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ABSTRACT

The endeavor to preserve the generalization of a fair and invariant

classi�er across domains, especially in the presence of distribution

shifts, becomes a signi�cant and intricate challenge in machine

learning. In response to this challenge, numerous e�ective algo-

rithms have been developed with a focus on addressing the prob-

lem of fairness-aware domain generalization. These algorithms are

designed to navigate various types of distribution shifts, with a

particular emphasis on covariate and dependence shifts. In this con-

text, covariate shift pertains to changes in the marginal distribution

of input features, while dependence shift involves alterations in

the joint distribution of the label variable and sensitive attributes.

In this paper, we introduce a simple but e�ective approach that

aims to learn a fair and invariant classi�er by simultaneously ad-

dressing both covariate and dependence shifts across domains. We

assert the existence of an underlying transformation model can

transform data from one domain to another, while preserving the

semantics related to non-sensitive attributes and classes. By aug-

menting various synthetic data domains through the model, we

learn a fair and invariant classi�er in source domains. This classi�er

can then be generalized to unknown target domains, maintaining

both model prediction and fairness concerns. Extensive empirical

studies on four benchmark datasets demonstrate that our approach

surpasses state-of-the-art methods. The code repository is available

at https://github.com/jk-kaijiang/FDDG.
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1 INTRODUCTION

While modern fairness-aware machine learning techniques have

demonstrated signi�cant success in various applications [31, 54, 56,

58–64], their primary objective is to facilitate equitable decision-

making, ensuring algorithmic fairness across all demographic groups

characterized by sensitive attributes, such as race and gender. Nev-

ertheless, the generalization of a fair classi�er learned in the source

domain to a target domain during inference often demonstrates

severe limitations in many state-of-the-art methods. The poor gen-

eralization can be attributed to the data distribution shifts from

source to target domains, resulting in catastrophic failures.

There are two main lines of data distribution shifts [41]: general

and fairness-speci�c shifts. The former focuses on shifts involving

input features and labels. Speci�cally, covariate shift [45] and label

shift [52] refer to variations due to di�erent marginal distributions

over feature and class variables, respectively. Concept shift [53] in-

dicates "functional relation change" due to the change amongst the

instance-conditional distributions [40]. Moreover, fairness-speci�c

shifts consider additional sensitive attributes and hence place a

greater emphasis on ensuring algorithmic fairness. Demographic
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Labels: Cooking (C) / No-Cooking (NC); Sensitive Attributes: Male / Female
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Covariate & Dependence ShiftCovariate Shift Dependence Shift

Instance Class Instance FeaturesSensitive Attributes

Figure 1: Illustration of the problem in generalizing fair clas-

si�ers across di�erent data domains under covariate and

dependence shifts simultaneously. (Upper) Images in source

and target domains have di�erent styles (Photos and Arts).

Each data domain is linked to a distinct correlation between

class labels (NC and C) and sensitive attributes (Male and Fe-

male). (Lower) We consider x = [G1, G2]) a simple example of

a two-dimensional feature vector. A fair classi�er 5 learned

using source data is applied to data sampled from various

types of shifted target domains, resulting inmisclassi�cation

and unfairness. 5 ∗ represents the true classi�er in the target

domain.

shift1 [15] refers to certain sensitive population subgroups becom-

ing more or less probable during inference. Dependence shift [41]

captures the correlation change between the class variable and

sensitive attributes. Within these distribution shifts, a trained fair

classi�er from source domains is directly in�uenced and may de-

grade when adapted to target domains.

To simplify, we narrow the scope of distribution shifts to two

prominent ones: covariate shift, which has been extensively inves-

tigated in the context of out-of-distribution (OOD) generalization

[40, 57], and dependence shift, a topic that has gained attention

in recent research. In the illustrative example shown in Fig. 1, the

source and target domains exhibit variations stemming from di�er-

ent image styles (Photos and Arts) and correlations between labels

(No-cooking and Cooking) and sensitive attributes (Male and Fe-

male). Speci�cally, in the source domain, most males in the kitchen

are not cooking, whereas in the target domain, a distinct correlation

is observed with most males engaging in cooking. To learn a classi-

�er that is both fair and accurate under such hybrid shifts, a variety

of domain generalization approaches have been explored. Predomi-

nantly, these methods often exhibit two speci�c limitations: they (1)

address either covariate shift [26, 40, 57] or dependence shift [8, 36],

or (2) solely focus on covariate shift but not explicitly indicate the

existence of dependence shift [37]. Therefore, there is a need for

research that explores the problem of fairness-aware domain gener-

alization (FDG), considering both covariate and dependence shifts

simultaneously across source and target domains.

1Dependence shift is named as correlation shift in [15].

In this paper, we introduce a novel framework, namely Fair dis-

Entangled DOmain geneRAlization (FEDORA). The key idea in our

framework revolves around learning a fair and accurate classi�er

that can generalize from given source domains to target domains,

which remain unknown and inaccessible during training. The vari-

ations in these domains result from the concurrent presence of

covariate and dependence shifts. Notice that, unlike the settings in

some works involving covariate shift [32, 38, 48], we assert each

domain possesses a distinct data style (Photos and Arts), result-

ing in an alternation in feature spaces. Technically, we assert the

existence of a transformation model that can disentangle input

data to a semantic factor that remains invariant across domains, a

style factor that characterizes covariate-related information, and

a sensitive factor that captures attributes of a sensitive nature. To

enhance the generalization of the training classi�er and adapt it

to unknown target domains, we augment the data by generating

them through the transformation model. It utilizes semantic factors

associated with various style and sensitive factors sampled from

their respective prior distributions. Furthermore, we leverage this

framework to systematically de�ne the FDG problem as a semi-

in�nite constrained optimization problem. Theoretically, we apply

this re-formulation to demonstrate that a tight approximation of the

problem can be achieved by solving the empirical, parameterized

dual for this problem. Moreover, we develop a novel interpretable

bound focusing on fairness within a target domain, considering the

domain generalization arising from both covariate and dependence

shifts. Finally, extensive experimental results on the proposed new

algorithm show that our algorithm signi�cantly outperforms state-

of-the-art baselines on several benchmarks. Our main contributions

are summarized.

• We introduce a fairness-aware domain generalization problem

within a framework that accommodates inter-domain variations

arising from covariate and dependence shifts simultaneously. We

also give a brief survey by comparing the setting of related works.

• We reformulate the problem to a novel constrained learning prob-

lem. We further establish duality gap bounds for the empirically

parameterized dual of this problem and develop a novel upper

bound that speci�cally addresses fairness within a target domain

while accounting for the domain generalization stemming from

both covariate and dependence shifts.

• We present a novel algorithm, FEDORA, that enforces invariance

across unseen target domains by utilizing generative models

derived from the observed source domains.

• Comprehensive experiments are conducted to verify the e�ec-

tiveness of FEDORA. We empirically show that it signi�cantly

outperforms state-of-the-art baselines on four benchmarks.

2 RELATEDWORKS

Domain generalization. Addressing the challenge of domain shift

and the absence of OOD data has led to the introduction of sev-

eral state-of-the-art methods in the domain generalization �eld

[3, 40, 50, 57]. These methods are designed to enable deep learning

models to possess intrinsic generalizability, allowing them to adapt

e�ectively from one or multiple source domains to target domains

characterized by unknown distributions [51]. They encompass var-

ious techniques, such as aligning source domain distributions to
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Table 1: Di�erent Types of Distribution Shifts.

Type of Shifts Notations, ∀B ∈ EB
Covariate Shift (Cov.) [45] P

B
-

≠ P
C
-

Label Shift (Lab.) [52] P
B
.

≠ P
C
.

Concept Shift (Con.) [53] P
B
. |- ≠ P

C
. |-

Demographic Shift (Dem.) [15] PB
/

≠ P
C
/

Dependence Shift (Dep.) [41] P
B
. |/ ≠ P

C
. |/ and PB

/
= P

C
/
; or, PB

/ |. ≠ P
C
/ |. and PB

.
= P

C
.

Hybrid Shift Any combination of the shifts above.

Table 2: An overview of di�erent settings of existing ap-

proaches in mitigating unfairness under distribution shifts.

