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Abstract

The advance of additive manufacturing makes it possible to design spatially
varying lattice structures with complex geometric configurations. The homogenized elastic
properties of these periodic lattice structures are known to deviate significantly from
isotropic behavior where orthotropic material symmetry is often assumed. This paper
addresses the need for a robust homogenization method for evaluating anisotropy of
periodic lattice structures including an understanding of how the elastic properties transform
under rotation. Here, periodic boundary conditions are applied on two-material
representative  volume element (RVE) finite element models to evaluate the complete
homogenized stiffness tensor. A constrained multi-output regression approach is proposed to
evaluate the elasticity tensor components under any assumed material symmetry model. This
approach is applied to various lattice structures including scaffold and surface-based Triply
Periodic Minimal Surface (TPMS). Our approach is used to assess the accuracy of rotation for
assumed anisotropic and orthotropic homogenized material models over a range of lattice
structures.

1 Introduction

Advances in Additive Manufacturing (AM) make it possible to fabricate more complex
structures than what was previously possible with traditional manufacturing methods,
therefore, AM has become the primary choice to produce cellular lattice structures. The cellular
lattice is of research interest that focuses on improving the mechanical behavior of complex
microstructures inspired by nature, such as those found in bones, wood, and honeycomb
structures. Cellular structures have multiple advantages such as lightweight and improved
designability resulting in a wide range of applications. Among them, TPMS lattices are of
particular interest in the field of cellular design due to their smooth surfaces, high
interconnectivity porous architectures, and mathematically controllable geometry. TPMS
lattice structures consist of smooth surfaces with zero mean curvature which eliminates
local stress concentrations, unlike strut-based lattice structures which do not provide this benefit
to the design community [1].

The variable ligament size and orientation of TPMS structures with symmetry in
all three dimensions lead to anisotropy which typically requires finite element analysis (FEA) to
determine the homogenized elasticity in different directions. It has been shown that TPMS
structures have a relatively high level of directional dependency on homogenized elastic
tensors and typically present anisotropic behavior leading to directions of high and low stiffness
and strength, especially when the relative density is low [2]. As a result, numerical
homogenization theory and FEA methods are often applied to determine the relationship
between mathematical parameters that describe the TPMS geometry and the structure’s
effective elastic modulus and other related anisotropic properties [3]. The homogenization
method is used to bridge between macrostructure
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and microstructure representation, in which the goal is often to obtain effective values for elastic
tensor components. The homogenized elastic modulus of TPMS unit cells has been predicted by
FEA using periodic boundary conditions and a fast Fourier transform-based homogenization
method [4,5], and has been shown to vary linearly with relative density. Additionally, Khaleghi et
al. [6] showed that hybrid lattice structures have a more isotropic-oriented effective elastic
modulus compared to their parent lattice structures, and an appropriate selection of the
combination ratio of the parent structures can lead to minimal anisotropy.

Anisotropy can be an undesirable property when the lattice structure is exposed to
unknown directional loads, especially in energy-absorbing applications. However, when
anisotropy plays an important role in influencing the mechanical properties of a lattice
structure, it is necessary to consider anisotropic properties while modeling the spatially varying
lattice structures with variant orientation in the design layout [7]. The 3D triply periodic
minimal surface lattice plates (RotTPMS) were designed to an optimal lattice orientation on the
basis of the anisotropy’s porosity dependence [8]. Since the TPMS mechanical properties strongly
depend on the relative density [2], the relative density may be adjusted to keep consistency by
changing the location of the implicit surface function for a TPMS structure. Additionally,
anisotropy may change as well as the change of relative density and the topological distribution
due to the rotation of lattice structures.

Anisotropy for TPMS lattice structures is usually measured by the Zener index based on
only three terms from the homogenized elasticity tensor [9]. For the Zener index to be applied,
it must be assumed that the orthotropic material model is applicable when obtaining the
homogenized elastic tenors for lattice structures. It follows that the rotational behavior for the
homogenized elasticity tensors is often obtained by applying the rotational matrix under
the orthotropic material assumption. However, the rotation of a lattice structures’
homogenized elasticity tensor may not coincide with the actual response under a rotated
loading condition. Therefore, the TPMS with spatially varying orientation [7] may experience
loading from a wide range of angles, which inspires us to evaluate the anisotropy under
variant orientations such as the application of rotation matrix on an element-by-element basis of
stress-strain. Here, this study presents a novel material fitting model based on the homogenized
elastic matrix for the TPMS lattice structures to evaluate the difference between orthotropic and
anisotropic fitting models. The element-by-element and homogenized rotational bases are
proposed to investigate the anisotropy for various lattice structures. The regression
coefficients from material fitting model may be viewed as an indicator to measure the anisotropy
under rotation.

