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Abstract

The e�ciency and scalability of graph convolution networks (GCNs)

in training recommender systems (RecSys) have been persistent con-

cerns, hindering their deployment in real-world applications. This

paper presents a critical examination of the necessity of graph con-

volutions during the training phase and introduces an innovative

alternative: the Light Post-Training Graph Ordinary-Di�erential-

Equation (LightGODE). Our investigation reveals that the bene�ts

of GCNs are more pronounced during testing rather than training.

Motivated by this, LightGODE utilizes a novel post-training graph

convolution method that bypasses the computation-intensive mes-

sage passing of GCNs and employs a non-parametric continuous

graph ordinary-di�erential-equation (ODE) to dynamically model

node representations. This approach drastically reduces training

time while achieving �ne-grained post-training graph convolution

to avoid the distortion of the original training embedding space,

termed the embedding discrepancy issue. We validate our model

across several real-world datasets of di�erent scales, demonstrat-

ing that LightGODE not only outperforms GCN-based models in

terms of e�ciency and e�ectiveness but also signi�cantly miti-

gates the embedding discrepancy commonly associated with deeper

graph convolution layers. Our LightGODE challenges the prevailing

paradigms in RecSys training and suggests re-evaluating the role

of graph convolutions, potentially guiding future developments of

e�cient large-scale graph-based RecSys.

CCS Concepts

• Information systems → Recommender systems; Collab-

orative �ltering; • Mathematics of computing → Ordinary

di�erential equations.
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1 Introduction

Recommender systems (RecSys) are signi�cant integral parts of

many online platforms and web applications, helping users navigate

vast amounts of information by providing personalized item recom-

mendations. These systems are essential across various domains

such as digital retailing [14, 34], social networking platforms [6, 15],

and video-sharing services [39], where they �lter and tailor content

to align with individual user preferences. Among the techniques

[19, 27, 30, 32] used in RecSys, collaborative �ltering (CF) [19] is no-

tably e�ective, and it predicts user preferences based on historical

user-item interactions. Essentially, those historical interactions can

be represented as a user-item bipartite graph. Inspired by the supe-

rior ability of graph convolution networks (GCNs) [17, 23, 40, 43] in

modeling on graph-structured data, a large number of GCN-based

recommendation models [9, 37, 38, 48] have emerged recently. They

share the common idea of learning the node representation via ac-

quiring neighborhood information in the bipartite graph layer by

layer, thus capturing the multi-hop connectivity of users/items [41].

Despite the inspiring progress made in graph-based recommen-

dation, these approaches are inherently challenged by the issues

of e�ciency and scalability. They are intrinsically raised by the

computation-intense message-passing of graph convolution in the

existing training paradigm of graph-based recommendation. Such

problems are further exaggerated in the real-world application of

large-scale graphs as the time/computation complexity will grow

exponentially with the number of users and items. Recent studies

show that simple MLPs as the initialization of graph model [8, 47]

or trained with contrastive learning [11], knowledge distillation
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[49] demonstrate competitive performance compared with GCN

models as long as they share an equivalent weight space. Consider-

ing that one can trivially derive a counterpart light graph model [9]

given the matrix factorization (MF) [26] weight, we naturally raise a

meaningful and signi�cant question: Do we really need computation-

intense graph convolution during training for recommendation?

To address the inquiry, we �rst conducted a preliminary experi-

ment to investigate the role of graph convolution. The results reveal

that graph convolution has a more pivotal role in testing rather

than in training. Notably, the MF model is capable of matching the

performance of the GCN when a similar lightweight graph convo-

lution [9] is implemented after training. To uncover the underlying

reasons from a training viewpoint, we examined the supervision

alignment force when training with MF and LightGCNmodels, �nd-

ing that the alignment property [33, 35] of positive user-item pairs

is approximate in two distinct training paradigms. This prompted

us to further explore the training processes of the MF and GCN

models, leading us to conclude that GCN-based training essentially

acts as a degree-weighted form of MF training. Intuitively, by fol-

lowing the pairwise alignment force from a depth-�rst search (DFS)

perspective, MF training results in e�ects akin to GCN training that

adopts information aggregation based on breadth-�rst search (BFS).

Given the time demand of these processes, we suggest that graph

convolution may not be necessary during training. However, the

current graph convolution method is suboptimal, as we empirically

�nd that the increasing number of layers signi�cantly enlarges the

di�erence between embeddings before and after convolution, de-

noted as the Embedding Discrepancy. Assuming the MF model is

well-trained, any post-training operations should not signi�cantly

alter the original embedding space, whereas the existing convolu-

tion strategy with high embedding discrepancy may potentially

o�set the bene�ts of higher-order information. Moreover, the ex-

isting coarse-grained graph convolution approaches fail to �nd an

optimal convolution depth due to its discrete characteristics. These

motivate us to seek a more �ne-grained method to integrate higher-

order user-item interactions while avoiding computation-intense

message passing during training.

