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Abstract

Traditional recommender systems have relied primarily on iden-

tity representations (IDs) to model users and items. Recently, the

integration of pre-trained language models (PLMs) has enhanced

the capability to capture semantic descriptions of items. However,

while PLMs excel in few-shot, zero-shot, and uni�ed modeling

scenarios, they often overlook the crucial signals from collabo-

rative �ltering (CF), resulting in suboptimal performance when

su�cient training data is available. To e�ectively combine semantic

representations with the CF signal and improve the performance

of the recommender system in warm and cold settings, two ma-

jor challenges must be addressed: (1) bridging the gap between

semantic and collaborative representation spaces, and (2) re-

�nement while preserving the integrity of semantic repre-

sentations. In this paper, we introduce CARec, a novel model

that adeptly integrates collaborative �ltering signals with seman-

tic representations, ensuring alignment within the semantic space

while maintaining essential semantics. We present experimental

results from four real-world datasets, which demonstrate signif-

icant improvements. Using collaborative alignment, CARec also

shows remarkable e�ectiveness in cold-start scenarios, achieving

notable improvements in recommendation performance. The code

is available at https://github.com/ChenMetanoia/CARec.
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1 Introduction

In the contemporary digital landscape, recommendation systems

(RecSys) have emerged as indispensable tools, greatly enhancing

user experiences across a wide range of online platforms, including

e-commerce, content streaming, and social media networks [1].

These systems are instrumental in guiding users towards content,

products, or services that align with their preferences, thus signi�-

cantly contributing to user satisfaction on online platforms. Tra-

ditionally, modern recommendation models have relied on unique

identi�ers (IDs) to represent both users and items, transforming

these IDs into embedding vectors through learnable parameters to

e�ectively capture and predict user preferences [7, 23, 27, 35, 36].

Despite the notable success of ID-based recommendation sys-

tems (IDRec) in scenarios where su�cient user-item interaction

data is available, commonly referred to as the warm setting, their

dependency on historical interactions poses signi�cant limitations.

Speci�cally, IDRec struggle to generate reliable recommendations

in situations characterized by sparse or non-existent user-item

interactions, known as the cold start problem [2, 6, 37, 38]. To mit-

igate these challenges, Semantic-Based Recommendation Models

(SemRec) [12] have been introduced that take advantage of textual

content enrich the recommendation process with additional context

and information about users and items.

Recent breakthroughs in pre-trained language models (PLMs)

have signi�cantly advanced the representation of textual informa-

tion in the �eld of Natural Language Processing (NLP)[4, 22, 25].

These advancements provide a valuable opportunity to enhance the

e�cacy of semantic recommendation systems (SemRec). A pivotal

question arises: Can we e�ectively merge identi�er-based recom-

mendation systems (IDRec) with SemRec to leverage the strengths

of both, thereby improving recommendations in both warm and

cold settings? Attempts to integrate IDRec with SemRec through

methods such as addition or concatenation have not yielded the

expected improvements[43]. This shortfall may stem from the fun-

damental di�erences in their representation spaces: IDRec, which

learns from user-item interactions, functions as a collaborative

signal, whereas SemRec, derived from text via semantic encoders,

serves as a semantic signal. Despite the signi�cant enhancements
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in semantic embeddings provided by modern encoders, these still

fall short of the performance achieved by IDRec, especially in warm

settings where SemRec underperforms [43]. This issue could be

attributed to the fact that semantic embeddings in SemRec are

often pre-trained on tasks not directly related to recommenda-

tion [4, 22]. While they capture meaningful content, they fail to

fully represent the speci�c preferences and distribution patterns

of the recommendation data. This scenario presents two distinct

challenges. Firstly, bridging the gap between collaborative and

semantic representation spaces is crucial for leveraging the

combined strengths of IDRec and SemRec. Secondly, re�ning

and maintaining the accuracy of semantic representations

during alignment remains a key obstacle. The "tightness" of se-

mantic representations, as previously discussed [5, 10], can impair

model performance when item representations are overly simi-

lar. Additionally, altering the semantic representation space risks

compromising the meaningfulness of these representations.

To address the previously discussed challenges, we introduce a

novel training strategy named CARec (Collaborative Alignment for

Recommendation). This approach innovatively integrates IDRec

with SemRec in a unique manner. Unlike traditional methods that

merge identi�er and semantic information through addition or con-

catenation [43], our framework assigns distinct roles to users and

items. Speci�cally, users are represented by ID embeddings, which

are randomly initialized due to the typical absence of direct textual

information. Conversely, items are represented by semantic em-

beddings, initialized through Pre-trained Language Models (PLMs)

using textual data such as titles, features, and descriptions. During

training, we design two sequential phases to systematically address

the aforementioned challenges. The �rst phase, termed the seman-

tic aligning phase, aims to bridge the gap between collaborative and

semantic representation spaces. Unlike the traditional simultaneous

training of user and item embeddings, which can contaminate the

semantic integrity of item representations when combined with

the randomly initialized user IDs. We align ID representation space

into semantic representation space. The second phase, known as

the collaborative re�ning phase, focuses on addressing the issue of

semantic representation "tightness" while preserving the meaning-

fulness of these representations.

In summary, our contributions are outlined as follows:

(1) Novel Alignment Paradigm: We introduce a novel collaborative

learning paradigm which enhances the quality of recommenda-

tions by fostering dynamic knowledge exchange.

(2) Bridging Gaps: We identify the problem, uncover the challenges,

and propose a feasible solution for collaborative alignment to

bridge the gap between collaborative �ltering and semantic

representation.

(3) Empirical Validation: We conduct extensive experiments on

four real-world datasets under both warm and cold settings to

validate the e�ectiveness of CARec.

2 Problem De�nition

In this section, we introduce a new framework termed "Collabora-

tive Alignment". Collaborative Alignment seeks to fuse semantic

information with collaborative �ltering to provide more accurate

personalized recommendations. It is an inevitable problem that

occurs between pre-trained language models and collaborative

�ltering-based recommendations.

For recommendation task, we have a set of usersU = {ī1, ī2, ...,

ī |U | }, a set of items I = {ğ1, ğ2, ..., ğ | I | } and a historical interaction

matrix R of size |U| × |I|. By treating R as the adjacent matrix,

we can also view the historical interaction as a user-item bipartite

graph G(U,I, E) = {(ī, ğ) |ī ∈ U, ğ ∈ I, (ī, ğ) ∈ E}, where E is

the edge set. There is an edge (ī, ğ) ∈ E if Rī,ğ = 1 with implicit

feedback. In collaborative alignment, besides the collaborative �l-

tering signal G(U,I, E), we also have a semantic embedding for

each user/item with rich semantic information represented by xī

and xğ , respectively. semantic embedding is encoded from context

information with corresponding pre-trained models as illustrated in

Section 3.1. Encoded from pre-trained models, semantic embedding

contains rich semantic information, and collaborative alignment

seeks to bridge the semantic embedding with the collaborative

�ltering signal to provide more accurate recommendation.

