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Abstract

The efficiency and scalability of graph convolution networks (GCNs)
in training recommender systems (RecSys) have been persistent con-
cerns, hindering their deployment in real-world applications. This
paper presents a critical examination of the necessity of graph con-
volutions during the training phase and introduces an innovative
alternative: the Light Post-Training Graph Ordinary-Differential-
Equation (LightGODE). Our investigation reveals that the benefits
of GCNs are more pronounced during testing rather than training.
Motivated by this, Light GODE utilizes a novel post-training graph
convolution method that bypasses the computation-intensive mes-
sage passing of GCNs and employs a non-parametric continuous
graph ordinary-differential-equation (ODE) to dynamically model
node representations. This approach drastically reduces training
time while achieving fine-grained post-training graph convolution
to avoid the distortion of the original training embedding space,
termed the embedding discrepancy issue. We validate our model
across several real-world datasets of different scales, demonstrat-
ing that LightGODE not only outperforms GCN-based models in
terms of efficiency and effectiveness but also significantly miti-
gates the embedding discrepancy commonly associated with deeper
graph convolution layers. Our LightGODE challenges the prevailing
paradigms in RecSys training and suggests re-evaluating the role
of graph convolutions, potentially guiding future developments of
efficient large-scale graph-based RecSys.

CCS Concepts

+ Information systems — Recommender systems; Collab-
orative filtering; - Mathematics of computing — Ordinary
differential equations.
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1 Introduction

Recommender systems (RecSys) are significant integral parts of
many online platforms and web applications, helping users navigate
vast amounts of information by providing personalized item recom-
mendations. These systems are essential across various domains
such as digital retailing [14, 34], social networking platforms [6, 15],
and video-sharing services [39], where they filter and tailor content
to align with individual user preferences. Among the techniques
[19, 27, 30, 32] used in RecSys, collaborative filtering (CF) [19] is no-
tably effective, and it predicts user preferences based on historical
user-item interactions. Essentially, those historical interactions can
be represented as a user-item bipartite graph. Inspired by the supe-
rior ability of graph convolution networks (GCNs) [17, 23, 40, 43] in
modeling on graph-structured data, a large number of GCN-based
recommendation models [9, 37, 38, 48] have emerged recently. They
share the common idea of learning the node representation via ac-
quiring neighborhood information in the bipartite graph layer by
layer, thus capturing the multi-hop connectivity of users/items [41].

Despite the inspiring progress made in graph-based recommen-
dation, these approaches are inherently challenged by the issues
of efficiency and scalability. They are intrinsically raised by the
computation-intense message-passing of graph convolution in the
existing training paradigm of graph-based recommendation. Such
problems are further exaggerated in the real-world application of
large-scale graphs as the time/computation complexity will grow
exponentially with the number of users and items. Recent studies
show that simple MLPs as the initialization of graph model [8, 47]
or trained with contrastive learning [11], knowledge distillation
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[49] demonstrate competitive performance compared with GCN
models as long as they share an equivalent weight space. Consider-
ing that one can trivially derive a counterpart light graph model [9]
given the matrix factorization (MF) [26] weight, we naturally raise a
meaningful and significant question: Do we really need computation-
intense graph convolution during training for recommendation?

To address the inquiry, we first conducted a preliminary experi-
ment to investigate the role of graph convolution. The results reveal
that graph convolution has a more pivotal role in testing rather
than in training. Notably, the MF model is capable of matching the
performance of the GCN when a similar lightweight graph convo-
lution [9] is implemented after training. To uncover the underlying
reasons from a training viewpoint, we examined the supervision
alignment force when training with MF and LightGCN models, find-
ing that the alignment property [33, 35] of positive user-item pairs
is approximate in two distinct training paradigms. This prompted
us to further explore the training processes of the MF and GCN
models, leading us to conclude that GCN-based training essentially
acts as a degree-weighted form of MF training. Intuitively, by fol-
lowing the pairwise alignment force from a depth-first search (DFS)
perspective, MF training results in effects akin to GCN training that
adopts information aggregation based on breadth-first search (BFS).
Given the time demand of these processes, we suggest that graph
convolution may not be necessary during training. However, the
current graph convolution method is suboptimal, as we empirically
find that the increasing number of layers significantly enlarges the
difference between embeddings before and after convolution, de-
noted as the Embedding Discrepancy. Assuming the MF model is
well-trained, any post-training operations should not significantly
alter the original embedding space, whereas the existing convolu-
tion strategy with high embedding discrepancy may potentially
offset the benefits of higher-order information. Moreover, the ex-
isting coarse-grained graph convolution approaches fail to find an
optimal convolution depth due to its discrete characteristics. These
motivate us to seek a more fine-grained method to integrate higher-
order user-item interactions while avoiding computation-intense
message passing during training.