Refs.
Distribution Shifts Spaces Change*, ∀B ∈ EB | EB | Access

to Target
Cov. Lab. Con. Dem. Dep. XB ≠ XC YB

≠ YC ZB
≠ ZC

[32, 38, 48] • 1 No
[9] • M No
[10, 39] • 1 Yes
[37] • • M No
[4] • 1 Yes
[20, 21] • 1 Yes
[15, 44] • • 1 Yes
[8] • M No
[36] • 1 No
[41] • 1 Yes
[22] • • 1 Yes
[46] • • 1 Yes
[43] • • • 1 Yes
[18] • • • 1 No
[7] • • • 1 Yes

FEDORA • • • M No

* YB
≠ YC and ZB

≠ ZC indicate the introduction of new labels and new sensitive attributes. A
change in X denotes a shift in feature variation, such as transitioning from photo images to arts.

facilitate domain-invariant representation learning [29], subjecting

the model to domain shift during training through meta-learning

[28], and augmenting data with domain analysis, among others [65],

and so on. In the context of the number of source domains, a signif-

icant portion of research [5, 40, 57] has focused on the multi-source

setting. This setting assumes the availability of multiple distinct

but relevant domains for the generalization task. As mentioned in

[5], the primary motivation for studying domain generalization

is to harness data from multiple sources in order to unveil stable

patterns. This entails learning representations invariant to the mar-

ginal distributions of data features, all while lacking access to the

target data. Nevertheless, existing domain generalization methods

tend to overlook the aspect of learning with fairness, where group

fairness dependence patterns may not change domains.

Fairness learning for changing environments. Two primary

research directions aim to tackle fairness-aware machine learning

in dynamic or changing environments. The �rst approach involves

equality-aware monitoring methods [1, 7, 15, 24, 37, 39, 46], which

strive to identify and mitigate unfairness in a model’s behavior by

continuously monitoring its predictions. These methods adapt the

model’s parameters or structure when unfairness is detected. How-

ever, a signi�cant limitation of such approaches is their assumption

of invariant fairness levels across domains, which may not hold

in real-world applications. The second approach [8, 36] focuses on

assessing a model’s fairness in a dynamic environment exclusively

under dependence shifts. However, it does not consider other types

of distribution shifts.

In response to these limitations, this paper adopts a novel ap-

proach by attributing the distribution shift from source to target

domains to both covariate shift and fairness dependence shift si-

multaneously. The objective is to train a fairness-aware invariant

classi�er capable of e�ective generalization across domains, ensur-

ing robust performance in terms of both model accuracy and the

preservation of fair dependence between predicted outcomes and

sensitive attributes under both shifts.

3 PRELIMINARIES

Notations. Let X ¦ R3 denote a feature space, Z = {−1, 1} is a
sensitive space, andY = {0, 1} is a label space for classi�cation. Let
C ¦ R2 , A ¦ R0 , and S ¦ RB be the semantic, sensitive and style

latent spaces, respectively, induced fromX andA by an underlying

transformationmodel) : X×Z×E → X×Z.We use-,/,.,�,�, (

to denote random variables that take values in X,Z,Y, C,A,S
and x, I,~, c, a, s the realizations. A domain 4 ∈ E is de�ned as a

joint distribution P4
-/.

= P(-4 , /4 , .4 ) : X ×Z × Y → [0, 1]. A
classi�er 5 in a class space F denotes 5 ∈ F : X → Y. We denote

E and EB ¢ E as the set of domain labels for all domains and

source domains, respectively. Superscripts in the samples denote

their domain labels, while subscripts specify the indices of encoders.

For example, �B (xB ) denotes a sample x drawn from the B domain

and encoded by a style encoder �B .

Fairness notions. When learning a fair classi�er 5 ∈ F that

focuses on statistical parity across di�erent sensitive subgroups,

the fairness criteria require the independence between the sensitive

random variables / and the predicted model outcome 5 (- ) [11].
Addressing the issue of preventing group unfairness can be framed

as the formulation of a constraint. This constraint mitigates bias

by ensuring that 5 (- ) aligns with the ground truth . , fostering

equitable outcomes.

Definition 1 (Group FairnessNotion [35, 54]). Given a dataset

D = {(x8 , I8 , ~8 )} |D |8=1 sampled i.i.d. from P-/. , a classi�er 5 ∈ F :

X → Y is fair when the prediction .̂ = 5 (- ) is independent of the
sensitive random variable / . To get rid of the indicator function and
relax the exact values, a linear approximated form of the di�erence
between sensitive subgroups is de�ned as

d (.̂ , / ) =
�

�EP-/.
6 (.̂ , / )

�

�, 6 (.̂ , / ) = 1

?1 (1 − ?1 )
(/ + 1

2
− ?1

)

.̂ (1)

?1 and 1 − ?1 are the proportion of samples in the subgroup / = 1

and / = −1, respectively.
Speci�cally, when ?1 = P(/ = 1) and ?1 = P(/ = 1, . = 1), the

fairness notion d (.̂ , / ) is de�ned as the di�erence of demographic

parity and the di�erence of equalized opportunity, respectively [35].

In this paper, we will present the results under demographic parity

(and then the expectation in Eq. (1) is over-/ ), while the framework

can be generalized to multi-class, multi-sensitive attributes and

other fairness notions. Strictly speaking, a classi�er 5 is fair over

subgroups if it satis�es d (.̂ , / ) = 0.

Problem setting. Given a dataset D = {D4 } | E |4=1, where each

D4
= {(x48 , I

4
8 , ~

4
8 )}
|D4 |
8=1 is i.i.d. sampled from a domain P4

-/.
and

4 ∈ E, we consider multiple source domains {PB
-/.
} | E

B |
B=1 and a

distinct target domain PC
-/.

, C ≠ B,∀B ∈ EB ¢ E and C ∈ E\EB ,
which is unknown and inaccessible during training. Given samples
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Data Reconstruction

Sensitiveness Loss

Factor Reconstruction

Learning the Transformation Model Augmentation in Synthetic Domains

Figure 2: (Left) A transformation model ) is trained using a bi-directional reconstruction loss (data reconstruction and factor

reconstruction) and a sensitiveness loss. (Right) To enhance the generalization of the classi�er 5 to unseen target domains,

the transformation model ) is used for augmentation in synthetic domains by generating data based on invariant semantic

factors and randomly sampled sensitive and style factors that encode synthetic domains. We demonstrate the concept using

the ccMNIST dataset, where the domains are distinguished by di�erent digit colors and fair dependencies between class labels

and sensitive attributes. Here, sensitive attributes are de�ned by image background colors.

{DB } | E
B |

B=1 from �nite source domains, the goal of fairness-aware

domain generalization problems is to learn a classi�er 5 ∈ F that

is generalizable across all possible domains.

Problem 1 (Fairness-aware Domain Generalization). Let

{PB
-/.
} | E

B |
B=1 be a �nite subset of source domains and assume that,

for each B ∈ EB , we have access to its corresponding dataset DB
=

{(xB8 , I
B
8 , ~

B
8 )}
|DB |
8=1 sampled i.i.d from PB

-/.
. Given a classi�er set F

and a loss function ℓ : Y ×Y → R, the goal is to learn a fair classi�er
5 ∈ F for anyDB that minimizes the worst-case risk over all domains

in {P4
-/.
} | E |4=1 satisfying a group fairness constraint:

min
5 ∈F

max
4∈E

EPB
-/.

ℓ (5 (-B ), .B ), s.t. d (5 (-B ), /B ) = 0 (2)

The goal of Prob. 1 is to seek a fair classi�er 5 that generalizes

from the given �nite set of source domains to give a good general-

ization performance on all domains. Since we do not assume data

from a target domain is accessible, it makes Prob. 1 challenging to

solve.

Another challenge is how closely the data distributions in un-

known target domains match those in the observed source domains.

As discussed in Sec. 1 and Tab. 1, there are �ve di�erent types of

distribution shifts. In this paper, we narrow the scope and claim the

shift between source and target domains is solely due to covariate

and dependence shifts.

Definition 2 (Covariate Shift [40] andDependence Shift[41]).

In Prob. 1, covariate shift occurs when domain variation is attrib-

uted to disparities in the marginal distributions over input features

P
B
-
≠ P

C
-
,∀B . On the other hand, Prob. 1 exhibits a dependence shift

when domain variation arises from alterations in the joint distribution

between . and / , denoted PB
./

≠ P
C
./
,∀B where PB

. |/ ≠ P
C
. |/ and

P
B
/
= P

C
/
; or PB

/ |. ≠ P
C
/ |. and PB

.
= P

C
.
.

Underlying transformation models. Inspired by existing do-

main generalization endeavors [19, 40, 57], distribution shifts can

characterize generalization tasks across domains through an un-

derlying transformation model ) . The motivation behind using )

lies in bolstering the robustness and adaptability of the classi�er 5

across diverse domains. By learning a transformation model, the ob-

jective is twofold: (1) to enable the model to adapt domain-invariant

data representations (factors) from the input data by disentangling

domain-speci�c variations and (2) to generate augmented data in

new domains by perturbing existing samples with various varia-

tions. This augmentation enhances the diversity of the source data

and thereby improves the ability to generalize to unseen target

domains.

4 METHODOLOGY

4.1 Learning the Transformation Model

One goal of the transformation model ) = {�,�} is to disentangle

an input sample from source domains into three factors in latent

spaces by learning a set of encoder � = {�2 , �0, �B } and a decoder

� : C × A × S → X, where �2 : X → C, �0 : X → A, and

�B : X → S represent semantic, sensitive and style encoders,

respectively.