3 Proposed Method

In this section, we introduce our innovative recommendation model

CARec, which is designed to address the challenge of enhancing

RecSys by e�ectively incorporating semantic information and Col-

laborative Filtering (CF) signals. Using historical user-item inter-

actions, CARec learns comprehensive semantic CF-incorporated

representations for both users and items. These representations

not only successfully merge semantic and CF signals but also yield

substantial improvements in recommendation performance, bene-

�ting both general recommendation scenarios and challenging item

cold-start scenarios. In the following subsections, we detail the ar-

chitecture, training phase, and inference phase of CARec, providing

a comprehensive overview of our recommendation approach.

3.1 Semantic Item Representation

To leverage the semantic-rich encoding capabilities o�ered by pre-

trained language models (PLMs), our approach allows for using any

PLM as the encoder to capture semantic item embeddings. For a

given item ğ with associated semantic features, including the item

title, category, and brand, we concatenate these features into a

single sentence ďğ = [ĭ1,ĭ2, ...,ĭę ], whereĭ is the text token and

ę is the total token number. ďğ is then used as input to the PLM,

resulting in the following semantic representation for item ğ:

xğ = ČĈĉ (ďğ ), (1)

where xğ ∈ R
Ěē is ğ’s semantic embedding, and Ěē denotes the

PLM’s output embedding size. We freeze xğ as the 0-th layer hid-

den representation h
(0)
ğ for graph convolution in Section 3.2. This

representation captures the rich semantic information from the

item’s semantic attributes, laying the foundation for the fusion of

semantic and collaborative �ltering signals within CARec.

3.2 Graph Aggregator

CARec is built upon graph aggregation to spread the rich semantic

semantic embedding obtained from Section 3.1. With the aggrega-

tion over G(U,I, E), CARec updates user/item embedding based

on the collaborative �ltering signal. Let’s denote the embeddings of

users as hī and the embeddings of items as hğ , which is obtained
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Figure 1: CARec comprises three key phases: the semantic aligning phase, the collaborative re�ning phase, and inference phase.

During the semantic aligning phase, the model aligns user representations with the item semantic representation space. In

contrast, the collaborative re�ning phase focuses on guiding item representations to e�ectively incorporate collaborative signals

while preserving their semantic characteristics. Finally, in the inference Phase, the model leverages the acquired knowledge to

provide personalized recommendations by utilizing the learned user embeddings and transformed item embeddings.

by the graph aggregator:

hī ,hğ = Aggregator(G(U,I, E),h
(0)
ī ,h

(0)
ğ ), (2)

where h
(0)
ī and h

(0)
ğ represent the user/item initial embedding.

h
(0)
ğ is encoded from Section 3.1 and h

(0)
ī is randomly initialized

embedding due to the lack of su�cient context to encode semantic

embedding. The Aggregator performs aggregation on G(U,I, E)

for ć layers to smooth the embedding. For each layer’s aggregation,

the computation is de�ned as:

h
(ġ+1)
ī = h

(ġ )
ī + AGG

(
h
(ġ )
ğ ,∀ğ ∈ N (ī)

)
, (3)

h
(ġ+1)
ğ = h

(ġ )
ğ + AGG

(
h
(ġ )
ī ,∀ī ∈ N (ğ)

)
, (4)

where h
(ġ )
ī represents the embedding of user ī at layer ġ , and h

(ġ )
ğ

represents the embedding of item ğ at layer ġ . The function AGG

denotes the aggregation function, which combines the embeddings

of neighboring nodes. To maintain generality, we use the most

widely used LGCN [7] as the aggregation function:

AGG(hğ ,∀ğ ∈ N (ī)) =
∑

ğ∈N(ī )

1
√
|N (ī) |

√
|N (ğ) |

hğ , (5)

where N(ī) and N(ğ) represent the set of neighboring nodes of

ī and ğ . hğ is the embedding of a item node ğ . User aggregation is

computed in the same way. It’s worth noting that the aggregation

function can be replaced with any graph aggregation function.

In the subsequent section, we dive into the CARec training phase,

where we elucidate the process of learning comprehensive semantic

representations incorporated in CF for users and items, a crucial

step in our innovative recommendation model.

3.3 Training Phase

In traditional bipartite graph learning for Recommender Systems

(RecSys), it is common to initialize user and item embeddings based

on identi�ers (IDs) randomly and to update their representations

symmetrically. This approach involves aggregating neighbors’ rep-

resentations for each user and item.

However, integrating semantic information into this symmetric

learning framework often proves suboptimal, primarily due to sig-

ni�cant discrepancies in initialization methods. Users are typically

represented through ID-based random embeddings, whereas items

utilize text-based embeddings generated by pre-trained language

models (PLMs). This asymmetric foundation can lead to notable

challenges, such as "item representation contamination," where

the aggregation of randomly initialized user IDs may dilute the

richer, text-based item representations during the process of form-

ing a uni�ed representation space. To overcome these challenges,

CARec introduces a novel approach through its semantic align-

ing phase. This phase stabilizes the item’s semantic representation

while aligning the user’s collaborative signals within the semantic

representation space, speci�cally addressing the representation gap

and contamination issues. Subsequently, the collaborative re�ning

phase maintains the aligned user collaborative signal and re�nes

the item’s semantic representation within the semantic space. This

step is crucial for preserving the integrity and meaningfulness of

the semantic content.

Further details on the semantic aligning phase and the collabo-

rative re�ning phase will be provided in the following subsections,

highlighting how each contributes to overcoming traditional limi-

tations in symmetric learning frameworks.
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3.3.1 Semantic Aligning Phase. In this phase, we align ID repre-

sentation space into semantic representation space to address the

representation gap challenge.

Leveraging the rich semantic information contained in item

semantic representations, our objective is to align user embeddings

(hī ) into the item representation space(hğ ) which has been shown in

the Fig. 1. To achieve this alignment and strengthen the normalized

element-wise similarity between a user’s representation and those

of their interacted items, we employ an alignment loss inspired by

the DirectAU [28] method. The alignment loss between user ī and

item ğ is de�ned as:

ĢU
ėĢğĝĤ

=

1

|E |

∑

(ī,ğ ) ∈E

| |hī − freeze(hğ ) | |
2, (6)

where freeze(hğ ) indicates the frozen item embedding.

To prevent over-concentration in the representation space, the

uniformity loss is also added as the regularization. In our context,

we compute and apply the user uniformity loss ĢU
īĤğ Ĝ ĥĨģ

to optimize

the learning of user representations e�ciently:

ĢU
īĤğ Ĝ ĥĨģ

= Ģĥĝ
1

|U|2

∑

ī∈U

∑

ī∗∈U

ě−2 | |hī−hī∗ | | . (7)

These two loss metrics work in synergy to maintain proximi-

ties between positive instances while dispersing random instances

across the hypersphere. The �nal loss function in the user repre-

sentation learning stage is a combination of the alignment loss and

the user uniformity loss:

LU = ĢU
ėĢğĝĤ

+ ĢU
īĤğ Ĝ ĥĨģ

. (8)

The phase of user representation learning concludes upon meet-

ing the convergence criteria, which are predicated on the predic-

tion scores achieved on the validation set. Speci�cally, we employ

NDCG@10 as the benchmark metric, with an early stopping param-

eter set at 30. At this point, we presume that users have assimilated

adequate knowledge from both semantic and collaborative �ltering

signals, given the current state of item semantic representations.

Following this, the subsequent collaborative re�ning phase is dedi-

cated to re�ning these item semantic representations.