In this paper, we introduce Light Post-Training Graph-ODE

(LightGODE), a novel graph-basedmethod designed for �ne-grained

and e�cient large-scale RecSys. Speci�cally, we �rst propose a

novel Post-Training Graph Convolution (PTGC) paradigm that sig-

ni�cantly improves training e�ciency by skipping the most time-

consuming operations, including adjacency matrix normalization

and layer-by-layer graph convolutions, making the training pro-

cess as e�cient as for traditional MF models. To tackle the issue

of embedding discrepancy, we develop a non-parametric graph

convolution that incorporates the self-loop during the information

update. This straightforward operation will prioritize the preceding

layers, thereby implicitly assigning greater importance to shallow

layers, particularly the initial embeddings during graph convo-

lution, which aids in minimizing the variation between the em-

bedding spaces before and after graph convolution. Thus, it helps

to reduce the distribution discrepancy between the embedding

space. Building on this foundation, we propose a continuous graph

ordinary-di�erential-equation derived from the discrete parameter-

free graph convolution. The continuity o�ers several advantages.

First, it characterizes the continuous dynamics of user/item repre-

sentations within the bipartite graph, making the traditional graph

convolution a speci�c discretization of seamless layer-wise em-

bedding transformation. Additionally, it enables precise and �ne-

grained graph convolution to achieve the optimal trade-o� with

the continuous-time value to capture high-order information while

balancing the embedding discrepancy. To foster future research

and development of LightGODE, we have released it open-source,

available at https://github.com/DavidZWZ/LightGODE. Here, we

summarize our contributions as follows:

• To the best of our knowledge, we are the �rst to challenge the

long-standing authority in the graph-based recommendation

- the necessity of graph convolution, and we empirically and

analytically reveal its decisive role in testing rather than training.

• We developed a novel post-training graph convolution frame-

work for extremely e�cient training and devised a none-parametric

GCN with self-loop, alleviating the embedding discrepancy issue.

• Originally, we proposed a continuous graph ordinary-di�erential-

equation (LightGODE), which allows dynamic modeling of node

representations and achieving optimal trade-o�s of high-order

information and embedding discrepancy.

• We conduct extensive experiments on three real-world datasets

to test the e�ectiveness of LightGODE, demonstrating the highest

recommendation performance with the lowest training time.

2 Investigation of the Graph Convolution for
Recommendation

In this section, we initially investigate the necessity of graph con-

volution for recommendation and examine the key reasons behind

the unexpectedly superior performance of the MF model enhanced

by post-training graph convolution. Subsequently, we pinpoint the

trade-o�s in designing post-training graph convolution by identi-

fying the embedding discrepancy issues when constructing deeper

graph convolution layers.
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Figure 1: Preliminary study on the role of graph convolu-

tion for recommendation in training and testing stages. The

MF model with graph convolution after training (MF-conv)

achieves competitive results with the LightGCN-conv.

2.1 The Role and Necessity of Graph
Convolution during Training

To investigate the necessity of graph convolution for graph-based

RecSys, we conduct preliminary experiments on theAmazon-Beauty

(denoted as Beauty) and the Amazon-Toys-and-Games (denoted as
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Toys-and-Games) datasets to understand the impact of graph convo-

lution in the training/testing stages of recommendation. Speci�cally,

we design four variations of the model with the same amount of

embedding parameters, including MF-init, which involves training

with traditional matrix factorization and testing with its factorized

ID embeddings; MF-conv, which integrates the 2-hops LightGCN

convolution after MF training; LightGCN-init, which tests only with

initial embeddings from a LightGCN model; and LightGCN-conv,

which fully implements a 2-layer LightGCN model architecture.

As illustrated in Figure 1, we establish the LightGCN model

(LightGCN-conv) as the benchmark by setting its performance

as 100%. To our surprise, MF-conv consistently outperforms both

MF-init and Light-conv across the two datasets, achieving an im-

pressive average of over 95% of the performance metrics compared

to LightGCN. This clearly highlights the substantial bene�ts of

integrating post-training graph convolution with MF initialization,

which signi�cantly reduces computational costs by circumventing

the intricate graph convolution process. Furthermore, these results

underscore that the improved performance of graph-based RecSys

primarily arises from the graph convolution after training, which

prompts a thorough reconsideration of the necessity of the graph

convolution during the training phase. Meanwhile, we propose a

new point of view to understand the underlying reasons behind the

unexpected exceptional performance of the MF-conv model even

trained without graph convolution.

2.2 The Alignment Force: A DFS Perspective

Recommendation losses typically aim to identify the potential posi-

tive interactions via applying a supervised alignment force to posi-

tive user-item pairs during training. In this context, we empirically

evaluated the alignment property [33, 35] (the average distance

between normalized positive embeddings) of four model versions

in Section 2.1 across the Beauty and Toys-and-Games datasets.

Table 1: The alignment property of positive pairs in training.

Training
Beauty Toys-and-Games

Initial Conv. Initial Conv.

MF 0.7952 0.6631 0.8100 0.7033

LightGCN 0.8270 0.6594 0.7761 0.6503

In Table 1, the initial ID embeddings for both MF and LightGCN

exhibit approximate alignment values in Beauty and Toys-and-

Games, suggesting comparable training e�ects with and without

lightweight graph convolution. Similarly, the embeddings of post-

training convolution show closely matched values, complying with

the experimental �ndings of their comparable performance levels

in Figure 1. These observations prompt us to explore whether the

alignment forces exerted on user-item pairs, with and without the

light graph convolution, are e�ectively equivalent.

Analytically, when a graph model is optimized by the same objec-

tive as the MF model, the alignment force applied on surrounding

neighbors of positive pairs with graph convolution is the degree-

weighted version of that alignment directly forced on two clusters

of nodes. The assumption and proof are listed in the Appendix C.

