
sensitive attributes under both shifts.

3 PRELIMINARIES

Notations. Let X C R denote a feature space, Z = {-1,1} isa
sensitive space, and Y = {0, 1} is a label space for classification. Let
C C R A CR% and S C R® be the semantic, sensitive and style
latent spaces, respectively, induced from X and A by an underlying
transformation model T : XXZXE — XxZ.Weuse X, Z,Y,C, A, S
to denote random variables that take values in X, Z,Y,C, A, S
and X, z, Y, ¢, a, s the realizations. A domain e € & is defined as a
joint distribution P§ ., = P(X%,Z%Y®) : X x Zx Y — [0,1]. A
classifier f in a class space ¥ denotes f € ¥ : X — Y. We denote
& and &° C & as the set of domain labels for all domains and
source domains, respectively. Superscripts in the samples denote
their domain labels, while subscripts specify the indices of encoders.
For example, Es(x*) denotes a sample x drawn from the s domain
and encoded by a style encoder E;.

Fairness notions. When learning a fair classifier f € ¥ that
focuses on statistical parity across different sensitive subgroups,
the fairness criteria require the independence between the sensitive
random variables Z and the predicted model outcome f(X) [11].
Addressing the issue of preventing group unfairness can be framed
as the formulation of a constraint. This constraint mitigates bias
by ensuring that f(X) aligns with the ground truth Y, fostering
equitable outcomes.

DEFINITION 1 (GROUP FAIRNESS NOTION [35, 54]). Given a dataset
D = {(xi, zi, yi)}l.gl sampled i.i.d. from Pxzy, a classifier f € F :
X — Y is fair when the prediction Y = f(X) is independent of the
sensitive random variable Z. To get rid of the indicator function and
relax the exact values, a linear approximated form of the difference
between sensitive subgroups is defined as
1 Z+1 N
— (=Y o«
Pl(l—Pl)( 2 pl) @
p1 and 1 — py are the proportion of samples in the subgroup Z =1
and Z = —1, respectively.

Specifically, when py =P(Z =1) and p; =P(Z = 1,Y = 1), the
fairness notion p(Y, Z) is defined as the difference of demographic
parity and the difference of equalized opportunity, respectively [35].
In this paper, we will present the results under demographic parity
(and then the expectation in Eq. (1) is over X Z), while the framework
can be generalized to multi-class, multi-sensitive attributes and
other fairness notions. Strictly speaking, a classifier f is fair over
subgroups if it satisfies p(¥, Z) = 0.

Problem setting. Given a dataset D = {D°}

p(?,Z) = |EPXZy!](}})Z)|, 9(?,2) =

Lﬂ where each
D¢ = {(x¢,2, yf)}lg lis iid. sampled from a domain P5 ., and
e € &, we consider multiple source domains {Pg(ZY}‘sil‘ and a
distinct target domain P;Zy,t #sVse & c Eandt € E\ES,
which is unknown and inaccessible during training. Given samples
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Figure 2: (Left) A transformation model T is trained using a bi-directional reconstruction loss (data reconstruction and factor
reconstruction) and a sensitiveness loss. (Right) To enhance the generalization of the classifier f to unseen target domains,
the transformation model T is used for augmentation in synthetic domains by generating data based on invariant semantic
factors and randomly sampled sensitive and style factors that encode synthetic domains. We demonstrate the concept using
the ccMNIST dataset, where the domains are distinguished by different digit colors and fair dependencies between class labels
and sensitive attributes. Here, sensitive attributes are defined by image background colors.

{Ds}lsill from finite source domains, the goal of fairness-aware
domain generalization problems is to learn a classifier f € ¥ that
is generalizable across all possible domains.

PROBLEM 1 (FAIRNESS-AWARE DOMAIN GENERALIZATION). Let

S

{P%zy Li’l‘ be a finite subset of source domains and assume that,
for each s € E°, we have access to its corresponding dataset D’ =

S

{5, 7, yls)}lg ! sampled i.i.d fromP3 . Given a classifier set ¥
and a loss function € : Y X Y — R, the goal is to learn a fair classifier
f € F forany D° that minimizes the worst-case risk over all domains

. &l . .
in {P% ;v Yooy satisfying a group fairness constraint:

XY, st p(f(X5), 25 =0 ()

min max Eps
feF eec& ~XZ

The goal of Prob. 1 is to seek a fair classifier f that generalizes
from the given finite set of source domains to give a good general-
ization performance on all domains. Since we do not assume data
from a target domain is accessible, it makes Prob. 1 challenging to
solve.

Another challenge is how closely the data distributions in un-
known target domains match those in the observed source domains.
As discussed in Sec. 1 and Tab. 1, there are five different types of
distribution shifts. In this paper, we narrow the scope and claim the
shift between source and target domains is solely due to covariate
and dependence shifts.

DEFINITION 2 (COVARIATE SHIFT [40] AND DEPENDENCE SHIFT[41]).
In Prob. 1, covariate shift occurs when domain variation is attrib-
uted to disparities in the marginal distributions over input features
P # Pé(, Vs. On the other hand, Prob. 1 exhibits a dependence shift
when domain variation arises from alterations in the joint distribution
between Y and Z, denoted IP’;Z + Pt _.Vs wherePS,  +# P;IZ and

YZ> Y|Z
s _ pt . S t S _ Pt
P, =P orIP’ZlY * PZ|Y and P =Py.

Underlying transformation models. Inspired by existing do-
main generalization endeavors [19, 40, 57], distribution shifts can
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characterize generalization tasks across domains through an un-
derlying transformation model T. The motivation behind using T
lies in bolstering the robustness and adaptability of the classifier f
across diverse domains. By learning a transformation model, the ob-
jective is twofold: (1) to enable the model to adapt domain-invariant
data representations (factors) from the input data by disentangling
domain-specific variations and (2) to generate augmented data in
new domains by perturbing existing samples with various varia-
tions. This augmentation enhances the diversity of the source data
and thereby improves the ability to generalize to unseen target
domains.

4 METHODOLOGY

4.1 Learning the Transformation Model

One goal of the transformation model T = {E, G} is to disentangle
an input sample from source domains into three factors in latent
spaces by learning a set of encoder E = {E, E,, Es} and a decoder
G:CxXAxS - X,whereE, : X > C,E; : X > A, and
Es : X — 8 represent semantic, sensitive and style encoders,
respectively.

