
2024 IEEE International Conference on Big Data (Big Data)

979-8-3503-6248-0/24/$31.00 ©2024 IEEE

413

Personalized Multi-task Training for Recommender

System

Liangwei Yang1∗, Zhiwei Liu2, Jianguo Zhang2, Rithesh Murthy2, Shelby Heinecke2,

Huan Wang2, Caiming Xiong2 and Philip S. Yu1

1Department of Computer Science, University of Illinois Chicago, USA

{lyang84, psyu}@uic.edu
2Salesforce AI Research, USA

{zhiweiliu, jianguozhang, rithesh.murthy, shelby.heinecke, huan.wang, cxiong}@salesforce.com

Abstract—In the vast landscape of internet information, recom-
mender systems (RecSys) have become essential for guiding users
through a sea of choices aligned with their preferences. These
systems have applications in diverse domains. Personalization
is a key technique in RecSys, where modern methods leverage
representation learning to encode user/item interactions into
embeddings, forming the foundation for personalized recommen-
dations. However, integrating information from multiple sources
to enhance recommendation performance remains challenging.
This paper introduces a novel approach named PMTRec, the
first personalized multi-task learning algorithm to obtain compre-
hensive user/item embeddings from various information sources.
Addressing challenges specific to personalized RecSys, we de-
velop modules to handle personalized task weights, diverse task
orientations, and variations in gradient magnitudes across tasks.
PMTRec dynamically adjusts task weights based on gradient
norms for each user/item, employs a Task Focusing module to
align gradient combinations with the main recommendation task,
and uses a Gradient Magnitude Balancing module to ensure
balanced training across tasks. Through extensive experiments
on three real-world datasets with different scales, we demonstrate
that PMTRec significantly outperforms existing multi-task learn-
ing methods, showcasing its effectiveness in achieving enhanced
recommendation accuracy by leveraging multiple tasks simul-
taneously. Our contributions open new avenues for advancing
personalized multi-task training in RecSys.

Index Terms—Recommender System, Multi-task Training

I. INTRODUCTION

Regarding the pervasive landscape of information available

on the Internet [1], recommender systems (RecSys) [2] play

a pivotal role in facilitating the exploration of items for

users. RecSys improves the efficiency of information digestion

and has permeated into every corner of our lives, such as

news feeds [3], game suggestions [4], and shopping recom-

mendations [5]. The great commercial value of RecSys also

establishes its indispensability in web services and drives the

success of many Internet companies [6]–[8].

Personalization is the key technique for an effective Rec-

Sys [9]. Personalized RecSys suggests specific candidate items

for each user based on his/her own historical interactions. It

offers each user a distinct experience with the web service

tailored to their interests. Due to the success of representation

learning [10], current state-of-the-art methods [11], [12] in

∗The work is finished during an internship at Salesforce AI Research.

RecSys encode user/item interactions into dense vector repre-

sentations, referred to as embeddings. The embedding of each

user/item contains his/her/its unique information, which is the

bedrock for providing personalized recommendations. Based

on the encoded embedding, these methods recommend items

with the highest similarities for each user. Besides user-item

interactions, more information can be found in web services

and applications such as users’ social networks [13] and item

features [14]. Then, a natural question arises: Can we obtain

a more comprehensive embedding from multiple sources of

information to improve the recommendation performance?

In this paper, we seek to answer this question with multi-

task learning [15], which has been shown effective in various

application domains such as computer vision [16] and natural

language processing [17]. The core idea behind it is to obtain a

comprehensive user/item embedding that can perform multiple

tasks at the same time. As illustrated in Figure 1, we show

three tasks associated with distinct information. The black

edges denote the recommendation task to predict users’ pref-

erence for items, which is the main task for optimization. The

blue edge indicates social information, where the social link

prediction task between users characterizes social information

into embedding of users. The red line represents two items in

the same “Electronics” category. Predicting whether two items

share the same category encodes item category similarity into

item embedding. Training user/item embedding with all these

tasks endows incorporating information from multiple sources,

leading to a more comprehensive vector representation.

Several key challenges are still under-explored when de-

veloping a multi-task learning framework for personalized

RecSys, which are threefold as follows: (1) Personalized task

Recommendation (RS)

Social Prediction

Electronics

Category Prediction

Fig. 1. A toy example of multi-task learning in RecSys.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 21,2025 at 01:37:35 UTC from IEEE Xplore. Restrictions apply.

