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Abstract 

The advance of additive manufacturing makes it possible to design spatially 
varying lattice structures with complex geometric configurations. The homogenized elastic 
properties of these periodic lattice structures are known to deviate significantly from 
isotropic behavior where orthotropic material symmetry is often assumed. This paper 
addresses the need for a robust homogenization method for evaluating anisotropy of 
periodic lattice structures including an understanding of how the elastic properties transform 
under rotation. Here, periodic boundary conditions are applied on two-material 
representative volume element (RVE) finite element models to evaluate the complete 
homogenized stiffness tensor. A constrained multi-output regression approach is proposed to 
evaluate the elasticity tensor components under any assumed material symmetry model. This 
approach is applied to various lattice structures including scaffold and surface-based Triply 
Periodic Minimal Surface (TPMS). Our approach is used to assess the accuracy of rotation for 
assumed anisotropic and orthotropic homogenized material models over a range of lattice 
structures. 

1 Introduction 

Advances in Additive Manufacturing (AM) make it possible to fabricate more complex 
structures than what was previously possible with traditional manufacturing methods, 
therefore, AM has become the primary choice to produce cellular lattice structures. The cellular 
lattice is of research interest that focuses on improving the mechanical behavior of complex 
microstructures inspired by nature, such as those found in bones, wood, and honeycomb 
structures. Cellular structures have multiple advantages such as lightweight and improved 
designability resulting in a wide range of applications. Among them, TPMS lattices are of 
particular interest in the field of cellular design due to their smooth surfaces, high 
interconnectivity porous architectures, and mathematically controllable geometry. TPMS 
lattice structures consist of smooth surfaces with zero mean curvature which eliminates 
local stress concentrations, unlike strut-based lattice structures which do not provide this benefit 
to the design community [1]. 

The variable ligament size and orientation of TPMS structures with symmetry in 
all three dimensions lead to anisotropy which typically requires finite element analysis (FEA) to 
determine the homogenized elasticity in different directions. It has been shown that TPMS 
structures have a relatively high level of directional dependency on homogenized elastic 
tensors and typically present anisotropic behavior leading to directions of high and low stiffness 
and strength, especially when the relative density is low [2]. As a result, numerical 
homogenization theory and FEA methods are often applied to determine the relationship 
between mathematical parameters that describe the TPMS geometry and the structure’s 
effective elastic modulus and other related anisotropic properties [3]. The homogenization 
method is used to bridge between macrostructure 
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and microstructure representation, in which the goal is often to obtain effective values for elastic 
tensor components. The homogenized elastic modulus of TPMS unit cells has been predicted by 
FEA using periodic boundary conditions and a fast Fourier transform-based homogenization 
method [4,5], and has been shown to vary linearly with relative density. Additionally, Khaleghi et 
al. [6] showed that hybrid lattice structures have a more isotropic-oriented effective elastic 
modulus compared to their parent lattice structures, and an appropriate selection of the 
combination ratio of the parent structures can lead to minimal anisotropy.  

Anisotropy can be an undesirable property when the lattice structure is exposed to 
unknown directional loads, especially in energy-absorbing applications. However, when 
anisotropy plays an important role in influencing the mechanical properties of a lattice 
structure, it is necessary to consider anisotropic properties while modeling the spatially varying 
lattice structures with variant orientation in the design layout [7].  The 3D triply periodic 
minimal surface lattice plates (RotTPMS) were designed to an optimal lattice orientation on the 
basis of the anisotropy’s porosity dependence [8]. Since the TPMS mechanical properties strongly 
depend on the relative density [2], the relative density may be adjusted to keep consistency by 
changing the location of the implicit surface function for a TPMS structure. Additionally, 
anisotropy may change as well as the change of relative density and the topological distribution 
due to the rotation of lattice structures.  