AssumMPTION 1 (MULTIPLE LATENT FACTORS). Given dataset D¢ =
{(xf, 25, yie)}lge‘ sampled i.i.d. fromP$ . domaine € &, we as-
sume that each instance x{ is generated from (1) a latent semantic
factor ¢ € C, where C = {cy=0,cy=1}; (2) a latent sensitive factor
a € A, where A = {az=1,a,=_1}; and (3) a latent style factor s,
where s¢ is specific to the individual domain e. We assume that the
semantic and sensitive factors in C and A do not change across do-

mains. Each domain P$, ., is represented by a style factor s¢ and the
dependence score p® = p(Ye,Ze)z, denoted e := (s°, p®), where s°

and p® are unique to the domain P, .

Note that Assump. 1 is similarly related to the one made in
[19, 34, 40, 57]. In our paper, with a focus on group fairness, we

?Here, p functions equivalently as it does in Eq. (1), by substituting YioY.
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expand upon the assumptions of existing works by introducing
three latent factors. Under Assump. 1, if two instances (x%, z¢, y)
and (x%,z%,y) where e;,ej € E,i # j share the same class label,
then the latter instance can be reconstructed by decoder G from the
former using ¢ = E;(x%), s = Es(x%), and a = E;(x%) through T,
denoted (x%,2%) = T(x%, 2%, ¢;).

To enhance the effectiveness of the transformation model T, our
overall learning loss for these encoders and decoders consists of
two main components: a bidirectional reconstruction loss and a
sensitiveness loss.

Data reconstruction loss encourages learning reconstruction
in the direction of data—latent—data. As for it, a data sample x*
from P, Vs € &° is required to be reconstructed by its encoded
factors.

Ldata
recon

= Exs 3, [IG(Ec(x°), Ea(x*), Es (x*)) = x*[1]

Factor reconstruction loss. Given latent factors c, a, and s® en-
coded from a sample x°, they are encouraged to be reconstructed
through some latent factors randomly sampled from the prior Gauss-
ian distributions.

Lfactar _E

recon c~1PC,a~PA,ss~1P5[”EC(G(C, a,5%)) —cll1]

+ Ec~]PC,a~N(0,Ia),ss~IP5 [IIEq (G(C, a,s’ )) —ally]

+ Bewpeapass~N(0ls) LIEs(G(e,a,8%)) = slli]
where Pc, P4, Ps are given by E.(x°), Eq(x®), and Es(x®), respec-
tively.

Sensitiveness loss. Since a sensitive factor is causally dependent
on the sensitive attribute of data (x*, z°%, y*), a simple classifier h :
A — Z is learned, and further it is used to label the sensitive
attribute in augmented data when learning f.

Lsens = CrossEntropy(z°, h(Eq(x%)))

Total loss. We jointly train the encoders and the decoder to opti-
mize the transformation model T with a weighted sum loss.

t
G ﬂl + ﬁz L{gfozr + ,BS Lsens

where f1, 2, 3 > 0 are hyperparameters that control the impor-
tance of each loss term.

min
Ec.Eq,Es,

Ldata

recon

®)

4.2 Fair Disentangled Domain Generalization

Furthermore, with a trained transformation model T, to learn the
fairness-aware invariant classifier f across domains, we make the
following assumption.

AssUMPTION 2 (FAIRNESS-AWARE DOMAIN SHIFT). We assume
that inter-domain variation is characterized by covariate and de-
pendence shifts. As a consequence, we assume that the conditional

distribution P§/|XZ is stable across domains, Ve € &. Given a trans-
. . e; _ mti . . .
formation model T, it holds that PY\XZ = IP’Y‘XZ, Vej,ej € E,i # j,

where (X®,2%) = T(X%,Z% ej).

In Assump. 2, the domain shift captured by T would characterize
the mapping from the margirel_al distributions ]P;’ and p(Y¢,Z%)
over D to the distribution P/ and p(Y®/, Z%) over D¢ sampled
from a different data domain P;ZY’ respectively. With this in mind
and under Assump. 2, we introduce a new definition of fairness-
aware invariance with respect to the variation captured by T and
satisfying the group fair constraint introduced in Defn. 1.
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DEFINITION 3 (FAIRNESS-AWARE T-INVARIANCE). Given a trans-
formation model T, a fairness-aware classifier f € ¥ is domain
invariant if it holds for all e;, ej € &.

FOE) = F(x), and p(f(X4),2%) = p(f(X%),Z) =0 (4)

e Lej\ — € L€ L.\ € . P e _ P
almost surely when (x%7,2%) = T(x%, 2%, ej), x* Py, x9 ~PJ.

Defn. 3 is crafted to enforce invariance on the predictions gen-
erated by f directly. We expect a prediction to remain consistent
across various data realizations T while considering group fairness.

PROBLEM 2 (FAIR DISENTANGLEMENT DOMAIN GENERALIZATION).
Under Defn. 3 and Assump. 2, if we restrict  of Prob. 1 to the set of
invariant fairness-aware classifiers, the Prob. 1 is equivalent to the
following problem

P* £ min R(f) £ Bps;  £(f(X°7), Y¥) (5
fer XZYy
st f(X51) = f(X), p(f(X*1),Z°1) = p(f(X7),Z%7) =0
where (X®1,2%) = T(X%,Z,sj), Vsi,sj € E%,i # j.

Similar to [40], Prob. 2 is not a composite optimization prob-
lem. Moreover, acquiring domain labels is often expensive or even
unattainable, primarily due to privacy concerns. Consequently,
under the assumptions of disentanglement-based invariance and
domain shift, Prob. 1 can be approximated to Prob. 2 by removing
the max operator over &.

In addition, Prob. 2 offers a new and theoretically-principled
perspective on Prob. 1, when data varies from domain to domain
with respect to T. To optimize Prob. 2 is challenging because (1)
The strict equality constraints in Prob. 2 are difficult to enforce in
practice; (2) Enforcing constraints on deep networks is known to be
a challenging problem due to non-convexity. Simply transforming
them to regularization cannot guarantee satisfaction for constrained
problems; and (3) As we have incomplete access to all domains, it
limits the ability to enforce fairness-aware T-invariance and further
makes it hard to estimate R(f).

Due to such challenges, we develop a tractable method for ap-
proximately solving Prob. 2 with optimality guarantees. To address
the first challenge, we relax constraints in Prob. 2

P*(y1,y2) éjrpeigR(f) (6)

Y2

SLEIF) <y p () < 2, and g (f) < 1

where

551Si (f) = EPiézd[f(Xsi)!f(ij - T(Xsi,ZSi,Sj))], (7)

po(f) = p(f(X7), 2%, p(f) = p(f(X¥),Z2%)  (8)

andVs;,sj € &°,i # j.Here, y1,y2 > 0 are constants controlling the
extent of relaxation and d[-] is a distance metric, e.g., KL-divergence.
When y1 = y2 = 0, Egs. (5) and (6) are equivalent.