3.3.2 Collaborative Refining Phase. Contrast to aligning user rep-

resentations with item semantic representations to integrate col-

laborative and semantic signals, the collaborative re�ning phase

introduces subtle adjustments when re�ning item representations.

The primary goal in this phase is to preserve item embeddings

within the semantic representation space, thus retaining semantic

information while incorporating collaborative signals. To achieve

this, we freeze user representations and learn from well-trained

users. Rather than directly �ne-tune item representations, we em-

ploy an adaptor, such as multilayer perceptron (MLP) to transform

them, as illustrated in Fig. 1 Collaborative Re�ning Phase. There are

two main reasons for this approach. First, item semantic represen-

tations alone often fail to capture collaborative �ltering signal, and

they tend to become densely clustered [5, 9, 10], which can hinder

recommendation performance. Second, this approach allows us to

preserve informative item semantic knowledge for use in the cold

setting directly. Using an MLP to adapt new item representations

in the cold setting can be problematic. The primary issue is that the

process involves mapping item representations before aggregation.

In the warm setting, the MLP learns to adjust the representations

for e�ective aggregation. However, in the cold setting, where new

items lack prior interactions, the MLP, being a global learner trained

on warm data, struggles to appropriately adjust the item semantic

representations in the absence of aggregation data.

To re�ne item representations, we initially apply MLP, resulting

in h̃
(0)
ğ = MLP(h

(0)
ğ ), where h̃

(0)
ğ denotes the transformed item

representations. Subsequently, we compute the convoluted user

and item representations as follows:

hī , h̃ğ = Aggregator(G(U,I, E),h
(0)
ī , h̃

(0)
ğ ). (9)

The alignment loss employed in item representation learning

mirrors the one used in user representation learning but utilizes

the transformed item representation h̃ğ . The alignment loss in the

collaborative re�ning phase is formulated as follows:

ĢI
ėĢğĝĤ

=

1

|E |

∑

(ī,ğ ) ∈E

| |freeze(hī ) − h̃ğ | |
2, (10)

where freeze(hī ) is the frozen user embedding to force the train-

ing on the item. In addition to the alignment loss, we introduce a

uniformity loss for items to prevent over-concentration and ensure

a well-distributed representation space. This uniformity loss en-

courages item representations to maintain suitable distances from

each other, thereby promoting diversity in the recommendation

process. The uniformity loss for items is de�ned as follows:

ĢI
īĤğ Ĝ ĥĨģ

= log
1

|I |2

∑

ğ∈I

∑

ğ∗∈I

ě−2 | |h̃ğ−h̃ğ∗ | | . (11)

It fosters the even distribution of item representations within

the hypersphere, thereby enhancing the model’s ability to capture

nuanced di�erences between items with similar semantic features.

The �nal loss function for item representation learning is a com-

bination of the alignment loss and the item uniformity loss:

LI = ĢI
ėĢğĝĤ

+ ĢI
īĤğ Ĝ ĥĨģ

. (12)

Through this approach, we ensure that item representations cap-

ture both semantic information and collaborative �ltering signals,

leading to improved recommendation quality while retaining the

�exibility to address cold-start problems.

3.4 Inference Phase

During the inference phase, CARec leverages the learned user em-

beddings and transformed item embeddings to make personalized

recommendations. The recommendation score ĩ (ī, ğ) for a user-

item pair (ī, ğ) is determined through the dot product between the

user embedding hī and the transformed item embedding h̃ğ :

ĩ (ī, ğ) = hĐī · h̃ğ . (13)

In the cold setting, we using the dot product between the user

embedding hī and the item semantic embedding hğ to calculate

the recommendation score.
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Table 1: The Statistics of Preprocessed Datasets: "Avg.U" rep-

resents the average number of interactions per user, "Avg.I"

signi�es the average number of interactions per item, and

"Cold-Items" indicates the count of newly introduced items.

Electronic O�ce Products Gourmet Food Yelp

#Users 81,512 51,493 66,268 65,870

#Items 32,424 16,920 24,636 43,215

#Inters 623,896 212,795 307,617 831,470

#Avg.U 7.653 4.133 4.642 12.623

#Avg.I 18.232 11.950 11.857 19.240

#Cold-Items 1,797 888 1,310 1,714

4 Experiments

This section empirically evaluates the proposed CARec on four real-

world datasets. The goal is to answer the four following research

questions (RQs). RQ1:What is the performance of CARec? RQ2:

Does CARec still achieve the best in the challenging cold-start

recommendation?RQ3:How do di�erent parts a�ect CARec?RQ4:

Can CARec really keep the rich semantic semanticized information?

4.1 Experimental Setup

4.1.1 Dataset. To rigorously evaluate the performance of our pro-

posedmethodology, we conduct experiments in both warm and cold

settings. Key statistics of the preprocessed datasets are summarized

in Table 1. Speci�cally, we use four publicly available real-world

datasets from the Amazon Review Dataset1: Electronics, O�ce

Products, and Grocery and Gourmet Food and Yelp Dataset2. These

datasets have been widely employed in prior recommendation sys-

tem studies [9, 10].

4.1.2 Baselines. We compare the proposed approach with the fol-

lowing baseline methods:NeuMF [8] is a neural network-enhanced

matrix factorization model that replaces the conventional dot prod-

uct with a multi-layer perceptron (MLP) to capture more nuanced

user-item interactions. DirectAU [28] introduces an innovative

loss function that evaluates representation quality in collaborative

�ltering (CF) based on alignment and uniformity within the hy-

persphere. In our implementation, we employ the alignment and

uniformity loss, updating only the student role. NGCF [30] ag-

gregates information from neighbor- ing nodes and incorporates

collaborative signals into embeddings. PinSage [42] designed a

random walk strategy for large-scale graphs, speci�cally on the

Pinterest platform. LightGCN [7] represents a state-of-the-art rec-

ommendation algorithm grounded on Graph Convolutional Net-

works (GCN) [14]. It enhances performance by omitting feature

transformations and nonlinear activations. SimpleX [20] proposes

an easy-to-understand model with a unique loss function that in-

corporates a larger set of negative samples and employs a threshold

to eliminate less informative ones. It also utilizes relative weights to

balance the contributions of positive-sample and negative-sample

losses. NCL [18] o�ers a neighborhood-enriched contrastive learn-

ing framework tailored for graph collaborative �ltering. It explic-

itly captures both structural and semantic neighbors as objects for

1https://jmcauley.ucsd.edu/data/amazon/
2https://www.yelp.com/dataset

contrastive learning. Wide&Deep [3] is a context-aware recom-

mendation model that trains both wide linear models and deep

neural networks concurrently, aiming to synergize the bene�ts of

both memorization and generalization in RecSys. DCNV2 [29] is

another context-aware recommendation model that enhances the

expressive power of Deep & Cross Networks (DCN) by extending

the original weight vector into a matrix. DroupoutNet [26] em-

ploys a dropout operation during training, randomly discarding

portions of the collaborative embeddings. Heater [46] utilizes the

sum squared error (SSE) loss to model collaborative embeddings

based on content information.