414

weights. For each user, the importance of different tasks should

be distinct. As illustrated in Figure 1, the suitable task weights

for u1 and u2 are different. u1 has sufficient item interactions

to obtain an accurate gradient for updating embedding, which

suggests a higher RecSys task weight for u1. However, u2

does not interact with any item before, in which case the

RecSys task fails to provide informative information, and it

is beneficial for u2 to have a higher weight on the Social

Prediction task. Supporting specific task weights for each

user is the first challenge, and it is essential for personalized

training with multiple tasks. (2) Varied task orientations.

The purpose of different tasks is varied, leading to diverged

embedding updates during training, which may conflict with

each other or even be meaningless for improving the main

RecSys task. Handling the varied updating orientations from

multiple tasks to improve the RecSys task poses the second

challenge. (3) Difference in gradient magnitude across tasks.

The loss functions for multiple tasks are inconsistent, and

thus the gradient magnitude could be magnificently different.

Directly averaging all those gradients from multiple tasks may

overlook tasks with smaller gradients. However, balancing the

gradient magnitude difference and making the small gradient

counts are an important yet under-explored challenge.

This paper proposes the first Personalized Multi-task Train-

ing algorithm for Recommender System (PMTRec) to obtain

a more comprehensive user/item embedding from multiple in-

formation sources. Different modules are designed accordingly

to deal with specific challenges. We dive into the gradient

level during the backward propagation to enable personalized

task weights. PMTRec first collects the gradient from each

task during backpropagation and then combines the gradient

on each user embedding separately. PMTRec conducts metic-

ulous user/item-specific gradient level operations rather than

the existing task-wise algorithms [16], [18]–[20]. For a specific

gradient of one user from one task, PMTRec firstly calculates

the norm to measure the importance. A gradient with a

higher magnitude signifies a greater impact on optimizing the

corresponding task. PMTRec then utilizes the gradient norm

to calculate task weight for gradient combination. The gradient

norm on each task for different users is distinct, leading to

personalized gradient weights. We also designed a Task Focus-

ing module to tackle the varied task orientation challenge. We

enforce the learning process gradually, focusing on the main

RecSys task during the training stage, achieved by increasing

the corresponding gradient combination weight. After initial

exploration of other tasks, the Task Focusing module leads

to the combined gradient gradually aligning well with the

RecSys task, leaving the varied task orientations imperceptible

at the final stage. Different tasks generate gradients of different

magnitudes. Multi-task training algorithms overlook gradients

with smaller magnitudes without considering the difference.

Thus, we further propose the Gradient Magnitude Balancing

module to deal with this challenge and balance the training

of all tasks. Code of PMTRec is also published 1. Our

1https://github.com/YangLiangwei/PMTRec-BigData24

contributions can be summarised as follows:

• Conceptually, for personalized multi-task learning, we first

illustrate the problem, identify the challenges, and propose

feasible solutions for recommender system.

• Methodologically, we propose the novel PMTRec algorithm

that operates on the gradient level during backpropagation

to provide personalized gradient weights.

• Experimentally, we conduct extensive experiments on three

real-world datasets with varied scales to justify the effec-

tiveness of our proposed PMTRec algorithm.

II. PRELIMINARIES

This section illustrates the preliminaries for PMTRec, in-

cluding a problem statement and multi-task learning.

A. Problem Statement

Given a set of users U = {u1, u2, ..., u|U|} and a set of

items I = {i1, i2, ..., i|I|}, the personalized RecSys task aims

to generate a list of items for a given user u. The most

important information for training a recommendation model

is the currently observed historical interactions, which can be

represented as a user-item bipartite graph G = (V, E), where

V = U ∪I and there is an edge (u, i) ∈ E between u and i if

u has interacted with i historically. The adjacency matrix of

G is represented by R ∈ R
|V|×|V|. For implicit feedback [21]

such as clicks, views, and purchases, Ru,i = 1 if user u has

interacted with item i, and Ru,i = 0 otherwise. For explicit

feedback, the user provides, such as rating score, Ru,i is the

explicit rating score from u to i. Besides the direct historical

interactions, auxiliary information can also be observed from

both the user and item side, which is termed by profile

P = (Pu,Pi). Pu contains all the auxiliary information from

the user side, such as features and social friends. Pi represents

the item side auxiliary information such as category and co-

view information [22]. Based on all the above information,

personalized RecSys aims to predict the preference score in

the adjacency matrix of G and recommends a list of k items

with the top-k highest score.

