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ABSTRACT
This paper proposes a class of Generalized SpatioTemporal Semi-Varying Coefficient Models (GST-SVCMs) with structure identi-
fication to enhance the detection and interpretation of spatiotemporal heterogeneity in factors influencing response variables. The
proposed framework effectively distinguishes between spatiotemporally varying and constant effects, addressing a key limitation
of current modeling approaches. By identifying and separating these components, the GST-SVCM structure identificationmethod
improves both computational efficiency and the statistical power of downstream analyses. The estimators of constant coefficients
and varying coefficient functions are consistent, and the estimators of the constant coefficients are asymptotically normal, facilitat-
ing reliable statistical inference. Extensive Monte Carlo simulations demonstrate that the proposed method accurately identifies
the true model structure and significantly improves prediction accuracy compared to purely varying coefficient models that do
not incorporate structure identification. To further refine model granularity, we extend GST-SVCMs by introducing the Hierar-
chical Spatiotemporal Varying Coefficient Model (HSTVCM) with automatic structure identification, which decomposes effects
into spatial, temporal, and spatiotemporal components for more precise structure identification. The practical utility of the pro-
posed methodologies is validated through an application to particulate matter (PM) data, providing insights into the influence of
meteorological factors on PM levels and determining whether these effects exhibit true spatiotemporal variation.
MSC2020 Classification: 62G08, 62M10, 62H11

1 | Introduction

Varying coefficient models (VCMs) are a class of statistical mod-
els that extend classical linear models by allowing coefficients
to change as a function of one or more variables (Hastie and
Tibshirani 1993; Fan and Zhang 1999; Chiang et al. 2001; Gelfand
et al. 2003). This adaptability makes VCMs particularly effective

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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in capturing dynamic relationships between predictors and
response variables that traditional models with fixed/constant
coefficients fail to describe adequately. Expanding on the capa-
bilities of VCMs, spatiotemporal varying coefficient models
(STVCMs) incorporate spatial and temporal information into
the coefficient functions. This integration is crucial to under-
standing complex phenomena characterized by both spatial and
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temporal variability. Traditional models, which assume constant
effects across space and time, often miss these complex varia-
tions, leading to biased estimates and inaccurate predictions.
This limitation could be particularly critical in fields such as
environmental science, epidemiology, and economics, where
the interaction between spatial and temporal factors plays a
significant role in affecting outcomes.

For instance, in the analysis of particulate matter (PM) data,
it is key to account for spatiotemporal heterogeneity in the
effects of various meteorological factors such as temperature,
humidity, wind speed, and atmospheric pressure on PM levels
(Keller et al. 2015; Xue et al. 2017). Models with fixed coefficients
assume a uniform effect of these factors in different regions
and times, leading to the overlooking of critical variations. The
STVCM addresses this issue by allowing coefficients to change
dynamically across space and time, providing a more accurate
and detailed representation of the underlying processes. In the
context of PM studies, this flexibility provides valuable insights
into how and why PM levels fluctuate, revealing patterns such as
higher sensitivity to temperature changes in urban areas during
summer months or varying impacts of wind speed in coastal
versus inland regions. This detailed understanding enables more
accurate predictions of PM levels and supports the development
of targeted interventions to reduce pollution and protect public
health.

In many applied fields, data are frequently collected as count
or binary responses associated with geographic locations and
temporal points. In this article, we consider the Generalized
SpatioTemporal Varying Coefficient Model (GSTVCM), which
encompasses various existing semiparametric models. Let 
and Ω represent the one-dimensional (1D) time domain and
the two-dimensional (2D) spatial domain that can have arbi-
trary shapes. Suppose that there are 𝑛 space-time observations
{(S𝑖, 𝑇𝑖,X𝑖, 𝑌𝑖)}𝑛𝑖=1 from the joint distribution of (S, 𝑇 ,X, 𝑌 ). For
the 𝑖th observed quadruplet, 𝑇𝑖 ∈  and S𝑖 ≡ (𝑆𝑖1, 𝑆𝑖2)⊤ ∈ Ω are
the time and spatial location of the 𝑖th observation, X𝑖 represents
the observed explanatory variables, and 𝑌𝑖 is the response of
interest. In particular, X𝑖 and 𝑌𝑖 are observations at (S𝑖, 𝑇𝑖). For
simplicity, we denote X𝑖 ≡ X𝑖(S𝑖, 𝑇𝑖) and 𝑌𝑖 ≡ 𝑌𝑖(S𝑖, 𝑇𝑖), unless
emphasizing their spatiotemporal characteristics. Similarly, we
use x ≡ x(s, 𝑡) and 𝑦 ≡ 𝑦(s, 𝑡) unless otherwise stated.

We focus on the exponential dispersion family of distri-
butions, including binomial, Poisson, and negative bino-
mial, with a fixed number of parameters for modeling
purposes. We assume that the conditional density of 𝑌

given (S, 𝑇 ,X) = (s, 𝑡, x) belongs to the exponential family
𝑓𝑌 |S,𝑇 ,X(𝑦|s, 𝑡, x) = exp [𝑦𝜉(s, 𝑡, x) − {𝜉(s, 𝑡, x)} + (𝑦)], for
known functions  and , where 𝜉 is the so-called natu-
ral parameter and is related to the unknown mean response by
𝜇(s, 𝑡, x) = E(𝑌 |S = s, 𝑇 = 𝑡,X = x) = ′{𝜉(s, 𝑡, x)}. In GSTVCM,
𝜇(s, 𝑡, x) is modeled via a link function 𝑔 in the following form:

𝑔{𝜇(s, 𝑡, x)} = 𝛽0(s, 𝑡) +
𝑝∑

𝓁=1
𝛽𝓁(s, 𝑡)𝑥𝓁(s, 𝑡) (1)

where 𝛽0, 𝛽1, . . . , 𝛽𝑝 are unknown trivariate functions, varying
w.r.t. location s and time 𝑡, indicating the relationship between X
and 𝑌 can vary along time and across different spatial locations.

Our work on GSTVCM draws inspiration from previous research
on spatial varying coefficient models (SVCMs; see Kim and
Wang 2021) and STVCMs. In the spatial regression context,
Gelfand et al. (2003) introduced a Bayesian hierarchical SVCM
that employs Gaussian processes to model coefficient functions.
Another prominent approach is the geographically weighted
regression (GWR)method (Fotheringhamet al. 2002),which uses
a weighted least squares approach to estimate the surface of the
coefficient, with the bandwidth parameter determined through
domain knowledge or cross-validation.

One of the main challenges with the (G)STVCM is that, while
they account for spatiotemporal heterogeneity, they often sac-
rifice model parsimony. This increased complexity arises from
the large number of parameters required to capture the varying
effects across both space and time, making the models more
difficult to interpret and manage. Furthermore, when dealing
with limited sample sizes, traditional nonparametric models
are prone to overfitting, fitting the noise in the data rather than
the underlying trend. This overfitting leads to overly optimistic
predictions that do not generalize well to new data. There have
been several recent attempts to address this issue for VCMs by
detecting whether coefficients are varying or constant.

Traditional spatiotemporal models have contributed extensively
to capturing spatial and temporal heterogeneity. Bayesian hier-
archical models, such as those introduced by Wikle et al. (1998),
Stroud et al. (2001), Gelfand et al. (2003), and Paez et al. (2008),
offer extensive flexibility by incorporating random effects,
functional effects, and mixtures of spatially, temporally and
spatiotemporally varying coefficients. These frameworks excel in
handling non-Gaussian data and accounting for covariate mea-
surement errors. However, they present significant challenges,
including the careful specification of prior distributions and
substantial computational costs for high-dimensional datasets
due to iterative sampling techniques such as Markov Chain
Monte Carlo. These limitations often preclude their application
in real-time analysis or in scenarios requiring rapid computa-
tion. On the other hand, frequentist approaches, such as the
geographically and temporally weighted regression (GTWR)
method (Huang et al. 2010) provide a computationally more
efficient alternative for modeling spatiotemporal dynamics.
GTWR excels in estimating varying coefficients across space and
time using weighted local regression; however, it often lacks the
hierarchical and probabilistic flexibility of Bayesian methods.

In this paper, we propose a more efficient learning approach for
Generalized SpatioTemporal Semi-varying Coefficient Models
(GST-SVCMs) with structure identification, which addresses
these gaps by adopting a frequentist perspective. Our proposed
framework automatically identifies a parsimonious model struc-
ture by distinguishing between spatiotemporally varying and
constant covariate effects. Once we correctly identify the varying
and fixed effect of the covariates, the original model reduces
to a partially varying coefficient form. This approach offers a
balance between flexibility and simplicity, enabling researchers
to capture complex relationships without overcomplicating the
model structure.

The proposed GST-SVCM structure identification framework is
designed to separate these components, reducing the number of
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parameters and enhancing the interpretability and parsimony of
the model without compromising the ability to capture complex
spatiotemporal dynamics. By avoiding unnecessary complexity,
this approach mitigates risk overfitting, ensuring that the model
remains robust even with limited data. Our proposed workflow is
divided into two stages: structure identification and refitting. The
structure identification phase is crucial as it sets the foundation
for a more efficient and accurate model, which is then refined in
the refitting stage.

Identifying constant coefficients is a crucial task, even in VCMs,
and this has been extensively discussed by various research
studies. Different methods have been proposed to distinguish
constant coefficients from varying ones effectively; see (Noh
et al. 2012; Wang and Kulasekera 2012; Lian et al. 2015, 2013;
Chen et al. 2017; Li et al. 2015) and SVCM; see (Mu et al. 2020;
Li et al. 2021). However, they all studied the VCM with a time
index, spatial index, or other univariate indices. In contrast, our
methodology is developed under the STVCM framework with
both spatial and time indices, which requires more advanced
tools to deal with the spatiotemporal index and corresponding
irregular domain.

When data are collected over complex spatial domains, conven-
tional nonparametric methods often suffer from the “leakage”
problem (Ramsay 2002; Wood et al. 2008), which refers to poor
inference performance when smoothing over boundaries. To
address this issue, we utilize the tensor product spline on the
triangular prismatic partitions (Yu et al. 2022) as described
in Section 2.1. Compared to other kernel smoothing-based
methods or traditional tensor product smoothing, our approach
effectively handles the intricacies of irregular data distributed
across complex domains. Furthermore, our method facilitates
the convenient application of regularization techniques for
model identification, which remains a challenge for adaptive or
sequential smoothing approaches.

To achieve structure identification, we propose a penalized
approach for model structure identification (i.e., determination
of spatially varying vs. constant coefficients) followed by model
estimation with identified sparse structure. Our proposed frame-
work includes an automatic model identification method that
balances flexibility and efficiency by considering both spatiotem-
porally varying and constant effects of various factors affecting
response variables. This enables a more accurate understanding
of the heterogeneity and dynamics of these effects, as it efficiently
identifies constant and spatiotemporally varying components. To
support this methodology, we establish theoretical guarantees for
the consistency of the identified model structure. Additionally,
we prove that the estimators of constant coefficients and varying
coefficient functions are consistent, with the former exhibiting
asymptotic normality, facilitating reliable statistical inference.

The contributions of this paper are threefold. First, we propose
an estimation method for GST-SVCMs using tensor product
splines over triangular prismatic partitions and demonstrate the
theoretical properties of both constant and varying coefficients.
To the best of our knowledge, this is the first work developed
within the generalized spatiotemporal framework. Second, we
introduce a structure identification method for GST-SVCMs,
which enables automatic model selection through penalization,

with theoretical guarantees. The practicality and effectiveness of
GST-SVCM with structure identification are validated through
extensive simulation studies. Third, we extend GST-SVCMs by
developing the Hierarchical Spatiotemporal Varying Coefficient
Model (HSTVCM), which further refines structural identification
by distinguishing spatially varying, temporally varying, and fully
spatiotemporal effects, enhancing both model interpretability
and estimation accuracy.

The rest of the article is organized as follows. In Section 2, we
introduce GST-SVCMs and our proposed estimation method.
We also developed theories regarding the convergence of esti-
mations and the asymptotic distribution of linear coefficients. In
Section 3, we describe the penalized spline framework to identify
the structure of a GST-SVCM using nonparametric approxima-
tion and present a theorem on the accuracy of model structure
identification. Section 4 discusses the details of implementation,
and Section 5 evaluates the performance of the proposed method
through simulation studies. Section 6 illustrates how the pro-
posed method can be extended to achieve a more granular model
identification. In Section 7, we present our empirical analysis
of the PM data. Finally, Section 8 provides concluding remarks.
Proofs of the theorems, technical lemmas, and additional
simulation studies are included in the Supporting Information.