4.1.3 Evaluation Se�ings. We evaluate our model’s recommenda-

tion performance using commonly employed metrics in the �eld

of Recommender Systems (RecSys): Recall@K and NDCG@K. By

default, we set the values of K to 10 and 50. The reported results are

based on the average scores across all users in the test set. These

metrics consider the rankings of items that users have not interacted

with yet. In line with established practices [7, 8], we utilize a full-

ranking technique, which involves ranking all non-interacted items

for each user. To assess the model’s performance in a cold setting,

we follow the procedures outlined in previous studies [2, 26, 31, 46].

In the Cold-start scenario, we identify cold-start items by removing

all training interactions for randomly selected subsets of items.

To ensure the validity of both warm and cold settings, we apply

meticulous preprocessing to these datasets. Initially, in alignment

with previous work [10], we employ a 5-core �ltering strategy,

eliminating users and items with insu�cient interactions. Subse-

quently, we randomly select 5% of items to serve as the cold-start

items, excising all corresponding interactions from the preprocessed

dataset to create a cold-start item dataset. This ensures that cold-

start items are only encountered during the testing phase. The

remaining dataset is partitioned into training, validation, and test-

ing subsets using an 80%-10%-10% split. For the semantic features

of items, we aggregate information from �elds such as title, cate-

gories, and brand in the Amazon dataset, truncating any item text

exceeding 512 tokens. To prepare the Yelp dataset for analysis, we

started by removing any items that did not have textual information.

We then focused on interactions with ratings of 3 or higher. From

the �ltered set, we designated 5% of the items as "cold items" to

create a specialized dataset for evaluating cold-start performance.

We further narrowed down the dataset to include only those items

and users involved in at least 15 interactions each, ensuring a more

focused and relevant dataset for analysis. The remaining data was

then split randomly: 80% was used for training the model, and the

remaining 20% was equally divided between validation and testing

purposes. The Yelp dataset, with its combination of business IDs

(representing items) and rich textual descriptions (such as cate-

gories), provides an excellent opportunity to evaluate our model

across a wide range of scenarios.

4.1.4 Implementation Details. We implement CARec and other

baseline models using the open-source recommendation library,

RecBole3 [34]. For the sake of a fair comparison, we employ the

Adam optimizer across all methods and conduct meticulous hy-

perparameter tuning. The batch size is con�gured at 1,024, and

3https://recbole.io/docs/index.html
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we implement early stopping with a patience setting of 30 epochs

to mitigate over�tting, using NDCG@10 as our evaluation metric.

Item text embeddings are generated utilizing a pretrained Instructor-

xl model4 [25]. The dimensions for both user and item embeddings

are �xed at 768.

For residual hyperparameters, we employ a grid search strat-

egy to identify optimal settings. Speci�cally, the learning rate is

explored within the set {0.0001, 0.001, 0.01}, and the weight de-

cay coe�cient is tuned among {1ě−4, 1ě−5, 1ě−6}. For graph-based

models, the number of layers is evaluated over {1, 2, 3}. For content-

based models, item semantic representations serve as item features.

Within the MLP in CARec, we explore con�gurations with layer

counts in {1, 2, 3}, hidden dimensions in {384, 768, 1536}, and dropout

rates in {0.2, 0.5}.

4.2 RQ1: Evaluation of the recommendations

We evaluate the performance of our proposed method against vari-

ous baseline approaches across four distinct datasets, with results

detailed in Table 2. For the sake of clarity and comparative analy-

sis, we categorize the baseline methods into three distinct classes:

ID-based (denoted as ID), Text-based (denoted as TEXT), and content-

based, which includes models such as Wide&Deep and DCNV2.

In ID-based models, the embedding for both the user and item is

learned exclusively from their respective IDs and interactions. Text-

based models, on the other hand, utilize semantic representations of

items to initialize item embeddings. These semantic representations

are obtained from the instructor-xl [25] model. Additionally, for the

Text-based baseline, we compute user representations by averaging

the embeddings of items they have interacted with, as generated

by instructor-xl, and then use a dot product with item semantic

representations for making recommendations. For content-based

models, on the other hand, incorporate item semantic representa-

tion as features for enhanced semantic understanding.

In a comparative analysis with established baseline methods, our

proposed CARec model consistently demonstrates superior perfor-

mance over both ID-based and Text enhanced algorithms across

a wide range of evaluation metrics. It validates that CARec can

e�ectively incorporate collaborative �ltering signal and semantic

information to set the state-of-the-art performance.

4.3 RQ2: Cold-start Evaluation

Table 3 provides an overview of the results of cold-start item rec-

ommendations. Key �ndings include: 1) Our model, CARec, con-

sistently outperforms the best-performing baseline models in cold-

start item recommendations. In contrast, DropoutNet and Heater,

despite utilizing the same item semantic representations as item

features, and employing pre-trained Matrix Factorization (MF) to

initialize user and item representations, fall short in comparison to

our model. This underscores the e�cacy of CARec in leveraging

item semantic knowledge and highlights the bene�ts of its uni-

�ed representational space, seamlessly integrated into the item

semantic representation space. This integration serves a dual pur-

pose: it retains the semantic richness of item semantic descriptions

while e�ectively addressing the cold-start item challenge. Impor-

tantly, CARec accomplishes this without the need for auxiliary

4https://huggingface.co/hkunlp/instructor-xl

Figure 2: Ablation study of CARec on Electronic

modules or additional steps. 2) collaborative-based models strug-

gle to harness the informative item semantic representation for

addressing the cold-start item problem. This challenge arises from

the Semantic Disparity between semantic and Collaborative spaces.

Treating users and items as equal entities during training leads to

an alignment of the uni�ed representation space into a new space

that diverges from the original item semantic representation space.

Consequently, when a new item is introduced, its semantic repre-

sentation deviates from the uni�ed representation space, causing

the model to encounter di�culties in making recommendations for

the new item. 3) The performance ranking of baseline models shows

notable variations in the Yelp dataset. Speci�cally, SimpleXTEXT

outperforms DropoutNet, while NCLTEXT experiences a marked

decline. This shift can be attributed to the nature of text data in the

Yelp dataset, which generally consists of shorter and simpler textual

content compared to the comprehensive product descriptions found

in the Amazon dataset.

4.4 RQ3: In-depth Analysis

4.4.1 Ablation Study. In this subsection, we present a compre-

hensive analysis of the impact of each proposed technique and

component on both the warm and cold setting performances. To

facilitate a thorough comparison, we prepare two variants of the

CARec model: (1) a variant without semantic aligning phase (SAP),

denoted asĭ/ĥ SAP, maintaining the training strategy consistent

with collaborative models; and (2) a variant omits the collabora-

tive re�ning phase, applying only item semantic representation,

denoted asĭ/ĥ CRP.

The results of this ablation study are illustrated in Fig. 2. Notably,

the absence of SAP, as observed in ĭ/ĥ SAP, leads to a signi�-

cant reduction in model performance. This underscores the critical

importance of preserving the item semantic representation space.

Additionally, the exclusion of the collaborative re�ning phase (CRP)

reveals interesting insights. In the warm setting, omitting the CRP

harms performance, as item semantic representations alone may

tend to crowd together. Conversely, in the cold setting, item seman-

tic representations still retain valuable context features that assist

in addressing the cold-start challenge.