Since it is unrealistic to have access to the full distribution and
we only have access to source domains, given data sampled from
Es, we consider the empirical dual problem.

min R(6)

D} ) 2
EN,Es (YI YZ) )

max
A1(si,55),A2 (5.5 5)

- Z [Al(siasj)(gsi’sj(e) -n) O

88
| s,-,s]-ESS

+2a(s1,57) (0% (0) + % (8) - )|

+
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Algorithm 1 FEDORA: Fair Disentangled Domain Generalization.

Require: Encoders E = {E., E4, Es }, decoder G and sensitive classifier h.
Initialize: primal and dual learning rate 7, 74, empirical constant y1, y».
: repeat
for minibatch 8 = {(x;, i, yi) }]2; € Ds do
Les(0) = # 221 [(yi,f(xi’ 0))
Initialize Lin,(0) =0and B’ = |
for each (x;, z;, y;) in the minibatch do
Generate (xj,z;,yj) = T(x;, 2, y;) and add to B’
Ling(0)+ = £d[f(x:,0), f(x;,0)]
end for
Lfair(e)
|# Z(x]-,zj-)efg' g(f(xj, 9): Zj)|

1
2
3
4:
5:
6
7
8
9

= |k Sxienes 9(f (xi 0).20)|  +

10: L(0) = Lc15(0) + A1+ Liny(0) + Az - ‘Cfair(e)

11: 0 «— Adam(L(0),0,np)

12 M e max{ [ + 14 - (Lino(0) = y1)1,0}, Ao — max{[; +
na - (Liair(0) = 12)1,0)

13: end for

14: until convergence

15: procedure T(x, z, y)

16: c,a,s = E(x)

17: Sample a’ ~ N(0,1;),s" ~ N(0,I)

18: x' =G(ca’,s’),z = h(a")

19: return (x',z’, y)

20: end procedure

where ¢ = Ep,||f(x) = f(x,0)|]lc > 0 is a constant bound-
ing the difference between f and its parameterized counterpart
f : X X © — R defined in the Defn. 5.1 of [40]. N is the num-
ber of samples drawn from Pxzy and it can be empirically re-
placed by X segs |D*]. A1(si,55), A2(si,sj) > 0 are dual variables.
R(6), 5508 (0), p%(0) and p% (0) are the empirical counterparts of
R(f(-.6)). 8% ((-.6)). p% (f(-.6)) and p* (£ (-, 0)). respectively.

4.3 The FEDORA Algorithm

In practice, we propose a simple but effective algorithm, given in
Algorithm 1, which is co-trained with the transformation model T.
The detailed training process of T is provided in Algorithm 2 of the
Appendix. In Algorithm 1, we harness the power of T to address
the unconstrained dual optimization problem outlined in Eq. (9)
through a series of primal-dual iterations.

Given a finite number of observed source domains, to enhance
the generalization performance for unseen target domains, the
invariant classifier f is trained by expanding the dataset with syn-
thetic domains generated by T. These synthetic domains are created
by introducing random sample style and random sensitive factors,
hence a random sensitive attribute, resulting in an arbitrary fair de-
pendence within such domains. As described in Fig. 2, the sensitive
factor a® and the style factor s* are randomly sampled from their
prior distributions N(0,1,;) and N (0,Is), respectively. A sensitive
attribute z%" is further predicted from a® through h. Along with the
unchanged semantic factor ¢ encoded by (x%, 2%, y), they are fur-
ther passed through G to generate x5, 2%, y) with the unchanged
class labels in an augmented synthetic domain. Under Assump. 2
and Defn. 3, according to Egs. (7) and (8), data augmented in syn-
thetic domains are required to maintain invariance in terms of
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accuracy and fairness with the data in the corresponding original
domains.

Specifically, in lines 15-20 of Algorithm 1, we describe the trans-
formation procedure that takes an example (x, z, y) as INPUT and
returns an augmented example (x,z’,y) from a new synthetic do-
main as OUTPUT. The augmented example has the same semantic
factor as the input example but has different sensitive and style
factors sampled from their associated prior distributions that en-
code a new synthetic domain. Lines 1-14 show the main training
loop for FEDORA. In line 6, for each example in the minibatch 8,
we apply the procedure T to generate an augmented example from
a new synthetic domain described above. In line 7, we consider
KL-divergence as the distance metric for d[-]. All the augmented
examples are stored in the set 8’. The Lagrangian dual loss function
is defined based on B and B’ in line 10. The primal parameters 0
and the dual parameters A; and A, are updated in lines 11-12.

5 ANALYSIS

With the approximation on the dual problem in Eq. (9), the duality
gap between P* in Eq. (6) and DENS (y1,y2) in Eq. (9) can be
explicitly bounded.

THEOREM 1 (FAIRNESS-AWARE DATA-DEPENDENT DUALITY GAP).
Given ¢ > 0, assuming {f(-,0) : @ € ©} C F has finite VC-
dimension, with M datapoints sampled from Px zy we have

|P* =D} N g, (P)] < LIyl + &k (1+]]1A5]]1) + O(Ylog(M) /M)

wherey = [y1,y2]7; L is the Lipschitz constant of P* (y1,y2); k is a
small universal constant defined in Proposition 3 of Appendix B; and
/1;,‘ is the optimal dual variable for a perturbed version of Eq. (6).

The duality gap that arises when solving the empirical prob-
lem presented in Eq. (9) is minimal when the fairness-aware T-
invariance in Defn. 3 margin 7 is narrow, and the parametric space
closely approximates ¥ .

Furthermore, we present the following theorem to establish an
upper bound on fairness within an unseen target domain.

THEOREM 2 (FAIRNESS UPPER BOUND OF THE UNSEEN TARGET
DoMAIN). In accordance with Defn. 1 and Eq. (8), for any domain
e € &, the fairness dependence under instance distribution P$, ., with
respect to the classifier f € F is defined as:

p¢(f) = [Brgg(f(X*),Z°)|
With observed source domains Es, the dependence at any unseen
target domain t € E\E; is upper bounded. dist[-] is the Jensen-
Shannon distance metric [12].

1 . . . i
pt(f) < T Z % (f) +\/§sr.rélgs dlSt[Pg(Zy,P;Zy]
si€8s '

: Si Sj
+2 max_ dlSt[PXZY’PXZY]
sl,sjebs

where dist[P1,P2] = [JKL(B1]|E2E2) + TKL(PI|E32) is T
divergence defined based on KL divergence.

Notice that the second term in Theorem 2 becomes uncontrol-
lable during training as it relies on the unseen target domain. There-
fore, to preserve fairness across target domains, we aim to learn
semantic factors that map the transformation mode T, ensuring
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Table 3: Statistics summary of all datasets.