2 | Estimation of GST-SVCMs

This section investigates GST-SVCMs, a class of semi-varying
coefficient models where some explanatory variables have con-
stant coefficients, while others have spatiotemporally varying
coefficients. The GST-SVCM is defined as:

𝑔{𝜇(s, 𝑡, x)} ≡ 𝜂(s, 𝑡, x;𝜶, 𝜷,) = 𝛽0(s, 𝑡)

+
∑
𝓁∈c

𝛼𝓁𝑥𝓁(s, 𝑡) +
∑
𝓁∈

𝛽𝓁(s, 𝑡)𝑥𝓁(s, 𝑡) (2)

where (s, 𝑡) ∈ Ω ×  , and andc are the index sets, such that
𝑥𝓁 has spatiotemporally varying coefficient function 𝛽𝓁 , or only
constant coefficients 𝛼𝓁 , respectively. If all coefficient functions
are constants, that is, = ∅, model (2) reduces to a classical lin-
ear regression model. On the other hand, if all coefficients vary
spatiotemporally, that is, c = ∅, model (2) becomes a special
case of GSTVCM in (1), representing the most complex form of
the model.

To facilitate the discussion, we introduce the follow-
ing notation. For a two-dimensional domain Ω and any
function 𝑓 ∶ Ω → ℝ, its supremum norm is defined as||𝑓 ||∞,Ω = sups∈Ω |𝑓 (s)|. We also define its semi-norm as|𝑓 |𝑘,∞,Ω = max𝑖+𝑗=𝑘 ||∇𝑖

𝑠1
𝐷
𝑗
𝑠2
𝑓 (𝑠1, 𝑠2)||∞,Ω, where 𝑠1 and 𝑠2

denote the coordinates, and ∇𝑖
𝑠1
represents the partial derivative

of degree 𝑖 in the direction of 𝑠1. We consider the function space:

 =
{
𝜂(s, 𝑡, x;𝜶, 𝜷,) ∶ 𝜶 ∈ ℝ|c|;

𝛽𝓁(s, 𝑡) ∈ 𝕎𝑑+1(Ω)⊗ ℂ𝜚−2( ),𝓁 ∈ {0} ∪},
where 𝕎𝑑+1(Ω) = {𝑓 ∈ Ω ∶ |𝑓 |𝑘,∞,Ω < ∞, 0 ≤ 𝑘 ≤ 𝑑 + 1} is the
standard Sobolev space of bivariate functions overΩ with degree
𝑑 + 1; ⊗ denotes the tensor product; and ℂ𝜚−2( ) is the space
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consisting of all continuous univariate functions whose (𝜚 − 2)th
order derivatives exist and are continuous over  .

2.1 | Estimation Method

We start with the GST-SVCM estimation procedure under the
truemodel structure, where the index sets andc} are known.
The key idea is to approximate the varying coefficient function
𝛽𝓁 in (2) using tensor product splines over prismatic partitions
(Yu et al. 2022) based on B-splines and Bernstein basis poly-
nomials (Lai and Schumaker 2007), followed by the standard
quasi-likelihood approach.We introduce these concepts in detail.

2.1.1 | B-Splines and Bernstein Basis Polynomials

For the time domain  = [𝑡1, 𝑡2], we use univariate B-splines
on  of degree 𝜚 with 𝑁1 interior knots. In particular,
we consider interior knots 𝝅 = {𝜋1, . . . , 𝜋𝑁1

}, such that
𝑡1 = 𝜋1−𝜚 = · · · = 𝜋0 < 𝜋1 < · · ·𝜋𝑁1

< 𝜋𝑁1+1 = · · · = 𝜋𝑁1+𝜚 = 𝑡2.
Polynomial splines of order 𝜚 are polynomial functions with
(𝜚 − 1)-degree on subintervals 𝐼𝑏 = [𝜋𝑏, 𝜋𝑏+1), 𝑏 = 0, . . . , 𝑁1 − 1,
and 𝐼𝑁1

= [𝜋𝑁1
, 𝜋𝑁1+1], and have 𝜚 − 2 continuous derivatives

globally. Let𝕌𝜚(𝝅) stand for the space of such polynomial splines,
whose bases can be formed as B-splines, which are denoted as
U(𝑡) = {𝑈𝑞(𝑡), 𝑞 ∈  }⊤, where = {1, . . . , 𝑁1 + 𝜚} is the index
set of the basis with cardinality | | = 𝑁1 + 𝜚. Let ℎ𝑏 = 𝜋𝑏+1 − 𝜋𝑏
be the distance between two adjoint knots and ℎ = max0≤𝑏≤𝑁1

ℎ𝑏
be the maximum distance. We have ℎ ≍ 𝑁−1

1 due to the constant
length of  .
For the spatial domain Ω ⊂ ℝ2, we approximate it using a trian-
gulation△ = {𝜏𝑗 , 1 ≤ 𝑗 ≤ 𝑁2}, a collection of𝑁2 triangles such
that any pair of triangles, 𝜏𝑗 and 𝜏𝑗′ , either share an edge, a vertex,
or do not intersect, andΩ = ∪𝑁2

𝑗=1𝜏𝑗 . Given a triangulation△ and
degree 𝑑 > 0, we define a collection of bivariate Bernstein-Bézier
polynomials, {𝐵𝑚,𝑚 ∈ }, which form a basis for the function
space of degree 𝑑 and smoothness 𝑟, denoted 𝕊𝑟

𝑑
(△). In particu-

lar, 𝕊𝑟
𝑑
(△) is defined as 𝕊𝑟

𝑑
(△) = {𝑔 ∈ ℂ𝑟(Ω), 𝑔|𝜏 ∈ ℙ𝑑 , 𝜏 ∈ △},

where ℙ𝑑 = {𝑓 (𝑠1, 𝑠2) =
∑

𝑘 𝑐𝑘𝑠
𝑎𝑘
1 𝑠

𝑏𝑘
2 , 𝑎𝑘 + 𝑏𝑘 = 𝑑, 𝑐𝑘 ∈ ℝ} is the

set of homogeneous bivariate polynomials of degree 𝑑, ℂ𝑟(Ω)
is the space of 𝑟th continuously differentiable functions, and
the cardinality of  is || = 𝑁2(𝑑 + 2)(𝑑 + 1)∕2. Therefore,
for any function 𝑔 ∈ 𝕊𝑟

𝑑
(△), we can write its expansion as

𝑔(s) =
∑

𝑚∈ 𝛾𝑚𝐵𝑚(s), with linear constraints; see Lai and

Wang (2013). We denote the triangulation size of △, defined
as the longest edge of all triangles in △, by |△ |. Due to the
constant area of Ω, we have |△ | ≍ 𝑁

−1∕2
2 .

2.1.2 | Tensor Product Splines and Quasi-Likelihood
Approach

For a spatiotemporal domain Ω ×  , we construct a triangular
prismatic partition  as follows. First, we construct triangula-
tion △ with 𝑁2 triangles on Ω, and interval partitions with 𝑁1
interior knots 𝝅 over  . For a triangle 𝜏𝑎 ∈ △ and an interval
𝐼𝑏, 0 ≤ 𝑏 ≤ 𝑁1, we define their Cartesian product Δ𝑎,𝑏 = 𝜏𝑎 × 𝐼𝑏
as a triangular prism, as illustrated in Figure 1a. Then we define
a face-to-face triangular prismatic partition ofΩ ×  ,  = {Δ𝑎,𝑏 ∶
1 ≤ 𝑎 ≤ 𝑁2, 0 ≤ 𝑏 ≤ 𝑁1}, such that each pair of prisms either
shares a common vertex, edge, or face or does not overlap. By con-
struction, Δ𝑎,𝑏’s are right triangular prisms with six vertices, nine
edges, and five faces; see Figure 1b.

Based on a triangular prismatic partition  of domain Ω ×  ,
we consider the function space: 𝕋 (𝜚,𝑑,𝑟)() = {

∑
𝑞∈

∑
𝑚∈

𝑐𝑞,𝑚𝑈𝑞(𝑡)𝐵𝑚(s) ∶ c = 𝟎, for c = (𝑐𝑞,𝑚, 𝑞 ∈  , 𝑚 ∈ )⊤}, where
 is a constraint matrix to enforce smoothness conditions on
the boundaries of each Δ𝑎,𝑏; see the supplementary material
of Yu et al. (2020) for an example of . Next, we define the
corresponding tensor product basis: 𝝍(s, 𝑡) = {𝜓𝑗(s, 𝑡), 𝑗 ∈  } =
(𝑈1(𝑡)𝐵1(s), . . . , 𝑈| |(𝑡)𝐵1(s))⊤, 𝑈1(𝑡)𝐵2(s), . . . , 𝑈| |(𝑡)𝐵2(s), . . . ,
𝑈| |(𝑡)𝐵||(s))⊤. Given a model structure , we define
the nonparametric approximation of any function 𝛽(s, 𝑡) ∈
𝕎𝑑+1(Ω)⊗ ℂ𝜚−2( ) as 𝛽𝓁(s, 𝑡) ≈ 𝝍(s, 𝑡)⊤𝜸𝓁 , and denote
𝜂(s, 𝑡, x;𝜶, 𝜸,) =

∑
𝓁∈c 𝛼𝓁𝑥𝓁 +

∑
𝓁∈{0}∪ 𝝍(s, 𝑡)⊤𝜸𝓁𝑥𝓁 as the

nonparametric approximation of 𝜂0(s, 𝑡, x). Correspondingly, we
define the approximation space:

 =
{
𝜂(s, 𝑡, x;𝜶, 𝜸,) ∶ 𝜶 ∈ ℝ|c|;

𝛽𝓁(s, 𝑡) = 𝝍(s, 𝑡)⊤𝜸 ∈ 𝕋 (𝜚,𝑑,𝑟)(),𝓁 ∈ {0} ∪} (3)

To address the constraint on , we employ a QR decom-
position. Specifically, by the QR decomposition of , ⊤ =

(1,2)
(1

𝟎

)
, where (1,2) is an orthogonal matrix and1 is

a full rank matrix with the same rank as . Applying the repa-
rameterization 𝜸𝓁 = 2𝜸

∗
𝓁 , 𝝍

∗
𝓁(s, 𝑡) = ⊤

2𝝍𝓁(s, 𝑡), the constraint𝜸𝓁 = 𝟎 would be automatically satisfied.

FIGURE 1 | Example of (a) one triangular prism element Δ𝑎,𝑏 and (b) a triangular prismatic partition  . (a)Δ𝑎,𝑏, (b)  = ∪𝑎,𝑏Δ𝑎,𝑏.
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If var(𝑌 ) = 𝜎2𝑉 {𝑔−1(𝜂(S, 𝑇 ,X;𝜶, 𝜷,)} for some known pos-
itive function 𝑉 , and 𝜎2 is a dispersion parameter, then
estimation of the mean can be achieved by replacing the
conditional log-likelihood function log{𝑓𝑌 |S,𝑇 ,X(𝑦|s, 𝑡, x)}
with a quasi-likelihood function 𝑄{𝑔−1(𝜂), 𝑦}, which satisfies
∇𝜇𝑄(𝜇, 𝑦) = (𝑦 − 𝜇)∕{𝜎2𝑉 (𝜇)}.

Now we define the penalized negative log quasi-likelihood 𝐿𝑛,:

𝐿𝑛,(𝜶, 𝜷) = −1
𝑛

𝑛∑
𝑖=1

𝑄
[
𝑔−1{𝜂(S𝑖, 𝑇𝑖,X𝑖;𝜶, 𝜷,)}, 𝑌𝑖

]
+
∑
𝓁∈

{𝜆1,𝓁𝑓1(𝛽𝓁) + 𝜆2,𝓁𝑓2(𝛽𝓁)} (4)

where 𝑓1(𝛽𝓁) = ∫Ω× (∇2
𝑡
𝛽𝓁)2𝑑𝑠1𝑑𝑠2𝑑𝑡 and 𝑓2(𝛽𝓁) = ∫Ω×{

(∇2
𝑠1
𝛽𝓁)2 + (∇2

𝑠2
𝛽𝓁)2

}
𝑑𝑠1𝑑𝑠2𝑑𝑡 are functions measuring the

roughness of 𝛽𝓁 w.r.t. time and space respectively (Yu et al. 2022);
∇𝑞
𝑠𝑗
is the 𝑞th partial derivative in the direction 𝑠𝑗 , 𝑗 = 1, 2; ∇𝑞

𝑡 is
the 𝑞th derivative w.r.t. 𝑡; 𝜆1,𝓁 and 𝜆2,𝓁 are the penalty parameters
controlling the smoothness of 𝛽𝓁 w.r.t. 𝑡 and s, respectively.