In this paper, we introduce Light Post-Training Graph-ODE
(LightGODE), a novel graph-based method designed for fine-grained
and efficient large-scale RecSys. Specifically, we first propose a
novel Post-Training Graph Convolution (PTGC) paradigm that sig-
nificantly improves training efficiency by skipping the most time-
consuming operations, including adjacency matrix normalization
and layer-by-layer graph convolutions, making the training pro-
cess as efficient as for traditional MF models. To tackle the issue
of embedding discrepancy, we develop a non-parametric graph
convolution that incorporates the self-loop during the information
update. This straightforward operation will prioritize the preceding
layers, thereby implicitly assigning greater importance to shallow
layers, particularly the initial embeddings during graph convo-
lution, which aids in minimizing the variation between the em-
bedding spaces before and after graph convolution. Thus, it helps
to reduce the distribution discrepancy between the embedding
space. Building on this foundation, we propose a continuous graph
ordinary-differential-equation derived from the discrete parameter-
free graph convolution. The continuity offers several advantages.
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First, it characterizes the continuous dynamics of user/item repre-
sentations within the bipartite graph, making the traditional graph
convolution a specific discretization of seamless layer-wise em-
bedding transformation. Additionally, it enables precise and fine-
grained graph convolution to achieve the optimal trade-off with
the continuous-time value to capture high-order information while
balancing the embedding discrepancy. To foster future research
and development of Light GODE, we have released it open-source,
available at https://github.com/DavidZWZ/Light GODE. Here, we
summarize our contributions as follows:

e To the best of our knowledge, we are the first to challenge the
long-standing authority in the graph-based recommendation
- the necessity of graph convolution, and we empirically and
analytically reveal its decisive role in testing rather than training.
e We developed a novel post-training graph convolution frame-
work for extremely efficient training and devised a none-parametric
GCN with self-loop, alleviating the embedding discrepancy issue.
Originally, we proposed a continuous graph ordinary-differential-
equation (LightGODE), which allows dynamic modeling of node
representations and achieving optimal trade-offs of high-order
information and embedding discrepancy.
e We conduct extensive experiments on three real-world datasets
to test the effectiveness of LightGODE, demonstrating the highest
recommendation performance with the lowest training time.

2 Investigation of the Graph Convolution for
Recommendation

In this section, we initially investigate the necessity of graph con-
volution for recommendation and examine the key reasons behind
the unexpectedly superior performance of the MF model enhanced
by post-training graph convolution. Subsequently, we pinpoint the
trade-offs in designing post-training graph convolution by identi-
fying the embedding discrepancy issues when constructing deeper
graph convolution layers.
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Figure 1: Preliminary study on the role of graph convolu-
tion for recommendation in training and testing stages. The
MF model with graph convolution after training (MF-conv)
achieves competitive results with the LightGCN-conv.

2.1 The Role and Necessity of Graph
Convolution during Training

To investigate the necessity of graph convolution for graph-based
RecSys, we conduct preliminary experiments on the Amazon-Beauty
(denoted as Beauty) and the Amazon-Toys-and-Games (denoted as



Do We Really Need Graph Convolution During Training?
Light Post-Training Graph-ODE for Efficient Recommendation

Toys-and-Games) datasets to understand the impact of graph convo-
lution in the training/testing stages of recommendation. Specifically,
we design four variations of the model with the same amount of
embedding parameters, including MF-init, which involves training
with traditional matrix factorization and testing with its factorized
ID embeddings; MF-conv, which integrates the 2-hops LightGCN
convolution after MF training; Light GCN-init, which tests only with
initial embeddings from a LightGCN model; and LightGCN-conv,
which fully implements a 2-layer LightGCN model architecture.

As illustrated in Figure 1, we establish the LightGCN model
(LightGCN-conv) as the benchmark by setting its performance
as 100%. To our surprise, MF-conv consistently outperforms both
MF-init and Light-conv across the two datasets, achieving an im-
pressive average of over 95% of the performance metrics compared
to LightGCN. This clearly highlights the substantial benefits of
integrating post-training graph convolution with MF initialization,
which significantly reduces computational costs by circumventing
the intricate graph convolution process. Furthermore, these results
underscore that the improved performance of graph-based RecSys
primarily arises from the graph convolution after training, which
prompts a thorough reconsideration of the necessity of the graph
convolution during the training phase. Meanwhile, we propose a
new point of view to understand the underlying reasons behind the
unexpected exceptional performance of the MF-conv model even
trained without graph convolution.

2.2 The Alignment Force: A DFS Perspective

Recommendation losses typically aim to identify the potential posi-
tive interactions via applying a supervised alignment force to posi-
tive user-item pairs during training. In this context, we empirically
evaluated the alignment property [33, 35] (the average distance
between normalized positive embeddings) of four model versions
in Section 2.1 across the Beauty and Toys-and-Games datasets.

Table 1: The alignment property of positive pairs in training.

Training Beauty Toys-and-Games
Initial Conv. Initial  Conv.
MF 0.7952 0.6631 0.8100  0.7033
LightGCN  0.8270 0.6594 0.7761  0.6503

In Table 1, the initial ID embeddings for both MF and Light GCN
exhibit approximate alignment values in Beauty and Toys-and-
Games, suggesting comparable training effects with and without
lightweight graph convolution. Similarly, the embeddings of post-
training convolution show closely matched values, complying with
the experimental findings of their comparable performance levels
in Figure 1. These observations prompt us to explore whether the
alignment forces exerted on user-item pairs, with and without the
light graph convolution, are effectively equivalent.