Assumption 1 (Multiple Latent Factors). Given datasetD4
=

{(x48 , I
4
8 , ~

4
8 )}
|D4 |
8=1 sampled i.i.d. from P4

-/.
domain 4 ∈ E, we as-

sume that each instance x48 is generated from (1) a latent semantic

factor c ∈ C, where C = {c~=0, c~=1}; (2) a latent sensitive factor

a ∈ A, where A = {aI=1, aI=−1}; and (3) a latent style factor s4 ,

where s4 is speci�c to the individual domain 4 . We assume that the

semantic and sensitive factors in C and A do not change across do-

mains. Each domain P4
-/.

is represented by a style factor s4 and the

dependence score d4 = d (.4 , /4 )2, denoted 4 := (s4 , d4 ), where s4
and d4 are unique to the domain P4

-/.
.

Note that Assump. 1 is similarly related to the one made in

[19, 34, 40, 57]. In our paper, with a focus on group fairness, we

2Here, d functions equivalently as it does in Eq. (1), by substituting .̂ to . .
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expand upon the assumptions of existing works by introducing

three latent factors. Under Assump. 1, if two instances (x48 , I48 , ~)
and (x4 9 , I4 9 , ~) where 48 , 4 9 ∈ E, 8 ≠ 9 share the same class label,

then the latter instance can be reconstructed by decoder� from the

former using c = �2 (x48 ), s = �B (x4 9 ), and a = �0 (x4 9 ) through ) ,
denoted (x4 9 , I4 9 ) = ) (x48 , I48 , 4 9 ).

To enhance the e�ectiveness of the transformation model ) , our

overall learning loss for these encoders and decoders consists of

two main components: a bidirectional reconstruction loss and a

sensitiveness loss.
Data reconstruction loss encourages learning reconstruction

in the direction of data→latent→data. As for it, a data sample xB

from PB
-
,∀B ∈ EB is required to be reconstructed by its encoded

factors.

L30C0
A42>= = ExB∼PB

-
[ ∥� (�2 (xB ), �0 (xB ), �B (xB ) ) − x

B ∥1 ]

Factor reconstruction loss. Given latent factors c, a, and s
B en-

coded from a sample xB , they are encouraged to be reconstructed
through some latent factors randomly sampled from the prior Gauss-
ian distributions.

L 5 02C>A
A42>= = Ec∼P� ,a∼P�,sB∼P( [ ∥�2 (� (c, a, s

B ) ) − c∥1 ]
+ Ec∼P� ,a∼N(0,I0 ),sB∼P( [ ∥�0 (� (c, a, s

B ) ) − a∥1 ]
+ Ec∼P� ,a∼P�,sB∼N(0,IB ) [ ∥�B (� (c, a, s

B ) ) − s∥1 ]

where P� , P� , P( are given by �2 (xB ), �0 (xB ), and �B (xB ), respec-
tively.

Sensitiveness loss. Since a sensitive factor is causally dependent
on the sensitive attribute of data (xB , IB , ~B ), a simple classi�er ℎ :
A → Z is learned, and further it is used to label the sensitive
attribute in augmented data when learning 5 .

LB4=B = �A>BB�=CA>?~ (IB , ℎ (�0 (xB ) ) )

Total loss. We jointly train the encoders and the decoder to opti-
mize the transformation model ) with a weighted sum loss.

min
�2 ,�0 ,�B ,�

V1L30C0
A42>= + V2L

5 02C>A
A42>= + V3LB4=B (3)

where V1, V2, V3 > 0 are hyperparameters that control the impor-

tance of each loss term.

4.2 Fair Disentangled Domain Generalization

Furthermore, with a trained transformation model ) , to learn the

fairness-aware invariant classi�er 5 across domains, we make the

following assumption.

Assumption 2 (Fairness-aware Domain Shift). We assume

that inter-domain variation is characterized by covariate and de-

pendence shifts. As a consequence, we assume that the conditional

distribution P4
. |-/

is stable across domains, ∀4 ∈ E. Given a trans-

formation model ) , it holds that P
48
. |-/

= P
4 9
. |-/

, ∀48 , 4 9 ∈ E, 8 ≠ 9 ,

where (-4 9 , /4 9 ) = ) (X48 , /48 , 4 9 ).

In Assump. 2, the domain shift captured by) would characterize

the mapping from the marginal distributions P
48
-
and d (.48 , /48 )

overD48 to the distribution P
4 9
-

and d (.4 9 , /4 9 ) overD4 9 sampled

from a di�erent data domain P
4 9
-/.

, respectively. With this in mind

and under Assump. 2, we introduce a new de�nition of fairness-

aware invariance with respect to the variation captured by ) and

satisfying the group fair constraint introduced in Defn. 1.

Definition 3 (Fairness-aware ) -Invariance). Given a trans-
formation model ) , a fairness-aware classi�er 5 ∈ F is domain
invariant if it holds for all 48 , 4 9 ∈ E.

5 (x48 ) = 5 (x4 9 ), and d (5 (-48 ), /48 ) = d (5 (-4 9 ), /4 9 ) = 0 (4)

almost surely when (x4 9 , I4 9 ) = ) (x48 , I48 , 4 9 ), x48 ∼ P48- , x4 9 ∼ P4 9
-
.

Defn. 3 is crafted to enforce invariance on the predictions gen-

erated by 5 directly. We expect a prediction to remain consistent

across various data realizations ) while considering group fairness.

Problem 2 (Fair Disentanglement Domain Generalization).
Under Defn. 3 and Assump. 2, if we restrict F of Prob. 1 to the set of
invariant fairness-aware classi�ers, the Prob. 1 is equivalent to the
following problem

%★
≜ min

5 ∈F
' (5 ) ≜ E

P
B8
-/.

ℓ (5 (-B8 ), .B8 ) (5)

s.t. 5 (-B8 ) = 5 (-B 9 ), d (5 (-B8 ), /B8 ) = d (5 (-B 9 ), /B 9 ) = 0

where (-B 9 , /B 9 ) = ) (-B8 , /, B 9 ), ∀B8 , B 9 ∈ EB , 8 ≠ 9 .

Similar to [40], Prob. 2 is not a composite optimization prob-

lem. Moreover, acquiring domain labels is often expensive or even

unattainable, primarily due to privacy concerns. Consequently,

under the assumptions of disentanglement-based invariance and

domain shift, Prob. 1 can be approximated to Prob. 2 by removing

the max operator over E.
In addition, Prob. 2 o�ers a new and theoretically-principled

perspective on Prob. 1, when data varies from domain to domain

with respect to ) . To optimize Prob. 2 is challenging because (1)

The strict equality constraints in Prob. 2 are di�cult to enforce in

practice; (2) Enforcing constraints on deep networks is known to be

a challenging problem due to non-convexity. Simply transforming

them to regularization cannot guarantee satisfaction for constrained

problems; and (3) As we have incomplete access to all domains, it

limits the ability to enforce fairness-aware) -invariance and further

makes it hard to estimate '(5 ).
Due to such challenges, we develop a tractable method for ap-

proximately solving Prob. 2 with optimality guarantees. To address
the �rst challenge, we relax constraints in Prob. 2

%★ (W1, W2 ) ≜min
5 ∈F

' (5 ) (6)

s.t. XB8 ,B 9 (5 ) f W1, d
B8 (5 ) f W2

2
, and dB 9 (5 ) f W2

2

where

XB8 ,B 9 (5 ) ≜ E
P
B8
-/

3
[

5 (-B8 ), 5 (-B 9 = ) (-B8 , /B8 , B 9 ) )
]

, (7)

dB8 (5 ) ≜ d (5 (-B8 ), /B8 ), dB 9 (5 ) ≜ d (5 (-B 9 ), /B 9 ) (8)

and∀B8 , B 9 ∈ EB , 8 ≠ 9 . Here,W1, W2 > 0 are constants controlling the

extent of relaxation and3 [·] is a distance metric, e.g.,KL-divergence.

When W1 = W2 = 0, Eqs. (5) and (6) are equivalent.
Since it is unrealistic to have access to the full distribution and

we only have access to source domains, given data sampled from
EB , we consider the empirical dual problem.

�★

b,# ,EB (W1, W2 ) ≜ max
_1 (B8 ,B 9 ),_2 (B8 ,B 9 )

min
ā ∈Θ

'̂ (ā )

+ 1

| EB |
∑

B8 ,B 9 ∈EB

[

_1 (B8 , B 9 )
(

X̂B8 ,B 9 (ā ) − W1
)

(9)

+ _2 (B8 , B 9 )
(

d̂B8 (ā ) + d̂B 9 (ā ) − W2
)

]
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Algorithm 1 FEDORA: Fair Disentangled Domain Generalization.

Require: Encoders � = {�2 , �0, �B }, decoder� and sensitive classi�er ℎ.