Note that 𝑓1(𝛽𝓁) = 𝜸⊤𝓁P1𝜸𝓁 and 𝑓2(𝛽𝓁) = 𝜸⊤𝓁P2𝜸𝓁 , where P1 and
P2 are matrices that store the second-order derivatives of a tensor
product spline function

∑
𝑗∈ 𝜓𝑗

(
𝑠1, 𝑠2, 𝑡

)
𝛾𝑗 w.r.t. 𝑡 and s, respec-

tively. Specifically, for 𝜸 = {𝛾𝑗}𝑗∈ , 𝑓1(
∑

𝑗∈ 𝜓𝑗𝛾𝑗) = 𝜸⊤P1𝜸 =
𝜸⊤P𝑈 ⊗M𝐵𝜸 and 𝑓2(

∑
𝑗∈ 𝜓𝑗𝛾𝑗) = 𝜸⊤P2𝜸 = 𝜸⊤M𝑈 ⊗ P𝐵𝜸,

where M𝑈 and P𝑈 are | | × | | matrices with (M𝑈

)
𝑞,𝑞′

=
∫ 𝑈𝑞(𝑡)𝑈𝑞′ (𝑡)𝑑𝑡 and

(
P𝑈
)
𝑞,𝑞′

= ∫ ∇2
𝑡
𝑈𝑞(𝑡)∇2

𝑡
𝑈𝑞′ (𝑡)𝑑𝑡, and M𝐵

and P𝐵 are || × ||matrices with(
M𝐵

)
𝑚,𝑚′ = ∫Ω

𝐵𝑚

(
𝑠1, 𝑠2

)
𝐵𝑚′

(
𝑠1, 𝑠2

)
𝑑𝑠1𝑑𝑠2,(

P𝐵
)
𝑚,𝑚′ = ∫Ω

{
∇2
𝑠1
𝐵𝑚

(
𝑠1, 𝑠2

)
∇2
𝑠1
𝐵𝑚′

(
𝑠1, 𝑠2

)
+ ∇2

𝑠2
𝐵𝑚

(
𝑠1, 𝑠2

)
∇2
𝑠2
𝐵𝑚′

(
𝑠1, 𝑠2

)}
𝑑𝑠1𝑑𝑠2.

Thus, (4) can be simplified as an unconstrained minimization
problem:

(𝜶̂, 𝜸̂∗) = arg min
𝜶,𝜸∗

𝐿𝑛,(𝜶, 𝜸∗) (5)

where
𝐿𝑛,(𝜶, 𝜸∗)

= −1
𝑛

𝑛∑
𝑖=1

𝑄

[
𝑔−1

{∑
𝓁∈c

𝛼𝓁𝑋𝑖𝓁

+
∑

𝓁∈{0}∪
𝑋𝑖𝓁𝝍

∗(S𝑖, 𝑇𝑖)⊤𝜸∗𝓁

}
, 𝑌𝑖

]
+
∑
𝓁∈

𝜆1,𝓁𝜸
∗⊤
𝓁 ⊤

2P12𝜸
∗
𝓁

+
∑
𝓁∈

𝜆2,𝓁𝜸
∗⊤
𝓁 ⊤

2P22𝜸
∗
𝓁 .

2.2 | Theoretical Properties

This section presents the asymptotic properties of the proposed
estimators for the components of the GST-SVCM with the true
model structure0.

For real-valued vectors v, v1, v2 ∈ ℝ𝑝, we define the inner prod-
uct as ⟨v1, v2⟩ = v⊤1 v2, and the Euclidean norm as ||v||2 =√⟨v, v⟩ =√∑𝑝

𝓁=1𝑣
2
𝓁 . We denote |v| = max1≤𝓁≤𝑝 𝑣𝓁 as the

vector supremum norm. For any two functions 𝑓1, 𝑓2 ∈  ,
we consider the theoretical inner product ⟨𝑓1, 𝑓2⟩ =
E{𝑓1(S, 𝑇 ,X)𝑓2(S, 𝑇 ,X)}, and the empirical inner product⟨𝑓1, 𝑓2⟩𝑛 = 𝑛−1

∑𝑛

𝑖=1{𝑓1(S𝑖, 𝑇𝑖,X𝑖)𝑓2(S𝑖, 𝑇𝑖,X𝑖)}. Consequently,
for any function 𝑓 ∈  , the theoretical norm is ‖𝑓‖2 = ⟨𝑓, 𝑓⟩,
and the empirical norm is ‖𝑓‖2

𝑛
= ⟨𝑓, 𝑓⟩𝑛. Let 𝑞1(𝜂, 𝑦) and

𝑞2(𝜂, 𝑦) be the first and second partial derivatives of the quasi-
likelihood function 𝑄{𝑔−1(𝜂), 𝑦}, respectively, where 𝑞1(𝜂, 𝑦) =
𝜕

𝜕𝜂
𝑄{𝑔−1(𝜂), 𝑦} = {𝑦 − 𝑔−1(𝜂)}𝜌1(𝜂), 𝑞2(𝜂, 𝑦) =

𝜕2

𝜕𝜂2
𝑄{𝑔−1(𝜂), 𝑦} =

{𝑦 − 𝑔−1(𝜂)}𝜌′1(𝜂) − 𝜌2(𝜂), and 𝜌𝑗(𝜂)={
𝜕

𝜕𝜂
𝑔−1(𝜂)}𝑗∕[𝜎2𝑉 {𝑔−1(𝜂)}],

𝑗 = 1, 2.

Throughout the rest of the paper, we use the subscript “0” to
denote the underlying true parameter and space; for example,
0, 𝜶0 = (𝛼0𝓁 ,𝓁 ∈ c

0)
⊤, and 𝜷0 = (𝛽00, {𝛽0𝓁}𝓁∈0

)⊤. We define
0 and 0 similarly to  and , respectively, by assigning
 = 0. We denote the oracle estimator as 𝜽0 = (𝜶⊤

0 , 𝜸
∗⊤
0 )⊤

and 𝜂(s, 𝑡, x;𝜶0, 𝜸
∗
0 ,0) = x⊤0

𝜶0 +
∑

𝓁∈0
𝝍∗

𝓁(s, 𝑡)
⊤𝜸∗0𝓁 .We define

the random noise 𝜀𝑖 = 𝜀(S𝑖, 𝑇𝑖,X𝑖) = 𝑌𝑖 − 𝑔−1(𝜂0(S𝑖, 𝑇𝑖,X𝑖)) as the
deviance of 𝑌𝑖 from the true mean.

In the following theoretical analysis, we adopt an infill
asymptotic framework, where the number of observations
increases within a fixed domain. We first state the technical
assumptions.

(A1) For 𝓁 ∈ 0, 𝛽0𝓁 ∈ 𝕎𝑑+1,∞(Ω) × ℂ𝜚−2( ).

(A2) The density function 𝑓 (s, 𝑡) of (S, 𝑇 ) is bounded away
from zero and infinity on Ω ×  .

(A3) The function 𝑞2(𝑥, 𝑦) < 0, 𝑐1 < |𝑞2(𝑥, 𝑦)| < 𝐶1 and 𝑐2 <| 𝜕
𝜕𝑥
𝑞2(𝑥, 𝑦)| < 𝐶2 for 𝑥 ∈ ℝ and 𝑦 in the range of

the response variable. The functions 𝑉 (⋅), 𝑔−1(⋅), the
first-order derivative of 𝑔−1(⋅) are continuous, and there
exist positive constants 𝑐𝜌 and 𝐶𝜌 such that 𝑐𝜌 ≤ 𝜌2(⋅) ≤
𝐶𝜌. For each (s, 𝑡, x), Var(𝑌 |S = s, 𝑇 = 𝑡,X = x) and
𝑔′(𝜇(s, 𝑡, x)) are nonzero.

(A4) {(S𝑖, 𝑇𝑖,X𝑖, 𝑌𝑖, 𝜀𝑖)}𝑛𝑖=1 are independently and identically
distributed, where the errors satisfy E{𝜀𝑖|S𝑖 = s, 𝑇𝑖 =
𝑡,X𝑖 = x} = 0 and E(|𝜀𝑖|2+𝛿|S𝑖 = s, 𝑇𝑖 = 𝑡,X𝑖 = x) < ∞ for
some 𝛿 ∈ (1∕2,∞).

(A5) For any 𝓁 = 1, . . . , 𝑝, there exists a positive con-
stant 𝐶𝓁 such that |𝑋𝓁| ≤ 𝐶𝓁 ; Denote Q(s, 𝑡) =
E
{
(1,X⊤)⊤(1,X⊤)|||S = s, 𝑇 = 𝑡

}
. The eigenvalues of

Q(s, 𝑡) are bounded away from 0 and infinity uniformly
for all s ∈ Ω for all (s, 𝑡) ∈ Ω ×  .

(A6) Assume there exists some constant 0 < 𝑐 < 𝐶 < ∞, such
that 𝑐 ≤ max𝑏 ℎ𝑏∕min𝑏 ℎ𝑏 ≤ 𝐶 .

(A7) The triangulation △ is 𝜋-quasi-uniform, that is, there
exists a positive constant 𝜋 such that |△ |∕𝑟△ ≤
𝜋, where |△ | = max{|𝜏|, for any triangle 𝜏 ∈ △} and
𝑟△ = min{𝑟𝜏 , 𝜏 ∈ △}. Note here |𝜏| is the length of the
longest edge of triangle 𝜏, and 𝑟𝜏 is the radius of the largest
disk that can be inscribed in triangle 𝜏.
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(A8) The size of the triangular prismatic partition △ and ℎ

satisfyℎ−1∕2|△|−1(log 𝑛
𝑛

)1∕2
→ 0, (ℎ𝜚 + ||△||𝑑+1) → 0,ℎ−5∕2|△ |−5 log 𝑛∕𝑛1∕2 → 0, ℎ2𝜚−3∕2|△ |−3𝑛1∕2 → 0, ℎ−3∕2|△ |2𝑑−1𝑛1∕2 → 0. The roughness penalty parameter

vectors Λ1 and Λ2 satisfy |Λ1|ℎ−2 → 0, |Λ2||△ |−4 → 0,|Λ1|2|△ |−3ℎ−11∕2𝑛1∕2 → 0, |Λ1|2|△ |−11ℎ−3∕2𝑛1∕2 → 0.

(A9) The matrix 𝚺 = E
[
𝜌2{𝜂0(S, 𝑇 ,X)}𝔻̃c(S, 𝑇 ,X)𝔻̃c(S, 𝑇 ,X)⊤

]
is positive definite, where 𝔻̃c(S, 𝑇 ,X) = 𝔻c(Xc

0
) −

Γ(S, 𝑇 ,X0
), and Γ(s, 𝑡, x0

) is a projection matrix in (8).

(A10) As 𝑛 → ∞, 𝜔𝑛 → 0, 𝑟𝑛∕𝑤𝑛 → 0, where 𝑟𝑛 is the𝐿2 conver-
gence rate of oracle estimator 𝜽̂ defined in Theorem S1 in
the Supporting Information.

Remark 1. These are mild and reasonable assumptions that
can be satisfied in many practical situations. Assumption (A1)
indicates the true coefficient functions 𝛽0𝓁 ,𝓁 ∈ 0 are rea-
sonably smooth; see Lai and Wang (2013). Assumption (A2)
ensures that realized observations of (S, 𝑇 ) are randomly scat-
tered withinΩ ×  . Assumption (A3) lists conditions that enable
the development of convergence and asymptotic normality under
quasi-likelihood framework. Assumption (A4) is a regularity
condition for regression. Assumption (A5) ensures there is no
multicollinearity among covariates. Assumptions (A6) and (A7)
of ℎ and △ are common assumptions in the spline approxima-
tion literature. Assumption (A8) lists the requirement for trian-
gular prismatic partition through ℎ and△, as well as the rough-
ness penalty parameters Λ1 and Λ2. Assumption (A9) ensures
𝔻̃c and 𝔻v are functionally unrelated, contributing to the asymp-
totic normality of linear coefficients 𝜶̂ in Theorem 2. Assumption
(A10) facilitates the consistency of structure identification in
Theorem S1.