Analytically, when a graph model is optimized by the same objec-
tive as the MF model, the alignment force applied on surrounding
neighbors of positive pairs with graph convolution is the degree-
weighted version of that alignment directly forced on two clusters
of nodes. The assumption and proof are listed in the Appendix C.
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BFS perspective of alignment in GCN

DFS perspective of alignment in MF

The ali force applied to
the positive user-item pairs

> 1-hop graph convolution to
the user and item nodes

Figure 2: A comparison of alignment force in GCN-based and
MF-based models from BFS and DFS, respectively.

Intuitively, in an illustrative scenario where a single-layer graph
convolution network is employed for gathering information, as
depicted in the left section of Figure 2, one observes the subgraph
comprising positive pairs U; and V; alongside their neighboring
nodes. When the alignment force acts upon U and V3, the represen-
tations of their respective adjacent nodes, such as V; and Uy, also
move closer together. Conversely, in the right portion of Figure 2,
an alternative approach is showcased where, instead of employing
BFS for neighborhood aggregation, direct connections between Uy
and nodes V; and Uy are established via DFS paths among vari-
ous user-item pairs, achieving a comparable outcome in terms of
aligned representation learning. This conclusion further weakens
the necessity of time-intensive graph convolution in training.

2.3 Trade-off in Designing Graph Convolution

Beauty

Toys-and-Games

S & o o o
S 8 8 5
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Figure 3: Study of the trade-off of embedding discrepancy
and high-order information on Beauty and Toys-and-Games.

In the preceding sections, we highlighted the notable efficacy of
the MF-conv model and analyzed the alignment properties to pin-
point key contributors to its approximate performance of Light GCN-
conv. However, the MF-conv still slightly lags behind the LightGCN-
conv, and it is not yet clear how to design a more effective non-
parametric graph convolution in the post-training stage. The hint
in the experiments (Figure 1) suggests that incorporating the multi-
hop connectivity information during the testing phase proves ben-
eficial. Then, it would be valuable to investigate whether higher-
order connectivity continues to be advantageous after training
with the MF model. In addition, if a model is optimally trained
to fit the user-item interactions, one would expect the training
embedding distribution to be ideal for testing. Consequently, any
post-training operations should minimally impact the original em-
bedding space. We are particularly interested in exploring how the
model’s performance correlates with the differences between initial
and convolution embeddings, termed as Embedding Discrepancy.
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We utilize the average Euclidean distance, widely acknowledged
for numerical shifts [7], to quantify distribution shift across all
users/items in the embedding space during graph convolution.

In Figure 3, we empirically increase the layer number of post-
training graph convolution, and the performance peaks at a two-
hop convolution. Surprisingly, incorporating more complex, higher-
order information mostly leads to a performance decline. Addition-
ally, the discrepancy between initial and convolution embeddings
enlarges with more layers, indicating that the existing graph con-
volution strategy can disrupt the foundational training, potentially
causing over-smoothing [29] as layers increase (Figure 3). This
suggests that while additional convolution layers introduce more
high-order information, they also risk perturbing well-trained em-
beddings. This could explain the counterexample as increasing the
number of convolution layers initially promotes the performance
and then continually brings negative effects - the current strategy
finds a balance of configuring two layers.

To enhance performance, it is crucial to incorporate higher-order
information while maintaining an embedding distribution close
to that of the original MF model by adding more layers. This ne-
cessitates a more nuanced graph convolution approach that deli-
cately constructs layers to maintain a trade-off between high-order
structure information and the embedding discrepancy issue. In a
comprehensive view of efficiency and effectiveness, we design a
more fine-grained approach to balance the convolution depth and
embedding discrepancy, as introduced in the following section.

3 Light Post-Training Graph-ODE for Efficient
Recommendation

In this section, we propose the post-training graph convolution
framework, including the pre-training user/item embeddings for ex-
tremely efficient graph recommendation. To balance the integration
of high-order information and the risk of embedding discrepancy,
we devise a non-parametric graph convolution with self-loop. Based
on the formulation, we propose that LightGODE - a continuous
post-training graph convolution based on ordinary-differential-
equations aiming to achieve the optimal trade-off. Finally, a detailed
time complexity analysis and comparison with other strong GCN
baselines are demonstrated.

3.1 Pre-training User/Item Embedding

Here, we outline our overall training pipeline toward the extremely
efficient graph-based recommendation. Since the graph convolution
proved unnecessary in the training stage as Section 2, we abandoned
the graph convolution-related operations and focused solely on
training the randomly initialized ID embeddings, as shown in the
training section of Figure 4. Regarding the loss computation, we
directly optimize the alignment and uniformity properties as in
[33] to reach optimal status for MF embedding training as an ideal
foundation for the subsequent graph convolution phase. Specifically,
the alignment loss minimizes the distance between the normalized
embeddings of the positive pairs (u;, v;) within batch B:

Y vl

(u;,v;)e8B

Lalign = (1)
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The uniformity loss Lyniform = ('Egniform + LXniform)/Z, and
the user-side uniformity is given by:
1
U - —2[lu;—uy ||
‘Euniform = log |Bu|? Z Z ¢ ’ @

u;eB,uyeBy,

where 8, is the user batch and uy is rest of users in batch. The

item side uniformity Lgm. Form follows the same format and final

loss becomes L = Lyjign + Y Luniform adjusted by weight y.