Initialize: primal and dual learning rate [? , [3 , empirical constant W1, W2.

1: repeat

2: for minibatch B = { (x8 , I8 , ~8 ) }<8=1 ¢ DB do

3: L2;B (ā ) = 1
<

∑<
8=1 ℓ (~8 , 5̂ (x8 , ā ) )

4: Initialize L8=E (ā ) = 0 and B′ = [ ]
5: for each (x8 , I8 , ~8 ) in the minibatch do

6: Generate (x9 , I 9 , ~ 9 ) = ) (x8 , I8 , ~8 ) and add to B′
7: L8=E (ā )+ = 1

<3 [ 5̂ (x8 , ā ), 5̂ (x9 , ā ) ]
8: end for

9: L5 08A (ā ) =

�

�
1
<

∑

(x8 ,I8 ) ∈B 6 ( 5̂ (x8 , ā ), I8 )
�

� +
�

�
1
<

∑

(x9 ,I 9 ) ∈B′ 6 ( 5̂ (x9 , ā ), I 9 )
�

�

10: L(ā ) = L2;B (ā ) + _1 · L8=E (ā ) + _2 · L5 08A (ā )
11: ā ← Adam(L(ā ), ā , [? )
12: _1 ← max{ [_1 + [3 · (L8=E (ā ) − W1 ) ], 0}, _2 ← max{ [_2 +

[3 · (L5 08A (ā ) − W2 ) ], 0}
13: end for

14: until convergence

15: procedure) (x, I, ~)

16: c, a, s = � (x)
17: Sample a′ ∼ N(0, �0 ) , s′ ∼ N(0, �B )
18: x

′
= � (c, a′, s′ ) , I′ = ℎ (a′ )

19: return (x′, I′, ~)
20: end procedure

where b = EP- | |5 (x) − 5̂ (x, ā ) | |∞ > 0 is a constant bound-

ing the di�erence between 5 and its parameterized counterpart

5̂ : X × Θ → R de�ned in the Defn. 5.1 of [40]. # is the num-

ber of samples drawn from P-/. and it can be empirically re-

placed by
∑

B∈EB |DB |. _1 (B8 , B 9 ), _2 (B8 , B 9 ) > 0 are dual variables.

'̂(ā ), X̂B8 ,B 9 (ā ), d̂B8 (ā ) and d̂B 9 (ā ) are the empirical counterparts of

'( 5̂ (·, ā )), XB8 ,B 9 ( 5̂ (·, ā )), dB8 ( 5̂ (·, ā )) and dB 9 ( 5̂ (·, ā )), respectively.

4.3 The FEDORA Algorithm

In practice, we propose a simple but e�ective algorithm, given in

Algorithm 1, which is co-trained with the transformation model ) .

The detailed training process of) is provided in Algorithm 2 of the

Appendix. In Algorithm 1, we harness the power of ) to address

the unconstrained dual optimization problem outlined in Eq. (9)

through a series of primal-dual iterations.

Given a �nite number of observed source domains, to enhance

the generalization performance for unseen target domains, the

invariant classi�er 5̂ is trained by expanding the dataset with syn-

thetic domains generated by) . These synthetic domains are created

by introducing random sample style and random sensitive factors,

hence a random sensitive attribute, resulting in an arbitrary fair de-

pendence within such domains. As described in Fig. 2, the sensitive

factor aB
′
and the style factor sB

′
are randomly sampled from their

prior distributions N(0, I0) and N(0, IB ), respectively. A sensitive

attribute IB
′
is further predicted from a

B′ through ℎ. Along with the

unchanged semantic factor c encoded by (xB , IB , ~), they are fur-

ther passed through � to generate (xB′ , IB′ , ~) with the unchanged

class labels in an augmented synthetic domain. Under Assump. 2

and Defn. 3, according to Eqs. (7) and (8), data augmented in syn-

thetic domains are required to maintain invariance in terms of

accuracy and fairness with the data in the corresponding original

domains.

Speci�cally, in lines 15-20 of Algorithm 1, we describe the trans-

formation procedure that takes an example (x, I,~) as INPUT and

returns an augmented example (x′, I′, ~) from a new synthetic do-

main as OUTPUT. The augmented example has the same semantic

factor as the input example but has di�erent sensitive and style

factors sampled from their associated prior distributions that en-

code a new synthetic domain. Lines 1-14 show the main training

loop for FEDORA. In line 6, for each example in the minibatch B,
we apply the procedure ) to generate an augmented example from

a new synthetic domain described above. In line 7, we consider

KL-divergence as the distance metric for 3 [·]. All the augmented

examples are stored in the setB′. The Lagrangian dual loss function
is de�ned based on B and B′ in line 10. The primal parameters ā

and the dual parameters _1 and _2 are updated in lines 11-12.

5 ANALYSIS

With the approximation on the dual problem in Eq. (9), the duality

gap between %★ in Eq. (6) and �★

b,# ,EB (W1, W2) in Eq. (9) can be

explicitly bounded.

Theorem 1 (Fairness-aware Data-dependent Duality Gap).

Given b > 0, assuming { 5̂ (·, ā ) : ā ∈ Θ} ¦ F has �nite VC-
dimension, with" datapoints sampled from P-/. we have

|%★ − �★

b,# ,EB (ā ) | f ! | |ā | |1 + b: (1 + | |Ą★

? | |1 ) +$ (
√

log(" )/" )

where ā = [W1, W2]) ; ! is the Lipschitz constant of %★(W1, W2); : is a

small universal constant de�ned in Proposition 3 of Appendix B; and

Ą★? is the optimal dual variable for a perturbed version of Eq. (6).

The duality gap that arises when solving the empirical prob-

lem presented in Eq. (9) is minimal when the fairness-aware ) -

invariance in Defn. 3 margin ā is narrow, and the parametric space

closely approximates F .
Furthermore, we present the following theorem to establish an

upper bound on fairness within an unseen target domain.

Theorem 2 (Fairness Upper Bound of the Unseen Target
Domain). In accordance with Defn. 1 and Eq. (8), for any domain
4 ∈ E, the fairness dependence under instance distribution P4

-/.
with

respect to the classi�er 5 ∈ F is de�ned as:

d4 (5 ) =
�

�EP4
-/

6 (5 (-4 ), /4 )
�

�

With observed source domains EB , the dependence at any unseen
target domain C ∈ E\EB is upper bounded. 38BC [·] is the Jensen-
Shannon distance metric [12].

dC (5 ) f 1

| EB |
∑

B8 ∈EB
dB8 (5 ) +

√
2 min
B8 ∈EB

38BC
[

P
C
-/. , P

B8
-/.

]

+
√
2 max
B8 ,B 9 ∈EB

38BC
[

P
B8
-/.

, P
B 9
-/.

]

where 38BC [P1, P2] =

√

1
2 !(P1 | |

P1+P2
2 ) +

1
2 !(P2 | |

P1+P2
2 ) is JS

divergence de�ned based on KL divergence.

Notice that the second term in Theorem 2 becomes uncontrol-

lable during training as it relies on the unseen target domain. There-

fore, to preserve fairness across target domains, we aim to learn

semantic factors that map the transformation mode ) , ensuring
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Table 3: Statistics summary of all datasets.

Datasets Domains Sensitive Attr. Labels (B , dB ), ∀B ∈ EB
ccMNIST digit color background color digit label (R, 0.11), (G, 0.43), (B, 0.87)

FairFace race gender age
(B, 0.91), (E, 0.87), (I, 0.58),
(L, 0.48), (M, 0.87), (S, 0.39), (W, 0.49)

YFCC100M-FDG year location in-,outdoor (30 , 0.73), (31 , 0.84), (32 , 0.72)

NYSF city race stop record
(R, 0.93), (B, 0.85), (M, 0.81),
(Q, 0.98), (S, 0.88)

that P
B8
� |-/.

,∀B8 ∈ EB remains invariant across source domains.

Simultaneously, we strive for the classi�er 5 to achieve high fair-

ness within the source domains. Proofs of Theorems 1 and 2 are

provided in Appendices B and C.

6 EXPERIMENTS

Due to space limitations, we defer a detailed description of the ex-

perimental settings and comprehensive results to the arXiv version

of this paper, which can be accessed at https://arxiv.org/pdf/2311.

13816.

6.1 Settings

Datasets. We evaluate the performance of our FEDORA on four

benchmarks. To highlight each source data and its fair dependence

score dB de�ned in Assump. 1, we summarize the statistics in Tab. 3.

(1) ccMNIST is a domain generalization benchmark created by

colorizing digits and the backgrounds of the MNIST dataset [27].

ccMNIST consists of images of handwritten digits from 0 to 9. Simi-

lar to ColoredMNIST [3], for binary classi�cation, digits are labeled

with 0 and 1 for digits from 0-4 and 5-9, respectively. ccMNIST

contains 70,000 images divided into three data domains, each char-

acterized by a di�erent digit color (i.e., red, green, blue) and followed

by a di�erent correlation between the class label and sensitive at-

tribute (digit background colors). (2) FairFace [23] is a dataset

that contains a balanced representation of di�erent racial groups.

