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Abstract

Traditional recommender systems have relied primarily on iden-
tity representations (IDs) to model users and items. Recently, the
integration of pre-trained language models (PLMs) has enhanced
the capability to capture semantic descriptions of items. However,
while PLMs excel in few-shot, zero-shot, and unified modeling
scenarios, they often overlook the crucial signals from collabo-
rative filtering (CF), resulting in suboptimal performance when
sufficient training data is available. To effectively combine semantic
representations with the CF signal and improve the performance
of the recommender system in warm and cold settings, two ma-
jor challenges must be addressed: (1) bridging the gap between
semantic and collaborative representation spaces, and (2) re-
finement while preserving the integrity of semantic repre-
sentations. In this paper, we introduce CARec, a novel model
that adeptly integrates collaborative filtering signals with seman-
tic representations, ensuring alignment within the semantic space
while maintaining essential semantics. We present experimental
results from four real-world datasets, which demonstrate signif-
icant improvements. Using collaborative alignment, CARec also
shows remarkable effectiveness in cold-start scenarios, achieving
notable improvements in recommendation performance. The code
is available at https://github.com/ChenMetanoia/CARec.
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1 Introduction

In the contemporary digital landscape, recommendation systems
(RecSys) have emerged as indispensable tools, greatly enhancing
user experiences across a wide range of online platforms, including
e-commerce, content streaming, and social media networks [1].
These systems are instrumental in guiding users towards content,
products, or services that align with their preferences, thus signifi-
cantly contributing to user satisfaction on online platforms. Tra-
ditionally, modern recommendation models have relied on unique
identifiers (IDs) to represent both users and items, transforming
these IDs into embedding vectors through learnable parameters to
effectively capture and predict user preferences [7, 23, 27, 35, 36].

Despite the notable success of ID-based recommendation sys-
tems (IDRec) in scenarios where sufficient user-item interaction
data is available, commonly referred to as the warm setting, their
dependency on historical interactions poses significant limitations.
Specifically, IDRec struggle to generate reliable recommendations
in situations characterized by sparse or non-existent user-item
interactions, known as the cold start problem [2, 6, 37, 38]. To mit-
igate these challenges, Semantic-Based Recommendation Models
(SemRec) [12] have been introduced that take advantage of textual
content enrich the recommendation process with additional context
and information about users and items.

Recent breakthroughs in pre-trained language models (PLMs)
have significantly advanced the representation of textual informa-
tion in the field of Natural Language Processing (NLP)[4, 22, 25].
These advancements provide a valuable opportunity to enhance the
efficacy of semantic recommendation systems (SemRec). A pivotal
question arises: Can we effectively merge identifier-based recom-
mendation systems (IDRec) with SemRec to leverage the strengths
of both, thereby improving recommendations in both warm and
cold settings? Attempts to integrate IDRec with SemRec through
methods such as addition or concatenation have not yielded the
expected improvements[43]. This shortfall may stem from the fun-
damental differences in their representation spaces: IDRec, which
learns from user-item interactions, functions as a collaborative
signal, whereas SemRec, derived from text via semantic encoders,
serves as a semantic signal. Despite the significant enhancements
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in semantic embeddings provided by modern encoders, these still
fall short of the performance achieved by IDRec, especially in warm
settings where SemRec underperforms [43]. This issue could be
attributed to the fact that semantic embeddings in SemRec are
often pre-trained on tasks not directly related to recommenda-
tion [4, 22]. While they capture meaningful content, they fail to
fully represent the specific preferences and distribution patterns
of the recommendation data. This scenario presents two distinct
challenges. Firstly, bridging the gap between collaborative and
semantic representation spaces is crucial for leveraging the
combined strengths of IDRec and SemRec. Secondly, refining
and maintaining the accuracy of semantic representations
during alignment remains a key obstacle. The "tightness" of se-
mantic representations, as previously discussed [5, 10], can impair
model performance when item representations are overly simi-
lar. Additionally, altering the semantic representation space risks
compromising the meaningfulness of these representations.

To address the previously discussed challenges, we introduce a
novel training strategy named CARec (Collaborative Alignment for
Recommendation). This approach innovatively integrates IDRec
with SemRec in a unique manner. Unlike traditional methods that
merge identifier and semantic information through addition or con-
catenation [43], our framework assigns distinct roles to users and
items. Specifically, users are represented by ID embeddings, which
are randomly initialized due to the typical absence of direct textual
information. Conversely, items are represented by semantic em-
beddings, initialized through Pre-trained Language Models (PLMs)
using textual data such as titles, features, and descriptions. During
training, we design two sequential phases to systematically address
the aforementioned challenges. The first phase, termed the seman-
tic aligning phase, aims to bridge the gap between collaborative and
semantic representation spaces. Unlike the traditional simultaneous
training of user and item embeddings, which can contaminate the
semantic integrity of item representations when combined with
the randomly initialized user IDs. We align ID representation space
into semantic representation space. The second phase, known as
the collaborative refining phase, focuses on addressing the issue of
semantic representation "tightness" while preserving the meaning-
fulness of these representations.

In summary, our contributions are outlined as follows:

(1) Novel Alignment Paradigm: We introduce a novel collaborative
learning paradigm which enhances the quality of recommenda-
tions by fostering dynamic knowledge exchange.

(2) Bridging Gaps: We identify the problem, uncover the challenges,
and propose a feasible solution for collaborative alignment to
bridge the gap between collaborative filtering and semantic
representation.

(3) Empirical Validation: We conduct extensive experiments on
four real-world datasets under both warm and cold settings to
validate the effectiveness of CARec.