3.2 Discrete GCN with Self-Loop

Empirical evidence in [9, 38] and Section 2 suggests that optimal
performance is typically achieved when the graph model is config-
ured with two or three layers. However, abruptly discontinuing the
convolution process at higher-order layers is inappropriate since
neither the preceding shallow layers are distinctively treated nor the
subsequent high-order layers are noticed. Such an approach lacks a
seamless transition from lower to higher-order graph convolutions,
potentially overlooking nuanced differences in structural informa-
tion embedded in shallow and deep graph relationships. This calls
for reconsidering the graph convolution process across different
layer depths to better capture the complexity and dynamics of the
graph data in recommendation contexts.

One straightforward solution is to integrate the self-loop (SL)
into the graph convolution process. This simple operation high-
lights the importance of the node representations of preceding
layers in each message-passing process, contributing to a gradual
transition to higher-order connectivity. Suppose we observe a pair
of interacted users and items with corresponding initial input ID
embeddings u? and V?, and we design the parameter-free graph con-
volution based on the smoothed neighborhood aggregation process
as in [9]. The graph convolution with SL is finalized as:

k_ k-1 1 k-1
T S =)
/5 NINIYING] o
k _ k-1 Z 1 k-1
Vi =V + —u;
J J i
&, INIVING
where ui.‘ ~land vﬁ?_l are embeddings of user u; and item v; at layer

of k—1, respectively. The normalization employs the average degree
1 .
—————— to temper the magnitude of popular nodes after graph
AN p g pop grap.

convolution. Afterward, the collaborative filtering final embedding
is obtained by synthesizing the layer-wise representations:

K ) K
k. K) _ z k
ups vy = Vi
k=0 k=0

ufk -

©)

3.3 Continuous Graph-ODE

Motivated by [2, 31, 42] deriving continuous differential equations
from diffusion process to model the dynamics in the graph, we
aim to design a continuous version of our discrete non-parametric
graph convolution with self-loops.

Formally, given hg as the initial embedding of the users and
items, we can rewrite the layer-wise information update Equation 3
in terms of the matrix operations:

hy = Ahy_,, ©)
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Figure 4: The training pipeline of traditional GCN-based recommendation and our proposed LightGODE with post-training graph
convolution (PTGC) framework, where we skip the time-consuming convolution-related operations to speed up the training.
In the PTGC stage, the self-loop prioritizes the shallow layers by weighing more on preceding layer representations, thus
mitigating the distribution discrepancy problem. Based on the design of discrete non-parametric GCN, we derive LightGODE, a
continuous ODE function that implements fine-grained graph convolution to achieve the optimal trade-off in the GCN design.

where hy is the node embeddings of k-th layer, aggregating their
neighborhood information and fusing with its own representation
of the previous layer via self-loop. The matrix A = A + I and A is
the normalized adjacency matrix.

Consequently, the end result for a K-layer discrete graph convo-
lution network h(K) can be represented as:

h(K) = th = ZAkho
k=0

This sum from Equation 6 can be seen as a Riemann sum extend-
ing from layer 0 to layer K — oo, transitioning to a continuous
ODE function (proof provided in the Appendix B):

dhtr)

7
i ™)
which simplifies under a first-order Taylor expansion approxima-
tion where InA = A — I = A, leading to:

dh(r)
Tdar ®

The general form of this continuous graph convolution network
is obtained by integration from the initial condition as:

(6)

=InAh(t) + (A - InA)hy,

= Ah(t) + ho.

t -
h(t) = ho +/0 [Ah(s) + ho]d(s). 9)

Note that the final integration form could be solved analytically
using the integration factor. However, considering that computing
the exponential of the matrix in the analytical solution is time-
consuming, we resort to the simple and fast Euler solver [3] to
approximate the ODE solution.

3.4 Time Complexity Analysis

In this subsection, we analyze the computation complexity of Light-
GODE and compare it with two prominent GCN benchmark meth-
ods, LightGCN [9] and GraphAU [47]. We first define the number
of edges in the user-item bipartite graph as |&|. Then, let K rep-
resent the number of graph convolution layers and d the size of
embeddings. On this basis, we can derive the following facts:

o In the graph construction process, both LightGCN and GraphAU
require normalization of the adjacency matrix. This step involves
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computing 2|&| non-zero elements of the original adjacency ma-
trix. On the contrary, Light GODE alleviates the need for graph
construction and adjacency matrix normalization in training.
In the graph convolution stage, LightGCN and GraphAU both
perform linear message-passing through the graph’s edges in
each layer, which incurs a computational cost of 2|E|Kd. Whereas
LightGODE does not involve graph convolution in training, sig-
nificantly facilitating large-scale graph recommendations.
Regarding the loss computation, Light GCN adopts the BPR loss
for optimization, leading to a computational demand of O(2Bd).
GraphAU, on the other hand, uses alignment and uniformity loss
calculations between users and items in the batch, resulting in
a time complexity in the batch of O(2KBd + 2Bd). Light GODE,
focusing only on the alignment loss at the initial embedding,
has a time complexity per batch of O(Bd + 2B2d). It should be
noted that all the experiments are implemented on GPU-based
parallel computation, which minimizes the relative importance of
batch size B in model comparisons. Furthermore, the BPR loss’s
reliance on negative sampling for each user-item pair in every
batch through all epochs makes LightGCN less efficient than
LightGODE in handling large-scale graphs.