2 Methodology

The following section will introduce the construction of finite element model for
the lattice structures, the homogenization procedures, and the constrained multi-output
regression approach, and the rotational basis for homogenized elastic tensors.

2.1 The modeling of TPMS lattice

The TPMS-based lattice structures can be classified into two groups such as surface and
scaffold-based ones, which can be modeled by offsetting the implicit surface defined by the
generalized level set function [10] as Eq. (1) and the enclosure of implicit surface with
surrounding cubic RVE,
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respectively. The strut-based lattice is modeled by the selective deletion of elements in the cubic
RVE following the Laplacian mesh smooth or the surface smoothing by subdivision [11].

F(r) = ZM_lﬂm cos(2n (P 1))+t =0 )

where u,, is periodic amplitude, p,, is the reciprocal matrix, r is the position vector, and ¢ adjusts
the relative density of the TPMS lattice. The end-cap geometry is computed on the computational
grid for the volume data F(r) with difference enclosure options to model lattice and void space for
TPMS lattice structures, the scaffold-based TPMS is shown as Fig. 1. The tetrahedron elements
are filled inside the close surface patch forming the implicit surface for the TPMS lattice. A special
Boolean operation algorithm based on the MATLAB polygon operation [12] is developed for the
strut-based lattice to acquire the exterior (or void) mesh where the material properties are set as
trivial values. The two materials phases model for the Cubic strut-based lattice shown in Fig. 2
considers not only the lattice filled with tetrahedron mesh but the void space inclusion between
the lattice surface and cubic RVE faces, the material property for the void space is assigned as a

trivial value.
(a) (b) (c)
Y
Z A X

Figure 1: Scaffold-based TPMS unit cell: (a) Primitive; (b) Gyroid; (c) IWP

(a) ‘ (b)

Figure 2 The two-phase mesh for Cubic struct-based lattice unit cell: (a) the mesh for void space;
(b) the mesh for Cubic lattice unit cell

2.2 Homogenized model of lattice structure

The homogenized elastic tensors are of importance for the future application of lattice
structures as the basic mechanical properties, it is known to deviate significantly from the
isotropic behavior where orthotropic material symmetry is often assumed. Obtaining the
homogenized elastic properties of the lattice structure is crucial, especially for TPMS structures
having a wide range of relative volume fractions. The voxel-based FEA with asymptotic
homogenization [13] which is
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wide-adopted in the literature [ 14] may contribute to the inaccuracy of homogenization results due
to the hexahedral stair-step mesh, while the implicit TPMS equation (cf. Eq. (1)) leads to the
symmetric triangular surface patch (cf. Fig. 1).

2.2.1 The homogenization under periodic boundary conditions

A numerical homogenization method is employed in this work to calculate
homogenized elastic properties (i.e., components of the elasticity tensor) for the lattice
structures defined above. To predict the homogenized properties by the finite element method,
periodic boundary conditions are defined on a representative volume element (RVE) of a
single lattice. We adopted a novel approach based on polynomial edge interpolation that avoids
the need to match mesh conditions on opposing RVE boundaries similar to that presented in [15].
To implement this approach, a nodal mapping is created that connects nodes on opposing sides
of the RVE to define the periodic boundary conditions written as

+

uf — uy = g(xf — x7), i=1-p (2

where u; and u;j are the displacements on opposing sides of the RVE, £ defines the imposed
macroscopic strain and (x; — x7) is the distance between opposing nodes on RVE faces. All
nodes on the opposite faces, edges and corners are tied by constraints equations on the cubic RVE.
Six independent loading conditions with unit strain are applied to the RVE to obtain homogenized
elasticity matrix components [16]. These six loading conditions include three uniaxial extensions
and six pure shear conditions which are defined such that only the constraint equations on the
surface are applied on the unit cell RVE (cf. Fig. 2(a)) where the unit lattice structure and void are
included. Once the finite element analysis is performed, the volume-average stress d;; and strain

&;j tensor components may respectively be calculated via the integrals as

1

_ _ 1
O-ij = VJ;/O'U av and Eij = V'];/Sij av (3)

In the above, 0;; and ¢;; are the element stress and strain tensor components, respectively, and V
is the volume of the RVE [17].