Datasets Domains Sensitive Attr. Labels (s,p°), Vs € &

CCMNIST digit color background color digit label (R, 0.11), (G, 0.43), (B, 0.87)

(B, 0.91), (E, 0.87), (I, 0.58),

Fairface (L, 0.48), (M, 0.87), (S, 0.39), (W, 0.49)

race gender age

YFCC10@M-FDG year location in-,outdoor (dp, 0.73), (d1, 0.84), (d2, 0.72)

(R, 0.93), (B, 0.85), (M, 0.81),

NYSF (Q. 0.98), (S, 0.88)

city race stop record

Si
that PClXZY’

Simultaneously, we strive for the classifier f to achieve high fair-
ness within the source domains. Proofs of Theorems 1 and 2 are
provided in Appendices B and C.

Vs; € &g remains invariant across source domains.

6 EXPERIMENTS

Due to space limitations, we defer a detailed description of the ex-
perimental settings and comprehensive results to the arXiv version
of this paper, which can be accessed at https://arxiv.org/pdf/2311.
13816.

6.1 Settings

Datasets. We evaluate the performance of our FEDORA on four
benchmarks. To highlight each source data and its fair dependence
score p° defined in Assump. 1, we summarize the statistics in Tab. 3.
(1) ccMNIST is a domain generalization benchmark created by
colorizing digits and the backgrounds of the MNIST dataset [27].
ccMNIST consists of images of handwritten digits from 0 to 9. Simi-
lar to ColoredMNIST [3], for binary classification, digits are labeled
with 0 and 1 for digits from 0-4 and 5-9, respectively. ccMNIST
contains 70,000 images divided into three data domains, each char-
acterized by a different digit color (i.e., red, green, blue) and followed
by a different correlation between the class label and sensitive at-
tribute (digit background colors). (2) FairFace [23] is a dataset
that contains a balanced representation of different racial groups.
It includes 108,501 images from seven racial categories: Black (B),
East Asian (E), Indian (I), Latino (L), Middle Eastern (M), South-
east Asian (S), and White (W). In our experiments, we set each
racial group as a domain, gender as the sensitive attributes, and
age (> or < 50) as the class label. (3) YFCC100M-FDG is an image
dataset created by Yahoo Labs and released to the public in 2014. It
is randomly selected from the YFCC100M [49] dataset with a total
of 90,000 images. For domain variations, YFCC100M-FDG is divided
into three domains. Each contains 30,000 images from different
year ranges, before 1999 (do), 2000 to 2009 (d1), and 2010 to 2014
(d2). The outdoor or indoor tag is used as the binary class label for
each image. Latitude and longitude coordinates, representing where
images were taken, are translated into different continents. The
North American or non-North American continent is the sensitive
attribute (related to spatial disparity). (4) NYSF [25] is a real-world
dataset on policing in New York City in 2011. It documents whether
a pedestrian who was stopped on suspicion of weapon possession
would, in fact, possess a weapon. NYSF consists of records collected
in five different regions: Manhattan (M), Brooklyn (B), Queens (Q),
Bronx (R), and Staten (S). We use regions as different domains. This
data had a pronounced racial bias against African Americans, so
we consider race (black or non-black) as the sensitive attribute.
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Baselines. We compare the performance of FEDORA with 19
baseline methods that fall into two main categories: (1) 12 state-of-
the-art domain generalizations methods, specifically designed to
address covariate shifts: ColorJitter, ERM [50], IRM [3], GDRO
[42], Mixup [55], MLDG [28], CORAL [47], MMD [29], DANN
[14], CDANN [30], DDG [57], and MBDG [40], where ColorJitter
is a naive function in PyTorch that randomly changes the bright-
ness, contrast, saturation and hue of images; and (2) 7 state-of-the-
art fairness-aware domain generalizations methods, specifically
designed to address either covariate or dependence shifts: DDG-
FC, MBDG-FC, EIIL [8], FarconVAE [36], FCR [2], FTCS [41], and
FATDM [37], where DDG-FC and MBDG-FC are two baselines that
built upon DDG [57] and MBDG [40], respectively by straightfor-
wardly adding fairness constraints defined in Defn. 1 to the loss
functions of the original models.

Evaluation metrics. Three metrics are used for evaluation.
Two of them are for fairness quantification, Demographic Parity
(DP) [11] and the Area Under the ROC Curve (AUCf,;y) between
predictions of sensitive subgroups [33].

o Demographic Parity (DP) [11] is formalized as
DP =k, if DP < 1;DP = 1/k, otherwise

where k = P(Y = 1|Z = =1)/P(Y = 1|Z = 1) This is also known
as a lack of disparate impact [13]. A value closer to 1 indicates
fairness.

e The Area Under the ROC Curve (AUCr;,) [6] varies from zero to
one, and it is symmetric around 0.5, which represents random
predictability or zero bias effect on predictions.

Y (xiz=typ)en_; Lixjz=tyj)en, [(P(Gi = 1) > P(§; =1))
[D-1] X | D1l
where [D_1| and | D1 | represent sample size of subgroups z = —1

and z = 1, respectively. I(-) is the indicator function that returns
1 when its argument is true and 0 otherwise.

AUCfair

Notice that the AUCfg;, is not the same as the one commonly
used in classification based on TPR and FPR. The intuition behind
this AUCy,;, is based on the nonparametric Mann-Whitney U test,
in which a fair condition is defined as the classifier’s prediction
probability of a randomly selected sample x_; from one sensitive
subgroup being greater than a randomly selected sample x; from
the other sensitive subgroup is equal to the probability of x; being
greater than x_1 [6, 58]. A value of DP closer to 1 indicates fairness,
and 0.5 of AUCf;, represents zero bias effect on predictions.

Model selection. The model selection in domain generaliza-
tion is intrinsically a learning problem, followed by [40], we use
leave-one-domain-out validation criteria, which is one of the three
selection methods stated in [17]. Specifically, we evaluate FEDORA
on the held-out source domain and average the performance of
|Es| — 1 domains over the held-out one.

Hyperparameter Search We follow the same set of the MUNIT
[19] for the hyperparameters. More specifically, the learning rate is
0.0001, the number of iterations is 600000, and the batch size is 1.
The loss weights in learning T are chosen from {1, 5, 10}. The se-
lected best ones are f; = 10, f2 = 1, f3 = 1, f4 = 1. We monitor the
loss of the validation set and choose the § with the lowest validation
loss. For the hyperparameters in learning the classifier f, the learn-
ing rate is chosen from {0.000005, 0.00001, 0.00005, 0.0001, 0.0005}.
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Figure 3: Visualizations for images under reconstruction and the transformation
model T with random style and sensitive factors.