2 Problem Definition

In this section, we introduce a new framework termed "Collabora-
tive Alignment". Collaborative Alignment seeks to fuse semantic
information with collaborative filtering to provide more accurate
personalized recommendations. It is an inevitable problem that
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occurs between pre-trained language models and collaborative
filtering-based recommendations.

For recommendation task, we have a set of users U = {u1, uy, ...,
Uy }, aset of items I = {iy, iy, ..., i|[|} and a historical interaction
matrix R of size |U| x |T|. By treating R as the adjacent matrix,
we can also view the historical interaction as a user-item bipartite
graph G(U, 7,8) = {(w,i)|lu € U,i € I,(u,i) € E}, where & is
the edge set. There is an edge (u,i) € & if Ry; = 1 with implicit
feedback. In collaborative alignment, besides the collaborative fil-
tering signal G(U, I, E), we also have a semantic embedding for
each user/item with rich semantic information represented by x,,
and x;, respectively. semantic embedding is encoded from context
information with corresponding pre-trained models as illustrated in
Section 3.1. Encoded from pre-trained models, semantic embedding
contains rich semantic information, and collaborative alignment
seeks to bridge the semantic embedding with the collaborative
filtering signal to provide more accurate recommendation.

3 Proposed Method

In this section, we introduce our innovative recommendation model
CARec, which is designed to address the challenge of enhancing
RecSys by effectively incorporating semantic information and Col-
laborative Filtering (CF) signals. Using historical user-item inter-
actions, CARec learns comprehensive semantic CF-incorporated
representations for both users and items. These representations
not only successfully merge semantic and CF signals but also yield
substantial improvements in recommendation performance, bene-
fiting both general recommendation scenarios and challenging item
cold-start scenarios. In the following subsections, we detail the ar-
chitecture, training phase, and inference phase of CARec, providing
a comprehensive overview of our recommendation approach.

3.1 Semantic Item Representation

To leverage the semantic-rich encoding capabilities offered by pre-
trained language models (PLMs), our approach allows for using any
PLM as the encoder to capture semantic item embeddings. For a
given item i with associated semantic features, including the item
title, category, and brand, we concatenate these features into a
single sentence S; = [w1, Wy, ..., w¢|, where w is the text token and
c is the total token number. S; is then used as input to the PLM,
resulting in the following semantic representation for item i:

x; = PLM(S;), (1)

where x; € R4W is i’s semantic embedding, and dy, denotes the
PLM’s output embedding size. We freeze x; as the 0-th layer hid-
den representation hgo) for graph convolution in Section 3.2. This
representation captures the rich semantic information from the
item’s semantic attributes, laying the foundation for the fusion of
semantic and collaborative filtering signals within CARec.

3.2 Graph Aggregator

CARec is built upon graph aggregation to spread the rich semantic
semantic embedding obtained from Section 3.1. With the aggrega-
tion over G(U, I, E), CARec updates user/item embedding based
on the collaborative filtering signal. Let’s denote the embeddings of
users as hy, and the embeddings of items as h;, which is obtained
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Figure 1: CARec comprises three key phases: the semantic aligning phase, the collaborative refining phase, and inference phase.
During the semantic aligning phase, the model aligns user representations with the item semantic representation space. In
contrast, the collaborative refining phase focuses on guiding item representations to effectively incorporate collaborative signals
while preserving their semantic characteristics. Finally, in the inference Phase, the model leverages the acquired knowledge to
provide personalized recommendations by utilizing the learned user embeddings and transformed item embeddings.

by the graph aggregator:

hy, h; = Aggregator(G(U, 7,8),h{”, h{*), @)

where h1(40) and hgo) represent the user/item initial embedding.

h;o) is encoded from Section 3.1 and h1(10) is randomly initialized
embedding due to the lack of sufficient context to encode semantic
embedding. The Aggregator performs aggregation on G(U, I, &)
for K layers to smooth the embedding. For each layer’s aggregation,
the computation is defined as:

KD b0 4 aGe (hgk),\ﬁ € N(u)), ®)

h*&0 = n® 4 ace (hf]‘),\m c N(i)) , )

where h,(lk) represents the embedding of user u at layer k, and hgk)
represents the embedding of item i at layer k. The function AGG
denotes the aggregation function, which combines the embeddings
of neighboring nodes. To maintain generality, we use the most
widely used LGCN [7] as the aggregation function:

AGG(h;, Vi € N(u)) = Z
ieN(u)

1
——F—h;,
VIN@IVIN @I

where N (u) and N (i) represent the set of neighboring nodes of
u and i. h; is the embedding of a item node i. User aggregation is
computed in the same way. It’s worth noting that the aggregation
function can be replaced with any graph aggregation function.
In the subsequent section, we dive into the CARec training phase,
where we elucidate the process of learning comprehensive semantic
representations incorporated in CF for users and items, a crucial
step in our innovative recommendation model.
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3.3 Training Phase

In traditional bipartite graph learning for Recommender Systems
(RecSys), it is common to initialize user and item embeddings based
on identifiers (IDs) randomly and to update their representations
symmetrically. This approach involves aggregating neighbors’ rep-
resentations for each user and item.

However, integrating semantic information into this symmetric
learning framework often proves suboptimal, primarily due to sig-
nificant discrepancies in initialization methods. Users are typically
represented through ID-based random embeddings, whereas items
utilize text-based embeddings generated by pre-trained language
models (PLMs). This asymmetric foundation can lead to notable
challenges, such as "item representation contamination,” where
the aggregation of randomly initialized user IDs may dilute the
richer, text-based item representations during the process of form-
ing a unified representation space. To overcome these challenges,
CARec introduces a novel approach through its semantic align-
ing phase. This phase stabilizes the item’s semantic representation
while aligning the user’s collaborative signals within the semantic
representation space, specifically addressing the representation gap
and contamination issues. Subsequently, the collaborative refining
phase maintains the aligned user collaborative signal and refines
the item’s semantic representation within the semantic space. This
step is crucial for preserving the integrity and meaningfulness of
the semantic content.