B. Multi-task Learning

Multi-task learning (MTL) aims to learn a comprehensive

model to accomplish multiple tasks by training them simul-

taneously. This learning paradigm assumes different tasks

can enhance each other and perform better on all tasks.

Without loss of generality, we integrate and illustrate the

current multi-task learning algorithms [16], [18]–[20] from the

gradient level. Each task is trained and can be categorized

by a loss function L, which directly leads to a gradient

▽L after backpropagation [23]. Assuming we have T tasks,

then a list of the gradient for different tasks is obtained

(▽L1,▽L2, ...,▽LT). An MTL algorithm can be seen as a

pooling function over the gradient list to obtain the combined

gradient for descent ▽ = PoolMTL(▽L1,▽L2, ...,▽LT).
Different MTL algorithms differ in the design of the pooling

function, which can be parameterized or heuristic.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 21,2025 at 01:37:35 UTC from IEEE Xplore. Restrictions apply.

415

III. METHOD

PMTRec is shown in Figure 2, which includes a forward

propagation to gather gradients from multiple tasks and a

backward stage to aggregate gradients from different tasks.

Our contribution lies in the backward stage, which contains

the task focusing and gradient magnitude balancing modules.

A. Forward Propagation

In the forward propagation stage, PMTRec computes the

losses for different tasks. It consists of an encoder to obtain

representation and several task modules for loss computation.

1) Encoder: Current state-of-the-art personalized Rec-

Sys [11], [12] learns an encoder to embed historical inter-

actions G into dense embedding representations as:

E = Encoder(G), (1)

where E = (Eu,Ei). Eu ∈ R
|U|×d and E

i ∈ R
|I|×d represent

the user/item embedding separately. eu ∈ E
u is user u’s

embedding, which encodes the specific information related

to u’s historical interaction. eu is the bedrock to provide

personalized recommendation for u, and d is the dimension

size. In PMTRec, we use matrix factorization [21] as the

encoder to directly embed interactions into dense user/item

vectors. PMTRec aims to encode more information into those

vector representation with auxiliary tasks.

2) Multi-task Loss computation: For RecSys, tasks T are

classified into the recommendation task tRecSys and auxiliary

tasks TAux = {t1, t2, ..., t|TAux|}. Auxiliary tasks can be built

in different ways based on the available information. As

illustrated in Figure 2, Task 1 is built purely from item

embedding E
i and item profile Pi. It aims to embed the item’s

profile information to the corresponding item embedding. Task

2 is built in a similar way from the user side. Tasks should be

designed based on the available information for each dataset.

For example, we demonstrate the task design in detail for the

three experimental datasets in Section IV. Feeding embedding

table E encoded from Section III-A1 into the loss computation

module of different tasks, we can obtain the losses:

(LRecSys,L1,L2, ...,L|LAux|) (2)

B. Backward Propagation

During the backward propagation stage, PMTRec combines

the gradients in a personalized fashion, i.e., computes specific

gradient weights for each user. It consists of gradient collec-

tion, task focusing and gradient magnitude balancing modules.

1) Gradient Collection: For each user/item, each loss L
in Equation 2 leads to one gradient on the corresponding

embedding vector, denoted as ▽eL. Then a collection of

gradients from different tasks is represented by:

(▽eLRecSys,▽eL1,▽eL2, ...,▽eL|LAux|), (3)

where e is the embedding for one user/item. Then PMTRec

measures the impactfulness of the gradient by l2 norm as nt =
| ▽e Lt|2. A larger nt indicates the current user/item is more

impactful to optimize task t. Then a list of norms is computed

from Equation 3 as (nInit
RecSys, n1, n2, ..., n|LAux|).

Algorithm 1 The training process of PMTRec

Require: Training set G, user/item embedding table E, main Rec-
Sys task LRecSys, auxiliary tasks LAux = {L1,L2, ...,L|LAux

|},
a hyper-parameter τ to control the gradient magnitude, total
training epoch S, learning rate lr, task-focusing base α.