Theorem 1 (Convergence rate of 𝜽̂). Assume Assumptions
(A1) to (A8) in the Supporting Information hold, under the true
structure0, then||𝜽̂ − 𝜽0||2 = 𝑂𝑝(𝑟𝑛), ||𝜂 − 𝜂0|| = 𝑂𝑝(𝑟𝑛ℎ−1∕2|△ |−1) (6)

where 𝑟𝑛 = ℎ−1∕2|△ |−1(log 𝑛∕𝑛)1∕2 + (ℎ𝜚 + ||△||𝑑+1) + |Λ1|ℎ−2 +|Λ2||△ |−4, and |Λ𝑏| = max𝓁 𝜆𝑏,𝓁 , 𝑏 = 1, 2 represent the maxi-
mum roughness penalty parameter.

Theorem 1 establishes the convergence of the GST-SVCM esti-
mators. The convergence rate is determined by the fineness of the
triangular prismatic partition (|△ | and ℎ), the number of obser-
vations (𝑛), the degree of bivariate spline (𝑑), and the order of the
univariate spline (𝜚).

Next, Theorem 2 demonstrates that the constant coefficients
𝛼𝓁 ,𝓁 ∈ c

0 follow a normal distribution asymptotically.

Theorem 2 (Asymptotic Normality of 𝜶̂). When
0 is known, under Assumptions (A1) to (A9) in the
Supporting Information, the constant coefficients 𝜶̂ in the
refitting process satisfy that

√
𝑛(𝜶̂ − 𝜶0)

𝑑
−−→𝑁(𝟎,𝚺−1), where

𝚺 = E
[
𝜌2{𝜂0(S, 𝑇 ,X)}𝔻̃c(S, 𝑇 ,X)𝔻̃c(S, 𝑇 ,X)⊤

]
, and

𝔻v⊤0
= {(1,X⊤

𝑖,0
)⊤ ⊗ 𝜓∗(S𝑖, 𝑇𝑖)}𝑛𝑖=1

𝔻c⊤0
= (𝑋𝑖𝓁 , 1 ≤ 𝑖 ≤ 𝑛,𝓁 ∈ c

0) (7)

𝔻̃c0
(S, 𝑇 ,X) = 𝔻c(Xc

0
) − Γ(S, 𝑇 ,X0

)

Γ⊤(S, 𝑇 ,X0
) = 𝔻v⊤0

E{𝔻v0
𝔻v⊤0

}−1E{𝔻v0
𝔻c⊤0

} (8)

Theorem 2 establishes the asymptotic normality of 𝜶̂, with
mean zero and a covariance matrix related to the covariance
of {𝑋𝓁 ,𝓁 ∈ c

0} that is orthogonal to the space spanned by
{𝑋𝓁 ,𝓁 ∈ 0}.

3 | GST-SVCMWith Structure Identification

In this section, we propose an automatic structure identification
method for GST-SVCMs. We address the challenge of identifying
the unknown true model structure 0 in (2) by formulating the
structure identification as a penalized quasi-likelihood problem,
followed by reestimating the model in tensor product splines as
described in Section 2.1.

3.1 | Structure Identification Methods

To identify 0, we employ a regularization approach to detect
the varying signal of 𝛽𝓁 . We first decompose 𝛽𝓁(s, 𝑡) = 𝛼𝓁 +
𝛽𝑣𝓁(s, 𝑡), where 𝛽𝓁 is divided into a possibly nonzero constant
𝛼𝓁 and a centered varying coefficient function 𝛽𝑣𝓁(s, 𝑡). Cor-
respondingly, we decompose the approximation space  into
two parts:

𝑐 = {𝜂(s, 𝑡, x;𝜶, 𝜷,) ∶ 𝜶 ∈ ℝ|c|; 𝛽𝓁(s, 𝑡) ≡ 0},

𝑣 = {𝜂(s, 𝑡, x;𝜶, 𝜷,) ∶ 𝜶 ∈ ℝ|c|;
𝛽𝓁(s, 𝑡) ∈ 𝕋 (𝜚,𝑑,𝑟)

𝑣
(),𝓁 ∈ {0} ∪},

where 𝕋 (𝜚,𝑑,𝑟)
𝑣 () = {𝑓 ∈ 𝕋 (𝜚,𝑑,𝑟)() ∶ E(𝑓 ) = 0} represents the

space spanned by standardized tensor product spline basis
𝜓𝑁 (s, 𝑡), constructed as follows

𝜓𝑁
𝑗
(s, 𝑡) =

𝜓0
𝑗
(s, 𝑡)√

E{𝜓0
𝑗
(S, 𝑇 )2}

𝜓0
𝑗
(s, 𝑡) = 𝜓𝑗(s, 𝑡) − E{𝜓𝑗(S, 𝑇 )}, 𝑗 ∈  (9)

By construction, E{𝜓𝑁
𝑗
(S, 𝑇 )} = 0 and E{𝜓𝑁

𝑗
(S, 𝑇 )}2 = 1, for 𝑗 ∈

 . For simplicity,weuse𝜓𝑗 instead of𝜓𝑁
𝑗
for the remainder of the

paper. We use the superscript “I” to represent the identification
of the structure.

Next, we assume that all covariates have spatiotemporally varying
coefficients 𝛼𝓁 + 𝛽𝓁(s, 𝑡), 1 ≤ 𝓁 ≤ 𝑝, and that the intercept 𝛽0(s, 𝑡)
is spatiotemporally varying. For model identifiability, we enforce
the constraint E{𝛽𝓁(S, 𝑇 ) = 0}, 1 ≤ 𝓁 ≤ 𝑝. Thus, we arrive at the
working model for 𝜂,

𝜂I(s, 𝑡, x;𝜶, 𝜷) = 𝛽0(s, 𝑡) +
∑
1≤𝓁≤𝑝

{𝛼𝓁 + 𝛽𝓁(s, 𝑡)}𝑥𝓁(s, 𝑡). (10)

If 𝓁 ∈ 0, we expect 𝛽𝓁 to significantly differ from a zero
constant function. Otherwise, if 𝓁 ∈ c

0, we expect 𝛽𝓁
to be negligible and potentially penalized to zero during
training.

6 of 17 Journal of Time Series Analysis, 2025
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Our method for model structure identification minimizes the
penalized negative log quasi-likelihood:

𝐿I
𝑛
(𝜶, 𝜷) = −1

𝑛

𝑛∑
𝑖=1

𝑄
[
𝑔−1{𝜂I(S𝑖, 𝑇𝑖,X𝑖;𝜶, 𝜷)}, 𝑌𝑖

]
+

𝑝∑
𝓁=1

𝑝𝜔𝑛
(||𝛽𝓁||𝑛) + 𝑝∑

𝓁=1
{𝜆1,𝓁𝑓1(𝛽𝓁) + 𝜆2,𝓁𝑓2(𝛽𝓁)},

where 𝑝𝜔𝑛
is the group SCAD penalty (Xue 2009) to identify

whether 𝛽𝓁 is in the true model, satisfying 𝑝𝜔𝑛
(0) = 0 and

𝑝′
𝜔𝑛
(𝑏) = 𝜔𝑛

{
𝐼(𝑏 ≤ 𝜔𝑛) +

(𝑎𝜔𝑛 − 𝑏)+
(𝑎 − 1)𝜔𝑛

𝐼(𝑏 > 𝜔𝑛)
}
,

for some 𝑎 > 2 and 𝑏 > 0.

Here, 𝜔𝑛 is the tuning parameter that controls the complexity of
the selected model and 𝑎 is a fixed constant. Let

(𝜶̂I
, 𝜷

I
) = arg min

𝛼𝓁∈ℝ,𝛽𝓁∈𝑣,1≤𝓁≤𝑝
𝐿I
𝑛
(𝜶, 𝜷) (11)

The estimated model structure is then:

̂ =
{
𝓁 = 1, . . . , 𝑝 ∶ 𝛽I𝓁 ≢ 0

}
, ̂𝑐 =

{
𝓁 = 1, . . . , 𝑝 ∶ 𝛽I𝓁 ≡ 0

}
(12)

By approximating 𝛽(⋅, ⋅) using tensor product splines, we can
reformulate the structure identification step of GST-SVCMs
defined in (10–12) as follows:

𝜂I(s, 𝑡, x;𝜶, 𝜸)

=
∑
1≤𝓁≤𝑝

{𝛼𝓁 + 𝝍𝓁(s, 𝑡)∗⊤𝜸∗𝓁}𝑥𝓁

𝐿I
𝑛
(𝜶, 𝜸∗)

= −1
𝑛

𝑛∑
𝑖=1

𝑄

[
𝑔−1

{ ∑
1≤𝓁≤𝑝

𝛼𝓁𝑋𝑖𝓁

+
∑
0≤𝓁≤𝑝

𝑋𝑖𝓁𝝍
∗(S𝑖, 𝑇𝑖)⊤𝜸∗𝓁

}
, 𝑌𝑖

]

+
𝑝∑

𝓁=1
𝑝𝜔𝑛

(||𝜸∗𝓁||) + ∑
𝓁∈

𝜆1,𝓁𝜸
∗⊤
𝓁 ⊤

2P12𝜸
∗
𝓁

+
∑
𝓁∈

𝜆2,𝓁𝜸
∗⊤
𝓁 ⊤

2P22𝜸
∗
𝓁 (13)

̂ =
{
𝓁 = 1, . . . , 𝑝 ∶ 𝜸̂

I
𝓁 ≢ 𝟎

}
̂𝑐 =

{
𝓁 = 1, . . . , 𝑝 ∶ 𝜸̂

I
𝓁 ≡ 𝟎

}
(14)

Remark 2. The definition of𝐿I
𝑛
and𝐿𝑛, differs in whether the

model structure is known. The former assumes a varying coef-
ficient function for all covariates𝑋𝓁 , while the latter assumes that
only {𝑋𝓁 ,𝓁 ∈ } has a varying coefficient function and aban-
dons the penalty for structure identification.

3.2 | Theoretical Properties

We illustrate in Theorem 3 that with a proper choice of penalty
parameter 𝜆, the model structure will be correctly identified in
probability.

Theorem 3 (Structure Identification). Under Assump-
tions (A1)–(A8), (A10), as 𝑛 → ∞, 𝑃 (̂ = 0) → 1 and 𝑃 (̂c =
c

0) → 1.

Theorem 3 shows that as the number of observations 𝑛 increases,
the probability of accurately identifying the unknown model
structure converges to one. Therefore, for spatiotemporal data
with an unknown heterogeneity structure, we can first perform
the model identification outlined in Section 3 followed by the
model estimation outlined in Section 2. This provides a compre-
hensive framework for handling GST-SVCM with an unknown
model structure.

4 | Implementation

In this section, we discuss the practical implementation of the
estimation and structure identification of GST-SVCMs. Without
loss of generality and robustness, we divide the entire proce-
dure into two stages: identification and refitting, as detailed in
Algorithm 1.

In the identification stage, the model structure is determined
using the group SCAD penalty with a relatively coarse triangu-
lation and lower spline degrees. This step is crucial for accurately
distinguishing between spatiotemporally varying and constant
covariate effects, thereby identifying a parsimoniousmodel struc-
ture. Once the structure is identified, the refitting stage estimates
the model with this identified structure using a finer triangula-
tion and higher spline degrees to obtainmore accurate parameter
estimates. Refitting is necessary because the coarse triangulation
and lower spline degrees used in the identification stage, while
reducing the number of parameters to estimate, can introduce
bias in the coefficient estimates. By refitting with a refined model
structure, we mitigate this bias, enhancing both reliability and
precision. This two-stage approach ensures an optimal balance
between model complexity and interpretability while maintain-
ing robustness and generality.