Further details on the semantic aligning phase and the collabo-
rative refining phase will be provided in the following subsections,
highlighting how each contributes to overcoming traditional limi-
tations in symmetric learning frameworks.
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3.3.1 Semantic Aligning Phase. In this phase, we align ID repre-
sentation space into semantic representation space to address the
representation gap challenge.

Leveraging the rich semantic information contained in item
semantic representations, our objective is to align user embeddings
(hy,) into the item representation space(h;) which has been shown in
the Fig. 1. To achieve this alignment and strengthen the normalized
element-wise similarity between a user’s representation and those
of their interacted items, we employ an alignment loss inspired by
the DirectAU [28] method. The alignment loss between user u and
item i is defined as:

i !

=g 2 I~ freeze(hi)?

(u,i)es&

(6)

align —
where freeze(h;) indicates the frozen item embedding.
To prevent over-concentration in the representation space, the

uniformity loss is also added as the regularization In our context,

we compute and apply the user uniformity loss U

uniform to optimize

the learning of user representations efficiently:

Y e zlihuchl,

ueUuxeU

Uu

luniform = log @

1
U2

These two loss metrics work in synergy to maintain proximi-
ties between positive instances while dispersing random instances
across the hypersphere. The final loss function in the user repre-
sentation learning stage is a combination of the alignment loss and
the user uniformity loss:

Lq/:l(u

align

l;Lilﬂ iform’ ®)

The phase of user representation learning concludes upon meet-
ing the convergence criteria, which are predicated on the predic-
tion scores achieved on the validation set. Specifically, we employ
NDCG@10 as the benchmark metric, with an early stopping param-
eter set at 30. At this point, we presume that users have assimilated
adequate knowledge from both semantic and collaborative filtering
signals, given the current state of item semantic representations.
Following this, the subsequent collaborative refining phase is dedi-
cated to refining these item semantic representations.

3.3.2 Collaborative Refining Phase. Contrast to aligning user rep-
resentations with item semantic representations to integrate col-
laborative and semantic signals, the collaborative refining phase
introduces subtle adjustments when refining item representations.
The primary goal in this phase is to preserve item embeddings
within the semantic representation space, thus retaining semantic
information while incorporating collaborative signals. To achieve
this, we freeze user representations and learn from well-trained
users. Rather than directly fine-tune item representations, we em-
ploy an adaptor, such as multilayer perceptron (MLP) to transform
them, as illustrated in Fig. 1 Collaborative Refining Phase. There are
two main reasons for this approach. First, item semantic represen-
tations alone often fail to capture collaborative filtering signal, and
they tend to become densely clustered [5, 9, 10], which can hinder
recommendation performance. Second, this approach allows us to
preserve informative item semantic knowledge for use in the cold
setting directly. Using an MLP to adapt new item representations
in the cold setting can be problematic. The primary issue is that the
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process involves mapping item representations before aggregation.
In the warm setting, the MLP learns to adjust the representations
for effective aggregation. However, in the cold setting, where new
items lack prior interactions, the MLP, being a global learner trained
on warm data, struggles to appropriately adjust the item semantic
representations in the absence of aggregation data.

To refine item representations, we initially apply MLP, resulting

0 ~(0
in h( ) MLP(hEO)), where h; ) denotes the transformed item
representations. Subsequently, we compute the convoluted user

and item representations as follows:

(0)

hy by = Aggregator(G(U, 7,E),h\Y ;). ©)

The alignment loss employed in item representation learning
mirrors the one used in user representation learning but utilizes
the transformed item representation h;. The alignment loss in the
collaborative refining phase is formulated as follows:

o _1
|E]

align —

D llfreeze(hy) - hill’,

(u,i)e&

(10)

where freeze(hy,) is the frozen user embedding to force the train-
ing on the item. In addition to the alignment loss, we introduce a
uniformity loss for items to prevent over-concentration and ensure
a well-distributed representation space. This uniformity loss en-
courages item representations to maintain suitable distances from
each other, thereby promoting diversity in the recommendation
process. The uniformity loss for items is defined as follows:

Z Z —2|[h;—hy.||

iel ixel

unlform =log— |I|2 (11

It fosters the even distribution of item representations within
the hypersphere, thereby enhancing the model’s ability to capture
nuanced differences between items with similar semantic features.

The final loss function for item representation learning is a com-
bination of the alignment loss and the item uniformity loss:

I
+ lumform

L[III

align

(12)

Through this approach, we ensure that item representations cap-
ture both semantic information and collaborative filtering signals,
leading to improved recommendation quality while retaining the
flexibility to address cold-start problems.

3.4 Inference Phase

During the inference phase, CARec leverages the learned user em-
beddings and transformed item embeddings to make personalized
recommendations. The recommendation score s(u, i) for a user-
item pair (u, i) is determined through the dot product between the
user embedding h;, and the transformed item embedding h;:
s(ui) =h! - h;. (13)
In the cold setting, we using the dot product between the user
embedding h;, and the item semantic embedding h; to calculate
the recommendation score.
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Table 1: The Statistics of Preprocessed Datasets: "Avg.U" rep-
resents the average number of interactions per user, "Avg.I"
signifies the average number of interactions per item, and
"Cold-Items" indicates the count of newly introduced items.