It includes 108,501 images from seven racial categories: Black (B),

East Asian (E), Indian (I), Latino (L), Middle Eastern (M), South-

east Asian (S), and White (W). In our experiments, we set each

racial group as a domain, gender as the sensitive attributes, and

age (g or < 50) as the class label. (3) YFCC100M-FDG is an image

dataset created by Yahoo Labs and released to the public in 2014. It

is randomly selected from the YFCC100M [49] dataset with a total

of 90,000 images. For domain variations, YFCC100M-FDG is divided

into three domains. Each contains 30,000 images from di�erent

year ranges, before 1999 (30), 2000 to 2009 (31), and 2010 to 2014

(32). The outdoor or indoor tag is used as the binary class label for

each image. Latitude and longitude coordinates, representing where

images were taken, are translated into di�erent continents. The

North American or non-North American continent is the sensitive

attribute (related to spatial disparity). (4) NYSF [25] is a real-world

dataset on policing in New York City in 2011. It documents whether

a pedestrian who was stopped on suspicion of weapon possession

would, in fact, possess a weapon. NYSF consists of records collected

in �ve di�erent regions: Manhattan (M), Brooklyn (B), Queens (Q),

Bronx (R), and Staten (S). We use regions as di�erent domains. This

data had a pronounced racial bias against African Americans, so

we consider race (black or non-black) as the sensitive attribute.

Baselines. We compare the performance of FEDORA with 19

baseline methods that fall into two main categories: (1) 12 state-of-

the-art domain generalizations methods, speci�cally designed to

address covariate shifts: ColorJitter, ERM [50], IRM [3], GDRO

[42], Mixup [55], MLDG [28], CORAL [47], MMD [29], DANN

[14], CDANN [30], DDG [57], and MBDG [40], where ColorJitter

is a naive function in PyTorch that randomly changes the bright-

ness, contrast, saturation and hue of images; and (2) 7 state-of-the-

art fairness-aware domain generalizations methods, speci�cally

designed to address either covariate or dependence shifts: DDG-

FC, MBDG-FC, EIIL [8], FarconVAE [36], FCR [2], FTCS [41], and

FATDM [37], where DDG-FC and MBDG-FC are two baselines that

built upon DDG [57] and MBDG [40], respectively by straightfor-

wardly adding fairness constraints de�ned in Defn. 1 to the loss

functions of the original models.

Evaluation metrics. Three metrics are used for evaluation.

Two of them are for fairness quanti�cation, Demographic Parity

(�% ) [11] and the Area Under the ROC Curve (�*�5 08A ) between

predictions of sensitive subgroups [33].

• Demographic Parity (�% ) [11] is formalized as

DP = :, if DP f 1;DP = 1/:, otherwise

where : = P(.̂ = 1|/ = −1)/P(.̂ = 1|/ = 1) This is also known

as a lack of disparate impact [13]. A value closer to 1 indicates

fairness.
• The Area Under the ROC Curve (�*�5 08A ) [6] varies from zero to

one, and it is symmetric around 0.5, which represents random
predictability or zero bias e�ect on predictions.

�*�5 08A =

∑

(x8 ,I=−1,~8 ) ∈D−1
∑

(x9 ,I=1,~ 9 ) ∈D1
�
(

P(~̂8 = 1) > P(~̂ 9 = 1)
)

|D−1 | × |D1 |
where |D−1 | and |D1 | represent sample size of subgroups I = −1
and I = 1, respectively. � (·) is the indicator function that returns

1 when its argument is true and 0 otherwise.

Notice that the �*�5 08A is not the same as the one commonly

used in classi�cation based on TPR and FPR. The intuition behind

this �*�5 08A is based on the nonparametric Mann-Whitney U test,

in which a fair condition is de�ned as the classi�er’s prediction

probability of a randomly selected sample x−1 from one sensitive

subgroup being greater than a randomly selected sample x1 from

the other sensitive subgroup is equal to the probability of x1 being

greater than x−1 [6, 58]. A value of �% closer to 1 indicates fairness,

and 0.5 of �*�5 08A represents zero bias e�ect on predictions.

Model selection. The model selection in domain generaliza-

tion is intrinsically a learning problem, followed by [40], we use

leave-one-domain-out validation criteria, which is one of the three

selection methods stated in [17]. Speci�cally, we evaluate FEDORA

on the held-out source domain and average the performance of

|EB | − 1 domains over the held-out one.

Hyperparameter SearchWe follow the same set of the MUNIT

[19] for the hyperparameters. More speci�cally, the learning rate is

0.0001, the number of iterations is 600000, and the batch size is 1.

The loss weights in learning ) are chosen from {1, 5, 10}. The se-
lected best ones are V1 = 10, V2 = 1, V3 = 1, V4 = 1. We monitor the

loss of the validation set and choose the V with the lowest validation

loss. For the hyperparameters in learning the classi�er 5 , the learn-

ing rate is chosen from {0.000005, 0.00001, 0.00005, 0.0001, 0.0005}.
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Figure 3: Visualizations for images under reconstruction and the transformation

model ) with random style and sensitive factors.
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Figure 4: Example results of gener-

ating images using latent factors en-

coded from three images.

[ is chosen from {0.01, 0.05, 0.1}.W is chosen from {0.01, 0.025, 0.05}.
_ is chosen from {0.1, 1, 10, 20}. The batch size is chosen from

{22, 64, 80, 128, 512, 1024, 2048}. The numbers of iterations is chosen

from {500, 1000, ..., 8000} on the ccMNIST and NYSF datasets. The

number of iterations are chosen from {300, 600, ..., 7800, 8000} on
the FairFace and YFCC100M-FDG datasets. The selected best ones

are: the learning rate is 0.00005, [1 = [2 = 0.05, W1 = W2 = 0.025,

_1 = _2 = 1. The batch size on the ccMNIST and YFCC100M-FDG

datasets is 64, and it is 22 on the FairFace dataset and 1024 on the

NYSF dataset. The number of iterations on the ccMNIST dataset is

3000, 500, 7000 for domains R, G, B, respectively. The number of iter-

ations on the FairFace dataset is 7200, 7200, 7800, 8000, 6600, 7200,

6900 for domains B, E, I, L, M, S, W, respectively. The number

of iterations on the YFCC100M-FDG dataset is 7200, 6000, 6900 for

30, 31, 32, respectively. The number of iterations on the NYSF dataset

is 500, 3500, 4000, 1500, 8000 for domains R, B, M, Q, and S, respec-

tively. We monitor the accuracy and the value of fairness metrics

from the validation set and select the best ones. The grid space

of the grid search on all the baselines is the same as that of our

method.

6.2 Results

Data augmentation in synthetic domains via ) .We visualize

the augmented samples with random variations in Fig. 3. The �rst

column (Original) shows the images sampled from the datasets. In

the second column (Reconstruction), we display images generated

from latent factors encoded from the images in the �rst column.

The images in the second column closely resemble those in the

�rst column. Images in the last three columns are generated using

the semantic factors encoded from images in the �rst column, as-

sociated with style and sensitive factors randomly sampled from

their respective Gaussian distributions. The images in the last three

columns preserve the fundamental semantic information of the

corresponding samples in the �rst column. However, their style

and sensitive attributes undergo signi�cant changes at random. The

generated images within synthetic domains enhance the classi�er’s

generalization (5 ) to unseen source domains. This demonstrates

that the transformation model ) e�ectively extracts latent factors

and produces diverse transformations of the provided data domains.

E�ectiveness of ) . To further validate the e�ectiveness of ) ,

drawing inspiration from [19], we train a separate transformation

model for each domain. Subsequently, we generate an output image

by utilizing distinct latent factors from each domain. Using ccMNIST

as an example, we individually train three transformation models

{) 8 }38=1 within each domain. Each ) 8 includes unique encoders �82 ,

�80 , and �
8
B . As shown in Fig. 4, an output image is generated through

� using a semantic factor (digit class, �12 (x1)), a sensitive factor

(background color, �20 (x2)), and a style factor (digit color, �3B (x3))
from images in di�erent domains. As a result, the output image is

constructed from the digit of x1, the background color of x2, and

the digit color of x3, with given variations. This suggests that the

augmented data with random variations in Fig. 3 for the synthetic

domain are not merely altering colors; instead, they are precisely

generated with unchanged semantics and random sensitive and

style factors.

The e�ectiveness of FEDORA across domains in terms of

predicted fairness and accuracy. Comprehensive experiments

showcase that FEDORA consistently outperforms baselines by a

considerable margin. For all tables in the main paper and Appen-

dix, results shown in each column represent performance on the

target domain, using the rest as source domains. Due to space limit,

selected results for three domains of FairFace are shown in Tab. 4,

but the average results are based on all domains. As shown in Tab. 4,

for the FairFace dataset, our method has the best accuracy and

fairness level for the average DG performance over all the domains.