1: for s = 1, 2, 3, . . . , to S do
2: for Each mini-batch of user-item interactions B do
3: Grad = [▽ELRecSys(B)]

Gradient Collection
4: for L ∈ LAux do
5: GradL = ▽EL(B)
6: Grad append GradL
7: end for
8: Grads = Stack(Grad, dim = 0)
9: Norm = Norm(Grads, dim = -1)

Task Focusing
10: Norm[0] = Norm[0] ∗ αs

Gradient Magnitude Balancing
11: Attnweight = Softmax(Norm/τ , dim = 0)
12: ▽E = Sum(Attnweight.unsqueeze(-1) * Grads, dim = 0).
13: E = E− lr ∗ ▽E.
14: end for
15: end for

2) Task Focusing: PMTRec treats the RecSys task as the

main task and all the other tasks as auxiliary ones for further

improvement. Auxiliary tasks are built differently, leading to

varied task orientations. Thus we design the Task Focusing

module to focus the training on the main RecSys task gradu-

ally. To this end, a hyper-parameter α > 1 is introduced as the

increasing base. Before transforming the gradient norm from

Section III-B1 into gradient weights, we multiply the weight

on the main RecSys task as:

nRecSys = nInit
RecSys ∗ α

s, (4)

where s is the current epoch number. In this design, PMTRec

will explore all tasks first and gradually focus on the main

RecSys task. A larger α will fasten the focusing speed. Though

in exponential design, the following Softmax computation with

built-in log-sum-exp trick ensures the number stability.

3) Gradient Magnitude Balancing: Loss functions within

Equation 2 are different due to the varied task designs, making

the gradient magnitude essentially different. The gradient with

a small magnitude will be overlooked if we directly transform

the gradient norm into gradient weight. Thus, we propose the

gradient magnitude balancing module to balance the impact of

different gradient magnitudes by a Softmax with temperature:

wt =
expnt/τ

∑
t∗∈T expnt∗/τ

, (5)

where τ is the hyper-parameter to balance gradient magnitude.

All task weights will be the same without being impacted by

different gradient magnitudes when τ → +∞. Conversely,

PMTRec will only count the gradient with the largest norm

when τ → −∞. A suitable τ balance should be selected for

the best gradient magnitude. With Equation 6, we can ob-

tain the gradient weights as (wRecSys, w1, w2, w|LAux|). Then

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 21,2025 at 01:37:35 UTC from IEEE Xplore. Restrictions apply.

416

Encoder

Task
R

ecSys
Task 2

User Profile
(Gender, Friends, etc)

Item Content
(Category, Co-view, etc)

Task 1

O
ptim

izer

Update

Update

N
orm

Softm
ax

W
eighted Sum

Personalized Gradient Combination

User Item Number Hyper-parameter Multiplication

Embedding Table Loss Function Gradient on Embedding

Forward Propagation

Backward Propagation

User-Item Bipartite Graph

Fig. 2. Model Framework. Our proposed PMTRec is illustrated in detail with two propagation stages. (1) Forward propagation computes the user/item
embedding and the losses for different tasks. (2) Backward propagation pools the gradient obtained from each task with a personalized gradient combination
for each user/item. The combined gradient is then used to update the embedding with an optimizer. (Best viewed in color)

PMTRec obtains the gradient on the corresponding user/item

by weighted sum on the gradients:

▽eL =
∑

t∈T

wt ▽e Lt, (6)

where ▽e is the combined gradient for a specific use/item and

is used to update corresponding embedding e. The variance

in gradient norms observed across distinct tasks for different

users/items culminates in the derivation of personalized gradi-

ent combination weights. It positions PMTRec as a pioneering

instance of personalized multi-task training algorithms.

C. Discussion

RecSys naturally faces the data sparsity issue [24], [25]

as the candidate item pool is too large for each user to

explore. Information from external knowledge such as social

networks [13] and knowledge graph [26]–[28] has proven to

provide extra information to enrich user/item representation.

However, previous methods model external knowledge as part

of the encoder, such as adding auxiliary edges besides the

user-item bipartite graph, which needs sophisticated design

within the encoder. PMTRec proposes another solution, i.e.,

embed the external knowledge into user/item representation

with multi-task training. It can keep the model intact and

embed that information with more tasks.

We further analyze the overhead time complexity caused by

multi-task training. For each user/item, PMTRec firstly com-

putes the norm of an embedding gradient in Section III-B1,

which takes (O(d)). The Task Focusing module in Sec-

tion III-B2 will only cost O(1) as it only computes on the

RecSys task. Then the Gradient Magnitude Balancing module

in Section III-B3 takes O(|T |). To sum up, the overall time

complexity of PMTRec is O((|U|+ |I|)× (d+ |T |)), where

U , I, T is the user/item/task set respectively and d is the

embedding dimension. It is noted that the (|U|+|I|) dimension

can be easily batched up for parallel computation, which

makes the wall clock time even much faster. The batched

version of PMTRec is shown in Algorithm 1 with all the

modules marked correspondingly, and ▽E is the aggregated

gradient on embedding E.