Table 2: Time complexity comparison of LightGCN,
GraphAU, and LightGODE during training.

Stages ‘ LightGCN ‘ GraphAU ‘ LightGODE
Adjency 0(2/8|) 0(218)) -

Matrix

Graph O(2|E|Kd) | O(2|8|Kd) -
Convolution

Loss O(2Bd) O(2KBd +2B*d) | O(Bd +2B%d)
Computation

4 Experiments
4.1 Datasets

We experiment on three public real-world datasets: Gowalla, Amazon-
Beauty (Beauty), and Amazon-Toys-and-Games (Toys-and-Games),
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Table 3: Performance comparison on three benchmark datasets in terms of NDCG and Recall.

Method Gowalla Beauty Toys-and-Games
N@20 R@20 N@50 R@50 N@20 R@20 N@50 R@50 N@20 R@20 N@50 R@50
BiasMF 0.0406  0.0700 0.0507 0.1122  0.0428  0.0904 0.053 0.1404  0.0413  0.0826 0.0503 0.1271
NeuMF 0.0487 0.0952 0.0637 0.1597 0.0343 0.0746 0.043 0.1173 0.0301 0.0632 0.0375 0.0994
NGCF 0.0501  0.0923 0.0644 0.1535  0.0438  0.0943 0.0559 0.1537  0.0379  0.0827 0.0486 0.1356
DGCF 0.0553  0.0967 0.0692 0.1556  0.0516  0.1081 0.0624 0.1610  0.0485  0.1007 0.0589 0.1515
SimpleX 0.0451  0.0876 0.0611 0.1555  0.0502  0.1104 0.0623 0.1697  0.0521  0.1092 0.0632 0.1640
LightGCN 0.0683  0.1224 0.0860 0.1974  0.0581  0.1189 0.0709 0.1816  0.0555  0.1131 0.0669 0.1696
ODE-CF 0.0680  0.1220 0.0854 0.1960  0.0537  0.1158 0.0661 0.1760  0.0516  0.1075 0.0633 0.1656
DirectAU 0.0768 0.1437 0.0978 0.2319 0.0555 0.1149 0.0673 0.1725 0.0571 0.1184 0.0677 0.1714
GraphAU 0.0811  0.1461 0.1017 0.2346  0.0662  0.1398 0.0782 0.2116  0.0622  0.1324 0.0725  0.1952
LightGODE 0.0929 0.1678 0.1150 0.2628 0.0714 0.1452 0.0852 0.2130 0.0673 0.1371 0.0794 0.1983

varying in scales and domains. The Gowalla ! is a location-based
social networking dataset obtained from users’ checking-in. Beauty
and Toys-and-Games are crawled from real-world data in Amazon 2
according to the product category. We follow the 5-core setting in
[33, 51] by removing the users/items with node degrees less than
five to ensure the data quality for testing. We split all datasets into
training (80%), validation (10%), and testing (10%), and the statisti-
cal information of the three datasets after filtering is summarized
in Table 4. More details about implementations, evaluations, and
baseline can be found in Appendix A.

Table 4: The statistics of the datasets.

Dataset #Users #Items # Interactions  Sparsity
Gowalla 64,116 164,533 2,018,421 99.9809%
Beauty 22,364 12,102 198,502 99.9267%
Toys-and-Games 19,413 11,925 167,597 99.9276%

4.2 Overall Performance Comparison

In this comprehensive experiment, we compare the performance
of several state-of-the-art recommendation algorithms on three
diverse datasets: Gowalla, Beauty, and Toys-and-Games, using
NDCG20, NDCG@50, Recall@20, and Recall@50. Here, we high-
light the main observations as follows:

o Noticeably, LightGODE achieves the highest scores in NDCG
and Recall across all datasets, demonstrating its effectiveness in
different recommendation tasks. It should highlighted that in the
large-scale dataset Gowalla (with 64,116 users and 164,533 items),
LightGODE surpasses all the other baseline methods by large
margins with more than 10% improvement over the strongest
baseline, emphasizing its potential to be deployed in the large-
scale graphs in real-world applications.

e Among all, DirectAU and GraphAU emerge as the most competi-
tive baselines in all three datasets, demonstrating the effective-
ness of the alignment and uniformity [35] in optimization.

Uhttps://snap.stanford.edu/data/loc-gowalla.html
Zhttps://jmcauley.ucsd.edu/data/amazon/links.html

e Most of the graph-based recommender systems consistently out-
perform the traditional MF models. This suggests the importance
of graph convolution for capturing the multi-hop information.
Though leveraging contrastive learning loss, SimpleX performs
poorly in the context of sparse dataset Gowalla, whereas Light-
GCN and ODE-CF are more robust across all datasets.