4.4.2 Impact of Diverse Pretrained Language Models (PLMs). Nu-

merous robust Pretrained Language Models (PLMs) hold the poten-

tial to enhance RecSys by providing valuable item semantic repre-

sentations. To identify themost e�ective PLMs for our speci�c objec-

tive, we conducted an evaluation of item semantic representations
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Table 2: Warm Setting Comparison Table. The best and second-best results are bold and underlined, respectively. ID indicates

ID-based models, and TEXT denotes models that employ item semantic representation for item embedding initialization. “*”

denotes that the improvements are signi�cant at the level of 0.05 with paired Ī-test.

Electronic O�ce Products Grocery and Gourmet Food Yelp

Model R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50

NeuMFID 0.0513 0.0675 0.0298 0.0339 0.1599 0.1868 0.1051 0.1113 0.1390 0.1644 0.0892 0.0951 0.0469 0.1326 0.0277 0.0498

DirectAUID 0.0546 0.0694 0.0292 0.0329 0.1661 0.1965 0.1000 0.1069 0.1438 0.1707 0.0844 0.0907 0.0467 0.1440 0.0277 0.0529

NGCFID 0.0431 0.0598 0.0232 0.0299 0.0935 0.1248 0.0674 0.0745 0.0854 0.1146 0.0604 0.0672 0.0392 0.1298 0.0231 0.0478

PinSageID 0.0447 0.0613 0.0249 0.0321 0.0956 0.1273 0.0694 0.0765 0.0897 0.1174 0.0640 0.0704 0.0413 0.1332 0.0258 0.0484

LightGCNID 0.0530 0.0857 0.0331 0.0413 0.1782 0.2177 0.1217 0.1307 0.1526 0.1917 0.1024 0.1114 0.0498 0.1441 0.0291 0.0535

SimpleXID 0.0558 0.1060 0.0305 0.0429 0.1727 0.2172 0.1091 0.1192 0.1519 0.1989 0.0920 0.1028 0.0458 0.1355 0.0277 0.0508

NCLID 0.0558 0.1032 0.0348 0.0473 0.1831 0.2316 0.1267 0.1361 0.1573 0.2063 0.1046 0.1175 0.0531 0.1566 0.0309 0.0578

Instructor-xl 0.0108 0.0255 0.0061 0.0094 0.0028 0.0121 0.0012 0.0031 0.0016 0.0045 0.0012 0.0018 0.0008 0.0029 0.0004 0.0010

NeuMFTEXT 0.0389 0.0540 0.0237 0.0275 0.1271 0.1579 0.0846 0.0916 0.1166 0.1417 0.0736 0.0795 0.0255 0.0835 0.0151 0.0301

DirectAUTEXT 0.0551 0.0718 0.0294 0.0336 0.1671 0.1963 0.1004 0.1071 0.1434 0.1703 0.0843 0.0906 0.0472 0.1430 0.0278 0.0526

NGCFTEXT 0.0137 0.0477 0.0064 0.0136 0.0619 0.2145 0.0785 0.0973 0.1061 0.1929 0.0652 0.0845 0.0416 0.0824 0.0267 0.0358

PinSageTEXT 0.0114 0.0452 0.0051 0.0123 0.0902 0.1221 0.0636 0.0708 0.0867 0.1121 0.0609 0.0667 0.0342 0.0870 0.0188 0.0307

LightGCNTEXT 0.0560 0.0909 0.0320 0.0407 0.1782 0.2177 0.1217 0.1307 0.1525 0.1965 0.1030 0.1131 0.0496 0.1433 0.0290 0.0533

SimpleXTEXT 0.0514 0.0931 0.0334 0.0437 0.1759 0.2121 0.1202 0.1284 0.1513 0.1891 0.1015 0.1102 0.0495 0.1405 0.0294 0.0531

NCLTEXT 0.0553 0.0929 0.0324 0.0417 0.1767 0.2213 0.1174 0.1275 0.1547 0.2074 0.1021 0.1142 0.0068 0.0264 0.0042 0.0093

Wide&Deep 0.0138 0.0485 0.0074 0.0159 0.1014 0.1428 0.0609 0.0705 0.0923 0.1303 0.0554 0.0642 0.0219 0.0756 0.0128 0.0266

DCNV2 0.0373 0.0575 0.0216 0.0266 0.1292 0.1648 0.0829 0.0910 0.1160 0.1516 0.0717 0.0799 0.0248 0.0837 0.0145 0.0296

CARec 0.0641* 0.1073 0.0414* 0.0520* 0.1880* 0.2317 0.1348* 0.1389* 0.1634* 0.2103* 0.1174* 0.1281* 0.0582* 0.1731* 0.0329* 0.0622*

Table 3: Cold Setting Comparison Table. Notations consistent with the warm setting comparison. “*” denotes that the improve-

ments are signi�cant at the level of 0.05 with paired Ī-test.

Electronic O�ce Products Grocery and Gourmet Food Yelp

Model R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50

Instructor-xl 0.0488 0.1197 0.0297 0.0456 0.0374 0.1401 0.0159 0.0382 0.0091 0.0595 0.0053 0.0158 0.0067 0.0343 0.0037 0.0108

NeuMFTEXT 0.0046 0.0250 0.0021 0.0066 0.0101 0.0558 0.0047 0.0145 0.0074 0.0413 0.0034 0.0107 0.0030 0.0220 0.0014 0.0058

DirectAUTEXT 0.0048 0.0277 0.0023 0.0073 0.0118 0.0511 0.0057 0.0143 0.0082 0.0429 0.0038 0.0113 0.0049 0.0229 0.0026 0.0068

NGCFTEXT 0.0015 0.0175 0.0021 0.0058 0.0095 0.0513 0.0050 0.0138 0.0072 0.0351 0.0033 0.0092 0.0033 0.0217 0.0032 0.0057

PinSageTEXT 0.0032 0.0194 0.0023 0.0063 0.0114 0.0528 0.0051 0.0141 0.0091 0.0360 0.0042 0.0100 0.0038 0.0235 0.0041 0.0063

LightGCNTEXT 0.0104 0.0443 0.0049 0.0124 0.0309 0.0960 0.0173 0.0315 0.0119 0.0522 0.0053 0.0140 0.0047 0.0201 0.0023 0.0059

SimpleXTEXT 0.0098 0.0419 0.0049 0.0120 0.0122 0.0606 0.0064 0.0168 0.0113 0.0583 0.0056 0.0158 0.0260 0.0801 0.0144 0.0272

NCLTEXT 0.0188 0.0716 0.0092 0.0209 0.0338 0.1150 0.0143 0.0320 0.0222 0.0778 0.0128 0.0248 0.0051 0.0275 0.0023 0.0076

Wide&Deep 0.0038 0.0204 0.0018 0.0055 0.0140 0.1118 0.0060 0.0267 0.0150 0.1224 0.0072 0.0297 0.0042 0.0260 0.0021 0.0071

DCNV2 0.0057 0.0282 0.0029 0.0078 0.0107 0.0510 0.0047 0.0134 0.0082 0.0356 0.0039 0.0099 0.0045 0.0265 0.0023 0.0074

DroupoutNet 0.0569 0.1211 0.0349 0.0503 0.1317 0.1931 0.0850 0.0985 0.1481 0.2432 0.0984 0.1212 0.0236 0.0781 0.0120 0.0236

Heater 0.0036 0.0293 0.0017 0.0073 0.0078 0.0412 0.0034 0.0105 0.0271 0.0500 0.0095 0.0146 0.0052 0.0269 0.0041 0.0074

CARec 0.0622* 0.1501* 0.0383* 0.0584* 0.1469* 0.2646* 0.0931* 0.1210* 0.1764* 0.3012* 0.1219* 0.1521* 0.0283* 0.0851* 0.0163* 0.0292*

generated by four additional PLMs. These PLMs have achieved vary-

ing rankings on the Massive Text Embedding Benchmark (MTEB)

leaderboard 5, highlighting their diverse capabilities and potential

contributions to the enhancement of RecSys. The �ve PLMs eval-

uated include instructor-xl[25], all-MiniLM-L6-v2[22], all-mpnet-

base-v2[22], and bge-base-en-v1.5[33] and bert-base-unchased[4].