IV. EXPERIMENT

This section empirically evaluates the proposed PMTRec

on three real-world datasets. The goal is to answer the five

following research questions (RQs).

• RQ1: Is PMTRec effective compared with other multi-task

learning algorithms?

• RQ2: Does each designed task help in improving the

recommendation performance?

• RQ3: Does the designed task focusing and gradient magni-

tude balancing module plays a role in PMTRec?

• RQ4: What is the impact of hyper-parameter α and τ?

• RQ5: How does the training curve of the newly proposed

multi-task training algorithm look like?

A. Experimental Setup

1) Datasets: We compare PMTRec against baselines on

three real-world datasets with different sizes. The detailed

data statistics of each dataset are shown in Table I. Epinion 2

collects user’s reviews on items with user’s social friends on

e-commerce website. Based on the available information, the

Social Prediction task (predict whether two users are social

friends) and the Category Prediction task (predict whether two

items belong to the same category) are constructed as auxiliary

tasks. Video Game and Office [14] are both from the Amazon

platform. For the Video Game dataset, we build a co-view and

co-buy prediction task to predict whether two items are co-

viewed/co-buyed together frequently. As for the Office dataset,

we construct the Alignment/Uniformity task [12] to directly

regularize on the embedding table as well as a rating prediction

task to predict the user’s explicit rating score towards items.

Following previous researches [11], [14], a 5-core setting is

2https://www.cse.msu.edu/∼tangjili/datasetcode/truststudy.htm

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 21,2025 at 01:37:35 UTC from IEEE Xplore. Restrictions apply.

417

TABLE I
STATISTICS OF THE DATASETS.

Dataset Epinion Video Game Office

#Users 22,167 55,223 4,905
#Items 296,278 17,408 2,420
#Interactions 922,267 497,577 51,441
Density 0.014% 0.051% 0.433%

Task 1 Social Co-View Alignment
Prediction Prediction Uniformity

Task 2 Category Co-Buy Rating
Prediction Prediction Regression

applied to all datasets, i.e., we remove users/items with less

than 5 interactions to keep the dataset quality.

2) Baselines: We compare PMTRec with 7 baselines in

multi-task learning to test the effectiveness of PMTRec.

• EW: It is the most basic method by directly adding all losses

together to optimize user/item representation.

• GradDrop [29]: It detects the gradient conflict on each pa-

rameter and drops the conflict signal with a scale-measured

probability. A smaller scale is easier to be dropped.

• PCGrad [16]: Project Conflicting Gradients (PCGrad)

changes one of the optimization directions of conflict gra-

dients to make the gradients conflict-free.

• GradVac [18]: Gradient Vaccine (GradVac) is the updated

version of PCGrad to further align the unconflict gradients.

• CAGrad [30]: Conflict-averse gradient descent (CAGrad)

minimizes the average loss function by leveraging the worst

local improvement of individual tasks.

• Aligned MTL [31]: It proposes to use a condition number of

a linear system of gradients as a stability criterion to guide

the multi-task learning optimization.

• Nash MTL [32]: Nash MTL suggests conceptualizing the

process of combining gradients as akin to a bargaining game,

wherein individual tasks engage in negotiation to mutually

agree upon a collective direction for parameter updates.

• RLW [20]: Random Loss Weight (RLW) assigns loss weight

randomly in each epoch to explore the different tasks.

3) Evaluation Method: We randomly split the dataset into

a training set (60%), validation set (20%), and test set (20%).

Models are trained on the training set, hyper-parameters are

tuned based on the performance on the validation set, and

the reported results are from the test set. We test the effec-

tiveness of PMTRec on Top-K personalized recommendation

task with three widely adopted evaluation metrics: Recall@K

(R@K), Hit Ratio@K (HR@K), and Normalized Discounted

Cumulative Gain@K (N@K). To comprehensively assess our

model, we present evaluation results for Top-20 and Top-40

recommendations in our experiments. Our evaluation approach

calculates average metrics across all users within the test set.

These metrics are computed based on the rankings of items

that users have not interacted with. To align with established

research practices [11], [12], we adopt the complete full

ranking for evaluation. This method entails ranking all items

that a user has not yet engaged with, thereby providing a

comprehensive evaluation.

4) Experiment Settings: To make a fair comparison, we test

PMTRec and all the other baselines under the same setting.