Electronic ~ Office Products Gourmet Food Yelp
#Users 81,512 51,493 66,268 65,870
#Items 32,424 16,920 24,636 43,215
#Inters 623,896 212,795 307,617 831,470
#Avg.U 7.653 4.133 4.642 12.623
#Avg.I 18.232 11.950 11.857 19.240
#Cold-Items 1,797 888 1,310 1,714

4 Experiments

This section empirically evaluates the proposed CARec on four real-
world datasets. The goal is to answer the four following research
questions (RQs). RQ1: What is the performance of CARec? RQ2:
Does CARec still achieve the best in the challenging cold-start
recommendation? RQ3: How do different parts affect CARec? RQ4:
Can CARec really keep the rich semantic semanticized information?

4.1 Experimental Setup

4.1.1 Dataset. To rigorously evaluate the performance of our pro-
posed methodology, we conduct experiments in both warm and cold
settings. Key statistics of the preprocessed datasets are summarized
in Table 1. Specifically, we use four publicly available real-world
datasets from the Amazon Review Dataset!: Electronics, Office
Products, and Grocery and Gourmet Food and Yelp Dataset?. These
datasets have been widely employed in prior recommendation sys-
tem studies [9, 10].

4.1.2 Baselines. We compare the proposed approach with the fol-
lowing baseline methods: NeuMF [8] is a neural network-enhanced
matrix factorization model that replaces the conventional dot prod-
uct with a multi-layer perceptron (MLP) to capture more nuanced
user-item interactions. DirectAU [28] introduces an innovative
loss function that evaluates representation quality in collaborative
filtering (CF) based on alignment and uniformity within the hy-
persphere. In our implementation, we employ the alignment and
uniformity loss, updating only the student role. NGCF [30] ag-
gregates information from neighbor- ing nodes and incorporates
collaborative signals into embeddings. PinSage [42] designed a
random walk strategy for large-scale graphs, specifically on the
Pinterest platform. LightGCN [7] represents a state-of-the-art rec-
ommendation algorithm grounded on Graph Convolutional Net-
works (GCN) [14]. It enhances performance by omitting feature
transformations and nonlinear activations. SimpleX [20] proposes
an easy-to-understand model with a unique loss function that in-
corporates a larger set of negative samples and employs a threshold
to eliminate less informative ones. It also utilizes relative weights to
balance the contributions of positive-sample and negative-sample
losses. NCL [18] offers a neighborhood-enriched contrastive learn-
ing framework tailored for graph collaborative filtering. It explic-
itly captures both structural and semantic neighbors as objects for

Thttps://jmcauley.ucsd.edu/data/amazon/
https://www.yelp.com/dataset
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contrastive learning. Wide&Deep [3] is a context-aware recom-
mendation model that trains both wide linear models and deep
neural networks concurrently, aiming to synergize the benefits of
both memorization and generalization in RecSys. DCNV2 [29] is
another context-aware recommendation model that enhances the
expressive power of Deep & Cross Networks (DCN) by extending
the original weight vector into a matrix. DroupoutNet [26] em-
ploys a dropout operation during training, randomly discarding
portions of the collaborative embeddings. Heater [46] utilizes the
sum squared error (SSE) loss to model collaborative embeddings
based on content information.

4.1.3  Evaluation Settings. We evaluate our model’s recommenda-
tion performance using commonly employed metrics in the field
of Recommender Systems (RecSys): Recall@K and NDCG@K. By
default, we set the values of K to 10 and 50. The reported results are
based on the average scores across all users in the test set. These
metrics consider the rankings of items that users have not interacted
with yet. In line with established practices [7, 8], we utilize a full-
ranking technique, which involves ranking all non-interacted items
for each user. To assess the model’s performance in a cold setting,
we follow the procedures outlined in previous studies [2, 26, 31, 46].
In the Cold-start scenario, we identify cold-start items by removing
all training interactions for randomly selected subsets of items.

To ensure the validity of both warm and cold settings, we apply
meticulous preprocessing to these datasets. Initially, in alignment
with previous work [10], we employ a 5-core filtering strategy,
eliminating users and items with insufficient interactions. Subse-
quently, we randomly select 5% of items to serve as the cold-start
items, excising all corresponding interactions from the preprocessed
dataset to create a cold-start item dataset. This ensures that cold-
start items are only encountered during the testing phase. The
remaining dataset is partitioned into training, validation, and test-
ing subsets using an 80%-10%-10% split. For the semantic features
of items, we aggregate information from fields such as title, cate-
gories, and brand in the Amazon dataset, truncating any item text
exceeding 512 tokens. To prepare the Yelp dataset for analysis, we
started by removing any items that did not have textual information.
We then focused on interactions with ratings of 3 or higher. From
the filtered set, we designated 5% of the items as "cold items" to
create a specialized dataset for evaluating cold-start performance.
We further narrowed down the dataset to include only those items
and users involved in at least 15 interactions each, ensuring a more
focused and relevant dataset for analysis. The remaining data was
then split randomly: 80% was used for training the model, and the
remaining 20% was equally divided between validation and testing
purposes. The Yelp dataset, with its combination of business IDs
(representing items) and rich textual descriptions (such as cate-
gories), provides an excellent opportunity to evaluate our model
across a wide range of scenarios.

4.1.4 Implementation Details. We implement CARec and other
baseline models using the open-source recommendation library,
RecBole? [34]. For the sake of a fair comparison, we employ the
Adam optimizer across all methods and conduct meticulous hy-
perparameter tuning. The batch size is configured at 1,024, and

Shttps://recbole.io/docs/index.html
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we implement early stopping with a patience setting of 30 epochs
to mitigate overfitting, using NDCG@10 as our evaluation metric.
Item text embeddings are generated utilizing a pretrained Instructor-
xI model* [25]. The dimensions for both user and item embeddings
are fixed at 768.