Anisotropy for TPMS lattice structures is usually measured by the Zener index based on 
only three terms from the homogenized elasticity tensor [9]. For the Zener index to be applied, 
it must be assumed that the orthotropic material model is applicable when obtaining the 
homogenized elastic tenors for lattice structures. It follows that the rotational behavior for the 
homogenized elasticity tensors is often obtained by applying the rotational matrix under 
the orthotropic material assumption. However, the rotation of a lattice structures’ 
homogenized elasticity tensor may not coincide with the actual response under a rotated 
loading condition. Therefore, the TPMS with spatially varying orientation [7] may experience 
loading from a wide range of angles, which inspires us to evaluate the anisotropy under 
variant orientations such as the application of rotation matrix on an element-by-element basis of 
stress-strain. Here, this study presents a novel material fitting model based on the homogenized 
elastic matrix for the TPMS lattice structures to evaluate the difference between orthotropic and 
anisotropic fitting models. The element-by-element and homogenized rotational bases are 
proposed to investigate the anisotropy for various lattice structures. The regression 
coefficients from material fitting model may be viewed as an indicator to measure the anisotropy 
under rotation.  

2 Methodology 

The following section will introduce the construction of finite element model for 
the lattice structures, the homogenization procedures, and the constrained multi-output 
regression approach, and the rotational basis for homogenized elastic tensors. 

2.1 The modeling of TPMS lattice 

The TPMS-based lattice structures can be classified into two groups such as surface and 
scaffold-based ones, which can be modeled by offsetting the implicit surface defined by the 
generalized level set function [10] as Eq. (1) and the enclosure of implicit surface with 
surrounding cubic RVE, 
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respectively. The strut-based lattice is modeled by the selective deletion of elements in the cubic 
RVE following the Laplacian mesh smooth or the surface smoothing by subdivision [11].  

𝐹𝐹(𝒓𝒓) = � 𝝁𝝁𝑚𝑚 cos�2𝜋𝜋(𝒑𝒑𝑚𝑚
 ∙ 𝒓𝒓)�

𝑀𝑀

𝑚𝑚=1
+ 𝑡𝑡 = 0 (1) 

where 𝝁𝝁𝑚𝑚 is periodic amplitude, 𝒑𝒑𝑚𝑚 is the reciprocal matrix, r is the position vector, and t adjusts 
the relative density of the TPMS lattice. The end-cap geometry is computed on the computational 
grid for the volume data F(r) with difference enclosure options to model lattice and void space for 
TPMS lattice structures, the scaffold-based TPMS is shown as Fig. 1. The tetrahedron elements 
are filled inside the close surface patch forming the implicit surface for the TPMS lattice. A special 
Boolean operation algorithm based on the MATLAB polygon operation [12] is developed for the 
strut-based lattice to acquire the exterior (or void) mesh where the material properties are set as 
trivial values. The two materials phases model for the Cubic strut-based lattice shown in Fig. 2 
considers not only the lattice filled with tetrahedron mesh but the void space inclusion between 
the lattice surface and cubic RVE faces, the material property for the void space is assigned as a 
trivial value. 

Figure 1: Scaffold-based TPMS unit cell: (a) Primitive; (b) Gyroid; (c) IWP 

Figure 2 The two-phase mesh for Cubic struct-based lattice unit cell: (a) the mesh for void space; 
(b) the mesh for Cubic lattice unit cell

2.2 Homogenized model of lattice structure 

The homogenized elastic tensors are of importance for the future application of lattice 
structures as the basic mechanical properties, it is known to deviate significantly from the 
isotropic behavior where orthotropic material symmetry is often assumed. Obtaining the 
homogenized elastic properties of the lattice structure is crucial, especially for TPMS structures 
having a wide range of relative volume fractions. The voxel-based FEA with asymptotic 
homogenization [13] which is 
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wide-adopted in the literature [14] may contribute to the inaccuracy of homogenization results due 
to the hexahedral stair-step mesh, while the implicit TPMS equation (cf. Eq. (1)) leads to the 
symmetric triangular surface patch (cf. Fig. 1).  