User/Item embedding size d is fixed to 32 with Xavier [33]

initialization. To keep simplicity, we directly use the embed-

ding table as the Encoder. It is to be noted that PMTRec

also supports other encoders. We fix the batch size as 2048

and utilize Adam optimizer [34] to optimize the parameters.

For the remaining hyper-parameters, we used the grid search

method to find the optimal settings for PMTRec: the learning

rate is searched in {0.1,0.05,0.01,0.005,0.001}, coefficient of

weight decay is tuned in {1e−2, 1e−4, 1e−6, 1e−8}. We search

the task focusing base α from 1.0 to 1.2 with a step size of

0.02, and the temperature τ in gradient magnitude balancing

module in {10, 1, 1e−1, 1e−2, 1e−3, 1e−4, 1e−5, 1e−6}. We

stopped the training early without improvement in successive

10 epochs on the main recommendation task for all the

experiments and reported the results on the test set.

B. RQ1: Performance Comparison

We compare PMTRec on 3 real-world datasets with 8

baselines in multi-task learning. The experiment results are

shown in Table II. We can have the following observations:

• PMTRec consistently outperforms the second-best method

on all three datasets. On the Epinion dataset, PMTRec even

surpasses the second best with 9.8% improvement in N@5.

It justifies the effectiveness of PMTRec compared with all

previous multi-task training algorithms for RecSys.

• The improvement of PMTRec for different datasets varies.

PMTRec achieves remarkable improvement on Epinion and

Office datasets while only achieving about 2% improvement

on the Video Game dataset. We assume it is because the

designed tasks do not provide much extra information. The

co-view, co-buy item prediction task can be easily inferred

from user-item interactions.

• RLW nearly always ranks the second best across all three

datasets. RLW randomly assigns task weights in each epoch

during training. It is a quite simple method to add more

randomness for gradient exploration. It surpasses the so-

phisticated designed gradient manipulation methods such

as PCGrad and GradVac by a large margin. The previous

gradient manipulation methods directly consider all the

parameter sets without personalized consideration, which

hinders their performance.

To show the compatibility of PMTRec with the current

widely used RecSys, we further conduct experiments on

different encoders, including MF [21], NGCF [35] and Light-

GCN [11]. Experiment results are shown in Figure 3. We can

observe that PMTRec always achieves the best performance

regardless of the encoder. It shows that PMTRec is compatible

with current RecSys algorithms. Besides, we can also observe

the performance improvement with a more advanced encoder.

It shows the improvement brought by multi-task training is

orthogonal to the encoder, and we can integrate it within

current RecSys algorithms to achieve better performance.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 21,2025 at 01:37:35 UTC from IEEE Xplore. Restrictions apply.

418

TABLE II
OVERALL COMPARISON. THE BEST IS BOLDED, AND THE RUNNER-UP IS UNDERLINED.

Dataset Metric EW GradDrop PCGrad GradVac CAGrad Aligned MTL Nash MTL RLW PMTRec Imp

Epinion

R@5 0.0130 0.0131 0.0142 0.0142 0.0142 0.0123 0.0156 0.0151 0.0170 8.97%
R@10 0.0219 0.0224 0.0233 0.0233 0.0240 0.0203 0.0251 0.0238 0.0266 5.97%
R@20 0.0356 0.0355 0.0364 0.0364 0.0379 0.0314 0.0408 0.0381 0.0413 1.22%
R@40 0.0562 0.0570 0.0573 0.0573 0.0596 0.0494 0.0633 0.0598 0.0639 0.94%
N@5 0.0128 0.0130 0.0137 0.0137 0.0139 0.0121 0.0153 0.0146 0.0168 9.80%
N@10 0.0161 0.0164 0.0170 0.0170 0.0175 0.0150 0.0188 0.0178 0.0202 7.44%
N@20 0.0205 0.0207 0.0213 0.0213 0.0221 0.0186 0.0239 0.0225 0.0249 4.18%
N@40 0.0263 0.0267 0.0272 0.0272 0.0282 0.0236 0.0303 0.0286 0.0312 2.97%