For residual hyperparameters, we employ a grid search strat-
egy to identify optimal settings. Specifically, the learning rate is
explored within the set {0.0001, 0.001, 0.01}, and the weight de-
cay coefficient is tuned among {le ™%, 1¢7>, 1e7°}. For graph-based
models, the number of layers is evaluated over {1, 2, 3}. For content-
based models, item semantic representations serve as item features.
Within the MLP in CARec, we explore configurations with layer
counts in {1, 2, 3}, hidden dimensions in {384, 768, 1536}, and dropout
rates in {0.2, 0.5}.

4.2 RQ1: Evaluation of the recommendations

We evaluate the performance of our proposed method against vari-
ous baseline approaches across four distinct datasets, with results
detailed in Table 2. For the sake of clarity and comparative analy-
sis, we categorize the baseline methods into three distinct classes:
ID-based (denoted as 1p), Text-based (denoted as TgxT), and content-
based, which includes models such as Wide&Deep and DCNV?2.
In ID-based models, the embedding for both the user and item is
learned exclusively from their respective IDs and interactions. Text-
based models, on the other hand, utilize semantic representations of
items to initialize item embeddings. These semantic representations
are obtained from the instructor-xl [25] model. Additionally, for the
Text-based baseline, we compute user representations by averaging
the embeddings of items they have interacted with, as generated
by instructor-xl, and then use a dot product with item semantic
representations for making recommendations. For content-based
models, on the other hand, incorporate item semantic representa-
tion as features for enhanced semantic understanding.

In a comparative analysis with established baseline methods, our
proposed CARec model consistently demonstrates superior perfor-
mance over both ID-based and Text enhanced algorithms across
a wide range of evaluation metrics. It validates that CARec can
effectively incorporate collaborative filtering signal and semantic
information to set the state-of-the-art performance.

4.3 RQ2: Cold-start Evaluation

Table 3 provides an overview of the results of cold-start item rec-
ommendations. Key findings include: 1) Our model, CARec, con-
sistently outperforms the best-performing baseline models in cold-
start item recommendations. In contrast, DropoutNet and Heater,
despite utilizing the same item semantic representations as item
features, and employing pre-trained Matrix Factorization (MF) to
initialize user and item representations, fall short in comparison to
our model. This underscores the efficacy of CARec in leveraging
item semantic knowledge and highlights the benefits of its uni-
fied representational space, seamlessly integrated into the item
semantic representation space. This integration serves a dual pur-
pose: it retains the semantic richness of item semantic descriptions
while effectively addressing the cold-start item challenge. Impor-
tantly, CARec accomplishes this without the need for auxiliary

4https://huggingface.co/hkunlp/instructor-xl
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Figure 2: Ablation study of CARec on Electronic

modules or additional steps. 2) collaborative-based models strug-
gle to harness the informative item semantic representation for
addressing the cold-start item problem. This challenge arises from
the Semantic Disparity between semantic and Collaborative spaces.
Treating users and items as equal entities during training leads to
an alignment of the unified representation space into a new space
that diverges from the original item semantic representation space.
Consequently, when a new item is introduced, its semantic repre-
sentation deviates from the unified representation space, causing
the model to encounter difficulties in making recommendations for
the new item. 3) The performance ranking of baseline models shows
notable variations in the Yelp dataset. Specifically, SimpleXTgxT
outperforms DropoutNet, while NCLtgxT experiences a marked
decline. This shift can be attributed to the nature of text data in the
Yelp dataset, which generally consists of shorter and simpler textual
content compared to the comprehensive product descriptions found
in the Amazon dataset.

4.4 RQ3:In-depth Analysis

4.4.1 Ablation Study. In this subsection, we present a compre-
hensive analysis of the impact of each proposed technique and
component on both the warm and cold setting performances. To
facilitate a thorough comparison, we prepare two variants of the
CARec model: (1) a variant without semantic aligning phase (SAP),
denoted as w/o SAP, maintaining the training strategy consistent
with collaborative models; and (2) a variant omits the collabora-
tive refining phase, applying only item semantic representation,
denoted as w/o CRP.

The results of this ablation study are illustrated in Fig. 2. Notably,
the absence of SAP, as observed in w/o SAP, leads to a signifi-
cant reduction in model performance. This underscores the critical
importance of preserving the item semantic representation space.
Additionally, the exclusion of the collaborative refining phase (CRP)
reveals interesting insights. In the warm setting, omitting the CRP
harms performance, as item semantic representations alone may
tend to crowd together. Conversely, in the cold setting, item seman-
tic representations still retain valuable context features that assist
in addressing the cold-start challenge.

4.4.2 Impact of Diverse Pretrained Language Models (PLMs). Nu-
merous robust Pretrained Language Models (PLMs) hold the poten-
tial to enhance RecSys by providing valuable item semantic repre-
sentations. To identify the most effective PLMs for our specific objec-
tive, we conducted an evaluation of item semantic representations
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Table 2: Warm Setting Comparison Table. The best and second-best results are bold and underlined, respectively. 1p indicates

ID-based models, and TgxT denotes models that employ item semantic representation for item embedding initialization.

wx9

denotes that the improvements are significant at the level of 0.05 with paired ¢-test.