?

1 is chosen from {0.01, 0.05, 0.1}. y is chosen from {0.01, 0.025, 0.05}.
A is chosen from {0.1, 1, 10, 20}. The batch size is chosen from
{22, 64, 80, 128, 512, 1024, 2048}. The numbers of iterations is chosen
from {500, 1000, ..., 8000} on the ccMNIST and NYSF datasets. The
number of iterations are chosen from {300, 600, ..., 7800, 8000} on
the FairFace and YFCC100M-FDG datasets. The selected best ones
are: the learning rate is 0.00005, n; = n2 = 0.05, y1 = y2 = 0.025,
A1 = Ay = 1. The batch size on the ccMNIST and YFCC100M-FDG
datasets is 64, and it is 22 on the FairFace dataset and 1024 on the
NYSF dataset. The number of iterations on the ccMNIST dataset is
3000, 500, 7000 for domains R, G, B, respectively. The number of iter-
ations on the FairFace dataset is 7200, 7200, 7800, 8000, 6600, 7200,
6900 for domains B, E, I, L, M, S, W, respectively. The number
of iterations on the YFCC100M-FDG dataset is 7200, 6000, 6900 for
do, d1, dz, respectively. The number of iterations on the NYSF dataset
is 500, 3500, 4000, 1500, 8000 for domains R, B, M, Q, and S, respec-
tively. We monitor the accuracy and the value of fairness metrics
from the validation set and select the best ones. The grid space
of the grid search on all the baselines is the same as that of our
method.

6.2 Results

Data augmentation in synthetic domains via T. We visualize
the augmented samples with random variations in Fig. 3. The first
column (Original) shows the images sampled from the datasets. In
the second column (Reconstruction), we display images generated
from latent factors encoded from the images in the first column.
The images in the second column closely resemble those in the
first column. Images in the last three columns are generated using
the semantic factors encoded from images in the first column, as-
sociated with style and sensitive factors randomly sampled from
their respective Gaussian distributions. The images in the last three
columns preserve the fundamental semantic information of the
corresponding samples in the first column. However, their style
and sensitive attributes undergo significant changes at random. The
generated images within synthetic domains enhance the classifier’s
generalization (f) to unseen source domains. This demonstrates
that the transformation model T effectively extracts latent factors
and produces diverse transformations of the provided data domains.

Effectiveness of T. To further validate the effectiveness of T,
drawing inspiration from [19], we train a separate transformation
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Figure 4: Example results of gener-
ating images using latent factors en-
coded from three images.

(5]

model for each domain. Subsequently, we generate an output image
by utilizing distinct latent factors from each domain. Using ccMNIST
as an example, we individually train three transformation models
{Ti}f’:1 within each domain. Each T’ includes unique encoders EL,
EL, and EL. As shown in Fig. 4, an output image is generated through
G using a semantic factor (digit class, E!(x')), a sensitive factor
(background color, E2(x?)), and a style factor (digit color, E3 (x*))
from images in different domains. As a result, the output image is
constructed from the digit of x!, the background color of x2, and
the digit color of x3, with given variations. This suggests that the
augmented data with random variations in Fig. 3 for the synthetic
domain are not merely altering colors; instead, they are precisely
generated with unchanged semantics and random sensitive and
style factors.

The effectiveness of FEDORA across domains in terms of
predicted fairness and accuracy. Comprehensive experiments
showcase that FEDORA consistently outperforms baselines by a
considerable margin. For all tables in the main paper and Appen-
dix, results shown in each column represent performance on the
target domain, using the rest as source domains. Due to space limit,
selected results for three domains of FairFace are shown in Tab. 4,
but the average results are based on all domains. As shown in Tab. 4,
for the FairFace dataset, our method has the best accuracy and
fairness level for the average DG performance over all the domains.
More specifically, our method has better fairness metrics (3% for DP,
2% for AUCfg;,) and comparable accuracy (0.19% better) than the
best of the baselines for individual metrics. As shown in Tab. 5, for
YFCC100M-FDG, our method excels in fairness metrics (8% for DP,
4% for AUCy4;,) and comparable accuracy (0.35% better) compared
to the best baselines.

Ablation studies. We conduct three ablation studies to study
the robustness of FEDORA on FairFace. In-depth descriptions and
the pseudocodes for these studies and more results can be found in
the arXiv version of our paper at https://arxiv.org/pdf/2311.13816.
(1) In FEDORA w/o E,, we modify the encoder within T by restrict-
ing its output to only latent semantic and style factors. (2) FEDORA
w/o T skips data augmentation in synthetic domains via T and
results are conducted only based f constrained by fair notions out-
lined in Defn. 1. (3) In FEDORA w/0 Ly, the fair constraint on
f is not included, and we eliminate the Ly, in line 9 of Algo-
rithm 1. We include the performance of such ablation studies in
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Table 4: Performance on FairFace. (bold is the best; underline is the second best).