BFS perspective of alignment in GCN DFS perspective of alignment in MF

1-hop graph convolution to 
the user and item nodes

The alignment force applied to 
the positive user-item pairs

Figure 2: A comparison of alignment force in GCN-based and

MF-based models from BFS and DFS, respectively.

Intuitively, in an illustrative scenario where a single-layer graph

convolution network is employed for gathering information, as

depicted in the left section of Figure 2, one observes the subgraph

comprising positive pairs đ1 and Ē1 alongside their neighboring

nodes. When the alignment force acts uponđ1 andĒ1, the represen-

tations of their respective adjacent nodes, such as Ē2 and đ2, also

move closer together. Conversely, in the right portion of Figure 2,

an alternative approach is showcased where, instead of employing

BFS for neighborhood aggregation, direct connections betweenđ1

and nodes Ē2 and đ2 are established via DFS paths among vari-

ous user-item pairs, achieving a comparable outcome in terms of

aligned representation learning. This conclusion further weakens

the necessity of time-intensive graph convolution in training.

2.3 Trade-o� in Designing Graph Convolution
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Figure 3: Study of the trade-o� of embedding discrepancy

and high-order information on Beauty and Toys-and-Games.

In the preceding sections, we highlighted the notable e�cacy of

the MF-conv model and analyzed the alignment properties to pin-

point key contributors to its approximate performance of LightGCN-

conv. However, the MF-conv still slightly lags behind the LightGCN-

conv, and it is not yet clear how to design a more e�ective non-

parametric graph convolution in the post-training stage. The hint

in the experiments (Figure 1) suggests that incorporating the multi-

hop connectivity information during the testing phase proves ben-

e�cial. Then, it would be valuable to investigate whether higher-

order connectivity continues to be advantageous after training

with the MF model. In addition, if a model is optimally trained

to �t the user-item interactions, one would expect the training

embedding distribution to be ideal for testing. Consequently, any

post-training operations should minimally impact the original em-

bedding space. We are particularly interested in exploring how the

model’s performance correlates with the di�erences between initial

and convolution embeddings, termed as Embedding Discrepancy.
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We utilize the average Euclidean distance, widely acknowledged

for numerical shifts [7], to quantify distribution shift across all

users/items in the embedding space during graph convolution.

In Figure 3, we empirically increase the layer number of post-

training graph convolution, and the performance peaks at a two-

hop convolution. Surprisingly, incorporating more complex, higher-

order information mostly leads to a performance decline. Addition-

ally, the discrepancy between initial and convolution embeddings

enlarges with more layers, indicating that the existing graph con-

volution strategy can disrupt the foundational training, potentially

causing over-smoothing [29] as layers increase (Figure 3). This

suggests that while additional convolution layers introduce more

high-order information, they also risk perturbing well-trained em-

beddings. This could explain the counterexample as increasing the

number of convolution layers initially promotes the performance

and then continually brings negative e�ects - the current strategy

�nds a balance of con�guring two layers.

To enhance performance, it is crucial to incorporate higher-order

information while maintaining an embedding distribution close

to that of the original MF model by adding more layers. This ne-

cessitates a more nuanced graph convolution approach that deli-

cately constructs layers to maintain a trade-o� between high-order

structure information and the embedding discrepancy issue. In a

comprehensive view of e�ciency and e�ectiveness, we design a

more �ne-grained approach to balance the convolution depth and

embedding discrepancy, as introduced in the following section.

3 Light Post-Training Graph-ODE for E�cient
Recommendation

In this section, we propose the post-training graph convolution

framework, including the pre-training user/item embeddings for ex-

tremely e�cient graph recommendation. To balance the integration

of high-order information and the risk of embedding discrepancy,

we devise a non-parametric graph convolution with self-loop. Based

on the formulation, we propose that LightGODE - a continuous

post-training graph convolution based on ordinary-di�erential-

equations aiming to achieve the optimal trade-o�. Finally, a detailed

time complexity analysis and comparison with other strong GCN

baselines are demonstrated.

3.1 Pre-training User/Item Embedding

Here, we outline our overall training pipeline toward the extremely

e�cient graph-based recommendation. Since the graph convolution

proved unnecessary in the training stage as Section 2, we abandoned

the graph convolution-related operations and focused solely on

training the randomly initialized ID embeddings, as shown in the

training section of Figure 4. Regarding the loss computation, we

directly optimize the alignment and uniformity properties as in

[33] to reach optimal status for MF embedding training as an ideal

foundation for the subsequent graph convolution phase. Speci�cally,

the alignment loss minimizes the distance between the normalized

embeddings of the positive pairs (uğ , vĠ ) within batch B:

LėĢğĝĤ =

1

|B|
∑

(uğ ,vĠ ) ∈B





uğ − vĠ







2
. (1)

The uniformity loss LīĤğ Ĝ ĥĨģ = (Lđ
īĤğ Ĝ ĥĨģ

+ LĒ
īĤğ Ĝ ĥĨģ

)/2, and
the user-side uniformity is given by:

Lđ
īĤğ Ĝ ĥĨģ

= log
1

|Bī |2
∑

uğ ∈Bī

∑

uğ′ ∈Bī

ě−2∥uğ−uğ′ ∥ , (2)

where Bī is the user batch and uğ′ is rest of users in batch. The

item side uniformity Lđ
īĤğ Ĝ ĥĨģ

follows the same format and �nal

loss becomes L = LėĢğĝĤ + ĀLīĤğ Ĝ ĥĨģ adjusted by weight Ā .