2.2.1 The homogenization under periodic boundary conditions 

A numerical homogenization method is employed in this work to calculate 
homogenized elastic properties (i.e., components of the elasticity tensor) for the lattice 
structures defined above. To predict the homogenized properties by the finite element method, 
periodic boundary conditions are defined on a representative volume element (RVE) of a 
single lattice. We adopted a novel approach based on polynomial edge interpolation that avoids 
the need to match mesh conditions on opposing RVE boundaries similar to that presented in [15]. 
To implement this approach, a nodal mapping is created that connects nodes on opposing sides 
of the RVE to define the periodic boundary conditions written as  

𝒖𝒖𝑖𝑖
+ −  𝒖𝒖𝑖𝑖

− =  𝜺𝜺�(𝒙𝒙𝑖𝑖
+ −  𝒙𝒙𝑖𝑖

−), 𝑖𝑖 = 1, ⋯ 𝑝𝑝 (2) 

where 𝒖𝒖𝑖𝑖
+ and 𝒖𝒖𝑖𝑖

− are the displacements on opposing sides of the RVE, 𝜺𝜺� defines the imposed 
macroscopic strain and (𝒙𝒙𝑖𝑖

+ −  𝒙𝒙𝑖𝑖
−) is the distance between opposing nodes on RVE faces. All 

nodes on the opposite faces, edges and corners are tied by constraints equations on the cubic RVE. 
Six independent loading conditions with unit strain are applied to the RVE to obtain homogenized 
elasticity matrix components [16]. These six loading conditions include three uniaxial extensions 
and six pure shear conditions which are defined such that only the constraint equations on the 
surface are applied on the unit cell RVE (cf. Fig. 2(a)) where the unit lattice structure and void are 
included. Once the finite element analysis is performed, the volume-average stress 𝜎𝜎�𝑖𝑖𝑖𝑖 and strain 
𝜀𝜀𝑖̅𝑖𝑖𝑖 tensor components may respectively be calculated via the integrals as 

𝜎𝜎�𝑖𝑖𝑖𝑖 =  
1
𝑉𝑉

� 𝜎𝜎𝑖𝑖𝑖𝑖
𝑉𝑉

𝑑𝑑𝑑𝑑          and  𝜀𝜀𝑖̅𝑖𝑖𝑖 =  
1
𝑉𝑉

� 𝜀𝜀𝑖𝑖𝑖𝑖
𝑉𝑉

𝑑𝑑𝑑𝑑 (3) 

In the above, 𝜎𝜎𝑖𝑖𝑖𝑖 and 𝜀𝜀𝑖𝑖𝑖𝑖 are the element stress and strain tensor components, respectively, and V 
is the volume of the RVE [17].  

2.2.2 The material regression model 

The three-dimensional homogenized 6×6 elasticity matrix � is computed in a 
constrained least-squared sense to best-fit average RVE computed stresses assembled in the 
vector �𝝈𝝈  and applied strains in the vector � (cf. Eq. (3)) from the finite element analyses as 

𝝈𝝈� = 𝑪𝑪�𝜺𝜺� (4) 

where the components of the matrix 𝑪𝑪� are 𝐶𝐶𝐽̅𝐽𝐽𝐽, J = 1, …, 6, and K = 1, …, 6. A multi-output 
regression is defined to compute components in 𝑪𝑪� from FEA generated volume-averaged stress-
strain pairs (𝜺𝜺�𝐼𝐼, 𝝈𝝈�𝐼𝐼), I = 1, …, N, where we use N = 6 FEA simulations. A linear system of equations 
written in terms of the unknown J-th row elasticity tensor components that compose 𝑪𝑪�𝐽𝐽 as [19]  

𝒁𝒁𝑇𝑇𝒁𝒁𝑪𝑪�𝐽𝐽
𝑻𝑻 =  𝒁𝒁𝑇𝑇𝝈𝝈�𝐽𝐽,    𝐽𝐽 = 1, … , 𝑃𝑃 (5)
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where 

𝒁𝒁 = [(𝜺𝜺�1)𝑇𝑇 (𝜺𝜺�2)𝑇𝑇 (𝜺𝜺�3)𝑇𝑇 ⋯ (𝜺𝜺�𝑁𝑁)𝑇𝑇]𝑇𝑇   and    𝝈𝝈�𝐽𝐽 = �𝜎𝜎�𝐽𝐽
1 𝜎𝜎�𝐽𝐽

2 𝜎𝜎�𝐽𝐽
3 ⋯ 𝜎𝜎�𝐽𝐽

𝑁𝑁�
𝑇𝑇 (6) 

In the above equations, (𝜺𝜺�𝐼𝐼)𝑇𝑇, I = 1, …, N, are the average strains for 𝐼𝐼𝑡𝑡ℎ out of N finite element 
computed strains. Similarly, 𝜎𝜎�𝐽𝐽