DP1 /AUCfair |/ Accuracy T

Methods (8,0.91) (W, 0.49) \ (L. 0.48) Avg

ColorJitter 0.64+0.26 / 0.64+0.15 / 93.47+1.56 0.3440.09 / 0.64+0.02 / 92.07+0.55 0.39+0.10 / 0.70£0.02 / 91.77+0.61 0.42/0.66 / 92.94
ERM 0.67+0.17 / 0.58+0.02 / 91.89+1.10 0.3940.09 / 0.61+0.01 / 92.82+0.38 0.5740.15 / 0.62+0.01 / 91.96+0.51 0.51/0.61/93.08
IRM 0.63+0.12 / 0.58+0.01 / 93.39+1.03 0.3240.19 / 0.66+0.01 / 90.54+1.56 0.41+.021 / 0.63+0.05 / 92.06+1.89 0.43/0.62/92.48
GDRO 0.71+0.16 / 0.57+0.02 / 89.81+1.10 0.48+0.09 / 0.60+0.01 / 92.50+0.38 0.54+0.15 / 0.62+0.01 / 91.59+0.51 0.55/0.60 / 92.55
Mixup 0.58+0.19 / 0.59+0.02 / 92.46+0.69 0.43£0.19 / 0.61£0.01 / 92.98+0.03 0.55+0.22 / 0.61+0.02 / 93.43+2.02 0.51/0.60/93.19
MLDG 0.63+0.25 / 0.58+0.02 / 92.71+2.36 0.47£0.20 / 0.59£0.01 / 92.82£1.65 0.53+0.18 / 0.62+0.03 / 92.99+0.86 0.51/0.60/93.39
CORAL 0.69+0.19 / 0.58+0.01 / 92.09+2.03 0.5040.14 / 0.60+0.02 / 92.47+2.04 0.56+0.23 / 0.59+0.03 / 92.62+1.11 0.54/0.60 / 93.21
MMD 0.69+0.25 / 0.56+0.01 / 93.87+0.14 0.3940.20 / 0.68+0.02 / 91.75+1.37 0.55+0.16 / 0.61+0.02 / 92.53+1.41 0.50/ 0.60 / 92.34
DANN 0.46+0.07 / 0.61£0.02 / 91.80+0.64 0.11%0.09 / 0.66+0.01 / 86.80+1.18 0.39+0.21 / 0.67+0.01 / 90.; 0.47 / 0.70 / 90.10
CDANN 0.62+0.24 / 0.59£0.03 / 91.22+0.33 0.35%0.17 / 0.67+0.02 / 90.19£0.60 0.42+0.23 / 0.61 03 /92.42+2.19 0.43/0.66 / 91.48
DDG 0.60+0.20 / 0.59+0.02 / 91.76+1.03 0.51+0.07 / 0.60£0.01 / 91.34£0.80 0.44+0.17 / 0.62£0.02 / 93.46+0.32 0.49/0.61/92.74
MBDG 0.60+0.15 / 0.58+0.01 / 91.29+1.41 0.30+0.04 / 0.62+0.01 / 91.05+0.53 0.56+0.09 / 0.61+0.01 / 93.49+0.97 0.50 / 0.60 / 92.71
DDG-FC 0.61+0.06 / 0.58+0.03 / 92.27+1.65 0.48+0.15 / 0.62+0.02 / 92.45+£1.55 0.50+0.25 / 0.62+0.03 / 92.4240.30 0.52/0.61/93.23
MBDG-FC 0.70+0.15 / 0.56+0.03 / 92.12+0.43 0.3240.07 / 0.60+0.03 / 91.50+0.57 0.5740.23 / 0.62+0.02 / 91.89+0.81 0.53/0.60 / 92.48
EIIL 0.88+0.07 / 0.59+0.05 / 84.75+2.16 0.46+0.05 / 0.65+0.03 / 86.53+1.02 0.49+0.07 / 0.59+0.01 / 88.39+1.25 0.64/0.61/87.78
FarconVAE 0.93+0.03 / 0.54+0.01 / 89.61+0.64 0.51:£0.07 / 0.60+0.01 / 86.40:£0.42 0.58+0.05 / 0.60+0.05 / 88.70+0.71 0.66 / 0.58 / 88.46
FCR 0.81+0.05 / 0.59+0.02 / 79.66+0.25 0.3940.06 / 0.63+0.02 / 82.33+0.89 0.38+0.12 / 0.66+0.02 / 85.22+2.33 0.54/0.63 / 83.68
FTCS 0.75+0.10 / 0.60+0.02 / 80.00+0.20 0.40%0.06 / 0.60+0.02 / 79.66+1.05 0.42+0.23 / 0.65+0.03 / 79.64+1.00 0.57 / 0.64 / 80.91
FATDM 0.93+0.03 / 0.57+0.02 / 92.20+0.36 0.46%0.05 / 0.63+0.01 / 92.56+0.31 0.51+0.16 / 0.63+0.02 / 93.33+0.20 0.67/0.61/92.54
FEDORA ‘ 0.94+0.05 / 0.55+0.02 / 93.91+0.33 ‘ 0.5240.17 / 0.58+0.03 / 93.02+0.50 ‘ 0.58+0.15 / 0.59+0.01 / 93.73+0.26 ‘ 0.70 / 0.58 / 93.42

Table 5: Performance on YFCC100M-FDG. (Bold is the best; underline is the second best.)

DP1/AUC 4y |/ Accuracy 1

Methods | (dp, 0.73) (dy, 0.84) | (dy, 0.72) Avg

Colorfitter | 0.67+0.06 / 0.57£0.02 / 57.47£1.20 | 0.67034/0.61+0.01/8243+125 | 0.65+0.21/0.64+0.02/87.88+035 | 0.66/0.61/7593
ERM 0.81:£0.09 / 0.58+0.01 / 40.514023 | 0.710.18/0.66£0.03/8391+0.33 | 0.89+0.08/0.59+0.01/82.06+0.33 | 0.80/0.61/63.83
IRM 0764010 / 0.58+0.02 / 50.51£2.44 | 0.87£0.08/0.60£0.02 /7326+0.03 | 0.70£0.24/0.57£0.02/ 82.782.19 | 0.78/0.58 / 68.85
GDRO 0.80£0.05 / 0.59+0.01 / 53.4: 29 0.7340.22 / 0.60+0.01 / 87.56; 0.79+0.13 / 0.65%0.02 / 83.10+0.64 0.78 /0.62 / 74.70
Mixup 0.8240.07 /0574003 / 61.154028 | 0.7940.14/ 0.6 0.8940.05/0.60+0.01/85.1840.80 | 0.84/0.60 / 74.99
MLDG 0.75%0.13 / 0.67£0.01 / 49.5620.69 | 0.7140.19/0.57+0.02/ 89454044 | 07140.14/057+0.03 /87514018 | 0.72/0.60 / 75.51
CORAL 0.80+0.11/ 0.58+£0.02 / 58.9622.34 | 0.72£0.11/0.64+0.03/ 91.6640.85 | 0.70+0.07/0.64+0.03 /89284177 | 0.74/0.62/79.97
MMD 0.79%0.11/ 0.59+£0.02 / 61.51£1.79 | 0.710.15/0.64+0.03/91.15¢233 | 0.79+0.17/0.60+0.01/ 86.6940.19 | 0.76 / 0.61/ 79.87
DANN 0.70+0.13 / 0.78+0.02 / 47.71£1.56 | 0.79+0.12/053+0.01/84.80+1.14 | 0.7740.17/0.59+0.02/5850+1.74 | 0.75/0.64/ 63.67
CDANN 0.740.13 / 0.58+£0.02 / 55.87£2.09 | 0.70+0.22/0.65+0.02/ 87.0642.43 | 072+0.13/0.63+0.02/8576+243 | 0.72/0.62/76.23
DDG 0.8120.14 / 0.57£0.03 / 60.08£1.08 | 0.74:£0.12/0.66+0.03/ 92534091 | 0.71+0.21/0.5940.03/95.02+192 | 0.75/0.61/ 82.54
MBDG 0.79%0.15 / 0.58+£0.01 / 60.4621.90 | 0.73:£0.07/0.67+0.01/ 94364023 | 071£0.11/059+0.03 / 93.48+0.65 | 0.74/0.61/82.77
DDG-FC 0.76:£0.06 / 0.58+0.03 / 59.964236 | 0.83+0.06 / 0.58+0.01/96.80+1.28 | 0.82+0.09/0.59+0.01/86.38+2.45 | 0.80/0.58 /81.04
MBDG-FC | 0.80£0.13/058+0.01 /62313013 | 0.722£0.09/0.63£0.01/94.73+2.09 | 0.80£0.07/0.53+0.01/87.78+211 | 0.77/0.58/81.61
EIIL 0.87%0.11 / 0.55+0.02 / 56.74%0.60 0.7620.05 / 0.54+0.03 / 68.99: 91 0.87+0.06 / 0.78+0.03 / 72.1940.75 0.83/0.62 / 65.98
FarconVAE | 0.67+0.06 / 0.6140.03 / 51.2120.61 | 0.0040.06/0.59+0.01/72.4042.13 | 0.85+0.12/055+0.01/74204246 | 081/0.58/6593
FCR 0.6240.21/ 0.7040.01 / 55.3240.04 | 0.63+0.14/0.66+0.10/ 70.8940.22 | 0.66+0.30/0.78+0.02/ 70584023 | 0.64/0.71/65.60
FICS 0.7240.03 / 0.60+£0.01 / 60.21£0.10 | 0.7940.02/0.59+0.01/79.9640.05 | 0.69+0.10/0.60+0.06/72.994050 | 0.73/0.60/71.05
FATDM 0.80£0.10 / 0.55+40.01 / 61.56:0.89 | 0.88:£0.08 / 0.56+0.01/90.0040.66 | 0.86+0.10/0.60+0.02/89.124130 | 0.84/0.57/80.22
FEDORA 0.87£0.09 / 0.53+0.01 / 62.5622.25 | 0.94:£0.05/0.52£0.01/93.36+1.70 | 0.93+0.03/0.53£0.02/93.43£0.73 | 0.92/0.53/83.12
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Figure 5: Ablation study on FairFace.
Averaged results are plotted across all
domains.