Electronic Office Products Grocery and Gourmet Food Yelp
Model R@10 R@50 N@10 N@50 |R@10 R@50 N@10 N@50 |R@10 R@50 N@10 N@50 |R@10 R@50 N@10 N@50
NeuMFpp 0.0513 0.0675  0.0298 0.0339 0.1599 0.1868 0.1051 0.1113 0.1390 0.1644 0.0892 0.0951 0.0469 0.1326 0.0277 0.0498
DirectAUrp 0.0546 0.0694  0.0292 0.0329 0.1661 0.1965 0.1000 0.1069 0.1438 0.1707 0.0844 0.0907 0.0467 0.1440 0.0277 0.0529
NGCFp 0.0431 0.0598  0.0232 0.0299 0.0935 0.1248 0.0674 0.0745 0.0854 0.1146 0.0604 0.0672 0.0392 0.1298 0.0231 0.0478
PinSagey 0.0447 0.0613  0.0249 0.0321 0.0956 0.1273 0.0694 0.0765 0.0897 0.1174 0.0640 0.0704 0.0413 0.1332 0.0258 0.0484
LightGCNyp 0.0530 0.0857  0.0331 0.0413 0.1782 0.2177 0.1217 0.1307 0.1526 0.1917 0.1024 0.1114 0.0498 0.1441 0.0291 0.0535
SimpleXjp 0.0558 0.1060  0.0305 0.0429 0.1727 0.2172 0.1091 0.1192 0.1519 0.1989 0.0920 0.1028 0.0458 0.1355 0.0277 0.0508
NCLip 0.0558 0.1032  0.0348 0.0473 0.1831 0.2316 0.1267 0.1361 0.1573 0.2063 0.1046 0.1175 0.0531 0.1566 0.0309 0.0578
Instructor-xl 0.0108 0.0255  0.0061 0.0094 0.0028 0.0121 0.0012 0.0031 0.0016 0.0045 0.0012 0.0018 0.0008 0.0029 0.0004 0.0010
NeuMFrgxT 0.0389 0.0540  0.0237 0.0275 0.1271 0.1579 0.0846 0.0916 0.1166 0.1417 0.0736 0.0795 0.0255 0.0835 0.0151 0.0301
DirectAUtgxT | 0.0551 0.0718  0.0294 0.0336 0.1671 0.1963 0.1004 0.1071 0.1434 0.1703 0.0843 0.0906 0.0472 0.1430 0.0278 0.0526
NGCFrgxT 0.0137 0.0477  0.0064 0.0136 0.0619 0.2145 0.0785 0.0973 0.1061 0.1929 0.0652 0.0845 0.0416 0.0824 0.0267 0.0358
PinSagerpxt 0.0114 0.0452  0.0051 0.0123 0.0902 0.1221 0.0636 0.0708 0.0867 0.1121 0.0609 0.0667 0.0342 0.0870 0.0188 0.0307
LightGCNrpyr | 0.0560 0.0909  0.0320 0.0407 0.1782 0.2177 0.1217 0.1307 0.1525 0.1965 0.1030 0.1131 0.0496 0.1433 0.0290 0.0533
SimpleXpyT 0.0514 0.0931  0.0334 0.0437 0.1759 0.2121 0.1202 0.1284 0.1513 0.1891 0.1015 0.1102 0.0495 0.1405 0.0294 0.0531
NCLT1EXT 0.0553 0.0929  0.0324 0.0417 0.1767 0.2213 0.1174 0.1275 0.1547 0.2074 0.1021 0.1142 0.0068 0.0264 0.0042 0.0093
Wide&Deep 0.0138  0.0485 0.0074  0.0159 | 0.1014  0.1428  0.0609  0.0705 | 0.0923  0.1303  0.0554  0.0642 | 0.0219  0.0756  0.0128  0.0266
DCNV2 0.0373 0.0575  0.0216 0.0266 0.1292 0.1648 0.0829 0.0910 0.1160 0.1516 0.0717 0.0799 0.0248 0.0837 0.0145 0.0296
CARec 0.0641* 0.1073 0.0414* 0.0520° | 0.1880* 0.2317 0.1348° 0.1389" | 0.1634" 0.2103* 0.1174* 0.1281" | 0.0582* 0.1731* 0.0329" 0.0622"

Table 3: Cold Setting Comparison Table. Notations consistent with the warm setting comparison. “*” denotes that the improve-

ments are significant at the level of 0.05 with paired ¢-test.

Electronic Office Products Grocery and Gourmet Food Yelp
Model R@10 R@50 N@10 N@50 |R@10 R@50 N@10 N@50 |R@10 R@50 N@10 N@50 |R@10 R@50 N@10 N@50
Instructor-x1 0.0488 0.1197 0.0297 0.0456 0.0374 0.1401 0.0159 0.0382 0.0091 0.0595 0.0053 0.0158 0.0067 0.0343 0.0037 0.0108
NeuMFrgxT 0.0046 0.0250 0.0021 0.0066 0.0101 0.0558 0.0047 0.0145 0.0074 0.0413 0.0034 0.0107 0.0030 0.0220 0.0014 0.0058
DirectAUtgxT | 0.0048 0.0277 0.0023 0.0073 0.0118 0.0511 0.0057 0.0143 0.0082 0.0429 0.0038 0.0113 0.0049 0.0229 0.0026 0.0068
NGCFrgxT 0.0015 0.0175 0.0021 0.0058 0.0095 0.0513 0.0050 0.0138 0.0072 0.0351 0.0033 0.0092 0.0033 0.0217 0.0032 0.0057
PinSagergyxt 0.0032 0.0194 0.0023 0.0063 0.0114 0.0528 0.0051 0.0141 0.0091 0.0360 0.0042 0.0100 0.0038 0.0235 0.0041 0.0063
LightGCNpgyr | 0.0104 0.0443 0.0049 0.0124 0.0309 0.0960 0.0173 0.0315 0.0119 0.0522 0.0053 0.0140 0.0047 0.0201 0.0023 0.0059
SimpleXypyr 0.0098 0.0419 0.0049 0.0120 0.0122 0.0606 0.0064 0.0168 0.0113 0.0583 0.0056 0.0158 0.0260 0.0801 0.0144 0.0272
NCLTEXT 0.0188 0.0716 0.0092 0.0209 0.0338 0.1150 0.0143 0.0320 0.0222 0.0778 0.0128 0.0248 0.0051 0.0275 0.0023 0.0076
Wide&Deep 0.0038 0.0204 0.0018 0.0055 0.0140 0.1118 0.0060 0.0267 0.0150 0.1224 0.0072 0.0297 0.0042 0.0260 0.0021 0.0071
DCNV2 0.0057 0.0282 0.0029 0.0078 0.0107 0.0510 0.0047 0.0134 0.0082 0.0356 0.0039 0.0099 0.0045 0.0265 0.0023 0.0074
DroupoutNet 0.0569 0.1211 0.0349 0.0503 0.1317 0.1931 0.0850 0.0985 0.1481 0.2432 0.0984 0.1212 0.0236 0.0781 0.0120 0.0236
Heater 0.0036 0.0293 0.0017 0.0073 0.0078 0.0412 0.0034 0.0105 0.0271 0.0500 0.0095 0.0146 0.0052 0.0269 0.0041 0.0074
CARec 0.0622* 0.1501* 0.0383* 0.0584" | 0.1469" 0.2646° 0.0931° 0.1210" | 0.1764" 0.3012* 0.1219* 0.1521" | 0.0283* 0.0851* 0.0163* 0.0292"