4.3 Ablation Study

Ablation studies on LightGODE are conducted to validate the ra-
tionality and effectiveness of our design choices. From Table (5), it
is evident that the full version of the Light GODE model achieves
the best scores across all metrics and datasets, showcasing the effi-
cacy of the continuous ODE function. Furthermore, using only our
parameter-free graph convolution with self-loop (w/o ODE) still
results in higher NDCG and Recall and lower embedding discrep-
ancy compared to traditional lightweight graph convolution (w/o
SL), indicating more consistent embeddings. The model without
post-training graph convolution (w/o Conv) exhibits the lowest
performance. Therefore, each component within our Light GODE
contributes significantly to the final recommendation performance.

Table 5: Abalation study on different components. The em-
bedding discrepancy (ED) is the Euclidean distance between
initial and convolution embeddings; the lower the better.

Dataset Metrics Light- wlo w/o w/o
GODE ODE SL Conv
Gowalla NDCG 0.0929 0.0833 0.0801 0.0768
Recall 0.1678 0.1537 0.1481 0.1437
ED 0.0066 0.0158 0.0282 -
NDCG 0.0714 0.0700 0.0686 0.0555
Beauty
Recall 0.1452 0.1450 0.1428 0.1149
ED 0.0022 0.0049 0.0082 -
Toys-and- NDCG 0.0673 0.0644 0.0641 0.0571
Games Recall 0.1371 01343 01337  0.1184
ED 0.0011 0.0045 0.0067 -
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4.4 Efficiency Analysis

Performance vs Efficiency

0.10
JightGODE
0.091
&raphAU
0.08 JpirectAU
6]
.07 DECF
Q00 LightcC il
=
0.061 ‘EGCF
0.05 eumr  MNGCF
] impleX
0.041 ﬁlasMF
102 103 10°

Average Trainig Time per Epoch (Seconds)

Figure 5: Trade-off between the performance and the effi-
ciency on the Gowalla dataset. The left upper direction indi-
cates stronger performance and more efficient training.

4.4.1 Trade-off between the Performance and the efficiency.
Figure 5 illustrates the overall comparison of performance and
efficiency on the large Gowalla dataset. Light GODE markedly out-
performs all benchmarks while maintaining high efficiency, un-
derscoring its potential for effective, large-scale recommendation
systems. Early works that leverage GCN encoders, such as NGCF
and DGCEF, fall behind in average training times per epoch and
NDCG. More advanced GCN-based approaches, including Light-
GCN, ODECEF, and GraphAU, show substantial improvements in
NDCG scores yet are still much slower than simpler MF models in
speed. Conversely, BiasMF, NeuMF, and SimpleX directly utilize
user-item interactions, achieving notably low training times but
exhibiting poor ranking scores. Only DirectAU manages a balanced
trade-off but still lags behind LihgtGODE regarding NDCG.

44.2 Training Time Comparison. To delve deeper into the effi-
ciency and scalability analysis in terms of the training, we provide
a comprehensive training time comparison featuring the average
time per epoch, the number of required epochs, and the total train-
ing cost shown in Table 6. On the large dataset Gowalla, NGCF and
DGCF consume longer times per epoch for training, taking tens of
hours in total to reach the optimal status. LightGCN and ODECF
demonstrate shorter epoch duration but demand a greater number
of epochs to complete training. Although GraphAU exhibits the
fastest training speed per epoch among the baseline methods in
the Beauty and Toys-and-Games dataset, it is almost as slow as
LightGCN and ODECEF, especially on the large Gowalla dataset.
LightGODE significantly reduces the overall training time to less
than one hour on Gowalla. These observations highlight the effi-
ciency and scalability of LightGODE towards industrial RecSys.

4.4.3 Performance Curve and Convergence Speed. In Figure
6, we present the training curves of performance against epochs on
the tree datasets. Overall, NGCF and DGCF exhibit low-performance
peaks, while LightGCN and ODECF converge slowly. By enforcing
alignment and uniformity in the representation hyperspace, the
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Table 6: Training time comparison of GCN-based models on
Gowalla, Beauty, and Toys-and-Games datasets. It includes
the average training time per epoch, the number of epochs,
and the total training time. For abbreviation, we denote sec-
onds as s, minutes as m, and hours as h.

Dataset Method ‘ Time/Epoch  # Epochs  Total Time
NGCF 1175.79s 84 27.44h
DGCF 6720.88s 43 80.28h
Gowalla LightGCN 608.69s 105 17.75h
ODECF 679.25s 79 14.91h
GraphAU 597.11s 91 15.09h
LightGODE 58.46s 61 0.99h
NGCF 10.79s 48 8.63m
DGCF 204.95s 72 245.94m
Beaut LightGCN 6.76s 83 9.35m
y ODECF 8.34s 108 15.01m
GraphAU 8.72s 41 5.96m
LightGODE 3.16s 68 3.58m
NGCF 11.19s 57 10.63m
DGCF 116.69s 61 118.64m
Toys-and  LightGCN 5.01s 119 9.94m
-Games ODECF 6.60s 147 16.17m
GraphAU 7.09s 41 4.84m
LightGODE 2.65s 76 3.36m
Gowalla Beauty Toys-and-Games
0.07
0.08 0.06
: 0.06
0.07 0.05
0.05
3 0.06 8om S o.04
a) {00 a //"M
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Figure 6: Performance curve in the first 40 epochs.

performances of GraphAU and LightGODE ensure convergence at
early training stages. Our method requires fewer epochs to con-
verge and consistently results in high recommendation scores.