More speci�cally, our method has better fairness metrics (3% for�% ,

2% for �*�5 08A ) and comparable accuracy (0.19% better) than the

best of the baselines for individual metrics. As shown in Tab. 5, for

YFCC100M-FDG, our method excels in fairness metrics (8% for �% ,

4% for �*�5 08A ) and comparable accuracy (0.35% better) compared

to the best baselines.

Ablation studies.We conduct three ablation studies to study

the robustness of FEDORA on FairFace. In-depth descriptions and

the pseudocodes for these studies and more results can be found in

the arXiv version of our paper at https://arxiv.org/pdf/2311.13816.

(1) In FEDORA w/o �0 , we modify the encoder within) by restrict-

ing its output to only latent semantic and style factors. (2) FEDORA

w/o ) skips data augmentation in synthetic domains via ) and

results are conducted only based 5 constrained by fair notions out-

lined in Defn. 1. (3) In FEDORA w/o L5 08A , the fair constraint on

5 is not included, and we eliminate the L5 08A in line 9 of Algo-

rithm 1. We include the performance of such ablation studies in
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Table 4: Performance on FairFace. (bold is the best; underline is the second best).

�% ↑ /�*�5 08A ³ / Accuracy ↑
Methods

(B, 0.91) (W, 0.49) (L, 0.48) Avg

ColorJitter 0.64±0.26 / 0.64±0.15 / 93.47±1.56 0.34±0.09 / 0.64±0.02 / 92.07±0.55 0.39±0.10 / 0.70±0.02 / 91.77±0.61 0.42 / 0.66 / 92.94

ERM 0.67±0.17 / 0.58±0.02 / 91.89±1.10 0.39±0.09 / 0.61±0.01 / 92.82±0.38 0.57±0.15 / 0.62±0.01 / 91.96±0.51 0.51 / 0.61 / 93.08

IRM 0.63±0.12 / 0.58±0.01 / 93.39±1.03 0.32±0.19 / 0.66±0.01 / 90.54±1.56 0.41±.021 / 0.63±0.05 / 92.06±1.89 0.43 / 0.62 / 92.48

GDRO 0.71±0.16 / 0.57±0.02 / 89.81±1.10 0.48±0.09 / 0.60±0.01 / 92.50±0.38 0.54±0.15 / 0.62±0.01 / 91.59±0.51 0.55 / 0.60 / 92.55

Mixup 0.58±0.19 / 0.59±0.02 / 92.46±0.69 0.43±0.19 / 0.61±0.01 / 92.98±0.03 0.55±0.22 / 0.61±0.02 / 93.43±2.02 0.51 / 0.60 / 93.19

MLDG 0.63±0.25 / 0.58±0.02 / 92.71±2.36 0.47±0.20 / 0.59±0.01 / 92.82±1.65 0.53±0.18 / 0.62±0.03 / 92.99±0.86 0.51 / 0.60 / 93.39

CORAL 0.69±0.19 / 0.58±0.01 / 92.09±2.03 0.50±0.14 / 0.60±0.02 / 92.47±2.04 0.56±0.23 / 0.59±0.03 / 92.62±1.11 0.54 / 0.60 / 93.21

MMD 0.69±0.25 / 0.56±0.01 / 93.87±0.14 0.39±0.20 / 0.68±0.02 / 91.75±1.37 0.55±0.16 / 0.61±0.02 / 92.53±1.41 0.50 / 0.60 / 92.34

DANN 0.46±0.07 / 0.61±0.02 / 91.80±0.64 0.11±0.09 / 0.66±0.01 / 86.80±1.18 0.39±0.21 / 0.67±0.01 / 90.82±2.44 0.47 / 0.70 / 90.10

CDANN 0.62±0.24 / 0.59±0.03 / 91.22±0.33 0.35±0.17 / 0.67±0.02 / 90.19±0.60 0.42±0.23 / 0.61±0.03 / 92.42±2.19 0.43 / 0.66 / 91.48

DDG 0.60±0.20 / 0.59±0.02 / 91.76±1.03 0.51±0.07 / 0.60±0.01 / 91.34±0.80 0.44±0.17 / 0.62±0.02 / 93.46±0.32 0.49 / 0.61 / 92.74

MBDG 0.60±0.15 / 0.58±0.01 / 91.29±1.41 0.30±0.04 / 0.62±0.01 / 91.05±0.53 0.56±0.09 / 0.61±0.01 / 93.49±0.97 0.50 / 0.60 / 92.71

DDG-FC 0.61±0.06 / 0.58±0.03 / 92.27±1.65 0.48±0.15 / 0.62±0.02 / 92.45±1.55 0.50±0.25 / 0.62±0.03 / 92.42±0.30 0.52 / 0.61 / 93.23

MBDG-FC 0.70±0.15 / 0.56±0.03 / 92.12±0.43 0.32±0.07 / 0.60±0.03 / 91.50±0.57 0.57±0.23 / 0.62±0.02 / 91.89±0.81 0.53 / 0.60 / 92.48

EIIL 0.88±0.07 / 0.59±0.05 / 84.75±2.16 0.46±0.05 / 0.65±0.03 / 86.53±1.02 0.49±0.07 / 0.59±0.01 / 88.39±1.25 0.64 / 0.61 / 87.78

FarconVAE 0.93±0.03 / 0.54±0.01 / 89.61±0.64 0.51±0.07 / 0.60±0.01 / 86.40±0.42 0.58±0.05 / 0.60±0.05 / 88.70±0.71 0.66 / 0.58 / 88.46

FCR 0.81±0.05 / 0.59±0.02 / 79.66±0.25 0.39±0.06 / 0.63±0.02 / 82.33±0.89 0.38±0.12 / 0.66±0.02 / 85.22±2.33 0.54 / 0.63 / 83.68

FTCS 0.75±0.10 / 0.60±0.02 / 80.00±0.20 0.40±0.06 / 0.60±0.02 / 79.66±1.05 0.42±0.23 / 0.65±0.03 / 79.64±1.00 0.57 / 0.64 / 80.91

FATDM 0.93±0.03 / 0.57±0.02 / 92.20±0.36 0.46±0.05 / 0.63±0.01 / 92.56±0.31 0.51±0.16 / 0.63±0.02 / 93.33±0.20 0.67 / 0.61 / 92.54

FEDORA 0.94±0.05 / 0.55±0.02 / 93.91±0.33 0.52±0.17 / 0.58±0.03 / 93.02±0.50 0.58±0.15 / 0.59±0.01 / 93.73±0.26 0.70 / 0.58 / 93.42
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Figure 5: Ablation study on FairFace.

Averaged results are plotted across all

domains.

Table 5: Performance on YFCC100M-FDG. (Bold is the best; underline is the second best.)

�% ↑ /�*�5 08A ³ / Accuracy ↑
Methods

(30 , 0.73) (31 , 0.84) (32 , 0.72) Avg

ColorJitter 0.67±0.06 / 0.57±0.02 / 57.47±1.20 0.67±0.34 / 0.61±0.01 / 82.43±1.25 0.65±0.21 / 0.64±0.02 / 87.88±0.35 0.66 / 0.61 / 75.93

ERM 0.81±0.09 / 0.58±0.01 / 40.51±0.23 0.71±0.18 / 0.66±0.03 / 83.91±0.33 0.89±0.08 / 0.59±0.01 / 82.06±0.33 0.80 / 0.61 / 68.83

IRM 0.76±0.10 / 0.58±0.02 / 50.51±2.44 0.87±0.08 / 0.60±0.02 / 73.26±0.03 0.70±0.24 / 0.57±0.02 / 82.78±2.19 0.78 / 0.58 / 68.85

GDRO 0.80±0.05 / 0.59±0.01 / 53.43±2.29 0.73±0.22 / 0.60±0.01 / 87.56±2.20 0.79±0.13 / 0.65±0.02 / 83.10±0.64 0.78 / 0.62 / 74.70

Mixup 0.82±0.07 / 0.57±0.03 / 61.15±0.28 0.79±0.14 / 0.63±0.03 / 78.63±0.97 0.89±0.05 / 0.60±0.01 / 85.18±0.80 0.84 / 0.60 / 74.99

MLDG 0.75±0.13 / 0.67±0.01 / 49.56±0.69 0.71±0.19 / 0.57±0.02 / 89.45±0.44 0.71±0.14 / 0.57±0.03 / 87.51±0.18 0.72 / 0.60 / 75.51

CORAL 0.80±0.11 / 0.58±0.02 / 58.96±2.34 0.72±0.11 / 0.64±0.03 / 91.66±0.85 0.70±0.07 / 0.64±0.03 / 89.28±1.77 0.74 / 0.62 / 79.97