3.2 Discrete GCN with Self-Loop

Empirical evidence in [9, 38] and Section 2 suggests that optimal

performance is typically achieved when the graph model is con�g-

ured with two or three layers. However, abruptly discontinuing the

convolution process at higher-order layers is inappropriate since

neither the preceding shallow layers are distinctively treated nor the

subsequent high-order layers are noticed. Such an approach lacks a

seamless transition from lower to higher-order graph convolutions,

potentially overlooking nuanced di�erences in structural informa-

tion embedded in shallow and deep graph relationships. This calls

for reconsidering the graph convolution process across di�erent

layer depths to better capture the complexity and dynamics of the

graph data in recommendation contexts.

One straightforward solution is to integrate the self-loop (SL)

into the graph convolution process. This simple operation high-

lights the importance of the node representations of preceding

layers in each message-passing process, contributing to a gradual

transition to higher-order connectivity. Suppose we observe a pair

of interacted users and items with corresponding initial input ID

embeddings u0ğ and v
0
Ġ , and we design the parameter-free graph con-

volution based on the smoothed neighborhood aggregation process

as in [9]. The graph convolution with SL is �nalized as:

u
ġ
ğ = u

ġ−1
ğ +

∑

Ġ∈Ċğ

1
√

|Ċğ |
√

|Ċ Ġ |
v
ġ−1
Ġ ,

v
ġ
Ġ = v

ġ−1
Ġ +

∑

ğ∈Ċ Ġ

1
√

|Ċ Ġ |
√

|Ċğ |
u
ġ−1
ğ ,

(3)

where uġ−1ğ and vġ−1Ġ are embeddings of user uğ and item vĠ at layer

of ġ−1, respectively. The normalization employs the average degree
1√

|Ċğ |
√
|Ċ Ġ |

to temper the magnitude of popular nodes after graph

convolution. Afterward, the collaborative �ltering �nal embedding

is obtained by synthesizing the layer-wise representations:

u
(ć )
ğ =

ć
∑

ġ=0

u
ġ
ğ ; v

(ć )
Ġ =

ć
∑

ġ=0

v
ġ
Ġ . (4)

3.3 Continuous Graph-ODE

Motivated by [2, 31, 42] deriving continuous di�erential equations

from di�usion process to model the dynamics in the graph, we

aim to design a continuous version of our discrete non-parametric

graph convolution with self-loops.

Formally, given h0 as the initial embedding of the users and

items, we can rewrite the layer-wise information update Equation 3

in terms of the matrix operations:

hġ = Ahġ−1, (5)
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Figure 4: The training pipeline of traditional GCN-based recommendation and our proposed LightGODEwith post-training graph

convolution (PTGC) framework, where we skip the time-consuming convolution-related operations to speed up the training.

In the PTGC stage, the self-loop prioritizes the shallow layers by weighing more on preceding layer representations, thus

mitigating the distribution discrepancy problem. Based on the design of discrete non-parametric GCN, we derive LightGODE, a

continuous ODE function that implements �ne-grained graph convolution to achieve the optimal trade-o� in the GCN design.

where hġ is the node embeddings of ġ-th layer, aggregating their

neighborhood information and fusing with its own representation

of the previous layer via self-loop. The matrix A = Ā + I and Ā is

the normalized adjacency matrix.

Consequently, the end result for a ć-layer discrete graph convo-

lution network h(ć) can be represented as:

h(ć) =
ć
∑

ġ=0

hġ =

ć
∑

ġ=0

A
ġ
h0 . (6)

This sum from Equation 6 can be seen as a Riemann sum extend-

ing from layer 0 to layer ć → ∞, transitioning to a continuous

ODE function (proof provided in the Appendix B):

dh(Ī)
dĪ

= lnAh(Ī) + (A − lnA)h0, (7)

which simpli�es under a �rst-order Taylor expansion approxima-

tion where lnA = A − I = Ā, leading to:

dh(Ī)
dĪ

= Āh(Ī) + h0 . (8)

The general form of this continuous graph convolution network

is obtained by integration from the initial condition as:

h(Ī) = ℎ0 +
∫ Ī

0
[Āh(ĩ) + h0]d(ĩ) . (9)

Note that the �nal integration form could be solved analytically

using the integration factor. However, considering that computing

the exponential of the matrix in the analytical solution is time-

consuming, we resort to the simple and fast Euler solver [3] to

approximate the ODE solution.

3.4 Time Complexity Analysis

In this subsection, we analyze the computation complexity of Light-

GODE and compare it with two prominent GCN benchmark meth-

ods, LightGCN [9] and GraphAU [47]. We �rst de�ne the number

of edges in the user-item bipartite graph as |E |. Then, let ć rep-

resent the number of graph convolution layers and Ě the size of

embeddings. On this basis, we can derive the following facts:

• In the graph construction process, both LightGCN and GraphAU

require normalization of the adjacency matrix. This step involves

computing 2|E | non-zero elements of the original adjacency ma-

trix. On the contrary, LightGODE alleviates the need for graph

construction and adjacency matrix normalization in training.