4.5 Comparison with GODE

To evaluate the effectiveness of our continuous ODE function and
self-loop operations tailored for post-training graph convolution,
we compare LightGODE with post-training graph convolution and
GODE with pre-training graph convolution. Light GODE consis-
tently emerges as the superior performer across all metrics in all
three datasets, especially in the large-scale dataset Gowalla. This
demonstrates that our innovative design for post-training graph
convolution not only allows our simple model to exceed the perfor-
mance of GCN models trained with traditional graph convolution
but also significantly speeds up the training strategy.
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Figure 7: Performance Comparison of Light GODE and GODE.

4.6 Hyperparameter Analysis

4.6.1 Impact of the Time t. We evaluate how the continuous
time t affects the performance of Light GODE. As observed in Fig-
ure 8, it suggests that an appropriate time ¢ is generally associated
with the scale of the datasets. In Gowalla, performance peaked at
around 3 as a larger time t enables the model to long-distance neigh-
borhood aggregations. Whereas in Beauty and Toys-and-Games,
t is chosen at 1.8 and 0.8, indicating a smaller receptive field to
achieve the optimal convolution depth.

Gowalla Beauty Toys-and-Games
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t

0.168
0.167
0.166
0.165
0.164
0.163
0.162

0.138
0.137
0.136
0.135
0.134
0.133

0.145
0.144
0.143
0.142
0.141

14 0.132
920 %220 909 0

92 O K229, 0,9, 0 ISCSIR AR RSO RC A
t

ORNANRRNA 0y %
t

Figure 8: Impact the time ¢ on Recall.

4.6.2 Impact of the uniformity weight y. Another hyperpa-
rameter is the weight of the uniformity loss y. From the curves in
Figure 9, a smaller uniformity weight (0.5) achieves the highest re-
call on the Beauty and Toys-and-Games datasets. In contrast, larger
values of y are detrimental to the recommendation performance
in Gowalla datasets. As for large-scale datasets, the user and item
representations should be more evenly distributed so as to make
the user/item embeddings more representative for distinction.

01 Gowalla 0.1 Beauty 0.1 Toys-and-Games
0.16 0.14 0.14
014 0.12 0.12
0.12
0.1 0.1
0.1
0.08 0.08 0.08
000205 1 3 5 1015 20 “%0205 1 2 5 10 1520 “°0205 1 2 5 10 15 20
Y Y Y

Figure 9: Impact of the uniformity weight y on Recall.

5 Related Work
5.1 Graph Convolution Network for RecSys

Collaborative filtering (CF) is widely used to provide recommen-
dations based on user-item interactions. Recent developments in
graph convolution networks (GCNs) have reformed CF from con-
ventional matrix factorization CF to Graph-based CF, incorporating
social networks [6, 21, 46], knowledge graph [1, 20, 36], and user-
item interactions [9, 25, 37, 38, 45, 48, 50]. One of the early attempts
is NGCF [37], which incorporates the importance of high-order
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connectivity in the user-item bipartite graph. Another early work,
PinSAGE [48], utilizes random-walk to sample subgraphs and scales
up RecSys industrial level. DGCF [38] disentangles latent intentions
of users and diversifies item recommendations. LightGCN [9] omits
linear transformations and nonlinear activations in GCN layers and
drastically improves the efficiency of graph recommendation. To
further simplify the graph training, UltraGCN [25] adjusts the rela-
tive importance of nodes to aggregate the embeddings by weights
and directly approximates the converged state of message passing,
which accelerates Light GCN by more than multiple times. GraphAU
[47] identifies the inefficiency of DirectAU [33] on graph-based rec-
ommendations and proposes high-order representation alignment
for the linear scale of computation for additional layers. All previ-
ous work aims to improve the training efficiency from the graph
convolution process, whereas we innovatively challenge the neces-
sity of time-intensive graph convolution and propose the extremely
efficient post-training graph convolution framework.

5.2 Graph Ordinary Differential Equation

Neural ordinary-differential-equations (NODE) [4] propose a new
paradigm that models continuous dynamics through the deriva-
tive of the neural network’s hidden state. Motivated by this, graph
ordinary-differential-equations (GDE) [28] combines the concepts
with GCN and directly treats the GCN layer as a continuous vector
field. Derived from the diffusion process, continuous graph model
CGNN [42] characterizes the dynamics of node representations
using a continuous message-passing layer. Concurrently, in the
continuous time data, ODE with a graph encoder [12, 13, 22] are
developed for modeling interacting dynamics. For RecSys, LT-OCF
[5] first introduces ordinary-differential-equations into graph col-
laborative filtering and learns the optimal layer combination. Then
ODECF [44] condenses multiple GCN layers into one continuous
layer for better performance and efficiency. In comparison, instead
of using a deep neural network to parametrize the ODE deriva-
tive, we derive the continuous graph ODE based on the discrete
non-parametric graph convolution for efficient recommendation.