Accuracy-faimess Tradeoft (Fairface) Accuracy-Fairmess Tradeoff (YFCC100M-FDG)
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Accuracy (Avg)

vz o o7 o o5 0% Eg To

Figure 6: Results of accuracy-fairness
tradeoff on Fairface (left) and
YFCC100M-FDG (right) sweeping over a
range of 1.

Fig. 5. The results illustrate that when data is disentangled into
three factors, and the model is designed accordingly, it can enhance
generalization performance due to covariate and dependence shifts.
Generating data in synthetic domains with random fairness de-
pendence patterns proves to be an effective approach for ensuring
fairness invariance across domains.

Fairness-accuracy tradeoff. In our Algorithm 1, because A,
(lines 10 and 12) is the parameter that regularizes the fair loss, we
conduct additional experiments to show the change of tradeoffs
between accuracy and fairness sweeping over a range of Ay €
[0.01,0.05,0.1, 1, 10]. Our results show that the larger (small) A3,
the better(worse) model fairness for each domain as well as in
average, but it gives worse (better) model accuracy. Evaluation on
FairFace and YFCC10@M-FDG is given in Fig. 6. Results in the top-
right of the figure indicate good performance. This result is plotted
on the average performance over all target domains.

7 CONCLUSION

In this paper, we introduce a novel approach designed to tackle
the challenges of domain generalization when confronted with co-
variate shift and dependence shift simultaneously. In our pursuit
of learning a fairness-aware invariant classifier, we assert the exis-
tence of an underlying transformation model that can transform
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instances across domains. This model plays a crucial role in achiev-
ing fairness-aware domain generalization by generating samples
in synthetic domains characterized by novel data styles and fair de-
pendence patterns. We present a tractable algorithm and showcase
its effectiveness through comprehensive analyses and exhaustive
empirical studies.
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A DETAILS OF LEARNING THE
TRANSFORMATION MODEL

For simplicity, we denote the transformation model T consisting
of three encoders E, E,4, Eg, and a decoder G. However, in prac-
tice, we consider a bi-level auto-encoder (see Fig. 7), wherein an
additional content encoder E;, : X — M takes data as input and
outputs a content factor. Furthermore, the decoder G used in the
main paper is renamed G,. Specifically, the inner level decoder is
denoted as G; : C X A — M. As a consequence, the transforma-
tion model T consists of encoders E = {Ep,, Es, E¢, E; } and decoders
G = {Gl > GO }

Specifically, in the outer level, an instance is first encoded to
a content factor m € M and a style factor s € S through the
corresponding encoders E;; and Eg, respectively. In the inner level,
the content factor m is further encoded to a content factor ¢ € C and
a sensitive factor a € A, through encoders E. and E,. Therefore, the
bidirectional reconstruction loss and the sensitiveness loss stated
in Sec. 4 are reformulated.
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Algorithm 2 Learning the Transformation Model T.

Require: learning rate @, a2, a3, initial coefficients f1, B2, f3, fa.
Initialize: Parameter of encoders {0, 0, 0., 04}, decoders {¢;, ¢, }, sensitive
classifier 0, and discriminators {g;, ¢, }.
1: repeat
2: for minibatch {(x;, yi,z:)}
3: Compute L0441 for Stage 1 using Eq. (10).
4 Yo, P; & Adam(ﬁ4£adv’ Yo P> ar)
5 0m, 0c, 05,04, Dos i -
Bo LLécon” Om, Oc 05,00, 6o, 1, 2)
6: 0, — Adam(fs Lsens, 0z, a3)
7: end for
8
9.

q

i=1

€ Ds do

Ldata

recon

Adam (B

: until convergence
: Return {6,,,65,0.,04,0, (78 ¢o}

where th = Gj(c,a) = Gi(Ec(Em(x®)), Ea(Em(x%))); Py is given
by m = E;, (x°).
quctor

recon =Bepea-n(oly) [|[Ec(Gi(e.a)) - |, ]
+Ec-peaNolo) [[Ea(Gi(e.a)) ]
+Em-zpys5-n (1) [[Es (Go (m,5)) 5] ]
+Be-ress-N(01s) a-N0ly) [[|Es (Go (Gi(c.a),5)) — 8]

+Em-ppr55~N(01s) [[|Em (Go (m,s)) — ml|, ]

where Pc and Py are given by ¢ = E¢(Ep, (%)) and m = E,, (x5).
a=E;(En(x®)),and s = Es(x%).