• In the graph convolution stage, LightGCN and GraphAU both

perform linear message-passing through the graph’s edges in

each layer, which incurs a computational cost of 2|E |ćĚ . Whereas

LightGODE does not involve graph convolution in training, sig-

ni�cantly facilitating large-scale graph recommendations.

• Regarding the loss computation, LightGCN adopts the BPR loss

for optimization, leading to a computational demand of ċ (2þĚ).
GraphAU, on the other hand, uses alignment and uniformity loss

calculations between users and items in the batch, resulting in

a time complexity in the batch of ċ (2ćþĚ + 2þ2Ě). LightGODE,
focusing only on the alignment loss at the initial embedding,

has a time complexity per batch of ċ (þĚ + 2þ2Ě). It should be

noted that all the experiments are implemented on GPU-based

parallel computation, which minimizes the relative importance of

batch size þ in model comparisons. Furthermore, the BPR loss’s

reliance on negative sampling for each user-item pair in every

batch through all epochs makes LightGCN less e�cient than

LightGODE in handling large-scale graphs.

Table 2: Time complexity comparison of LightGCN,

GraphAU, and LightGODE during training.

Stages LightGCN GraphAU LightGODE

Adjency

Matrix
ċ (2 | E | ) ċ (2 | E | ) -

Graph

Convolution
ċ (2 | E |ćĚ ) ċ (2 | E |ćĚ ) -

Loss

Computation
ċ (2þĚ ) ċ (2ćþĚ + 2þ2Ě ) ċ (þĚ + 2þ2Ě )

4 Experiments

4.1 Datasets

Weexperiment on three public real-world datasets: Gowalla, Amazon-

Beauty (Beauty), and Amazon-Toys-and-Games (Toys-and-Games),
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Table 3: Performance comparison on three benchmark datasets in terms of NDCG and Recall.

Method
Gowalla Beauty Toys-and-Games

N@20 R@20 N@50 R@50 N@20 R@20 N@50 R@50 N@20 R@20 N@50 R@50

BiasMF 0.0406 0.0700 0.0507 0.1122 0.0428 0.0904 0.053 0.1404 0.0413 0.0826 0.0503 0.1271

NeuMF 0.0487 0.0952 0.0637 0.1597 0.0343 0.0746 0.043 0.1173 0.0301 0.0632 0.0375 0.0994

NGCF 0.0501 0.0923 0.0644 0.1535 0.0438 0.0943 0.0559 0.1537 0.0379 0.0827 0.0486 0.1356

DGCF 0.0553 0.0967 0.0692 0.1556 0.0516 0.1081 0.0624 0.1610 0.0485 0.1007 0.0589 0.1515

SimpleX 0.0451 0.0876 0.0611 0.1555 0.0502 0.1104 0.0623 0.1697 0.0521 0.1092 0.0632 0.1640

LightGCN 0.0683 0.1224 0.0860 0.1974 0.0581 0.1189 0.0709 0.1816 0.0555 0.1131 0.0669 0.1696

ODE-CF 0.0680 0.1220 0.0854 0.1960 0.0537 0.1158 0.0661 0.1760 0.0516 0.1075 0.0633 0.1656

DirectAU 0.0768 0.1437 0.0978 0.2319 0.0555 0.1149 0.0673 0.1725 0.0571 0.1184 0.0677 0.1714

GraphAU 0.0811 0.1461 0.1017 0.2346 0.0662 0.1398 0.0782 0.2116 0.0622 0.1324 0.0725 0.1952

LightGODE 0.0929 0.1678 0.1150 0.2628 0.0714 0.1452 0.0852 0.2130 0.0673 0.1371 0.0794 0.1983

varying in scales and domains. The Gowalla 1 is a location-based

social networking dataset obtained from users’ checking-in. Beauty

and Toys-and-Games are crawled from real-world data in Amazon 2

according to the product category. We follow the 5-core setting in

[33, 51] by removing the users/items with node degrees less than

�ve to ensure the data quality for testing. We split all datasets into

training (80%), validation (10%), and testing (10%), and the statisti-

cal information of the three datasets after �ltering is summarized

in Table 4. More details about implementations, evaluations, and

baseline can be found in Appendix A.

Table 4: The statistics of the datasets.

Dataset # Users # Items # Interactions Sparsity

Gowalla 64,116 164,533 2,018,421 99.9809%

Beauty 22,364 12,102 198,502 99.9267%

Toys-and-Games 19,413 11,925 167,597 99.9276%

4.2 Overall Performance Comparison

In this comprehensive experiment, we compare the performance

of several state-of-the-art recommendation algorithms on three

diverse datasets: Gowalla, Beauty, and Toys-and-Games, using

NDCG20, NDCG@50, Recall@20, and Recall@50. Here, we high-

light the main observations as follows:

• Noticeably, LightGODE achieves the highest scores in NDCG

and Recall across all datasets, demonstrating its e�ectiveness in

di�erent recommendation tasks. It should highlighted that in the

large-scale dataset Gowalla (with 64,116 users and 164,533 items),

LightGODE surpasses all the other baseline methods by large

margins with more than 10% improvement over the strongest

baseline, emphasizing its potential to be deployed in the large-

scale graphs in real-world applications.