Group SCAD penalty parameters for tensor product
splines.The structure identification of GST-SVCMs incorporates
several tuning parameters that require careful consideration. In
Stage 1, we employ the group SCAD penalty parameter 𝜔𝑛 to
regulate the sparseness of 𝛽𝓁 , which is implemented using the
GRPREG package in R. To select the optimal penalty parameter
𝜔𝑛’s, we use the Extended Bayesian Information Criterion (EBIC)
proposed by Chen and Chen (2008) as follows:

EBIC(𝜔𝑛|𝜽̂) = −2𝐿𝑛(𝜽̂, 𝑌𝑖) + [𝜽̂] log(𝑛) + 2 log

(|𝜽̂|
[𝜽̂]

)
, (15)

where 𝐿𝑛(𝜽̂, 𝑌𝑖) =
∑𝑛

𝑖=1𝑄
[
𝑔−1{𝜂I(S𝑖, 𝑇𝑖,X𝑖; 𝜽̂)}, 𝑌𝑖

]
is the log

quasilikelihood; 𝑌𝑖 is estimated observation using penalized esti-
mator that minimizes (14); [𝜽] denotes the number of nonzero
entries of 𝜽, and |𝜽| denotes the length of 𝜽. The optimal 𝜔𝑛 is
selected to minimize EBIC(𝜔𝑛|𝜽̂).
Roughness penalty parameters 𝜆1,𝓁 , 𝜆2,𝓁 . During the identi-
fication stage, we omit the roughness penalty terms 𝜆1,𝓁𝑓1(𝛽𝓁)
and 𝜆2,𝓁𝑓2(𝛽𝓁), for 𝓁 = 1, . . . , 𝑝, in the penalized least squares
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ALGORITHM 1 | The estimation and structure identification procedure for GST-SVCMs.

1 Input: Dataset 𝐎 =
{
(𝐒𝑖, 𝑇𝑖,𝐗𝑖, 𝑌𝑖)

}𝑛
𝑖=1 for both model identification and refitting.

2 Output: Estimated of model structure ̂, ̂c; estimated parameters 𝜽̂ = (𝜶̂⊤, 𝜸̂∗⊤)⊤.
3 Stage 1: Identification.
4 Initialize with full model structure: = {1, ..., 𝑝},c = ∅.
5 Standardize {𝑌𝑖}𝑛𝑖=1 and {𝑋𝑖𝓁}𝑛𝑖=1 to obtain standardized dataset 𝐎

∗ = {(𝐒𝑖, 𝑇𝑖,𝐗∗
𝑖
, 𝑌 ∗

𝑖
)}𝑛
𝑖=1, where 𝐗∗ and 𝑌 ∗ are standardized covariates and

responses.
6 for 𝜔𝑛 ∈ ∗ do
7 (i) Compute 𝜽̂𝜔𝑛 by minimizing (14) with 𝐎∗.

8 (ii) Calculate corresponding extended BIC score, EBIC(𝜽̂
I
𝜔𝑛
) defined in (16).

9 end

10 Select optimal penalty parameter 𝜔∗ = argmin𝜔𝑛{EBIC(𝜽̂
I
𝜔𝑛
)}.

11 The estimated model structure, that is, ̂, ̂c, is then deduced by 𝜽̂
I
𝜔∗ as defined in (15).

12 Stage 2: Refitting.
13 Use selected model structure ̂, ̂c.
14 Estimate 𝜽̂ by minimizing (5) with original dataset 𝐎.

FIGURE 2 | Illustrations of horseshoe-shaped domain Ω for spatial locations s with (a) coarse triangulation with 32 triangles and (b) fine triangu-
lation with 86 triangles; Spatiotemporally varying coefficient functions (c) 𝛽0(s, 𝑡), (d) 𝛽1(s, 𝑡) and (e) 𝛽2(s, 𝑡) from two viewpoints.

problem to simplify the computation and avoid technical
difficulties. In the refitting stage, these penalties are reintroduced
to enhance model accuracy and stability. The optimal values of
𝜆1,𝓁 and 𝜆2,𝓁 can be determined using 𝑘-fold cross-validation
(CV), minimizing the cross-validated mean squared prediction
error (CV-MSPE): 𝑛−1

∑𝐾

𝑘=1
∑

𝑖∈𝑖[𝑘] (𝑔−1(𝜂
−[𝑘]
𝑖

) − 𝑌𝑖)2, where 𝑖[𝑘]
indicates the index set of 𝑘th fold, and 𝑔−1(𝜂−[𝑘]

𝑖
) represents the

predicted mean evaluated at (s𝑖, 𝑡𝑖, x𝑖) with the identified and
refitted model trained on all but the 𝑘th fold. The unique spatial
locations are randomly partitioned into 𝑘 equal-sized folds, 𝑘,
𝑘 = 1, . . . , 𝐾 , and with 𝑖[𝑘] = {𝑖 ∶ s𝑖 ∈ 𝑘} being the index set of
the 𝑘th fold. This sampling strategy is consistently applied for all
CV procedures in this paper.

Nonparametric settings. In our proposed framework, we
employ the following rules of thumb to balance computational
efficiency and accuracy when selecting the degree of univari-
ate splines 𝜚, the number of interior knots 𝑁1, the smoothness
for bivariate splines 𝑟, the degree of bivariate splines 𝑑 and the
triangulation△. In Stage 1, to allow for a more stable and faster
computation during the identification step, we recommend fixing

△ so that, on average, at least 𝑑(𝑑 + 1)∕2 observed locations
within each triangle in △, and 𝑟 = 0 for smoothness. In addi-
tion, we employ a CV procedure to select the optimal nonpara-
metric setting from a pool of nonparametric settings with lower
model complexity features:𝑁1 ∈ {3, 5}, 𝜚 ∈ {2, 3}, 𝑑 ∈ {0, 2}. In
Stage 2, with the identified model structure, users can consider
a refined triangulation △, a greater number of interior knots
𝑁1, and an increased degree of tensor product splines 𝑑 and 𝜚

to enhance accuracy. In the numerical examples, we consider
𝑁1 = 3, 𝜚 = 3, 𝑑 = 2, 𝑟 = 1.

5 | Simulation Studies

In this section, we conduct simulation studies to evaluate the
finite-sample performance of the proposed estimation and
structure identification procedure for GST-SVCMs. Across
all simulations, we consider the following conditional mean
function: 𝜇𝑖 =

∑
𝓁∈ 𝛽𝓁(s𝑖, 𝑡𝑖)𝑥𝑖𝓁(s𝑖, 𝑡𝑖) +

∑
𝓁∈c 𝛼𝓁𝑥𝑖𝓁(s𝑖, 𝑡𝑖),

where 𝛽𝓁(s, 𝑡) for 𝓁 = 1, 2 are spatiotemporally varying
coefficient functions defined as: 𝛽1(s, 𝑡) = 3𝑚0(s)(𝑡 − 0.5)2 and
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𝛽2(s, 𝑡) = 0.75𝑚0(s)(2𝑡 − 1). Here, 𝑚0(s) is the function defined
in mgcv::fs.test with parameters r0 = 0.1, r = 0.5,
l = 3, b = 1. These coefficient functions are illustrated
in Figure 2c,d. The coefficients 𝛼𝓁 for 𝓁 = 3, 4, 5, 6 are con-Q1
stants, with 𝛼3 = 1, 𝛼4 = −1, 𝛼5 = −0.5, 𝛼6 = −0.1. For 1 ≤ 𝓁 ≤ 𝑝

and 1 ≤ 𝑖 ≤ 𝑛, the independent continuous covariates 𝑋𝑖𝓁 ’s
are generated from standard normal distributions. Within the
horseshoe-shaped domain shown in Figure 2, we consider two
types of response distributions:

• Case I (Gaussian): 𝑌𝑖 ∼ Normal(𝜇𝑖, 22), where 𝑔(𝜇) = 𝜇;

• Case II (Bernoulli): 𝑌𝑖 ∼ Bernoulli(𝜇𝑖), where 𝑔(𝜇) =
log{𝜇∕(1 − 𝜇)}.

We evaluate the performance of the proposed method for differ-
ent numbers of unique spatial locations (𝑛𝑆 = 60, 120, 240, 360)
andunique time points (𝑛𝑇 = 60, 120, 240, 360). The total number
of observations is given by 𝑛 = 𝑛𝑆 × 𝑛𝑇 .

We evaluate the proposed procedure in terms of the accuracy of
model structure identification and the prediction precision with
the following criteria:

(I) Percentage of identified vArying component (PA) for
𝑥𝓁 : the average percentage of 𝑥𝓁 detected as having
a spatiotemporally varying coefficient function: PA𝓁 =
𝐿−1∑𝐿

𝑏=1𝐼(𝓁 ∈ ̂𝑏), where 𝑏 = 1, . . . , 𝐿 is the index of
Monte Carlo replications,𝐿 = 100 is the number of replica-
tions, and ̂𝑏 represents the set of covariates indices identi-
fied as having a spatiotemporally varying coefficient func-
tion at the 𝑏th replication.

(II) Mean Squared Errors (MSE) for coefficient estimates for
𝑥𝓁 :

MSE𝓁 = 1
𝐿

𝐿∑
𝑏=1

MSE𝓁,𝑏,

MSE𝓁,𝑏 =

⎧⎪⎪⎨⎪⎪⎩

1
𝑛

∑𝑛
𝑖=1{𝛽𝓁,𝑏(s𝑖, 𝑡𝑖) − 𝛽𝓁(s𝑖, 𝑡𝑖)}2, 𝓁 ∈ 0,𝓁 ∈ ̂𝑏,

1
𝑛

∑𝑛
𝑖=1{𝛼𝓁,𝑏 − 𝛽𝓁(s𝑖, 𝑡𝑖)}2, 𝓁 ∈ 0,𝓁 ∈ ̂c

𝑏
,

1
𝑛

∑𝑛
𝑖=1{𝛽𝓁,𝑏(s𝑖, 𝑡𝑖) − 𝛼𝓁}2, 𝓁 ∈ c

0,𝓁 ∈ ̂𝑏,

(𝛼𝓁,𝑏 − 𝛼𝓁)2, 𝓁 ∈ c
0,𝓁 ∈ ̂c

𝑏
,

where 𝛽𝓁,𝑏 and 𝛼𝓁,𝑏 are the refitting estimates for the 𝑏th
random sample.

(III) Mean Integrated Squared Errors (MISE) for coefficient esti-
mates, defined as

MISE𝓁 = 1
𝐿

𝐿∑
𝑏=1

MISE𝓁,𝑏,

MISE𝓁,𝑏 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
𝑁𝑔

∑𝑁𝑔

𝑗=1

{𝛽𝓁,𝑏(s𝑗 , 𝑡𝑗 ) − 𝛽𝓁(s𝑗 , 𝑡𝑗 )}2, 𝓁 ∈ 0,𝓁 ∈ ̂𝑏,
1
𝑁𝑔

∑𝑁𝑔

𝑗=1{𝛼𝓁,𝑏 − 𝛽𝓁(s𝑗 , 𝑡𝑗 )}2, 𝓁 ∈ 0,𝓁 ∈ ̂c
𝑏
,

1
𝑁𝑔

∑𝑁𝑔

𝑗=1{𝛽𝓁,𝑏(s𝑗 , 𝑡𝑗 ) − 𝛼𝓁}2, 𝓁 ∈ c
0,𝓁 ∈ ̂𝑏,

(𝛼𝓁,𝑏 − 𝛼𝓁)2, 𝓁 ∈ c
0,𝓁 ∈ ̂c

𝑏
,

where {(s𝑗 , 𝑡𝑗) ∶ 1 ≤ 𝑗 ≤ 𝑁𝑔} are uniform lattices over Ω ×
 . In our simulation studies, we use𝑁𝑔 = 80 × 50 × 50 lat-
tice points over Ω ×  .

(IV) Cross-validated Mean Squared Prediction Error
(CV-MSPE) for response 𝑌 :

CV-MSPE𝑌 = 1
𝐿

𝐿∑
𝑏=1

CV-MSPE𝑌 ,𝑏,

CV-MSPE𝑌 ,𝑏 =
1
𝑛

𝐾∑
𝑘=1

∑
𝑖∈𝑖[𝑘]

{𝑔−1(𝜂−[𝑘]
𝑖,𝑏

) − 𝑌𝑖}2.

Details of the CV procedure are provided in Section 4.

For Criterion (I), PA𝓁 is reported for all 𝓁 to see how well the
proposed method identifies the structure of each component in
the model. In practice, misidentifying a spatially varying coef-
ficient function as constant may be more detrimental to subse-
quent analyses, as it fails to capture the spatial signal. In con-
trast, with limited data, incorrectly identifying a constant coeffi-
cient as spatially varying can lead to a challenging and unreliable
estimation.