Lsens = CrossEntropy(z°, h(Eq(Em (x%))))

Additionally, motivated by the observation that GANs [16] can
improve data quality for evaluating the disentanglement effect in
the latent spaces, we use GANs to match the distribution of recon-
structed data to the same distribution. Followed by [19], data and
semantic factors generated through encoders and decoders should
be indistinguishable from the given ones in the same domain.

Lado =Bepess~N(01s).a~N(0lq) | 108 (1 = Do (Go (1,5%))) ]
+Exsps, [log Do (x°)]
+Bepea-N(0la) | 108 (1 - Di(Gi(c,a)))]
+Em-py, [log Di(m)]

where D, : X — R and D; : M — R are the discriminators for
the outer and inner levels, respectively.

Total Loss. We jointly train the encoders, decoders, and discrim-
inators to optimize the final objective, a weighted sum of the three
loss terms.

Ldata

factor
max S + o L
D;.Do BrLiécon + PaLrecon

+ ,63 Lsens + ﬁ4 Ladz;
(10)

min
Em.Es.Ec,Ea,G;i,Go

where f1, f2, B3, fa > 0 are hyperparameters that control the im-
portance of each loss term. To optimize, the learning algorithm is
given in Algorithm 2.

B SKETCH PROOF OF THEOREM 1

Before we prove Theorem 1, we first make the following proposi-
tions and assumptions.

ProrosiTION 1. Letd’ be a distance metric between probability
measures for which it holds that d’ [P, T] = 0 for two distributions P
and T if and only if P = T almost surely. Then P*(0,0) = P*
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Figure 7: A two-level approach for learning the transforma-
tion model T.

PROPOSITION 2. Assuming the perturbation function P*(y1, y2) is
L-lipschitz continuous in y1, y2. Then given Proposition 1, it follows
that |P* — P*(y1, y2)| < Lllyll, wherey = [y1,y2]".

DEFINITION 4. Let ® S R? be a finite-dimensional parameter

space. For & > 0, a function f : X X O — Y is said to be an &-
parameterization of F if it holds that for each f € T, there exists

a parameter 0 € © such that EPX||f(x, 0) — f(x)|lo < & Given

an &-parameterization f of F, consider the following saddle-point
problem:

DE(YI’YZ)

R(O) + 555 (0) — y11dAs (siv
LT minR(O) /[ (0) = 114 (s1,57)

" ] % (8) + p% (8) — y21dAa(si,5,)
Si,SjE€Es

where R(6) = R(f(-,0)) and L5 (8) = L5571 (f(-, 9)).

AssumPTION 3. The loss function ¢ is non-negative, convex, and
Le-Lipschitz continuous in its first argument,

le(fi(x), y) = e(f2(x), Y| < i) = o3 ll

AssUMPTION 4. The distance metric d is non-negative, convex,
and satisfies the following uniform Lipschitz-like inequality for some
constant Ly > 0:

dlix). A =T(xzs))] -d[pi(x). (' =T(xz5))]|
< Lallfi(x) = (%) lleo, Vs € &

AssuMPTION 5. The fairness metric g is non-negative, convex,
and satisfies the following uniform Lipschitz-like inequality for some
constant Lg > 0:

[(go fi)(x2) = (90 f2) (% 2)| < Lgllfi(x) = o(¥) lleo

AssUMPTION 6. There exists a parameter @ € © such that 5%/ (6) <
y1—&max{Ly, Ly} and p* (8)+p*/ (0) < y2—&-max{Ly, Ly}, Vs, s; €
Es

PROPOSITION 3. Let y1,y2 > 0 be given. With the assumptions
above, it holds that

P*(y1.y2) < DE(y1.y2) < P*(yr.y2) +EQL+ 147 110) - k

where A is the optimal dual variable for a perturbed version of
Eq. (6) in which the constraints are tightened to hold with margin
y =&k, k = max{Ly, Ly, Ly}. In particular, this result implies that

IP*(y1,v2) = D (y1.v2)| < Ek(1+ 147 L)
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PROPOSITION 4 (EMPIRICAL GAP). Assumet andd are non-negative
and bounded in [—B, B] and let dyc denote the VC-dimension of the

hypothesis class Az = {f( 0) : 0 € ©} C F. Then it holds with
probability 1 — w over the N samples from each domain that

s
4(2N)¢4ve )
w

1
ID} (y1.v2) = Df g, (y1.12)| < 2B\/N[l +log(

Let £ > 0 be given, and let f be an £-parameterization of . Let
the assumptions hold, and further assume that ¢, d, and g are [0, B]-
bounded and that d[P, T] = 0 if and only if P = T almost surely, and
that P*(y1, y2) is L-Lipschitz. Then assuming that A e=A1 f (-, 0):
0 € ©} C ¥ has finite VC-dimension, it holds with probability
1 — w over the N samples that

|P* = Dy g, (P)] < LIyl + Ek(1+ [|1A7]11) + O(Vlog(M) /M)
Now we prove Theorem 1.
PRroOF. The proof of this theorem is a simple consequence of

the triangle inequality. Indeed, by combining Propositions 2 to 4,
we find that

|P* = Df ngs (V1. 12) |
=IP*+P*(y1,y2) = P*(y.y2) + DF (y1.v2) = DF (y1.v2) = Dfn g, (11.v2)|
<IP* = P*(y1.y2) | + IP*(y1.72) = DE (y1.v2)| + IDF (y1.y2) = DE g (V1. v2) |

4(2N)4vc
<Lyl + &1+ 1A5111) +ZB\/N[1 +10g((T)

C SKETCH PROOF OF THEOREM 2
LEMMA 1. Given two domainse;,ej € &, E]Pej 9(f(X%),Z%) can
be bounded by Epe: g(f(X®),Z°) asfollowsi(z
XZ

Byes 9(F(X%),2%) < By g(f(X*).Z%) + Vadist[PY, P,

LEMMA 2. Given two domains e;,e; € &, under Lemma 1, p%/ (f)
can be bounded by p® (f) as follows:

PEI(f) < p%(f) + Vadist[FY ,y PY , ]
Under Lemmas 1 and 2, we now prove Theorem 2

Proor. Let s« € & be the source domain nearest to the target
domain t € E\&E;. Under Lemma 2, we have

P(f) < P (f) +Vadist[BS 5y, BY ]

where s; € &;. Taking the average of upper bounds based on all
source domains, we have:

P <1gg a| Z P (f) + |‘f > dist[Fy . B, ]

8'368-

|8 | Z pSl(f)"' \f ‘85|dl$t[P§{ZY Pzy]

+ g dtst[]P’;Zy P;ZY
18| 2
|55| 5; psl(f)+\f mm dlSt[szy, XZY]

e
+V2 max dist[P% P
sisycEs (Pxzy XZY]
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