• Among all, DirectAU and GraphAU emerge as the most competi-

tive baselines in all three datasets, demonstrating the e�ective-

ness of the alignment and uniformity [35] in optimization.

1https://snap.stanford.edu/data/loc-gowalla.html
2https://jmcauley.ucsd.edu/data/amazon/links.html

• Most of the graph-based recommender systems consistently out-

perform the traditional MF models. This suggests the importance

of graph convolution for capturing the multi-hop information.

Though leveraging contrastive learning loss, SimpleX performs

poorly in the context of sparse dataset Gowalla, whereas Light-

GCN and ODE-CF are more robust across all datasets.

4.3 Ablation Study

Ablation studies on LightGODE are conducted to validate the ra-

tionality and e�ectiveness of our design choices. From Table (5), it

is evident that the full version of the LightGODE model achieves

the best scores across all metrics and datasets, showcasing the e�-

cacy of the continuous ODE function. Furthermore, using only our

parameter-free graph convolution with self-loop (w/o ODE) still

results in higher NDCG and Recall and lower embedding discrep-

ancy compared to traditional lightweight graph convolution (w/o

SL), indicating more consistent embeddings. The model without

post-training graph convolution (w/o Conv) exhibits the lowest

performance. Therefore, each component within our LightGODE

contributes signi�cantly to the �nal recommendation performance.

Table 5: Abalation study on di�erent components. The em-

bedding discrepancy (ED) is the Euclidean distance between

initial and convolution embeddings; the lower the better.

Dataset Metrics Light-

GODE

w/o

ODE

w/o

SL

w/o

Conv

Gowalla
NDCG 0.0929 0.0833 0.0801 0.0768

Recall 0.1678 0.1537 0.1481 0.1437

ED 0.0066 0.0158 0.0282 -

Beauty
NDCG 0.0714 0.0700 0.0686 0.0555

Recall 0.1452 0.1450 0.1428 0.1149

ED 0.0022 0.0049 0.0082 -

Toys-and-

Games

NDCG 0.0673 0.0644 0.0641 0.0571

Recall 0.1371 0.1343 0.1337 0.1184

ED 0.0011 0.0045 0.0067 -
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4.4 E�ciency Analysis
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Figure 5: Trade-o� between the performance and the e�-

ciency on the Gowalla dataset. The left upper direction indi-

cates stronger performance and more e�cient training.

4.4.1 Trade-o� between the Performance and the e�iciency.

Figure 5 illustrates the overall comparison of performance and

e�ciency on the large Gowalla dataset. LightGODE markedly out-

performs all benchmarks while maintaining high e�ciency, un-

derscoring its potential for e�ective, large-scale recommendation

systems. Early works that leverage GCN encoders, such as NGCF

and DGCF, fall behind in average training times per epoch and

NDCG. More advanced GCN-based approaches, including Light-

GCN, ODECF, and GraphAU, show substantial improvements in

NDCG scores yet are still much slower than simpler MF models in

speed. Conversely, BiasMF, NeuMF, and SimpleX directly utilize

user-item interactions, achieving notably low training times but

exhibiting poor ranking scores. Only DirectAU manages a balanced

trade-o� but still lags behind LihgtGODE regarding NDCG.

4.4.2 Training Time Comparison. To delve deeper into the e�-

ciency and scalability analysis in terms of the training, we provide

a comprehensive training time comparison featuring the average

time per epoch, the number of required epochs, and the total train-

ing cost shown in Table 6. On the large dataset Gowalla, NGCF and

DGCF consume longer times per epoch for training, taking tens of

hours in total to reach the optimal status. LightGCN and ODECF

demonstrate shorter epoch duration but demand a greater number

of epochs to complete training. Although GraphAU exhibits the

fastest training speed per epoch among the baseline methods in

the Beauty and Toys-and-Games dataset, it is almost as slow as

LightGCN and ODECF, especially on the large Gowalla dataset.

LightGODE signi�cantly reduces the overall training time to less

than one hour on Gowalla. These observations highlight the e�-

ciency and scalability of LightGODE towards industrial RecSys.

4.4.3 Performance Curve and Convergence Speed. In Figure

6, we present the training curves of performance against epochs on

the tree datasets. Overall, NGCF andDGCF exhibit low-performance

peaks, while LightGCN and ODECF converge slowly. By enforcing

alignment and uniformity in the representation hyperspace, the

Table 6: Training time comparison of GCN-based models on

Gowalla, Beauty, and Toys-and-Games datasets. It includes

the average training time per epoch, the number of epochs,

and the total training time. For abbreviation, we denote sec-

onds as s, minutes as m, and hours as h.

Dataset Method Time/Epoch # Epochs Total Time

Gowalla

NGCF 1175.79s 84 27.44h

DGCF 6720.88s 43 80.28h

LightGCN 608.69s 105 17.75h

ODECF 679.25s 79 14.91h

GraphAU 597.11s 91 15.09h

LightGODE 58.46s 61 0.99h

Beauty

NGCF 10.79s 48 8.63m

DGCF 204.95s 72 245.94m

LightGCN 6.76s 83 9.35m

ODECF 8.34s 108 15.01m

GraphAU 8.72s 41 5.96m

LightGODE 3.16s 68 3.58m

Toys-and

-Games

NGCF 11.19s 57 10.63m

DGCF 116.69s 61 118.64m

LightGCN 5.01s 119 9.94m

ODECF 6.60s 147 16.17m

GraphAU 7.09s 41 4.84m

LightGODE 2.65s 76 3.36m
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Figure 6: Performance curve in the �rst 40 epochs.

performances of GraphAU and LightGODE ensure convergence at

early training stages. Our method requires fewer epochs to con-

verge and consistently results in high recommendation scores.