MMD 0.79±0.11 / 0.59±0.02 / 61.51±1.79 0.71±0.15 / 0.64±0.03 / 91.15±2.33 0.79±0.17 / 0.60±0.01 / 86.69±0.19 0.76 / 0.61 / 79.87

DANN 0.70±0.13 / 0.78±0.02 / 47.71±1.56 0.79±0.12 / 0.53±0.01 / 84.80±1.14 0.77±0.17 / 0.59±0.02 / 58.50±1.74 0.75 / 0.64 / 63.67

CDANN 0.74±0.13 / 0.58±0.02 / 55.87±2.09 0.70±0.22 / 0.65±0.02 / 87.06±2.43 0.72±0.13 / 0.63±0.02 / 85.76±2.43 0.72 / 0.62 / 76.23

DDG 0.81±0.14 / 0.57±0.03 / 60.08±1.08 0.74±0.12 / 0.66±0.03 / 92.53±0.91 0.71±0.21 / 0.59±0.03 / 95.02±1.92 0.75 / 0.61 / 82.54

MBDG 0.79±0.15 / 0.58±0.01 / 60.46±1.90 0.73±0.07 / 0.67±0.01 / 94.36±0.23 0.71±0.11 / 0.59±0.03 / 93.48±0.65 0.74 / 0.61 / 82.77

DDG-FC 0.76±0.06 / 0.58±0.03 / 59.96±2.36 0.83±0.06 / 0.58±0.01 / 96.80±1.28 0.82±0.09 / 0.59±0.01 / 86.38±2.45 0.80 / 0.58 / 81.04

MBDG-FC 0.80±0.13 / 0.58±0.01 / 62.31±0.13 0.72±0.09 / 0.63±0.01 / 94.73±2.09 0.80±0.07 / 0.53±0.01 / 87.78±2.11 0.77 / 0.58 / 81.61

EIIL 0.87±0.11 / 0.55±0.02 / 56.74±0.60 0.76±0.05 / 0.54±0.03 / 68.99±0.91 0.87±0.06 / 0.78±0.03 / 72.19±0.75 0.83 / 0.62 / 65.98

FarconVAE 0.67±0.06 / 0.61±0.03 / 51.21±0.61 0.90±0.06 / 0.59±0.01 / 72.40±2.13 0.85±0.12 / 0.55±0.01 / 74.20±2.46 0.81 / 0.58 / 65.93

FCR 0.62±0.21 / 0.70±0.01 / 55.32±0.04 0.63±0.14 / 0.66±0.10 / 70.89±0.22 0.66±0.30 / 0.78±0.02 / 70.58±0.23 0.64 / 0.71 / 65.60

FTCS 0.72±0.03 / 0.60±0.01 / 60.21±0.10 0.79±0.02 / 0.59±0.01 / 79.96±0.05 0.69±0.10 / 0.60±0.06 / 72.99±0.50 0.73 / 0.60 / 71.05

FATDM 0.80±0.10 / 0.55±0.01 / 61.56±0.89 0.88±0.08 / 0.56±0.01 / 90.00±0.66 0.86±0.10 / 0.60±0.02 / 89.12±1.30 0.84 / 0.57 / 80.22

FEDORA 0.87±0.09 / 0.53±0.01 / 62.56±2.25 0.94±0.05 / 0.52±0.01 / 93.36±1.70 0.93±0.03 / 0.53±0.02 / 93.43±0.73 0.92 / 0.53 / 83.12
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Figure 6: Results of accuracy-fairness

tradeo� on Fairface (left) and

YFCC100M-FDG (right) sweeping over a

range of _2.

Fig. 5. The results illustrate that when data is disentangled into

three factors, and the model is designed accordingly, it can enhance

generalization performance due to covariate and dependence shifts.

Generating data in synthetic domains with random fairness de-

pendence patterns proves to be an e�ective approach for ensuring

fairness invariance across domains.

Fairness-accuracy tradeo�. In our Algorithm 1, because _2
(lines 10 and 12) is the parameter that regularizes the fair loss, we

conduct additional experiments to show the change of tradeo�s

between accuracy and fairness sweeping over a range of _2 ∈
[0.01, 0.05, 0.1, 1, 10]. Our results show that the larger (small) _2,

the better(worse) model fairness for each domain as well as in

average, but it gives worse (better) model accuracy. Evaluation on

FairFace and YFCC100M-FDG is given in Fig. 6. Results in the top-

right of the �gure indicate good performance. This result is plotted

on the average performance over all target domains.

7 CONCLUSION

In this paper, we introduce a novel approach designed to tackle

the challenges of domain generalization when confronted with co-

variate shift and dependence shift simultaneously. In our pursuit

of learning a fairness-aware invariant classi�er, we assert the exis-

tence of an underlying transformation model that can transform

instances across domains. This model plays a crucial role in achiev-

ing fairness-aware domain generalization by generating samples

in synthetic domains characterized by novel data styles and fair de-

pendence patterns. We present a tractable algorithm and showcase

its e�ectiveness through comprehensive analyses and exhaustive

empirical studies.
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A DETAILS OF LEARNING THE
TRANSFORMATION MODEL

For simplicity, we denote the transformation model ) consisting

of three encoders �2 , �0, �B , and a decoder � . However, in prac-

tice, we consider a bi-level auto-encoder (see Fig. 7), wherein an

additional content encoder �< : X →M takes data as input and

outputs a content factor. Furthermore, the decoder � used in the

main paper is renamed �> . Speci�cally, the inner level decoder is

denoted as �8 : C × A → M. As a consequence, the transforma-

tion model) consists of encoders � = {�<, �B , �2 , �0} and decoders
� = {�8 ,�> }.

Speci�cally, in the outer level, an instance is �rst encoded to
a content factor m ∈ M and a style factor s ∈ S through the
corresponding encoders �< and �B , respectively. In the inner level,
the content factorm is further encoded to a content factor c ∈ C and
a sensitive factor a ∈ A, through encoders �2 and �0 . Therefore, the
bidirectional reconstruction loss and the sensitiveness loss stated
in Sec. 4 are reformulated.

L30C0
A42>= =ExB∼PB
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Algorithm 2 Learning the Transformation Model ) .

Require: learning rate U1, U2, U3 , initial coe�cients V1, V2, V3, V4 .
Initialize: Parameter of encoders {)<, )B , )2 , )0 }, decoders {58 ,5> }, sensitive
classi�er )I , and discriminators {78 ,7> }.
1: repeat

2: for minibatch { (x8 , ~8 , I8 ) }@8=1 ∈ DB do

3: Compute LC>C0; for Stage 1 using Eq. (10).
4: 7> ,78 ← Adam(V4L03E ,7> ,78 , U1 )
5: )<, )2 , )B , )0,5> ,58 ← Adam

(

V1L30C0
A42>= +

V2L 5 02C>A
A42>= , )<, )2 , )B , )0,5> ,58 , U2

)

6: )I ← Adam(V3LB4=B , )I , U3 )
7: end for
8: until convergence
9: Return {)<, )B , )2 , )0, )I ,58 ,5> }

where m̂ = �8 (c, a) = �8
(

�2 (�< (xB )), �0 (�< (xB ))
)

; P" is given

by m = �< (xB ).

L 5 02C>A
A42>= =Ec∼P� ,a∼N(0,I0 )

[



�2
(

�8 (c, a)
)

− c






1

]

+ Ec∼P� ,a∼N(0,I0 )
[



�0
(

�8 (c, a)
)

− a






1

]

+ Em∼P" ,sB∼N(0,IB )
[



�B (�> (m, s) ) − s






1

]

+ Ec∼P� ,sB∼N(0,IB ),a∼N(0,I0 )
[



�B
(

�> (�8 (c, a), s)
)

− s






1

]

+ Em∼P" ,sB∼N(0,IB )
[



�<
(

�> (m, s)
)

− m






1

]

where P� and P" are given by c = �2 (�< (xB )) and m = �< (xB ).
a = �0 (�< (xB )), and s = �B (xB ).

LB4=B = �A>BB�=CA>?~ (IB , ℎ (�0 (�< (xB ) ) ) )

Additionally, motivated by the observation that GANs [16] can
improve data quality for evaluating the disentanglement e�ect in
the latent spaces, we use GANs to match the distribution of recon-
structed data to the same distribution. Followed by [19], data and
semantic factors generated through encoders and decoders should
be indistinguishable from the given ones in the same domain.