6 Conclusion

In this study, we critically challenge the conventional reliance
on graph convolution in the training of graph RecSys by demon-
strating that their primary benefits are realized during the test-
ing phase. We propose the Light Post-Training Graph-ODE (Light-
GODE), which innovatively skips traditional resource-heavy con-
volution processes, and devise a novel continuous graph ordinary-
differential-equation model to mitigate the embedding discrepancy
for optimal convolution depth. Our empirical evaluations across
three real-world datasets, especially on the large-scale dataset
Gowalla, show that LightGODE significantly outperforms tradi-
tional CF models in both recommendation performance and compu-
tational efficiency. This work not only questions existing training
paradigms but also pinpoints potentially new research directions
for efficient and large-scale graph RecSys.
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A Experimental Setup
A.1 Baselines

o BiasMF [18] is a matrix factorization technique that integrates
bias vectors for both users and items for enhanced prediction.
NeuMF [10] leverages deep neural networks to model the
complex and non-linear interactions between users and items.
NGCEF [37] introduces GCN models with collaborative filtering
to exploit the rich user-item interaction graph structure.
DGCF [38] utilizes a disentangled representation learning
approach to exploit distinct factors of user-item interactions.
SimpleX [24] propose a novel cosine contrastive loss function
to be integrated with simple collaborative filtering models.
LightGCN [9] simplifies the GCN architecture for a recom-
mendation via obviating the complex non-linear operation.
ODECEF [44] presents a neural ODE-based model that can skip
multiple GCN layers to reach the final representation.
DirectAU [33] explores to directly optimize the alignment and
uniformity of latent representations in collaborative filtering.
GraphAU [47] extend the alignment loss layer-wise and tailor
for graph encoders for efficient graph recommendation.

A.2 Evaluation Metrics

For evaluating performance metrics, we use NDCG@K and Re-
call@K to ensure a fair comparison among all baseline methods
in the top-K recommendation tasks. In all experiments, K is set to
20 by default unless specified. We employ the full-ranking strat-
egy [52] for all experiments, meaning that all candidate items not
previously interacted by the user will be ranked during testing.

A.3 Implementation Details

Our implementation of LightGODE and all baseline models are
carried out using RecBole [53]. For the baseline training, we meticu-
lously search their hyperparameters for various datasets following
respective original papers to ensure a fair comparison. The batch
size and the embedding size are standardized at 256 and 64, respec-
tively. All models employ the Adam optimizer [16], with a learning
rate set at le-3. To prevent overfitting, we utilize an early stopping
mechanism that terminates training if there is a consistent decline
in the performance metric NGCG@20 over 10 epochs. Specifically,
for our method LightGODE, we tune the uniformity weight y within
the set [0.2, 0.5, 1, 2, 5, 10, 15, 20] and search time ¢ in the range
of [0.5, 0.8, 1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.5, 3.0, 3.5, 5.0] for optimal
performance. To maintain impartiality in our efficiency evaluations,
each model is trained independently using a single GPU.

B Derivation of Continuous ODE

One can view final representations in Equation 6 as a Riemann sum:
K+1

h& = Z AR=DALp Ay (10
k=1
with At = 12:11 In this discrete setup, ¢ = K and thus At = 1 for

the discrete graph convolution networks. Now let K — oo, the
equation transitions to its continuous form:.

h(t) = /0 o AShy ds. 1)

3256

CIKM 24, October 21-25, 2024, Boise, ID, USA

Differentiating this, we have:
dh(z)
dt

Given the challenges in computing A**! for non-integer values
of t, it is reformulated into an ODE using the second derivative:

= A*lp,. (12)

d?h(t) dh(t)
=InAA""hg =InA—— 13
dt? dt (13)
The ODE integrates to:
dh(t
d_(t) =InAh(¢) + Xconst (14)
Applying t = 0 to Equation 12 and Equation 14 gives:
dh(t
L = Ahg = In Ahgy + Xconse- (15)
dt o
Therefore,
Xconst = (A —InA)h, (16)
resulting in the ODE formulation for the graph convolution as:
dh(t
% =1InAh(t) + (A —1InA)h,. (17)

C Analysis on the Alignment Force

Definition C.1 (Perfect Alignment). A pair of observed user-item

pair is perfectly aligned if e, = ey and (,0) ~ Ppos

To simplify the derivation process, we consider the given user-
item pair (u, v) perfectly aligned, and the number of users is less
than the number of items. The lower bound of the alignment force
for the MF model is held as:

2 0 02 0 02
Latign-mp = ety =S+ " lled —ebl?+ " lleh - €l

ieENy, jENv
0_ 02 0 02
> ) lle) —eflF+ > lled - €Yl
ieN, JEN,
2
0_ 0 0_ 0
> Z (ej —ey) + Z (ev—ej)
ieN, JENy
2
e
ieNy, jEN,

(18)
where ) and e represents the initial embedding of user u and
item v, with i and j being their neighboring nodes. Assuming the
GCN model employs light convolution as in [9] for neighborhood
aggregation, the alignment force for a 1-layer graph convolution
for the user-item pair (u, v) can be described as:

-Lalign—gcn = ”6111 - 611)”2

=1 2

ieNy,

¢

w—um " 2 T

Therefore, comparing Equation 18 and Equation 19, the alignment
force applied on surrounding neighbors of positive pairs using
graph convolution is the weighted version of the direct alignment
force applied on two clusterings of nodes.
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