4.5 Comparison with GODE

To evaluate the e�ectiveness of our continuous ODE function and

self-loop operations tailored for post-training graph convolution,

we compare LightGODE with post-training graph convolution and

GODE with pre-training graph convolution. LightGODE consis-

tently emerges as the superior performer across all metrics in all

three datasets, especially in the large-scale dataset Gowalla. This

demonstrates that our innovative design for post-training graph

convolution not only allows our simple model to exceed the perfor-

mance of GCN models trained with traditional graph convolution

but also signi�cantly speeds up the training strategy.
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Figure 7: Performance Comparison of LightGODE andGODE.

4.6 Hyperparameter Analysis

4.6.1 Impact of the Time Ī . We evaluate how the continuous

time Ī a�ects the performance of LightGODE. As observed in Fig-

ure 8, it suggests that an appropriate time Ī is generally associated

with the scale of the datasets. In Gowalla, performance peaked at

around 3 as a larger time Ī enables the model to long-distance neigh-

borhood aggregations. Whereas in Beauty and Toys-and-Games,

Ī is chosen at 1.8 and 0.8, indicating a smaller receptive �eld to

achieve the optimal convolution depth.

0.5 0.8 1.0 1.2 1.5 1.8 2.0 2.2 2.5 3.0 3.5 5.0
t
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t
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0.137
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Figure 8: Impact the time Ī on Recall.

4.6.2 Impact of the uniformity weight Ā . Another hyperpa-

rameter is the weight of the uniformity loss Ā . From the curves in

Figure 9, a smaller uniformity weight (0.5) achieves the highest re-

call on the Beauty and Toys-and-Games datasets. In contrast, larger

values of Ā are detrimental to the recommendation performance

in Gowalla datasets. As for large-scale datasets, the user and item

representations should be more evenly distributed so as to make

the user/item embeddings more representative for distinction.
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Figure 9: Impact of the uniformity weight Ā on Recall.

5 Related Work

5.1 Graph Convolution Network for RecSys

Collaborative �ltering (CF) is widely used to provide recommen-

dations based on user-item interactions. Recent developments in

graph convolution networks (GCNs) have reformed CF from con-

ventional matrix factorization CF to Graph-based CF, incorporating

social networks [6, 21, 46], knowledge graph [1, 20, 36], and user-

item interactions [9, 25, 37, 38, 45, 48, 50]. One of the early attempts

is NGCF [37], which incorporates the importance of high-order

connectivity in the user-item bipartite graph. Another early work,

PinSAGE [48], utilizes random-walk to sample subgraphs and scales

up RecSys industrial level. DGCF [38] disentangles latent intentions

of users and diversi�es item recommendations. LightGCN [9] omits

linear transformations and nonlinear activations in GCN layers and

drastically improves the e�ciency of graph recommendation. To

further simplify the graph training, UltraGCN [25] adjusts the rela-

tive importance of nodes to aggregate the embeddings by weights

and directly approximates the converged state of message passing,

which accelerates LightGCN bymore thanmultiple times. GraphAU

[47] identi�es the ine�ciency of DirectAU [33] on graph-based rec-

ommendations and proposes high-order representation alignment

for the linear scale of computation for additional layers. All previ-

ous work aims to improve the training e�ciency from the graph

convolution process, whereas we innovatively challenge the neces-

sity of time-intensive graph convolution and propose the extremely

e�cient post-training graph convolution framework.

5.2 Graph Ordinary Di�erential Equation

Neural ordinary-di�erential-equations (NODE) [4] propose a new

paradigm that models continuous dynamics through the deriva-

tive of the neural network’s hidden state. Motivated by this, graph

ordinary-di�erential-equations (GDE) [28] combines the concepts

with GCN and directly treats the GCN layer as a continuous vector

�eld. Derived from the di�usion process, continuous graph model

CGNN [42] characterizes the dynamics of node representations

using a continuous message-passing layer. Concurrently, in the

continuous time data, ODE with a graph encoder [12, 13, 22] are

developed for modeling interacting dynamics. For RecSys, LT-OCF

[5] �rst introduces ordinary-di�erential-equations into graph col-

laborative �ltering and learns the optimal layer combination. Then

ODECF [44] condenses multiple GCN layers into one continuous

layer for better performance and e�ciency. In comparison, instead

of using a deep neural network to parametrize the ODE deriva-

tive, we derive the continuous graph ODE based on the discrete

non-parametric graph convolution for e�cient recommendation.

6 Conclusion

In this study, we critically challenge the conventional reliance

on graph convolution in the training of graph RecSys by demon-

strating that their primary bene�ts are realized during the test-

ing phase. We propose the Light Post-Training Graph-ODE (Light-

GODE), which innovatively skips traditional resource-heavy con-

volution processes, and devise a novel continuous graph ordinary-

di�erential-equation model to mitigate the embedding discrepancy

for optimal convolution depth. Our empirical evaluations across

three real-world datasets, especially on the large-scale dataset

Gowalla, show that LightGODE signi�cantly outperforms tradi-

tional CF models in both recommendation performance and compu-

tational e�ciency. This work not only questions existing training

paradigms but also pinpoints potentially new research directions

for e�cient and large-scale graph RecSys.