Video Game

R@5 0.0435 0.0435 0.0408 0.0511 0.0397 0.0321 0.0454 0.0461 0.0467 1.30%
R@10 0.0716 0.0716 0.0654 0.0657 0.0643 0.0528 0.0732 0.0730 0.0750 2.45%
R@20 0.1109 0.0974 0.1044 0.1046 0.1006 0.0843 0.1128 0.1129 0.1154 2.21%
R@40 0.1677 0.1480 0.1591 0.1599 0.1533 0.1296 0.1682 0.1668 0.1713 1.84%
N@5 0.0347 0.0347 0.0326 0.0329 0.0313 0.0256 0.0360 0.0365 0.0373 2.19%
N@10 0.0451 0.0451 0.0416 0.0419 0.0404 0.0333 0.0463 0.0464 0.0478 3.01%
N@20 0.0571 0.0497 0.0535 0.0538 0.0515 0.0429 0.0584 0.0585 0.0601 2.73%
N@40 0.0712 0.0624 0.0670 0.0676 0.0646 0.0541 0.0722 0.0719 0.0740 2.92%

Office

R@5 0.0243 0.0281 0.0213 0.0213 0.0325 0.0144 0.0224 0.0336 0.0347 3.27%
R@10 0.0401 0.0458 0.0350 0.0349 0.0513 0.0248 0.0403 0.0553 0.0594 7.41%
R@20 0.0655 0.0752 0.0576 0.0576 0.0819 0.0417 0.0685 0.0849 0.0905 6.59%
R@40 0.1074 0.1139 0.0893 0.0891 0.1247 0.0676 0.1100 0.1321 0.1474 11.58%
N@5 0.0192 0.0229 0.0165 0.0165 0.0260 0.0124 0.0198 0.0259 0.0281 8.49%
N@10 0.0253 0.0295 0.0217 0.0217 0.0332 0.0163 0.0267 0.0344 0.0372 8.13%
N@20 0.0334 0.0387 0.0289 0.0289 0.0428 0.0217 0.0362 0.0439 0.0473 7.74%
N@40 0.0443 0.0489 0.0372 0.0372 0.0539 0.0287 0.0474 0.0562 0.0619 10.14%

MF NGCF LightGCN0.01

0.02

0.03

0.04

0.05

0.06

Re
ca

ll@
20

Epinion
Aligned MTL
Nash MTL
EW

GradDrop
PCGrad
GradVac

CAGrad
RLW
PMTRec

Fig. 3. Experiments on different encoders

C. RQ2: Task Investigation

This section aims to investigate whether each designed task

helps improve the recommendation performance. Towards this

end, we experiment with individual tasks, and Table III shows

the influence of tasks on recommendation performance across

different datasets. To have a thorough investigation on the

effectiveness of multi-task learning in RecSys, we conduct

these experiments with different encoders, including MF [21],

NGCF [36] and LightGCN [11]. We can have the following

observations in this experiments:

• We observe the improvements across all three datasets

comparing pure BPR performance and the one combining

BPR, T1, and T2. On the Epinion dataset, PMTRec im-

proves the BPR performance from 0.0117 to 0.0170 on

R@5 with two extra auxiliary tasks, a 45.2% improvement.

The huge improvement indicates the necessity of combining

knowledge from extra tasks to alleviate the data sparsity

problem in RecSys. The experiment results also validate

PMTRec can effectively fuse the knowledge from auxiliary

tasks to improve the RecSys performance.

• There is a general trend of performance improvements when

additional tasks are integrated. For example, the pure Rec-

Sys task on the Epinion dataset achieves an N@5 of 0.0118.

Adding T1 increases to 0.0158, and adding T2 increases to

0.0166. Jointly combining the two tasks achieves the best

performance of 0.0168.

• The impact of individual tasks varies among datasets. On

Epinion and Video Game datasets, RecSys performance

gradually improves with more tasks. However, the addition

of T2 on the Office dataset results in a performance drop,

which indicates the auxiliary tasks should be designed

carefully to align with the main RecSys task.

D. RQ3: Ablation Study

Ablation study experiment on task focusing and gradient

magnitude balancing modules is shown in Figure 4. We can

have the following observations:

• We observe performance deterioration across all three

datasets upon omitting any module. It shows each module

contributes to the effectiveness of PMTRec.

• Excluding the task-focusing module leads to a slight de-

cline in the Epinion and Video Game datasets but substan-

tially decreases the Office dataset. Notably, Recall@40 and

NDCG@40 drop by 5.7% and 4.7% on Office, respectively.

It reveals that gradually focusing the training on the main

RecSys task can improve the main RecSys task, which is

overlooked by all previous multi-task training algorithms.