Table 1 presents the consistency in model structure identifica-
tion as 𝑛𝑇 and 𝑛𝑆 increase. The values of PA𝓁 represent the

TABLE 1 | Percentage of 𝛽𝓁 , 𝓁 = 1, . . . , 6, detected as spatiotemporally varying functions (PA𝓁).

Gaussian family Binomial family

𝒏𝑺 𝒏𝑻 PA1 PA2 PA3 PA4 PA5 PA6 𝒏𝑺 𝒏𝑻 PA1 PA2 PA3 PA4 PA5 PA6

60 60 0.47 0.98 0.00 0.00 0.00 0.00 120 120 0.66 1.00 0.00 0.00 0.00 0.00
120 1.00 1.00 0.00 0.00 0.00 0.00 240 1.00 1.00 0.00 0.00 0.00 0.00
240 1.00 1.00 0.00 0.00 0.00 0.00 360 1.00 1.00 0.00 0.00 0.00 0.00

120 60 1.00 1.00 0.00 0.00 0.00 0.00 240 120 1.00 1.00 0.00 0.00 0.00 0.00
120 1.00 1.00 0.00 0.00 0.00 0.00 240 1.00 1.00 0.00 0.00 0.00 0.00
240 1.00 1.00 0.00 0.00 0.00 0.00 360 1.00 1.00 0.00 0.00 0.00 0.00

240 60 1.00 1.00 0.00 0.00 0.00 0.00 360 120 1.00 1.00 0.00 0.00 0.00 0.00
120 1.00 1.00 0.00 0.00 0.00 0.00 240 1.00 1.00 0.00 0.00 0.00 0.00
240 1.00 1.00 0.00 0.00 0.00 0.00 360 1.00 1.00 0.00 0.00 0.00 0.00
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empirical percentages of𝑋𝓁 being detected to have varying coef-
ficient functions across 100 iterations. Given that the true model
structure is 0 = {1, 2},c

0 = {3, 4, 5, 6}, higher PA𝓁 for 𝓁 ∈ 0
and the lower PA𝓁 for 𝓁 ∈ c

0 correspond to better model iden-
tification accuracy. As 𝑛𝑆 and 𝑛𝑇 increase, the detection accu-
racy improves significantly. A moderate number of observations,
specifically 𝑛𝑇 ≥ 120 or 𝑛𝑆 ≥ 120 for the Gaussian family and
𝑛𝑇 ≥ 240 or 𝑛𝑆 ≥ 240 for the binomial family, yield a highly accu-
rate model structure identification. These results confirm the
effectiveness of the proposed structure identification procedure
for GST-SVCMs, even when applied to a subset of large-scale
data,making themodel determination processmore efficient and
scalable. To illustrate the impact of hyperparameters, we conduct
additional simulation studies on different choices of △, 𝑁1, 𝑑,
and 𝜚, and the results are reported in Section S1 in the Supporting
Information.

For each setting, we report MISE𝓁 for 𝓁 = 1, 2 and MSE𝓁 for
𝓁 = 3, 4, 5, 6 under both the identified model and the full model,
where the latter assumes all covariates have spatiotemporally
varying coefficient functions. Results for the identified and full
models are denoted as [⋅]I and [⋅]F, respectively. As shown in
Table 2, MSEI𝓁 are strictly smaller than MSE

F
𝓁 for all estimators

of the constant coefficients, demonstrating that structure iden-
tification significantly enhances estimation accuracy. Moreover,
when the model structure is correctly identified, the MISEs for
the spatiotemporally varying coefficient estimators remain com-
parable between the identified and full models. Additionally, the
computing time of GST-SVCMwith structure identification, even

when accounting for refitting, is significantly shorter than that of
the full model.

Table 3 presents empirical coverage rates and average standard
errors for constant coefficients across varying sample sizes under
both scenarios. The empirical coverage rates measure the pro-
portion of times the 95% confidence interval contains the true
parameter value over 100 replications, while the values in paren-
theses represent the average standard errors of the estimators. For
both scenarios, the standard error decreases as the sample size
increases. With a moderate sample size, the empirical coverage
rates are close to the nominal 95% level, regardless of the simula-
tion setting.

6 | Granular Model Identification

In this section, we extend the proposed method to achieve more
granular model identification by introducing an alternative for-
mulation of the GST-SVCM in (2), referred to as the hierarchical
spatiotemporal varying coefficient model (HSTVCM):

𝜂(s, 𝑡, x) = 𝑔{𝜇(s, 𝑡, x)} = 𝛽𝑠,𝑡0 (s, 𝑡) +
𝑝∑

𝓁=1
𝛼𝓁𝑥𝓁(s, 𝑡)

+
∑
𝓁∈𝑡

𝛽𝑡𝓁(𝑡)𝑥𝓁(s, 𝑡) +
∑
𝓁∈𝑠

𝛽𝑠𝓁(s)𝑥𝓁(s, 𝑡)

+
∑

𝓁∈𝑠,𝑡

𝛽𝑠,𝑡𝓁 (s, 𝑡)𝑥𝓁(s, 𝑡) (16)

TABLE 2 | Mean Squared Errors (MSEs) and Mean Integrated Squared Errors (MISEs) in estimating 𝛽𝓁 under identified models (MSEI𝓁) and full
models (MSEF𝓁) in Simulation Studies with BIC.

𝒏𝑻 𝒏𝑺 MSEI1 MSEF1 MSEI2 MSEF2 MSEI3 MSEF3 MSEI4 MSEF4 MSEI5 MSEF5 MSEI6 MSEF6

Gaussian
60 60 0.4177 0.1680 0.2045 0.1809 0.0017 0.0031 0.0011 0.0026 0.0013 0.0032 0.0016 0.0027

120 0.0856 0.0857 0.0952 0.0953 0.0005 0.0016 0.0005 0.0011 0.0008 0.0015 0.0005 0.0012
240 0.0442 0.0441 0.0478 0.0479 0.0003 0.0006 0.0003 0.0007 0.0003 0.0007 0.0002 0.0007

120 60 0.1088 0.1088 0.1283 0.1283 0.0006 0.0016 0.0007 0.0011 0.0005 0.0014 0.0005 0.0010
120 0.0499 0.0499 0.0551 0.0552 0.0003 0.0007 0.0003 0.0005 0.0003 0.0007 0.0003 0.0007
240 0.0250 0.0250 0.0271 0.0271 0.0002 0.0004 0.0001 0.0003 0.0002 0.0003 0.0001 0.0004

240 60 0.0721 0.0722 0.0877 0.0879 0.0003 0.0006 0.0003 0.0007 0.0003 0.0007 0.0002 0.0006
120 0.0295 0.0294 0.0314 0.0316 0.0002 0.0004 0.0001 0.0002 0.0001 0.0003 0.0001 0.0003
240 0.0139 0.0139 0.0152 0.0152 0.0001 0.0002 0.0001 0.0001 0.0001 0.0002 0.0001 0.0002

Binomial
120 120 0.2769 0.0911 0.1167 0.1019 0.0023 0.0017 0.0026 0.0016 0.0007 0.0014 0.0004 0.0013

240 0.0474 0.0475 0.0528 0.0529 0.0003 0.0008 0.0004 0.0010 0.0003 0.0006 0.0002 0.0006
360 0.0322 0.0322 0.0352 0.0353 0.0002 0.0004 0.0002 0.0005 0.0002 0.0005 0.0002 0.0004

240 120 0.0535 0.0536 0.0621 0.0623 0.0002 0.0009 0.0004 0.0008 0.0003 0.0007 0.0002 0.0006
240 0.0263 0.0264 0.0296 0.0297 0.0002 0.0004 0.0001 0.0003 0.0001 0.0004 0.0002 0.0003
360 0.0174 0.0174 0.0194 0.0194 0.0001 0.0003 0.0001 0.0003 0.0001 0.0002 0.0001 0.0002

360 120 0.0391 0.0392 0.0448 0.0448 0.0002 0.0005 0.0002 0.0006 0.0002 0.0004 0.0002 0.0004
240 0.0188 0.0188 0.0210 0.0210 0.0001 0.0003 0.0001 0.0003 0.0001 0.0002 0.0001 0.0002
360 0.0123 0.0124 0.0138 0.0138 0.0001 0.0002 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001
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TABLE 3 | Standard errors and empirical coverage rates of 95% CIs for constant coefficients.

Gaussian family Binomial family

𝒏𝑺 𝒏𝑻 𝜶3 𝜶4 𝜶5 𝜶6 𝒏𝑺 𝒏𝑻 𝜶3 𝜶4 𝜶5 𝜶6

60 60 0.89 (0.035) 0.97 (0.035) 0.94 (0.035) 0.91 (0.035) 120 120 0.67 (0.024) 0.65 (0.024) 0.92 (0.022) 0.96 (0.021)
120 0.95 (0.024) 0.96 (0.024) 0.92 (0.024) 0.97 (0.024) 240 0.95 (0.017) 0.91 (0.017) 0.93 (0.016) 0.94 (0.015)
240 0.92 (0.017) 0.94 (0.017) 0.95 (0.017) 0.98 (0.017) 360 0.97 (0.010) 0.93 (0.010) 0.96 (0.009) 0.97 (0.009)

120 60 0.96 (0.024) 0.92 (0.024) 0.94 (0.024) 0.98 (0.024) 240 120 0.97 (0.017) 0.92 (0.017) 0.87 (0.016) 0.96 (0.015)
120 0.94 (0.017) 0.96 (0.017) 0.94 (0.017) 0.94 (0.017) 240 0.95 (0.012) 0.96 (0.012) 0.94 (0.011) 0.93 (0.011)
240 0.93 (0.012) 0.91 (0.012) 0.91 (0.012) 0.95 (0.012) 360 0.97 (0.010) 0.93 (0.010) 0.96 (0.009) 0.97 (0.009)

240 60 0.96 (0.017) 0.97 (0.017) 0.91 (0.017) 0.97 (0.017) 360 120 0.94 (0.014) 0.94 (0.014) 0.95 (0.013) 0.94 (0.012)
120 0.90 (0.012) 0.94 (0.012) 0.95 (0.012) 0.95 (0.012) 240 0.95 (0.010) 0.93 (0.010) 0.93 (0.009) 0.94 (0.009)
240 0.92 (0.008) 0.95 (0.008) 0.95 (0.008) 0.95 (0.008) 360 0.94 (0.008) 0.95 (0.008) 0.96 (0.007) 0.95 (0.007)

where 𝑠 = {𝓁 ∶ 𝛽𝑠𝓁 ≢ 0}, 𝑡 = {𝓁 ∶ 𝛽𝑡𝓁 ≢ 0} and 𝑠,𝑡 =
{𝓁 ∶ 𝛽𝑠,𝑡𝓁 ≢ 0} denote the sets of covariates with spatial-only,
temporal-only, and spatiotemporal interaction effects, respec-
tively. Unlike the GST-SVCM model, which assumes covariates
have either constant or fully spatiotemporally varying effects,
the HSTVCM differentiates among these distinct sources of
variation. This distinction enhances structure identification and
yields a more parsimonious representation, which is partic-
ularly advantageous in high-dimensional applications where
isolating spatial, temporal, and interaction effects is essential for
interpretability and predictive accuracy.

We define the approximation function space of 𝜂(s, 𝑡, x) as ̃ as
follows

̃ =
{
𝜂(s, 𝑡, x;𝜶, 𝜷,𝑠,𝑡,𝑠,𝑡) ∶ 𝜶 ∈ ℝ𝑝;

𝛽𝑠𝓁(s) ∈ 𝕊̃𝑟
𝑑
(△),𝓁 ∈ 𝑠; 𝛽𝑡𝓁(𝑡) ∈ 𝕌̃𝜚( ),𝓁 ∈ 𝑡;

𝛽𝑠,𝑡𝓁 (s, 𝑡) ∈ 𝕋 (𝜚,𝑑,𝑟)
𝑣

(),𝓁 ∈ {0} ∪𝑠,𝑡
}
,

where 𝕊̃𝑟
𝑑
(△) = {𝑓 (s) ∈ 𝕊𝑟

𝑑
(△) ∶ E𝑓 (S) = 0} denotes the

function space of centered spatially varying functions;
𝕌̃𝜚( ) = {𝑓 (𝑡) ∈ 𝕌𝜚( ) ∶ E𝑓 (𝑇 ) = 0} denotes the function
space of centered temporally varying functions; and 𝕋 (𝜚,𝑑,𝑟)

𝑣 () =
{𝑓 (s, 𝑡) ∈ 𝕋 (𝜚,𝑑,𝑟)

𝑣 () ∶ E𝑓 (S, 𝑇 ) = 0 ∩ 𝑓 (s, 𝑡) ≠ 𝑓1(s) + 𝑓2(𝑡), 𝑓1 ∈
𝕌𝜚( ), 𝑓2 ∈ 𝕊𝑟

𝑑
(△)} denotes the function space of centered

spatiotemporal varying functions that are not purely spatially
varying nor purely temporally varying.