The experimental results are presented in Table 4, demonstrating

signi�cant improvements in the cold setting than the default model.

This underscores the vital importance of aligning the user represen-

tation space with the item semantic representation space. Notably,

instructor-xl emerges as the top-performing PLM overall, as it can

generate text embeddings simply by providing the task instruc-

tion, without requiring �ne-tuning. For our experiments, we used

the instruction "Represent the Amazon title:" with instructor-xl to

generate the text embeddings.

4.4.3 Should We Include Additional Item Tutoring and collaborative

refining phases? To investigate the advantages of further training

user and item representations beyond the initial item tutoring and

5https://huggingface.co/spaces/mteb/leaderboard

Table 4: Comparison Table of PLMs. Notations consistent

with warm setting comparison.

Electronic Warm Setting Cold Setting

PLMs R@10 N@10 R@10 N@10

instructor-xl 0.0641 0.0414 0.0622 0.0383

all-MiniLM-L6-v2 0.0633 0.0414 0.0563 0.0343

all-mpnet-base-v2 0.0641 0.0419 0.0556 0.0341

bge-base-en-v1.5 0.0636 0.0414 0.0561 0.0339

bert-base-unchased 0.0631 0.0411 0.0352 0.0194

collaborative re�ning phases, we conducted experiments involving

continuous learning on these representations. Fig. 3 presents the

model’s performance in both warm and cold settings across three

datasets. In the plot, "Item Tut" indicates that the current phase

is the semantic aligning phase, while "User Tut" designates the

collaborative re�ning phase. The numbers on the x-axis represent

the current training stage.
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Figure 3: Overall performance in each training phase

Table 5: Impact of User Embedding Initialization on Model

Performance in the Yelp Dataset.

Warm Cold

R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50

CARec 0.0578 0.1720 0.0332 0.0627 0.0278 0.0842 0.0155 0.0288

CARecAVG 0.0579 0.1722 0.0342 0.0637 0.0221 0.0735 0.0119 0.0240

As depicted in Fig. 3, CARec achieved its best performance after

the �rst collaborative re�ning phase, denoted as "User Tut:1," across

all three datasets. This suggests that user and item representations

do not require additional separate training stages. Continuing to

train the model beyond this point results in a performance decline,

possibly due to the signi�cant deviation of user and item represen-

tations from the item semantic representation, leading to a loss of

semantic information.

4.4.4 Should users be initialized with semantic representations in-

stead of random initialization? In the Yelp dataset, as illustrated

in Table 5, we explore the e�ect of initializing user embeddings

through average pooling of historical item sequences, denoted as

CARecAVG. Our �ndings are as follows: (1) Utilizing average pool-

ing for initializing user embeddings enhances model performance

in scenarios with abundant historical data (warm setting) but results

in diminished e�ectiveness in data-scarce situations (cold setting).

This indicates that while average pooling can somewhat narrow

the representation gap, it does not o�er the same level of adapt-

ability as random initialization, especially in contexts with sparse

user-item interactions. (2) Although average pooling helps bridge

the initial representation gap, it does not reach the full potential of

performance enhancement unless coupled with a robust training

framework like ours. (3) The comparative analysis of CARecAVG
and CARec underscores that the choice of embedding initialization

strategy can signi�cantly in�uence outcomes, contingent upon its

integration within a systematic training methodology.

4.4.5 Parameter Sensitivity. We experimented with di�erent con-

�gurations of the number of layers for the MLP. The sensitivity

results, shown in Fig. 4, reveal that the layer number is not sensitive

for model performance, and the highest performance is achieved

when using two layers with a hidden dimension of 768.

Figure 4: Parameter analysis of MLP on Electronic

(a) CF Representation Space (b) CA Representation Space

Figure 5: Comparison of representation space after model

alignment. The left �gure illustrates the representation space

following Collaborative Filtering (CF) Alignment, while the

right �gure depicts the representation space after Collabo-

rative Alignment (CA). In both �gures, the blue nodes sym-

bolize item semantic representations, the purple nodes rep-

resent item mapped representations by MLP, and the green

nodes denote user learned representations. CA ensures that

item semantic representations remain in the same space af-

ter MLP transformation.

4.5 RQ4: Case Study

To provide visual evidence of CARec’s e�ectiveness in aligning user

representations with item semantic representations while preserv-

ing the integrity of item-learned representations, we present a case

study in Fig 5. In the left �gure, which represents the representation

space following traditional collaborative �ltering alignment, the

item semantic representation (blue) is shown surrounding the user

(green) and item (purple) mapped representations by MLP. This

spatial arrangement suggests that the item semantic representation

is not e�ectively integrated into the same space as the user and item

representations. In contrast, CARec, as shown in the right �gure,

successfully aligns the user and item learned representations within

the item semantic representation space, ensuring that informative

semantic information is retained. This alignment contributes to sig-

ni�cant improvements in both warm and cold settings, showcasing

the model’s enhanced performance.
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5 Related work

5.1 Aligning CF with Semantic Representations

Several studies have attempted to align collaborative �ltering (CF)

signals with semantic representations in recommender systems.

KAR [32] utilizes Large Language Models (LLMs) to enhance rec-

ommendation systems by incorporating open-world knowledge

and reasoning capabilities about user preferences and item informa-

tion. This approach marks a signi�cant advancement in integrating

real-world knowledge into recommendation systems. Similarly,

CTRL [17] explores the integration of collaborative and semantic

signals for Click-Through Rate (CTR) prediction, demonstrating

how semantic insights from Pre-trained Language Models (PLMs)

can be combined with collaborative data to improve recommenda-

tion accuracy. LC-Rec [44] introduces an innovative method of se-

mantic integration using tree-structured vector quantization within

LLMs, enhancing how di�erent semantic representations interact

within recommendation contexts. This model emphasizes the evo-

lution of semantic integration technologies and their application in

recommender systems. CoWPiRec [41] focuses on integrating col-

laborative �ltering information into text-based item representations

through a novel word graph that captures word-level collaborative

signals. This technique enhances PLM’s by incorporating user in-

teraction data directly, o�ering improvements in cross-domain and

cold-start recommendation scenarios. Unlike these existing works,

our approach proposes a unique model that not only integrates but

also re�nes and aligns these representations more e�ectively. We

focus on dynamically adjusting both user and item embeddings to

address the limitations of static embedding approaches commonly

seen in the current literature, speci�cally targeting the gaps in rep-

resentation alignment and the optimization of semantic integrity.