2.2.2 The material regression model

The three-dimensional homogenized 6x6 elasticity matrix =~ is computed in a
constrained least-squared sense to best-fit average RVE computed stresses assembled in the

vector ¢ and applied strains in the vector ~ (cf. Eq. (3)) from the finite element analyses as
o=_Cs (4)

where the components of the matrix C are C_]K, J=1,...,6,and K =1, ..., 6. A multi-output

regression is defined to compute components in € from FEA generated volume-averaged stress-
strain pairs (£/,@'),I=1, ..., N, where we use N= 6 FEA simulations. A linear system of equations
written in terms of the unknown J-th row elasticity tensor components that compose C ;as [19]

Z'7¢] = 7"6;, |]=1,..,P (5)
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where

Z=[@)" @& @' - @) ad 5=[q F & - 3] (©
In the above equations, ()T, =1, ..., N, are the average strains for I, out of N finite element
computed strains. Similarly, 6]’ ,I=1, ..., N, is the J-th stress component for the I;; out of N finite

element computed stresses. To impose constraints on the least squares fitting process, we first
rewrite Eq. (5) to include all 6 stress components as

AC =R 7)

which represents 36 equations in the 36 unknown coefficients of the averaged elasticity matrix C.
It follows that the symmetry of € and any additional assumed material symmetries may be
imposed as constraints on the least square fitting process described above [20] through XC = Q,
where X is a matrix containing relationships that are imposed components of C. The Lagrange
Multiplier method is used to impose the constraints in Eq. (8) onto the system of equations in Eq.

(7) which is implemented through
A X"|[{C)_ (R
b¢ 0]{,1}_{0} ®)

where 4 is the Lagrange Multiplier. The size of X and the Lagrange multiplier A depend on the
number of constraints imposed on €. For example, matrix symmetry is imposed on € with 15
constraint equations written as

Cij—Cy; =0, i,j €1,23,456, i +#]j, i<j 9
Similarly, material symmetries including orthotropic, transversely isotropic, or isotropic may be
imposed on C by respectively imposing 12, 16 or 19 constraint equations in addition to the 15
matrix symmetry equations in Eq. (9). Once the elasticity tensor components in C are computed,
regression coefficients are calculated to determine the quality of the least squares solution. The
regression coefficient R]2 for the J-th stress component is given by

Rf = (5! - S)/s! (10)

where the sum of the squared error with respect to the material model fit Sr] and the sum of the
squared error with respect to the mean stress St] are given for the J-th stress component,
respectively, as

N N
sl = E (5] -C;&)° and S/ = E (5] — aean)® (11)

where the J-th mean stress o~;™¢*" is defined as the averaged value of 07 .

2.2.3 The homogenized stress and strain rotation bases

T he two-phase 3D finite element mesh is proposed to implement the homogenization
method, which is essential to obtain the same averaged strain with applied unit strain that
defines the periodic boundary conditions. In order to investigate the rotational behavior of
homogenized
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elastic properties for lattice structures under various orientations, the calculated stress-strain data
can be treated with two approaches. First, the rotation matrices are applied to the homogenized
elastic tensors from the homogenized material model where the fitting procedures are performed
based on stresses in the model coordinate system. Alternatively, the rotation matrices are applied
to stress-strain data on the element-by-element basis to supply the material fitting model and
acquire the homogenized elastic tenors (cf. Eq. (3)). To apply the rotations to the material matrix
(first approach), the 6x6 transformation method from [21, 22] is adopted. The rotated material
constitutive matrix €’ is computed as C' = T~ 1CT, where C is the homogenized elasticity matrix
from the multi-output material regression model, 7 is the transformation matrix that can be applied
on the Voight 6x6 notation tensor. The rotation tensor applied on the elemental stress-strain tensors
(alternate approach) are given as [23], and the volume-average stress and strain tensor components
are calculated according to Eq. (3) to obtain the symmetric material model by Eq. (8). The
rotational operation for stress and strain tensors [23] are given as

£ = R"¢R (12)
o' = RToR (13)

where the rotation matrix R is given as

R =|—sinf cosf 0O

0 0 1

(14)

cosf sin@ O]

for a rotation about the Z-direction.

To keep consistent, the same material model (such as orthotropic or anisotropic
model) is maintained for the above two material rotation approaches described above. The
regression coefficient is calculated after the averaged stress-strain is recovered from the
elemental stress-strain tensor rotation. The two rotational bases aim to rotate the homogenized
elastic tensor based on global and local levels, respectively. The difference between two bases on
the rotational plane which is evaluated by the root mean square error (RMSE)

N
RMSE = z (Ei — ED*/N (15)
i=1

where 7 is a index on the rotational grid (about X from 0-90° firstly, then about Z from 0-90°), N is
the total number of points on the same grid, and Eland E*{ are the normalized Young’s modulus
from the two rotational approaches. The RMSE provides insight into two rotation method with
various fitting material models for lattice structures. The material model regression coefficients
tend to present the fitting performance with the symmetric material model.