generated by four additional PLMs. These PLMs have achieved vary-
ing rankings on the Massive Text Embedding Benchmark (MTEB)
leaderboard 3, highlighting their diverse capabilities and potential
contributions to the enhancement of RecSys. The five PLMs eval-
uated include instructor-xI[25], all-MiniLM-L6-v2[22], all-mpnet-
base-v2[22], and bge-base-en-v1.5[33] and bert-base-unchased[4].
The experimental results are presented in Table 4, demonstrating
significant improvements in the cold setting than the default model.
This underscores the vital importance of aligning the user represen-
tation space with the item semantic representation space. Notably,
instructor-xI emerges as the top-performing PLM overall, as it can
generate text embeddings simply by providing the task instruc-
tion, without requiring fine-tuning. For our experiments, we used
the instruction "Represent the Amazon title:" with instructor-xI to
generate the text embeddings.

4.4.3 Should We Include Additional Item Tutoring and collaborative
refining phases? To investigate the advantages of further training
user and item representations beyond the initial item tutoring and

Shttps://huggingface.co/spaces/mteb/leaderboard
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Table 4: Comparison Table of PLMs. Notations consistent
with warm setting comparison.

Electronic Warm Setting Cold Setting

PLMs R@10 N@10 | R@10 N@10
instructor-xl 0.0641 0.0414 | 0.0622 0.0383
all-MiniLM-L6-v2 0.0633  0.0414 | 0.0563 0.0343
all-mpnet-base-v2 0.0641 0.0419 | 0.0556 0.0341
bge-base-en-v1.5 0.0636  0.0414 | 0.0561 0.0339
bert-base-unchased | 0.0631  0.0411 | 0.0352 0.0194

collaborative refining phases, we conducted experiments involving
continuous learning on these representations. Fig. 3 presents the
model’s performance in both warm and cold settings across three
datasets. In the plot, "Item Tut" indicates that the current phase
is the semantic aligning phase, while "User Tut" designates the
collaborative refining phase. The numbers on the x-axis represent
the current training stage.
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Figure 3: Overall performance in each training phase

Table 5: Impact of User Embedding Initialization on Model
Performance in the Yelp Dataset.

Warm Cold
R@10 R@50 N@10 N@50 |R@10 R@50 N@10 N@50
CARec 0.0578 0.1720 0.0332  0.0627 0.0278 0.0842 0.0155 0.0288
CARecayg  0.0579 0.1722  0.0342  0.0637 | 0.0221 0.0735  0.0119 0.0240

As depicted in Fig. 3, CARec achieved its best performance after
the first collaborative refining phase, denoted as "User Tut:1," across
all three datasets. This suggests that user and item representations
do not require additional separate training stages. Continuing to
train the model beyond this point results in a performance decline,
possibly due to the significant deviation of user and item represen-
tations from the item semantic representation, leading to a loss of
semantic information.

4.4.4  Should users be initialized with semantic representations in-
stead of random initialization? In the Yelp dataset, as illustrated
in Table 5, we explore the effect of initializing user embeddings
through average pooling of historical item sequences, denoted as
CARecayg. Our findings are as follows: (1) Utilizing average pool-
ing for initializing user embeddings enhances model performance
in scenarios with abundant historical data (warm setting) but results
in diminished effectiveness in data-scarce situations (cold setting).
This indicates that while average pooling can somewhat narrow
the representation gap, it does not offer the same level of adapt-
ability as random initialization, especially in contexts with sparse
user-item interactions. (2) Although average pooling helps bridge
the initial representation gap, it does not reach the full potential of
performance enhancement unless coupled with a robust training
framework like ours. (3) The comparative analysis of CARecayg
and CARec underscores that the choice of embedding initialization
strategy can significantly influence outcomes, contingent upon its
integration within a systematic training methodology.

4.4.5 Parameter Sensitivity. We experimented with different con-
figurations of the number of layers for the MLP. The sensitivity
results, shown in Fig. 4, reveal that the layer number is not sensitive
for model performance, and the highest performance is achieved
when using two layers with a hidden dimension of 768.
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Figure 4: Parameter analysis of MLP on Electronic

(a) CF Representation Space (b) CA Representation Space

Figure 5: Comparison of representation space after model
alignment. The left figure illustrates the representation space
following Collaborative Filtering (CF) Alignment, while the
right figure depicts the representation space after Collabo-
rative Alignment (CA). In both figures, the blue nodes sym-
bolize item semantic representations, the purple nodes rep-
resent item mapped representations by MLP, and the green

nodes denote user learned representations. CA ensures that
item semantic representations remain in the same space af-
ter MLP transformation.