𝐼𝐼, I = 1, …, N, is the J-th stress component for the 𝐼𝐼𝑡𝑡ℎ out of N finite 
element computed stresses. To impose constraints on the least squares fitting process, we first 
rewrite Eq. (5) to include all 6 stress components as 

 𝑨𝑨𝑪𝑪� = 𝑹𝑹 (7) 

which represents 36 equations in the 36 unknown coefficients of the averaged elasticity matrix 𝑪𝑪�. 
It follows that the symmetry of 𝑪𝑪�  and any additional assumed material symmetries may be 
imposed as constraints on the least square fitting process described above [20] through  𝑿𝑿𝑪𝑪� = 𝑸𝑸, 
where X is a matrix containing relationships that are imposed components of 𝑪𝑪�. The Lagrange 
Multiplier method is used to impose the constraints in Eq. (8) onto the system of equations in Eq. 
(7) which is implemented through

�𝑨𝑨 𝑿𝑿𝑇𝑇

𝑿𝑿 𝟎𝟎
� �𝑪𝑪�

𝝀𝝀
� = �𝑹𝑹

𝑸𝑸� (8) 

where 𝝀𝝀 is the Lagrange Multiplier. The size of X and the Lagrange multiplier 𝝀𝝀 depend on the 
number of constraints imposed on 𝑪𝑪�. For example, matrix symmetry is imposed on 𝑪𝑪� with 15 
constraint equations written as 

𝐶𝐶𝑖̅𝑖𝑖𝑖 − 𝐶𝐶𝑗̅𝑗𝑗𝑗 = 0, 𝑖𝑖, 𝑗𝑗 ∈ 1,2,3,4,5,6,   𝑖𝑖 ≠ 𝑗𝑗, 𝑖𝑖 < 𝑗𝑗 (9) 

Similarly, material symmetries including orthotropic, transversely isotropic, or isotropic may be 
imposed on 𝑪𝑪� by respectively imposing 12, 16 or 19 constraint equations in addition to the 15 
matrix symmetry equations in Eq. (9). Once the elasticity tensor components in 𝑪𝑪� are computed, 
regression coefficients are calculated to determine the quality of the least squares solution. The 
regression coefficient 𝑅𝑅𝐽𝐽

2 for the J-th stress component is given by 

𝑅𝑅𝐽𝐽
2 = (𝑆𝑆𝑡𝑡

𝐽𝐽 −  𝑆𝑆𝑟𝑟
𝐽𝐽) 𝑆𝑆𝑡𝑡

𝐽𝐽� (10) 

where the sum of the squared error with respect to the material model fit 𝑆𝑆𝑟𝑟
𝐽𝐽 and the sum of the 

squared error with respect to the mean stress 𝑆𝑆𝑡𝑡
𝐽𝐽  are given for the J-th stress component, 

respectively, as 

𝑆𝑆𝑟𝑟
𝐽𝐽 = � �𝜎𝜎�𝐽𝐽

𝐼𝐼 − 𝑪𝑪�𝐽𝐽𝜺𝜺�𝐼𝐼�
2𝑁𝑁

𝐼𝐼=1
and    𝑆𝑆𝑡𝑡

𝐽𝐽 =  � �𝜎𝜎�𝐽𝐽
𝐼𝐼 − 𝜎𝜎�𝐽𝐽

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�
2𝑁𝑁

𝐼𝐼=1
(11) 

where the J-th mean stress 𝜎𝜎�𝐽𝐽
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is defined as the averaged value of 𝜎𝜎�𝐽𝐽

 . 