3 Results and discussion

Relationships between relative density and homogenized elasticity tensor component
values for Primitive scaffold lattice with orthotropic and isotropic material models appear in Fig.
3. These results show slight differences in the trends of the elasticity tensor components for the
material symmetry models considered. The Zener index (A = 2C "44/(C "11 — C 713)) is used to
quantify how
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far the material is from being isotropic where A is 1 for an isotropic case and increases or decreases
with increasing anisotropy which is restricted to the lattice with cubic symmetry. It is shown that
the Zener index increases with relative RVE density that indicates the anisotropy decreases with
increasing relative density in Fig. 3. The regression coefficient Rjz for the fit of assumed material
symmetry model versus the relative density is shown in Fig. 4. Results show that the regression
correlation coefficient increases with the relative density of RVE where the isotropic model both
produce low-quality fitting results. The orthotropic model gives the best fitting performance with
the regression coefficients for all elasticity tensor components near 1. It is interesting to note that
the isotropic model results appear to do quite well overall for the axial extension terms (i.e., R,
R3, and R%), but do far worse for the shear terms.
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Figure 3. The homogenized elastic tensors versus relative density for Primitive TPMS lattice.
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Figure 4. The regression correlation coefficient for four assumed material symmetry models
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(a) E‘ 2D representation under rotation (b) E‘ 2D representation under rotation
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Figure 5: The normalized E; of Primitive (with relative density as 0.3) scaffold TPMS lattice
under 2D rotation by orthotropic fitting (a), anisotropic fitting (b)
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Figure 6: The normalized E; of Primitive (with relative density as 0.3) scaffold TPMS lattice
under rotation and regression performance by orthotropic fitting (a) and (b); anisotropic fitting
(c) and (d)

The evaluation of homogenized elastic tensors by rotation (about Z from 0-90°) based on
elemental stress-strain and homogenized elasticity tensor with orthotropic and anisotropic
symmetry model fitting show as Fig. 5. Results show that normalized £ under 2D rotation with
orthotropic fitting only match at 0°, 45°and 90° for two rotational bases, but do match well for
all angles when an anisotropic material model is used in the fitting process. The normalized
E1 under 3D rotation
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(about X from 0-90° firstly, then about Z from 0-90°) with orthotropic and anisotropic fitting
models for the Primitive TPMS lattice are shown as Fig. 6 (a) and (c), the regression coefficients
are shown in Fig. 6 (b) and (d). From the 3D surface representation of normalized £, it merges
with each other for two rotational bases under anisotropic model. Additionally, the anisotropic
model provides superior performance by inspecting the regression coefficients, where R? is shown
rather than R? (cf. Egs. (10-11)), such as S, = ¥)_; ¥V (6] — E,z’)z, S, =Y 2N (e -

2 . . . .-
6}”‘"‘"‘) , respectively. The RMSE and regression coefficients together can be treated as indicators

that whether the orthotropic fitting model works while rotating in 3D space for a wide range of
lattice structures.

(a) (b)

-
Figure 7: The Diamond TPMS lattice: (a) surface; (b) scaffold
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Figure 8: The normalized E1 of Diamond (with relative density as 0.3) for scaffold (a) and
surface (b) TPMS lattice under rotation

From the same group of TPMS lattice structures, for instance, the Diamond TPMS with
scaffold and surface-based is shown as Fig. 7, it may produce different rotation accuracy under
assumed an orthotropic model. The normalized Young’s modulus under rotation with assumed
orthotropic model is shown in Fig. 8 where there is a difference between the surface-based and
scaffold-based structure, which indicates that the scaffold-based Diamondrotates as an
orthotropic model on an element-by-element basis. However, the minimal R 2 on the rotational

grid for scaffold and surface-based lattice is 0.96 and 0.99 (which is close to the regression
performance under
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anisotropic model assumption for Primitive scaffold TPMS lattice, as shown in Fig. 6),
respectively. The results shown here only consider the normalized uniaxial modulus alone,
however, it is expected that similar trends may be found with other homogenized elastic
components, such as shear modulus and Poisson’s ratio. Therefore, the regression coefficient is
shown ot provide a comprehensive indicator on anisotropy for lattice structure under variant
orientation.

4 Conclusion

This paper proposes a novel symmetric material model regression approach to
investigate the rotational anisotropic properties for lattice structures. The minimal regression
coefficient can be treated as an indicator to evaluate anisotropy for lattice structures under
rotation. This study demonstrates that the homogenized elastic model for lattice structures
does not respond as an isotropic solid, and also does not have the elastic response under
rotation of the widely-adopted orthotropic model on an element-by-element rotation basis.
The homogenized elastic property under rotation can only be treated as an anisotropic model
rather than an orthotropic model for TPMS-based lattice structures. Our results also show that
urface-based TPMS lattice structures better follow an orthotropic model under rotation as
compared with scaffold-based geometry due to the more sophisticated geometric configuration
which may lead to uniform material distribution in the RVE.
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