5.2 Collaborative Filtering

Collaborative Filtering (CF) is a widely used technique in mod-

ern RecSys. CF models typically represent users and items as em-

beddings and learn these embeddings by reconstructing historical

user-item interactions. With the rise of Graph Neural Networks

(GNNs) [14], GNN-based RecSys have gained popularity. These

methods model user-item interactions as bipartite graphs, enabling

them to capture high-order connectivity. SpectralCF [45] intro-

duced spectral convolution to improve recommendation perfor-

mance, particularly for cold-start items. PinSAGE [42] designed a

random walk strategy for large-scale graphs, speci�cally on the Pin-

terest platform. NGCF [30] aggregates information from neighbor-

ing nodes and incorporates collaborative signals into embeddings.

LightGCN [7] simpli�ed NGCF, achieving better performance and

reduced training time. However, these collaborative models treat

users and items equally and learn their representations simultane-

ously, which may not work well when incorporating informative

item semantic representations.

5.3 Cold-start Recommendation

Addressing the cold-start problem requires bridging the gap be-

tween warm-start and cold-start items. To achieve this, side in-

formation, particularly content features, is often integrated into

CF-based recommendation models. These content features serve as

a link to capture the collaborative signal for cold-start items. For

example, models like DropoutNET [26] and CC-CC [24] randomly

omit certain collaborative embeddings, enhancing the robustness

of CF-based models while implicitly tapping into information re-

lated to the collaborative signal from item content features. In

contrast, some approaches focus on explicitly modeling the cor-

relation between content information and collaborative embed-

dings [19, 40, 46]. In our approach, we take a di�erent path by

directly combining collaborative �ltering signals with content infor-

mation through collaborative alignment. This innovative approach

signi�cantly enhances recommendation performance by seamlessly

blending collaborative and content-based information.

5.4 Pre-trained Language Models

General text embeddings are of paramount importance, �nding

wide utility not only in common applications such as web search

and question answering[13] but also in their foundational role in en-

hancing large language models [11, 15]. Unlike task-speci�c meth-

ods, general text embeddingsmust be versatile and applicable across

various contexts. In recent years, signi�cant strides have been made

in this �eld, resulting in notable works like BERT [4], Instruc-

tor [25], sentence-T5 (Ni et al., 2021a), Sentence-Transformer [22],

C-Pack [33], OpenAI text embedding [21], and more. In the realm

of RecSys, existing research has demonstrated the power and ef-

fectiveness of Pre-trained Language Models (PLMs) in enhancing

RecSys [5, 9, 10, 16, 39], particularly in warm, cold, and few-shot

settings. However, most of these studies have primarily focused on

sequential recommendation scenarios, while our work centers on

collaborative �ltering-based recommendations.

6 Conclusion

In this paper, we study the collaborative alignment problem to

bridge the gap between collaborative �ltering and the pre-trained

language model. Taking advantage of the pre-trained language

model, we �rst obtain the item semanticized embedding with rich

semantic information. Then, we propose CARec to encode user

embedding into the item’s semantic embedding space based on the

collaborative signal. CARec treats users and items in di�erent roles

to better utilize both the collaborative �ltering signal and the rich

semantic information on items. Experiments on three real-world

datasets under both warm and cold settings show our proposed

CARec surpasses current state-of-the-art methods. Our case study

on learned embedding space highlights that CARec can keep the

semantic information on the semantic embedding space from pre-

trained language model.

Acknowledgements

This work is supported in part by NSF under grants III-2106758,

and POSE-2346158.



CIKM ’24, October 21–25, 2024, Boise, ID, USA Chen Wang et al.

References
[1] Ashton Anderson, Lucas Maystre, Ian Anderson, Rishabh Mehrotra, and Mounia

Lalmas. 2020. Algorithmic e�ects on the diversity of consumption on spotify. In
WWW 2020. 2155–2165.

[2] Yuwei Cao, Liangwei Yang, Chen Wang, Zhiwei Liu, Hao Peng, Chenyu You,
and Philip S. Yu. 2023. Multi-task Item-attribute Graph Pre-training for Strict
Cold-start Item Recommendation. In Recsys 2023. ACM, 322–333. https://doi.
org/10.1145/3604915.3608806

[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. In RecSys 2016. ACM,
7–10. https://doi.org/10.1145/2988450.2988454

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers). Association for Computational Linguistics, 4171–4186.
https://doi.org/10.18653/v1/n19-1423

[5] Hao Ding, Yifei Ma, Anoop Deoras, Yuyang Wang, and Hao Wang. 2021. Zero-
Shot Recommender Systems. CoRR abs/2105.08318 (2021). arXiv:2105.08318
https://arxiv.org/abs/2105.08318

[6] Ziwei Fan, Zhiwei Liu, Alice Wang, Zahra Nazari, Lei Zheng, Hao Peng, and
Philip S Yu. 2022. Sequential recommendation via stochastic self-attention. In
WWW 2022. 2036–2047.

[7] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In SIGIR 2020. 639–648.

[8] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. InWWW 2017. ACM, 173–182. https:
//doi.org/10.1145/3038912.3052569

[9] Yupeng Hou, Zhankui He, Julian J. McAuley, and Wayne Xin Zhao. 2022. Learn-
ing Vector-Quantized Item Representation for Transferable Sequential Recom-
menders. CoRR abs/2210.12316 (2022). https://doi.org/10.48550/arXiv.2210.12316
arXiv:2210.12316

[10] Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-Rong
Wen. [n. d.]. Towards Universal Sequence Representation Learning for Recom-
mender Systems. In KDD 2022.

[11] Gautier Izacard, Patrick S. H. Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni,
Timo Schick, Jane Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2022. Few-shot Learning with Retrieval Augmented Language Mod-
els. CoRR abs/2208.03299 (2022). https://doi.org/10.48550/arXiv.2208.03299
arXiv:2208.03299

[12] Umair Javed, Kamran Shaukat, Ibrahim A Hameed, Farhat Iqbal, Talha Mahboob
Alam, and Suhuai Luo. 2021. A review of content-based and context-based
recommendation systems. iJET 2021 16, 3 (2021), 274–306.

[13] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu,
Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval
for Open-Domain Question Answering. In EMNLP 2020. 6769–6781. https:
//doi.org/10.18653/v1/2020.emnlp-main.550

[14] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classi�cation
with Graph Convolutional Networks. In ICLR 2017. OpenReview.net. https:
//openreview.net/forum?id=SJU4ayYgl

[15] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented Genera-
tion for Knowledge-Intensive NLP Tasks. In NIPS 2020.

[16] Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian J.
McAuley. 2023. Text Is All You Need: Learning Language Representations for
Sequential Recommendation. In KDD 2023. ACM, 1258–1267. https://doi.org/10.
1145/3580305.3599519

[17] Xiangyang Li, Bo Chen, Lu Hou, and Ruiming Tang. 2023. Ctrl: Connect tabular
and language model for ctr prediction. arXiv preprint arXiv:2306.02841 (2023).