2.2.3 The homogenized stress and strain rotation bases 

T he two-phase 3D finite element mesh is proposed to implement the homogenization 
method, which is essential to obtain the same averaged strain with applied unit strain that 
defines the periodic boundary conditions. In order to investigate the rotational behavior of 
homogenized 
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elastic properties for lattice structures under various orientations, the calculated stress-strain data 
can be treated with two approaches. First, the rotation matrices are applied to the homogenized 
elastic tensors from the homogenized material model where the fitting procedures are performed 
based on stresses in the model coordinate system. Alternatively, the rotation matrices are applied 
to stress-strain data on the element-by-element basis to supply the material fitting model and 
acquire the homogenized elastic tenors (cf. Eq. (3)). To apply the rotations to the material matrix 
(first approach), the 6×6 transformation method from [21, 22] is adopted. The rotated material 
constitutive matrix 𝑪𝑪�′ is computed as 𝑪𝑪�′  =  𝑻𝑻−1𝑪𝑪�𝑻𝑻, where 𝑪𝑪� is the homogenized elasticity matrix 
from the multi-output material regression model, T is the transformation matrix that can be applied 
on the Voight 6×6 notation tensor. The rotation tensor applied on the elemental stress-strain tensors 
(alternate approach) are given as [23], and the volume-average stress and strain tensor components 
are calculated according to Eq. (3) to obtain the symmetric material model by Eq. (8). The 
rotational operation for stress and strain tensors [23] are given as 

𝜺𝜺′ =  𝑹𝑹𝑇𝑇𝜺𝜺𝜺𝜺 (12) 

𝝈𝝈′ =  𝑹𝑹𝑇𝑇𝝈𝝈𝝈𝝈 (13) 

where the rotation matrix R is given as 

𝑹𝑹 = �
cos 𝜃𝜃 sin 𝜃𝜃 0

−sin 𝜃𝜃 cos 𝜃𝜃 0
0 0 1

� (14) 

for a rotation about the Z-direction. 

To keep consistent, the same material model (such as orthotropic or anisotropic 
model) is maintained for the above two material rotation approaches described above. The 
regression coefficient is calculated after the averaged stress-strain is recovered from the 
elemental stress-strain tensor rotation. The two rotational bases aim to rotate the homogenized 
elastic tensor based on global and local levels, respectively. The difference between two bases on 
the rotational plane which is evaluated by the root mean square error (RMSE) 

RMSE = �� �𝐸𝐸1
𝑖𝑖 − 𝐸𝐸�1

𝑖𝑖�
2

𝑁𝑁⁄
𝑁𝑁

𝑖𝑖=1
(15) 

1
𝑖𝑖

1

where i is a index on the rotational grid (about X from 0-90° firstly, then about Z from 0-90°), N is 
the total number of points on the same grid, and 𝐸𝐸 and 𝐸𝐸�𝑖𝑖 are the normalized Young’s modulus 
from the two rotational approaches. The RMSE provides insight into two rotation method with 
various fitting material models for lattice structures. The material model regression coefficients 
tend to present the fitting performance with the symmetric material model.  

3 Results and discussion 

Relationships between relative density and homogenized elasticity tensor component 
values for Primitive scaffold lattice with orthotropic and isotropic material models appear in Fig. 
3. These results show slight differences in the trends of the elasticity tensor components for the
material symmetry models considered. The Zener index (𝐴𝐴  = 2𝐶𝐶 ̅44⁄(𝐶𝐶 ̅11 − 𝐶𝐶 ̅12)) is used to
quantify how
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far the material is from being isotropic where A is 1 for an isotropic case and increases or decreases 
with increasing anisotropy which is restricted to the lattice with cubic symmetry.  It is shown that 
the Zener index increases with relative RVE density that indicates the anisotropy decreases with 
increasing relative density in Fig. 3. The regression coefficient 𝑅𝑅𝐽𝐽

2 for the fit of assumed material 
symmetry model versus the relative density is shown in Fig. 4. Results show that the regression 
correlation coefficient increases with the relative density of RVE where the isotropic model both 
produce low-quality fitting results. The orthotropic model gives the best fitting performance with 
the regression coefficients for all elasticity tensor components near 1. It is interesting to note that 
the isotropic model results appear to do quite well overall for the axial extension terms (i.e., 𝑅𝑅1

2, 
𝑅𝑅2

2, and 𝑅𝑅3
2), but do far worse for the shear terms. 

Figure 3. The homogenized elastic tensors versus relative density for Primitive TPMS lattice. 