4.5 RQ4: Case Study

To provide visual evidence of CARec’s effectiveness in aligning user
representations with item semantic representations while preserv-
ing the integrity of item-learned representations, we present a case
study in Fig 5. In the left figure, which represents the representation
space following traditional collaborative filtering alignment, the
item semantic representation (blue) is shown surrounding the user
(green) and item (purple) mapped representations by MLP. This
spatial arrangement suggests that the item semantic representation
is not effectively integrated into the same space as the user and item
representations. In contrast, CARec, as shown in the right figure,
successfully aligns the user and item learned representations within
the item semantic representation space, ensuring that informative
semantic information is retained. This alignment contributes to sig-
nificant improvements in both warm and cold settings, showcasing
the model’s enhanced performance.
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5 Related work
5.1 Aligning CF with Semantic Representations

Several studies have attempted to align collaborative filtering (CF)
signals with semantic representations in recommender systems.
KAR [32] utilizes Large Language Models (LLMs) to enhance rec-
ommendation systems by incorporating open-world knowledge
and reasoning capabilities about user preferences and item informa-
tion. This approach marks a significant advancement in integrating
real-world knowledge into recommendation systems. Similarly,
CTRL [17] explores the integration of collaborative and semantic
signals for Click-Through Rate (CTR) prediction, demonstrating
how semantic insights from Pre-trained Language Models (PLMs)
can be combined with collaborative data to improve recommenda-
tion accuracy. LC-Rec [44] introduces an innovative method of se-
mantic integration using tree-structured vector quantization within
LLMs, enhancing how different semantic representations interact
within recommendation contexts. This model emphasizes the evo-
lution of semantic integration technologies and their application in
recommender systems. CoWPiRec [41] focuses on integrating col-
laborative filtering information into text-based item representations
through a novel word graph that captures word-level collaborative
signals. This technique enhances PLM’s by incorporating user in-
teraction data directly, offering improvements in cross-domain and
cold-start recommendation scenarios. Unlike these existing works,
our approach proposes a unique model that not only integrates but
also refines and aligns these representations more effectively. We
focus on dynamically adjusting both user and item embeddings to
address the limitations of static embedding approaches commonly
seen in the current literature, specifically targeting the gaps in rep-
resentation alignment and the optimization of semantic integrity.

5.2 Collaborative Filtering

Collaborative Filtering (CF) is a widely used technique in mod-
ern RecSys. CF models typically represent users and items as em-
beddings and learn these embeddings by reconstructing historical
user-item interactions. With the rise of Graph Neural Networks
(GNNs) [14], GNN-based RecSys have gained popularity. These
methods model user-item interactions as bipartite graphs, enabling
them to capture high-order connectivity. SpectralCF [45] intro-
duced spectral convolution to improve recommendation perfor-
mance, particularly for cold-start items. PIinSAGE [42] designed a
random walk strategy for large-scale graphs, specifically on the Pin-
terest platform. NGCF [30] aggregates information from neighbor-
ing nodes and incorporates collaborative signals into embeddings.
LightGCN [7] simplified NGCF, achieving better performance and
reduced training time. However, these collaborative models treat
users and items equally and learn their representations simultane-
ously, which may not work well when incorporating informative
item semantic representations.

5.3 Cold-start Recommendation

Addressing the cold-start problem requires bridging the gap be-
tween warm-start and cold-start items. To achieve this, side in-
formation, particularly content features, is often integrated into
CF-based recommendation models. These content features serve as
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a link to capture the collaborative signal for cold-start items. For
example, models like DropoutNET [26] and CC-CC [24] randomly
omit certain collaborative embeddings, enhancing the robustness
of CF-based models while implicitly tapping into information re-
lated to the collaborative signal from item content features. In
contrast, some approaches focus on explicitly modeling the cor-
relation between content information and collaborative embed-
dings [19, 40, 46]. In our approach, we take a different path by
directly combining collaborative filtering signals with content infor-
mation through collaborative alignment. This innovative approach
significantly enhances recommendation performance by seamlessly
blending collaborative and content-based information.

5.4 Pre-trained Language Models

General text embeddings are of paramount importance, finding
wide utility not only in common applications such as web search
and question answering[13] but also in their foundational role in en-
hancing large language models [11, 15]. Unlike task-specific meth-
ods, general text embeddings must be versatile and applicable across
various contexts. In recent years, significant strides have been made
in this field, resulting in notable works like BERT [4], Instruc-
tor [25], sentence-T5 (Ni et al., 2021a), Sentence-Transformer [22],
C-Pack [33], OpenAl text embedding [21], and more. In the realm
of RecSys, existing research has demonstrated the power and ef-
fectiveness of Pre-trained Language Models (PLMs) in enhancing
RecSys [5, 9, 10, 16, 39], particularly in warm, cold, and few-shot
settings. However, most of these studies have primarily focused on
sequential recommendation scenarios, while our work centers on
collaborative filtering-based recommendations.

6 Conclusion

In this paper, we study the collaborative alignment problem to
bridge the gap between collaborative filtering and the pre-trained
language model. Taking advantage of the pre-trained language
model, we first obtain the item semanticized embedding with rich
semantic information. Then, we propose CARec to encode user
embedding into the item’s semantic embedding space based on the
collaborative signal. CARec treats users and items in different roles
to better utilize both the collaborative filtering signal and the rich
semantic information on items. Experiments on three real-world
datasets under both warm and cold settings show our proposed
CARec surpasses current state-of-the-art methods. Our case study
on learned embedding space highlights that CARec can keep the
semantic information on the semantic embedding space from pre-
trained language model.
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