L03E =Ec∼P� ,sB∼N(0,IB ),a∼N(0,I0 )
[

log
(

1 − �> (�> (m̂, sB ) )
) ]

+ ExB∼PB
-

[

log�> (xB )
]

+ Ec∼P� ,a∼N(0,I0 )
[

log
(

1 − �8 (�8 (c, a) )
) ]

+ Em∼P"
[

log�8 (m)
]

where �> : X → R and �8 : M → R are the discriminators for

the outer and inner levels, respectively.
Total Loss.We jointly train the encoders, decoders, and discrim-

inators to optimize the �nal objective, a weighted sum of the three
loss terms.

min
�< ,�B ,�2 ,�0 ,�8 ,�>

max
�8 ,�>

V1L30C0
A42>= + V2L

5 02C>A
A42>= + V3LB4=B + V4L03E

(10)

where V1, V2, V3, V4 > 0 are hyperparameters that control the im-

portance of each loss term. To optimize, the learning algorithm is

given in Algorithm 2.

B SKETCH PROOF OF THEOREM 1

Before we prove Theorem 1, we �rst make the following proposi-

tions and assumptions.

Proposition 1. Let 3′ be a distance metric between probability

measures for which it holds that 3′ [P,T] = 0 for two distributions P

and T if and only if P = T almost surely. Then %★(0, 0) = %★
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Inner Level

Outer Level

Figure 7: A two-level approach for learning the transforma-

tion model ) .

Proposition 2. Assuming the perturbation function %★(W1, W2) is
!-lipschitz continuous in W1, W2. Then given Proposition 1, it follows

that |%★ − %★(W1, W2) | f ! | |ā | |1, where ā = [W1, W2]) .

Definition 4. Let Θ ï R? be a �nite-dimensional parameter

space. For b > 0, a function 5̂ : X × Θ → Y is said to be an b-
parameterization of F if it holds that for each 5 ∈ F , there exists
a parameter ā ∈ Θ such that EPĔ ∥ 5̂ (x, ā ) − 5 (x)∥∞ f b . Given

an b-parameterization 5̂ of F , consider the following saddle-point
problem:

�★

Ĉ (W1, W2 )

≜ max
ą1 (ĩğ ,ĩ Ġ ),ą2 (ĩğ ,ĩ Ġ )

min
ā ∈Θ

' (ā ) +
∫

ĩğ ,ĩ Ġ ∈Eĩ
[Xĩğ ,ĩ Ġ (ā ) − W1 ]d_1 (Bğ , B Ġ )

+
∫

ĩğ ,ĩ Ġ ∈Eĩ
[dĩğ (ā ) + dĩ Ġ (ā ) − W2 ]d_2 (Bğ , B Ġ )

where '(ā ) = '( 5̂ (·, ā )) and LBğ ,B Ġ (ā ) = LBğ ,B Ġ ( 5̂ (·, ā )).

Assumption 3. The loss function ℓ is non-negative, convex, and
!ℓ -Lipschitz continuous in its �rst argument,

|ℓ (51 (x), ~) − ℓ (52 (x), ~) | f ∥ 51 (x) − 52 (x) ∥∞

Assumption 4. The distance metric 3 is non-negative, convex,
and satis�es the following uniform Lipschitz-like inequality for some
constant !3 > 0:

|3 [ 51 (x), 51 (x′ = ) (x, I, B ) ) ] − 3 [ 52 (x), 52 (x′ = ) (x, I, B ) ) ] |
f !Ě ∥ 51 (x) − 52 (x) ∥∞, ∀B ∈ Eĩ

Assumption 5. The fairness metric 6 is non-negative, convex,
and satis�es the following uniform Lipschitz-like inequality for some
constant !6 > 0:

| (6 ◦ 51 ) (x, I ) − (6 ◦ 52 ) (x, I ) | f !ĝ ∥ 51 (x) − 52 (x) ∥∞

Assumption 6. There exists a parameterā ∈ Θ such thatXBğ ,B Ġ (ā ) <
W1−b ·max{!ℓ , !3 } and dBğ (ā )+dB Ġ (ā ) < W2−b ·max{!ℓ , !6},∀B8 , B 9 ∈
EB

Proposition 3. Let W1, W2 > 0 be given. With the assumptions
above, it holds that

%★ (W1, W2 ) f �★

Ĉ (W1, W2 ) f %★ (W1, W2 ) + b (1 + ∥_★Ħ ∥1 ) · :

where _★? is the optimal dual variable for a perturbed version of

Eq. (6) in which the constraints are tightened to hold with margin
W − b · : , : = max{!ℓ , !3 , !6}. In particular, this result implies that

|%★ (W1, W2 ) − �★

Ĉ (W1, W2 ) | f b: (1 + ∥_★Ħ ∥Ĉ1 )

Proposition 4 (Empirical gap). Assume ℓ and3 are non-negative
and bounded in [−�, �] and let 3VC denote the VC-dimension of the

hypothesis class Ab = { 5̂ (·, ā ) : ā ∈ Θ} ¦ F . Then it holds with

probability 1 − l over the # samples from each domain that

|�★

Ĉ (W1, W2 ) − �★

Ĉ,Ċ ,Es (W1, W2 ) | f 2�

√

1

#
[1 + log( 4(2# )ĚVC

l
) ]

Let b > 0 be given, and let 5̂ be an b-parameterization of F . Let
the assumptions hold, and further assume that ℓ , 3 , and 6 are [0, �]-
bounded and that 3 [P,T] = 0 if and only if P = T almost surely, and

that %★(W1, W2) is !-Lipschitz. Then assuming that Ab = { 5̂ (·, \ ) :
\ ∈ Θ} ¦ F has �nite VC-dimension, it holds with probability
1 − l over the # samples that

|%★ − �★

Ĉ,Ċ ,Eĩ (ā ) | f ! | |ā | |1 + b: (1 + | |Ą★

Ħ | |1 ) +$ (
√

log(" )/" )

Now we prove Theorem 1.

Proof. The proof of this theorem is a simple consequence of
the triangle inequality. Indeed, by combining Propositions 2 to 4,
we �nd that

|%★ − �★

Ĉ,Ċ ,Eĩ (W1, W2 ) |
= |%★ + %★ (W1, W2 ) − %★ (W1, W2 ) +�★

Ĉ (W1, W2 ) − �★

Ĉ (W1, W2 ) − �★

Ĉ,Ċ ,Eĩ (W1, W2 ) |
f |%★ − %★ (W1, W2 ) | + |%★ (W1, W2 ) − �★

Ĉ (W1, W2 ) | + |�★

Ĉ (W1, W2 ) − �★

Ĉ,Ċ ,Eĩ (W1, W2 ) |

f!∥W ∥1 + b: (1 + ∥_★Ħ ∥1 ) + 2�

√

1

#
[1 + log( 4(2# )ĚVC

l
) ]

□

C SKETCH PROOF OF THEOREM 2
Lemma 1. Given two domains 48 , 4 9 ∈ E, E

P
ěĠ
ĔĖ

6(5 (-4 Ġ ), /4 Ġ ) can
be bounded by E

P
ěğ
ĔĖ

6(5 (-4ğ ), /4ğ ) as follows:

E
P
ěĠ
ĔĖ

6 (5 (-ě Ġ ), /ě Ġ ) f E
P
ěğ
ĔĖ

6 (5 (-ěğ ), /ěğ ) +
√
238BC [Pě Ġ

ĔĖĕ
, P

ěğ
ĔĖĕ

]

Lemma 2. Given two domains 48 , 4 9 ∈ E, under Lemma 1, d4 Ġ (5 )
can be bounded by d4ğ (5 ) as follows:

dě Ġ (5 ) f děğ (5 ) +
√
238BC [Pě Ġ

ĔĖĕ
, P

ěğ
ĔĖĕ

]

Under Lemmas 1 and 2, we now prove Theorem 2

Proof. Let B★ ∈ EB be the source domain nearest to the target
domain C ∈ E\EB . Under Lemma 2, we have

dĪ (5 ) f dĩğ (5 ) +
√
238BC [PĪĔĖĕ , P

ěğ
ĔĖĕ

]
where B8 ∈ EB . Taking the average of upper bounds based on all
source domains, we have:

dĪ (5 ) f 1

| Eĩ |
∑

ĩğ ∈Eĩ
dĩğ (5 ) +

√
2

| Eĩ |
∑

ĩğ ∈Eĩ
38BC [PĪĔĖĕ , P

ěğ
ĔĖĕ

]

f 1

| Eĩ |
∑

ĩğ ∈Eĩ
dĩğ (5 ) +

√
2

| Eĩ |
| Eĩ |38BC [PĪĔĖĕ , P

ĩ★
ĔĖĕ

]

+
√
2

| Eĩ |
∑

ĩğ ∈Eĩ
38BC [Pĩ★

ĔĖĕ
, P

ĩğ
ĔĖĕ

]

f 1

| Eĩ |
∑

ĩğ ∈Eĩ
dĩğ (5 ) +

√
2 min
ĩğ ∈Eĩ

38BC [PĪĔĖĕ , P
ěğ
ĔĖĕ

]

+
√
2 max
ĩğ ,ĩ Ġ ∈Eĩ

38BC [Pěğ
ĔĖĕ

, P
ě Ġ
ĔĖĕ

]

□
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