Acknowledgments

This work is supported in part by NSF under grants III-2106758,

and POSE-2346158



Do We Really Need Graph Convolution During Training?

Light Post-Training Graph-ODE for E�icient Recommendation CIKM ’24, October 21–25, 2024, Boise, ID, USA

A Experimental Setup

A.1 Baselines

• BiasMF [18] is a matrix factorization technique that integrates

bias vectors for both users and items for enhanced prediction.

• NeuMF [10] leverages deep neural networks to model the

complex and non-linear interactions between users and items.

• NGCF [37] introduces GCNmodels with collaborative �ltering

to exploit the rich user-item interaction graph structure.

• DGCF [38] utilizes a disentangled representation learning

approach to exploit distinct factors of user-item interactions.

• SimpleX [24] propose a novel cosine contrastive loss function

to be integrated with simple collaborative �ltering models.

• LightGCN [9] simpli�es the GCN architecture for a recom-

mendation via obviating the complex non-linear operation.

• ODECF [44] presents a neural ODE-based model that can skip

multiple GCN layers to reach the �nal representation.

• DirectAU [33] explores to directly optimize the alignment and

uniformity of latent representations in collaborative �ltering.

• GraphAU [47] extend the alignment loss layer-wise and tailor

for graph encoders for e�cient graph recommendation.

A.2 Evaluation Metrics

For evaluating performance metrics, we use NDCG@K and Re-

call@K to ensure a fair comparison among all baseline methods

in the top-K recommendation tasks. In all experiments, K is set to

20 by default unless speci�ed. We employ the full-ranking strat-

egy [52] for all experiments, meaning that all candidate items not

previously interacted by the user will be ranked during testing.

A.3 Implementation Details

Our implementation of LightGODE and all baseline models are

carried out using RecBole [53]. For the baseline training, we meticu-

lously search their hyperparameters for various datasets following

respective original papers to ensure a fair comparison. The batch

size and the embedding size are standardized at 256 and 64, respec-

tively. All models employ the Adam optimizer [16], with a learning

rate set at 1e-3. To prevent over�tting, we utilize an early stopping

mechanism that terminates training if there is a consistent decline

in the performance metric NGCG@20 over 10 epochs. Speci�cally,

for our method LightGODE, we tune the uniformity weightĀ within

the set [0.2, 0.5, 1, 2, 5, 10, 15, 20] and search time Ī in the range

of [0.5, 0.8, 1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.5, 3.0, 3.5, 5.0] for optimal

performance. To maintain impartiality in our e�ciency evaluations,

each model is trained independently using a single GPU.

B Derivation of Continuous ODE

One can view �nal representations in Equation 6 as a Riemann sum:

h
(ć )

=

ć+1
∑

ġ=1

A
(ġ−1)�Īℎ0�Ī, (10)

with �Ī = Ī+1
ć+1 . In this discrete setup, Ī = ć and thus �Ī = 1 for

the discrete graph convolution networks. Now let ć → ∞, the

equation transitions to its continuous form:.

h(Ī) =
∫ Ī+1

0

A
s
h0 dĩ . (11)

Di�erentiating this, we have:

dh(Ī)
dĪ

= A
Ī+1

h0 . (12)

Given the challenges in computing A
Ī+1 for non-integer values

of t, it is reformulated into an ODE using the second derivative:

d
2
h(Ī)
dĪ2

= lnAA
Ī+1

h0 = lnA
dh(Ī)
dĪ

(13)

The ODE integrates to:

dh(Ī)
dĪ

= lnAh(Ī) + ĔęĥĤĩĪ , (14)

Applying Ī = 0 to Equation 12 and Equation 14 gives:

dh(Ī)
dĪ

�

�

�

�

Ī=0

= Ah0 = lnAh0 + ĔęĥĤĩĪ . (15)

Therefore,

ĔęĥĤĩĪ = (A − lnA)h0, (16)

resulting in the ODE formulation for the graph convolution as:

dh(Ī)
dĪ

= lnAh(Ī) + (A − lnA)h0 . (17)

C Analysis on the Alignment Force

De�nition C.1 (Perfect Alignment). A pair of observed user-item

pair is perfectly aligned if ěī = ěĬ and (ī, Ĭ) ∼ ČĦĥĩ
To simplify the derivation process, we consider the given user-

item pair (ī, Ĭ) perfectly aligned, and the number of users is less

than the number of items. The lower bound of the alignment force

for the MF model is held as:

LėĢğĝĤ−ģĜ = ∥ě0ī − ě0Ĭ ∥2 +
∑
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where ě0ī and ě0Ĭ represents the initial embedding of user ī and

item Ĭ , with ğ and Ġ being their neighboring nodes. Assuming the

GCN model employs light convolution as in [9] for neighborhood

aggregation, the alignment force for a 1-layer graph convolution

for the user-item pair (ī, Ĭ) can be described as:

LėĢğĝĤ−ĝęĤ =
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Therefore, comparing Equation 18 and Equation 19, the alignment

force applied on surrounding neighbors of positive pairs using

graph convolution is the weighted version of the direct alignment

force applied on two clusterings of nodes.
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