[18] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. 2022. Improving
Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning.
In WWW 2022. ACM, 2320–2329. https://doi.org/10.1145/3485447.3512104

[19] Xiaolong Liu, Liangwei Yang, Zhiwei Liu, Xiaohan Li, Mingdai Yang, Chen Wang,
and S Yu Philip. 2023. Group-Aware Interest Disentangled Dual-Training for
Personalized Recommendation. In 2023 IEEE International Conference on Big Data
(BigData). IEEE, 393–402.

[20] Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao,
and Xiuqiang He. 2021. SimpleX: A Simple and Strong Baseline for Collabora-
tive Filtering. In CIKM 2021. ACM, 1243–1252. https://doi.org/10.1145/3459637.
3482297

[21] Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry
Tworek, Qiming Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.

2022. Text and code embeddings by contrastive pre-training. arXiv preprint
arXiv:2201.10005 (2022).

[22] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[23] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.
AutoRec: Autoencoders Meet Collaborative Filtering. In WWW 2015. ACM, 111–
112. https://doi.org/10.1145/2740908.2742726

[24] Shaoyun Shi, Min Zhang, Xinxing Yu, Yongfeng Zhang, Bin Hao, Yiqun Liu,
and Shaoping Ma. 2019. Adaptive Feature Sampling for Recommendation with
Missing Content Feature Values. In CIKM 2019. ACM, 1451–1460. https://doi.
org/10.1145/3357384.3357942

[25] Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf,
Wen-tau Yih, Noah A. Smith, Luke Zettlemoyer, and Tao Yu. 2023. One Embedder,
Any Task: Instruction-Finetuned Text Embeddings. In ACL 2023. Association for
Computational Linguistics, 1102–1121. https://doi.org/10.18653/v1/2023.�ndings-
acl.71

[26] Maksims Volkovs, Guang Wei Yu, and Tomi Poutanen. 2017. DropoutNet: Ad-
dressing Cold Start in Recommender Systems. In NIPS 2017. 4957–4966.

[27] Chen Wang, Yueqing Liang, Zhiwei Liu, Tao Zhang, and Philip S Yu. 2021. Pre-
training Graph Neural Network for Cross Domain Recommendation. arXiv
preprint arXiv:2111.08268 (2021).

[28] Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu,
and Shaoping Ma. 2022. Towards Representation Alignment and Uniformity in
Collaborative Filtering. In KDD 2022. ACM, 1816–1825. https://doi.org/10.1145/
3534678.3539253

[29] Ruoxi Wang, Rakesh Shivanna, Derek Zhiyuan Cheng, Sagar Jain, Dong Lin,
Lichan Hong, and Ed H. Chi. 2021. DCN V2: Improved Deep & Cross Network
and Practical Lessons for Web-scale Learning to Rank Systems. InWWW 2021.
ACM / IW3C2, 1785–1797. https://doi.org/10.1145/3442381.3450078

[30] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR 2019. ACM, 165–174. https:
//doi.org/10.1145/3331184.3331267

[31] Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan Li, Xuanping Li, and Tat-Seng
Chua. 2021. Contrastive Learning for Cold-Start Recommendation. In ACM
MULTIMEDIA 2021. ACM, 5382–5390. https://doi.org/10.1145/3474085.3475665

[32] Yunjia Xi, Weiwen Liu, Jianghao Lin, Jieming Zhu, Bo Chen, Ruiming Tang,
Weinan Zhang, Rui Zhang, and Yong Yu. 2023. Towards open-world recommen-
dation with knowledge augmentation from large language models. arXiv preprint
arXiv:2306.10933 (2023).

[33] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennigho�. 2023.
C-Pack: Packaged Resources To Advance General Chinese Embedding.
arXiv:2309.07597 [cs.CL]

[34] Lanling Xu, Zhen Tian, Gaowei Zhang, Lei Wang, Junjie Zhang, Bowen Zheng,
Yifan Li, Yupeng Hou, Xingyu Pan, Yushuo Chen, Wayne Xin Zhao, Xu Chen, and
Ji-Rong Wen. 2022. Recent Advances in RecBole: Extensions with more Practical
Considerations.

[35] Liangwei Yang, Zhiwei Liu, ChenWang,Mingdai Yang, Xiaolong Liu, JingMa, and
Philip S Yu. 2023. Graph-based alignment and uniformity for recommendation.
In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management. 4395–4399.

[36] Liangwei Yang, Zhiwei Liu, Yu Wang, Chen Wang, Ziwei Fan, and Philip S Yu.
2022. Large-scale personalized video game recommendation via social-aware
contextualized graph neural network. InWWW 2022. 3376–3386.

[37] Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng,
and Philip S Yu. 2023. Group identi�cation via transitional hypergraph convolu-
tion with cross-view self-supervised learning. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management. 2969–2979.

[38] Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng,
and Philip S Yu. 2023. Ranking-based group identi�cation via factorized attention
on social tripartite graph. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining. 769–777.

[39] Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng,
and Philip S Yu. 2024. Instruction-based Hypergraph Pretraining. In Proceedings
of the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 501–511.

[40] Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng,
and Philip S Yu. 2024. Uni�ed Pretraining for Recommendation via Task Hyper-
graphs. In Proceedings of the 17th ACM International Conference on Web Search
and Data Mining. 891–900.

[41] Shenghao Yang, Chenyang Wang, Yankai Liu, Kangping Xu, Weizhi Ma, Yiqun
Liu, Min Zhang, Haitao Zeng, Junlan Feng, and Chao Deng. 2023. Collaborative
word-based pre-trained item representation for transferable recommendation. In
ICDM 2023. IEEE, 728–737.

[42] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In KDD 2018. ACM, 974–983. https://doi.org/10.1145/
3219819.3219890



CARec CIKM ’24, October 21–25, 2024, Boise, ID, USA

[43] Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen Fu, Fei Yang, Yunzhu
Pan, and Yongxin Ni. 2023. Where to go next for recommender systems? id-vs.
modality-based recommender models revisited. arXiv preprint arXiv:2303.13835
(2023).

[44] Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, and Ji-
Rong Wen. 2023. Adapting large language models by integrating collaborative
semantics for recommendation. arXiv preprint arXiv:2311.09049 (2023).

[45] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S. Yu. 2018. Spectral
collaborative �ltering. In RecSys 2018. ACM, 311–319. https://doi.org/10.1145/
3240323.3240343

[46] Ziwei Zhu, Shahin Sefati, Parsa Saadatpanah, and James Caverlee. 2020. Rec-
ommendation for New Users and New Items via Randomized Training and
Mixture-of-Experts Transformation. In SIGIR 2020. ACM, 1121–1130. https:
//doi.org/10.1145/3397271.3401178


	Abstract
	1 Introduction
	2 Problem Definition
	3 Proposed Method
	3.1 Semantic Item Representation
	3.2 Graph Aggregator
	3.3 Training Phase
	3.4 Inference Phase

	4 Experiments
	4.1 Experimental Setup
	4.2 RQ1: Evaluation of the recommendations
	4.3 RQ2: Cold-start Evaluation
	4.4 RQ3: In-depth Analysis
	4.5 RQ4: Case Study

	5 Related work
	5.1 Aligning CF with Semantic Representations
	5.2 Collaborative Filtering
	5.3 Cold-start Recommendation
	5.4 Pre-trained Language Models

	6 Conclusion
	References