Algorithm 2 outlines the procedure for identifying 𝑠,𝑡

and 𝑠,𝑡. To enhance computational efficiency, we first fit
𝑔(𝜇(s, 𝑡, x)) = 𝛽0(s, 𝑡) without applying an identification penalty
and define the adjusted response as 𝑌𝑖 = 𝑌𝑖 − 𝑔−1(𝛽0(s, 𝑡)),
referred to as Stage 0. Subsequently, in Stage 1, we deter-
mine the model structure by minimizing the penalized negative
quasi-likelihood

𝜂 = arg min
𝜂∈̃

− 1
𝑛

𝑛∑
𝑖=1

𝑄

[
𝑔−1

{
𝑝∑

𝓁=1

{
𝛼𝓁 + 𝛽𝑡𝓁(𝑡)

+ 𝛽𝑠𝓁(s) + 𝛽𝑠,𝑡𝓁 (s, 𝑡)
}
𝑥𝓁(s, 𝑡)

}
, 𝑌𝑖

]

+
𝑝∑

𝓁=1
𝑝𝜔𝑛,𝑠

(||𝛽𝑠𝓁||𝑛) + 𝑝∑
𝓁=1

𝑝𝜔𝑛,𝑡
(||𝛽𝑡𝓁||𝑛) + 𝑝∑

𝓁=1
𝑝𝜔𝑛

(||𝛽𝑠,𝑡𝓁 ||𝑛) (17)

where 𝑝𝜔𝑛,𝑠
(⋅), 𝑝𝜔𝑛,𝑡

(⋅) and 𝑝𝜔𝑛,𝑠𝑡
(⋅) are group SCAD penalty func-

tions, and 𝜔𝑛,𝑡, 𝜔𝑛,𝑠, 𝜔𝑛,𝑠𝑡 are corresponding penalty parameters
for identifying 𝑠,𝑡 and 𝑠,𝑡, respectively (Li et al. 2019; Li,
Wang, and Wang 2021).

During refitting (Stage 2), we simplify the model (16), such that
as long as a covariate has space-time interaction term, that is, 𝓁 ∈
𝑠,𝑡, any existing additive temporal or spatial-only varying terms
are absorbed by 𝛽𝑠,𝑡𝓁 as follows

𝜂(s, 𝑡, x;𝑠,𝑡,𝑠,𝑡)

= 𝑔
{
𝜇
(
s, 𝑡, x;𝑠,𝑡,𝑠,𝑡

)}
= 𝛽𝑠,𝑡0 (s, 𝑡) +

𝑝∑
𝓁=1

𝛼𝓁𝑥𝓁(s, 𝑡)

+
∑

𝓁∈𝑡⧵𝑠,𝑡

𝛽𝑡𝓁(𝑡)𝑥𝓁(s, 𝑡) +
∑

𝓁∈𝑠⧵𝑠,𝑡

𝛽𝑠𝓁(s)𝑥𝓁(s, 𝑡)

+
∑

𝓁∈𝑠,𝑡

𝛽𝑠,𝑡𝓁 (s, 𝑡)𝑥𝓁(s, 𝑡),

where 𝛽𝑠𝓁(s) ∈ 𝕊̃𝑟
𝑑
(△) are spatially varying coefficient functions

for 𝓁 ∈ 𝑠 ⧵𝑠,𝑡; 𝛽𝑡𝓁(𝑡) ∈ 𝕌̃𝜚( ) are temporally varying coeffi-
cient functions for 𝓁 ∈ 𝑡; and 𝛽𝑠,𝑡𝓁 (s, 𝑡) ∈ 𝕋 (𝜚,𝑑,𝑟)

𝑣 (),𝓁 ∈ {0} ∪
𝑠,𝑡 are spatiotemporally varying coefficients.

Similar to (4), the model refitting (Stage 2) is carried out by
minimizing the following negative loglikelihood function with 𝑔
defined (16):

𝐿𝑛,𝑠,𝑡 ,𝑠,𝑡 (𝜶, 𝜷)

= −1
𝑛

𝑛∑
𝑖=1

𝑄
[
𝑔−1{𝜂(S𝑖, 𝑇𝑖,X𝑖;𝜶, 𝜷,𝑠,𝑡,𝑠,𝑡)}, 𝑌𝑖

]
+
∑

𝓁∈𝑠,𝑡

{𝜆1,𝓁𝑓1(𝛽
𝑠,𝑡

𝓁 ) + 𝜆2,𝓁𝑓2(𝛽
𝑠,𝑡

𝓁 )} +
∑
𝓁∈𝑠

𝜆3,𝓁𝑓3(𝛽𝑠𝓁),

where 𝑓1 and 𝑓2 is defined along with (4); 𝑓3(𝛽𝓁) =
∫Ω
{
(∇2

𝑠1
𝛽𝓁)2 + (∇2

𝑠2
𝛽𝓁)2

}
𝑑𝑠1𝑑𝑠2 is a function measuring

the roughness of 𝛽𝑠𝓁 with respect to spatial locations (Wang
et al. 2022).

7 | Data Application

Particulate matter (PM) has consistently shown an adverse influ-
ence on public health (Harrison and Yin 2000). Fine particles
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ALGORITHM 2 | Granular structure identification for HSTVCMs in (17).

1 Input: Dataset 𝐎 =
{
(𝐒𝑖, 𝑇𝑖,𝐗𝑖, 𝑌𝑖)

}𝑛
𝑖=1 for both model identification and refitting.

2 Output: Identified structure set ̂𝑠,𝑡 and estimated coefficient functions
3 Stage 0: Initial Intercept Estimation
4 Fit a generalized model with only the spatiotemporal intercept term,

𝔼[𝑌𝑖|𝐬𝑖, 𝑡𝑖] = 𝑔−1(𝛽0(𝐬𝑖, 𝑡𝑖)), and obtain the estimate 𝛽0(𝐬, 𝑡).Define an adjusted
response to remove the estimated intercept: 𝑌𝑖 = 𝑌𝑖 − 𝑔−1(𝛽0(𝐬𝑖, 𝑡𝑖)).

5 Stage 1: Structure Identification of Spatiotemporal Interaction
6 Consider dataset 𝐎̃ = {𝐒𝑖, 𝑇𝑖,𝐗𝑖, 𝑌𝑖}𝑛𝑖=1. Identify𝑡,𝑡,𝑠,𝑡 in the HSTVCM by

minimizing the penalized negative log quasi-likelihood function (18). Then ̂𝑠 = {𝓁 ∶ 𝛽𝑠𝓁 ≢ 0}, ̂𝑡 = {𝓁 ∶ 𝛽𝑡𝓁 ≢ 0},
̂𝑠,𝑡 = {𝓁 ∶ 𝛽𝑠,𝑡𝓁 ≢ 0}. Detailed implementation can be found in Algorithm 1.

7 Stage 2: Model Refitting
8 Use the ̂𝑠, ̂𝑡, ̂𝑠,𝑡 to refit the HSTVCM by minimizing the negative loglikelihood

function as in (5) by replacing 𝑔 to be consistent with (17).

FIGURE 3 | (a) Map of California generated using the ggplot2 package in R. (b) Triangulation of California with𝑁2 = 11 triangles, overlaid with
observation sites from 2011.

(PM2.5), smaller than 2.5𝜇 m in diameter, are of particular
concern. Recent studies have noted that PM2.5 is affected by var-
ious meteorological conditions (Wang and Ogawa 2015; Chen
et al. 2020). In this section, we apply the proposedmethod to envi-
ronmental data to investigate the relationship between PM2.5
and different meteorological factors.

We examine the association of the daily mean of surface con-
centrations of PM2.5 with various meteorological drivers, includ-
ing daily total gridded precipitation (PPTN), surface wind speed
(WS), surface daily minimum air temperature (Tmin), surface
daily maximum air temperature (Tmax) (Livneh et al. 2013),
air relative humidity (RH), and total column cloud cover
(TCDC) (Mesinger et al. 2006). The daily PM2.5 for 2011 is
obtained from the US Environmental Protection Agency, and
the meteorological drivers are provided by the National Oceanic
and Atmospheric Administration (http://www.esrl.noaa.gov/
psd/). In this analysis, we use all 𝑛𝑆 = 134 distinct spatial

locations across California and 𝑛𝑇 = 364 temporal observations
throughout 2011. The distribution of observation sites is shown
in Figure 3b.

We first apply the proposed GST-SVCM with structure
identification to analyze how meteorological variables
affect PM2.5 concentrations, capturing spatial and tem-
poral variations. Let {(S𝑖, 𝑇𝑖,X𝑖, 𝑌𝑖)}𝑛𝑖=1 be the observa-
tions, where 𝑌𝑖 = PM2.5𝑖 is the response variable and
X𝑖 = {PPTN,WS,Tmin,Tmax,RH,TCDC}𝑖 are covariates. The
model is specified as:

PM2.5𝑖 = 𝛽0(S𝑖, 𝑇𝑖) + 𝛽1(S𝑖, 𝑇𝑖)PPTN(S𝑖, 𝑇𝑖)

+ 𝛽2(S𝑖, 𝑇𝑖)WS(S𝑖, 𝑇𝑖) + 𝛽3(S𝑖, 𝑇𝑖)Tmin(S𝑖, 𝑇𝑖)

+ 𝛽4(S𝑖, 𝑇𝑖)Tmax(S𝑖, 𝑇𝑖) + 𝛽5(S𝑖, 𝑇𝑖)RH(S𝑖, 𝑇𝑖)

+ 𝛽6(S𝑖, 𝑇𝑖)TCDC(S𝑖, 𝑇𝑖) + 𝜖𝑖, 1 ≤ 𝑖 ≤ 𝑛.
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TABLE 4 | Identified model structure for HSTVCM and estimated constant coefficients (with 95% confidence intervals) for each covariate.

Model Covariate Type of variation C-Coeff. (𝜶𝓵) 95% CI

GST-SVCM Intercept Spatiotemporal 2.2196 [2.2077, 2.2315]
PPTN Spatiotemporal −0.0873 [−0.1046,−0.0700]
WS Spatiotemporal −0.0542 [−0.0625,−0.0459]
Tmin Spatiotemporal 0.1577 [0.1435,0.1719]
Tmax Constant 0.1492 [0.1326,0.1658]
RH Constant 0.0073 [−0.0024,0.0170]

TCDC Spatiotemporal −0.0513 [−0.0596,−0.0430]
HSTVCM Intercept Spatiotemporal 2.2376 [2.2248,2.2503 ]

PPTN Additive Spatial + Temporal 0.4223 [0.2573,0.5874]
WS Additive Spatial + Temporal −0.0120 [−0.0444,0.0205]
Tmin Spatiotemporal 0.1413 [0.1265,0.1561]
Tmax Spatiotemporal 0.1467 [0.1293,0.1640]
RH Spatiotemporal 0.0041 [−0.0059,0.0142]

TCDC Temporal Only −0.0556 [−0.0652,−0.0461]
Note: (1) “Type of Variation” indicates whether the coefficient for each covariate is purely spatial, purely temporal, additive spatial-plus-temporal, or fully spatiotemporal.
(2) The “C-Coeff.” column shows the baseline constant effect estimated for each covariate, while the 95% CI gives its uncertainty bounds. (3) For visualizations of spatial or
temporal effects; see Figure 5 for spatial maps, time-series plots.

FIGURE 4 | Estimated spatiotemporally varying coefficient functions based on the identified GST-SVCM. (a) 𝛽0(s, 𝑡) for intercept, (b) 𝛽1(s, 𝑡) for
PPTN, (c) 𝛽2(s, 𝑡) for WS, (d) 𝛽3(s, 𝑡) for Tmin, (e) 𝛽5(s, 𝑡) for RH.