Figure 4. The regression correlation coefficient for four assumed material symmetry models 
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Figure 5: The normalized E1 of Primitive (with relative density as 0.3) scaffold TPMS lattice 
under 2D rotation by orthotropic fitting (a), anisotropic fitting (b)  

Figure 6: The normalized E1 of Primitive (with relative density as 0.3) scaffold TPMS lattice 
under rotation and regression performance by orthotropic fitting (a) and (b); anisotropic fitting 

(c) and (d)

The evaluation of homogenized elastic tensors by rotation (about Z from 0-90°) based on 
elemental stress-strain and homogenized elasticity tensor with orthotropic and anisotropic 
symmetry model fitting show as Fig. 5. Results show that normalized E1 under 2D rotation with 
orthotropic fitting only match at 0°, 45°and 90° for two rotational bases, but do match well for 
all angles when an anisotropic material model is used in the fitting process. The normalized 
E1 under 3D rotation 
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(about X from 0-90° firstly, then about Z from 0-90°) with orthotropic and anisotropic fitting 
models for the Primitive TPMS lattice are shown as Fig. 6 (a) and (c), the regression coefficients 
are shown in Fig. 6 (b) and (d). From the 3D surface representation of normalized E1, it merges 
with each other for two rotational bases under anisotropic model. Additionally, the anisotropic 
model provides superior performance by inspecting the regression coefficients, where 𝑅𝑅 

2 is shown 
rather than 𝑅𝑅𝐽𝐽

2  (cf. Eqs. (10-11)), such as 𝑆𝑆𝑟𝑟
 = ∑ ∑ �𝜎𝜎�𝐽𝐽

𝐼𝐼 − 𝑪𝑪�𝐽𝐽𝜺𝜺�𝐼𝐼�
2𝑁𝑁

𝐼𝐼=1
𝑁𝑁
𝐽𝐽=1 , 𝑆𝑆𝑡𝑡

 = ∑ ∑ �𝜎𝜎�𝐽𝐽
𝐼𝐼 −𝑁𝑁

𝐼𝐼=1
𝑁𝑁
𝐽𝐽=1

𝜎𝜎�𝐽𝐽
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�

2
, respectively. The RMSE and regression coefficients together can be treated as indicators

that whether the orthotropic fitting model works while rotating in 3D space for a wide range of 
lattice structures.  

Figure 7: The Diamond TPMS lattice: (a) surface; (b) scaffold 

Figure 8: The normalized E1 of Diamond (with relative density as 0.3) for scaffold (a) and 
surface (b) TPMS lattice under rotation 

From the same group of TPMS lattice structures, for instance, the Diamond TPMS with 
scaffold and surface-based is shown as Fig. 7, it may produce different rotation accuracy under 
assumed an orthotropic model. The normalized Young’s modulus under rotation with assumed 
orthotropic model is shown in Fig. 8 where there is a difference between the surface-based and 
scaffold-based structure, which indicates that the scaffold-based Diamondrotates as an 
orthotropic model on an element-by-element basis. However, the minimal 𝑅𝑅  

2 on the rotational 
grid for scaffold and surface-based lattice is 0.96 and 0.99 (which is close to the regression 
performance under 
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anisotropic model assumption for Primitive scaffold TPMS lattice, as shown in Fig. 6), 
respectively. The results shown here only consider the normalized uniaxial modulus alone, 
however, it is expected that similar trends may be found with other homogenized elastic 
components, such as shear modulus and Poisson’s ratio. Therefore, the regression coefficient is 
shown ot provide a comprehensive indicator on anisotropy for lattice structure under variant 
orientation. 

4 Conclusion 

This paper proposes a novel symmetric material model regression approach to 
investigate the rotational anisotropic properties for lattice structures. The minimal regression 
coefficient can be treated as an indicator to evaluate anisotropy for lattice structures under 
rotation. This study demonstrates that the homogenized elastic model for lattice structures 
does not respond as an isotropic solid, and also does not have the elastic response under 
rotation of the widely-adopted orthotropic model on an element-by-element rotation basis. 
The homogenized elastic property under rotation can only be treated as an anisotropic model 
rather than an orthotropic model for TPMS-based lattice structures. Our results also show that 
urface-based TPMS lattice structures better follow an orthotropic model under rotation as 
compared with scaffold-based  geometry due to the more sophisticated geometric configuration 
which may lead to uniform material distribution in the RVE. 
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