Following Algorithm 1, we conduct the GST-SVCMmodel struc-
ture identification and model fitting. For the initial structure
identification (Stage 1), we implement a triangular prismatic
partition consisting of 𝑁1 = 3 interior knots, 𝑁2 = 11 triangles,
and 𝑑 = 2, 𝑟 = 1, 𝜚 = 2. Figure 3b illustrates the spatial trian-
gulation used for model structure identification and refitting.
The proposed structure identification method identifies ̂𝑐 =
{4, 6} and ̂ = {1, 2, 3, 5}, suggesting that Tmax and TCDC
exhibit linear effects on PM2.5, whereas PPTN, WS, Tmin,
and RH demonstrate spatiotemporally varying effects. Following

structure identification, we refit the model (Stage 2) with the
same smoothing parameter settings (𝑁1 = 3, 𝑁2 = 11, 𝑑 = 2, 𝑟 =
1, 𝜚 = 2). Estimates of the baseline constant coefficients 𝛼𝓁 ’s for
PPTN, WS, Tmin, Tmax, RH, TCDC along with their 95% confi-
dence intervals are reported in the upper panel of Table 4. The
spatiotemporal varying effects of the covariates are visualized in
Figure 4.

Next, we apply the proposed refined HSTVCM in (16) and per-
form structure identification following Algorithm 2. We employ
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FIGURE 5 | Varying coefficient functions for identified HSTVCM with ̂𝑠 = {1, 2, 3, 5}, ̂𝑡 = {1, 2, 4, 5, 6}, ̂𝑠,𝑡 = {3, 4, 5}. (a) 𝛽0(s, 𝑡) for intercept,
(b) 𝛽𝑠1(s) and 𝛽

𝑡
1(𝑡) for PPTN, (c) 𝛽

𝑠
2(s) and 𝛽

𝑡
2(𝑡) for WS, (d) 𝛽𝑠,𝑡3 (s, 𝑡) for Tmin, (e) 𝛽𝑠,𝑡4 (s, 𝑡) for Tmax, (f) 𝛽𝑠,𝑡5 (s, 𝑡) for RH, (g) 𝛽𝑡6(𝑡) for TCDC.

TABLE 5 | Cross-validated mean squared prediction errors (CV-MSPEs) and mean squared errors (MSEs) for the identified models.

Identified model for HSTVCM Identified model for GST-SVCM Pure linear model Full model

CV-MSPE MSE CV-MSPE MSE CV-MSPE MSE CV-MSPE MSE

0.2751 0.2523 0.2991 0.2537 0.3072 0.3002 0.2990 0.2459

a consistent parameterization for initial fitting (Stage 0), model
identification (Stage 1), and refitting (Stage 2) stages, with 𝑑 =
2, 𝑟 = 1, 𝜚 = 2, 𝑁1 = 3, 𝑁2 = 11. The identifiedmodel structure is
characterized by ̂𝑠 = {1, 2, 3, 5}, ̂𝑡 = {1, 2, 4, 5, 6}, and ̂𝑠,𝑡 =
{3, 4, 5}. The identified structure indicates that PPTN and WS
(𝓁 = 1, 2) have additive spatial and temporal varying coefficient
functions; Tmin, Tmax and RH (𝓁 = 3, 4, 5) have spatiotempo-
rally varying coefficient functions; and TCDC has a temporally
varying effect on PM2.5. The estimated baseline constant coef-
ficients for all explanatory variables, along with their 95% con-
fidence intervals, are reported in the bottom panel of Table 4.
Figure 5 visualizes the varying components of the coefficient
functions, highlighting the spatial, temporal, and spatiotemporal
variations.

In general, our analysis reveals distinct spatiotemporal patterns
in the relationship betweenmeteorological conditions and PM2.5

concentrations across California, which alignwith the discussion
in Jacob and Winner (2009). Specifically, Figures 4a and 5a
present the spatiotemporally varying intercept function, high-
lighting the consistent overall trend of PM2.5 between the two
identified models. The results indicate that PM2.5 exhibits less
spatial variation during winter compared to non-winter peri-
ods. The temporal varying coefficient function 𝛽𝑡1(𝑡) in Figure 5b
shows precipitation events during the wet season (late fall to
early spring) effectively reduce PM2.5 concentrations, whereas
dry periods (late spring to early fall) promote particulate matter
accumulation. This finding aligns with the state’s characteristic
precipitation pattern and supports the critical role of precipitation
in removing PM2.5 from the atmosphere. Figures 4c and 5c show
that the impact of wind speed demonstrates clear spatial hetero-
geneity, with a notable coastal-to-inland gradient. This effect is
likely influenced by altitude, which impacts the ventilation and
transport of pollutants (Chow et al. 2006). Figures 4d–e and 5d–f
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show that the temperature and relative humidity’s influence on
PM2.5 exhibits spatial variability, with both positive and negative
associations observed across different regions. In Figure 5g, total
column cloud cover shows increasing temporal effects toward
the end of the year, reflecting seasonal atmospheric patterns that
influence pollutant dispersion.

Table 5 reports the MSEs and the 10-fold CV-MSPEs for the iden-
tified models based on GST-SVCM and the refined HSTVCM,
along with the pure linear regression model and the full model.
The results demonstrate that the proposed structure identifica-
tion approach yields amore parsimoniousmodelwhilemaintain-
ing strong predictive accuracy. In contrast, the full model shows
signs of overfitting, as shown by the discrepancy between itsMSE
and MSPE. Notably, the identified HSTVCM achieves the lowest
MSE andCV-MSPE among allmodels, highlighting the efficiency
gain achieved by incorporating a more granular model structure.

In addition, to assess model adequacy, we conduct model diag-
nostics using extended versions of Moran’s I test adapted for
spatiotemporal data. Let 𝑒𝑖 ≡ 𝑒𝑖(s𝑖, 𝑡𝑖) = 𝑌𝑖(s𝑖, 𝑡𝑖) − 𝑌𝑖(s𝑖, 𝑡𝑖) denote
the residuals. We test the null hypothesis 𝐻0 ∶ 𝑒𝑖(s𝑖, 𝑡𝑖) are
mutually independent against the alternative hypothesis 𝐻𝑎 ∶
𝑒𝑖(s𝑖, 𝑡𝑖) exhibit spatiotemporal dependence. Rejection of𝐻0 indi-
cates that the identified model does not adequately capture
the spatiotemporal relationship between covariates and PM2.5
concentrations. Following Wikle et al. (2019) and Dubé and
Legros (2013), we employ the Moran’s I statistics:

𝐼 =
𝑛
∑𝑛

𝑖=1
∑𝑛

𝑗=1𝑤𝑖𝑗

(
𝑒𝑖 − 𝑒

)(
𝑒𝑗 − 𝑒

)(∑𝑛

𝑖=1
∑𝑛

𝑗=1𝑤𝑖𝑗

){∑𝑛

𝑖=1
(
𝑒𝑖 − 𝑒

)2} ,
where 𝑒 =

∑𝑛

𝑖=1𝑒𝑖∕𝑛 represents the mean residual, and
𝑤𝑖𝑗 = 𝑤𝑠,𝑖𝑗 ×𝑤𝑡,𝑖𝑗 are weights that indicate the relationship
between (s𝑖, 𝑡𝑖) and (s𝑗 , 𝑡𝑗). Specifically, 𝑤𝑠,𝑖𝑗 = 𝑠−1

𝑖𝑗
𝐼(𝑠𝑖𝑗 < 𝑠𝑖),

𝑠𝑖𝑗 = ||s𝑖 − s𝑗 ||2 represents the spatial relation, and 𝑤𝑡,𝑖𝑗 =
𝑡−1
𝑖𝑗
𝐼(0 < 𝑡𝑖𝑗 < 𝑡) + 𝐼(𝑖 ≠ 𝑗, 𝑡𝑖𝑗 = 0), 𝑡𝑖𝑗 = |𝑡𝑖 − 𝑡𝑗 | represents the

temporal relation, where the spatial neighborhood threshold 𝑠𝑖
is set to be the tenth percentile of all pairwise spatial distances||s𝑖 − s𝑗 ||2, and temporal neighborhood threshold 𝑡 = 1∕10 corre-
sponds to one month memory effect. For computation efficiency,
we randomly sample 1000 instances {(s𝑖, 𝑡𝑖, 𝑒𝑖)}1000𝑖=1 and calculate
the 𝑝-value. The procedure is repeated 100 times, and the aver-
aged 𝑝-values, 𝑝, are calculated. The pure linear model exhibits
significant spatiotemporal dependence (𝑝 = 0.02), but we fail to
reject the null hypothesis for the full model (𝑝 = 0.32) and iden-
tified models by HSTVCM (𝑝 = 0.34) and GST-SVCM (𝑝 = 0.36).
These results indicate the models identified by HSTVCM and
GST-SVCM effectively account for spatiotemporal dependence,
despite their sparse structures.

8 | Conclusion

In this article, we introduced a class of flexible and parsimonious
models for spatiotemporal regression with constant and varying
coefficients, termed Generalized Spatiotemporal Semi-varying
Coefficient Models (GST-SVCMs), and proposed an efficient esti-
mation method. In addition, we proposed a model structure
identification approach for GST-SVCMs, which enables users

to automatically identify which coefficients are constant and
which are spatiotemporally varying, thereby enhancing estima-
tion efficiency and prediction accuracy.We demonstrated that the
estimators of constant coefficients and varying coefficient func-
tions in the GST-SVCM estimation are consistent, and the esti-
mators of the constant coefficients are asymptotically normal.
Furthermore, we showed that the proposed structure identifi-
cation for GST-SVCMs can correctly identify the model struc-
ture with probability approaching one. Through extensive sim-
ulation studies, we illustrated the robust asymptotic behavior of
the method. We further validated the method by applying it to a
PM2.5 dataset, where both simulation and empirical results high-
lighted the efficiency gains of utilizing the identified sparsemodel
structure compared to a more complex full model. The proposed
method proved particularly advantageous when the sample size
wasmoderate, allowing accurate structure identification and reli-
able estimation without overfitting the data. This approach not
only enhanced computational efficiency, but also significantly
improved the interpretability and predictive performance of spa-
tiotemporal models.

Despite these advancements, our model assumes the indepen-
dence of errors once the deterministic regression function,
accounting for spatiotemporal variations, is extracted. While this
simplifies the modeling process, it may overlook residual spa-
tiotemporal correlations present in real-world data, potentially
impacting the accuracy and validity of the proposed method.
To address this limitation, future work could explore the inte-
gration of a spatiotemporal autoregressive varying coefficient
model, based on methodologies such as those proposed in Yu
et al. (2022). However, incorporating this extension presents sig-
nificant methodological challenges that require careful theoret-
ical and computational development. We plan to address these
complexities in future research.

Our simulation studies, conducted under the assumption of
moderately smooth spatiotemporal processes, demonstrate that
the two-stage identification procedure reliably detects covariates
with varying effects for sufficiently large sample sizes. However,
in scenarios characterized by extreme non-stationarity or highly
localized patterns, additional observations ormore adaptivemod-
eling strategies may be necessary. Future research should exam-
ine the impact of irregular triangulations and greater variabil-
ity in spatially and temporally varying effects through addi-
tional simulations and empirical studies. We also recommend
that researchers assess stationarity assumptions in their data and
refine smoothing parameter selection when abrupt or localized
changes in spatiotemporal structure are suspected.

While recent methodological and computational advances have
significantly improved the efficiency of Bayesian spatiotempo-
ral models (Gelfand et al. 2003) for handling moderate-to-large
datasets, the proposedGST-SVCM structure identification frame-
work distinguishes itself with superior computational efficiency,
making it particularly well-suited for even larger spatiotemporal
data. To handle “big” data, a compelling future extension involves
integrating sampling techniques into our model structure identi-
fication process. In this scenario, a stratified sampling approach
could be particularly effective. The data could be divided into dif-
ferent temporal strata (e.g., seasons or months) and spatial strata
(e.g., geographical regions), followed by random sampling within
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each stratum. The proposed framework would then be applied to
the sampled data to identify the model structure. Although sam-
pling reduces the amount of data processed simultaneously,man-
aging and integrating results from multiple samples can intro-
duce additional complexity. We leave the investigation of this
sampling-based approach and its implications for computational
efficiency and model accuracy to future research direction.
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