• The omission of the gradient magnitude balancing module

has a marked impact on the Epinion and Video Game

datasets. Specifically, the Recall@40 and NDCG@40 met-

rics are decreased by 4.4% and 7.6% on Epinion, and by

14.7% and 15.1% on Video Game, highlighting the module’s

critical role in model performance.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 21,2025 at 01:37:35 UTC from IEEE Xplore. Restrictions apply.

419

TABLE III
TASK INVESTIGATION. BOLDED SCORES INDICATE THE BEST PERFORMANCE, WHILE UNDERLINED SCORES REPRESENT THE SECOND-BEST.

Model Tasks
Epinion Video Game Office

R@5 R@20 N@5 N@20 R@5 R@20 N@5 N@20 R@5 R@20 N@5 N@20

MF

BPR 0.0117 0.0349 0.0118 0.0198 0.0427 0.1085 0.0336 0.0553 0.0281 0.0729 0.0243 0.0402
+T1 0.0158 0.0395 0.0158 0.0238 0.0469 0.1151 0.0373 0.0600 0.0372 0.0860 0.0304 0.0470
+T2 0.0167 0.0414 0.0166 0.0249 0.0465 0.1161 0.0368 0.0596 0.0232 0.0684 0.0190 0.0345
+T1,T2 0.0170 0.0413 0.0168 0.0250 0.0467 0.1154 0.0374 0.0601 0.0347 0.0905 0.0281 0.0473

NGCF

BPR 0.0118 0.0294 0.0121 0.0180 0.0433 0.1105 0.0344 0.0565 0.0232 0.0689 0.0197 0.0355
+T1 0.0181 0.0461 0.0185 0.0278 0.0463 0.1139 0.0369 0.0593 0.0281 0.0812 0.0201 0.0382
+T2 0.0184 0.0481 0.0187 0.0287 0.0450 0.1117 0.0359 0.0579 0.0202 0.0688 0.0145 0.0308
+T1,T2 0.0195 0.0507 0.0199 0.0302 0.0463 0.1138 0.0370 0.0594 0.0354 0.0823 0.0295 0.0454

LightGCN

BPR 0.0122 0.0320 0.0129 0.0195 0.0418 0.1041 0.0331 0.0538 0.0260 0.0723 0.0216 0.0380
+T1 0.0173 0.0459 0.0178 0.0273 0.0442 0.1133 0.0355 0.0585 0.0338 0.0846 0.0258 0.0450
+T2 0.0201 0.0499 0.0196 0.0296 0.0445 0.1138 0.0356 0.0585 0.0221 0.0713 0.0165 0.0332
+T1,T2 0.0198 0.0511 0.0197 0.0301 0.0448 0.1144 0.0355 0.0586 0.0338 0.0931 0.0280 0.0466

1 2 3
Model Variant

0.050

0.055

0.060

0.065

0.070

Re
ca

ll@
40 0.0627

0.0613
0.0640

Epinion

1 2 3
Model Variant

0.020

0.025

0.030

0.035

ND
CG

@
40

0.0298 0.0290
0.0312

Epinion

1 2 3
Model Variant

0.13
0.14
0.15
0.16
0.17
0.18
0.19

Re
ca

ll@
40 0.1692

0.1494

0.1714

Video Game

1 2 3
Model Variant

0.05

0.06

0.07

0.08

0.09

ND
CG

@
40 0.0729

0.0643

0.0740

Video Game

1 2 3
Model Variant

0.12

0.13

0.14

0.15

0.16

Re
ca

ll@
40

0.1395

0.1468 0.1474

Office

1 2 3
Model Variant

0.050

0.055

0.060

0.065

0.070

ND
CG

@
40

0.0592
0.0619 0.0620

Office

Fig. 4. Ablation study of PMTRec. Variant 1 omits the task focusing module,
Variant 2 excludes the gradient magnitude balancing module, and Variant 3
represents the full PMTRec.

E. RQ4: Hyper-Parameter Sensitivity

This section aims to study the Hyper-parameter sensitivity

of PMTRec. It introduces two hyper-parameters in different

modules. α is the multiplying base in the task-focusing mod-

ule. With a larger α, the training of PMTRec is faster focused

on the main RecSys task. τ is the temperature in the gradient

magnitude balancing module. All task weights will be the

same without being impacted by different gradient magnitudes

when τ → +∞. Conversely, PMTRec will only count the

gradient with the most prominent norm when τ → −∞. We

show the experiment results on all three datasets in Figure 5.

From the results, we can observe that:

• With the increase of α, the performance of PMTRec firstly

increases to the peak point and then quickly decreases. At

the initial stage, increasing α will focus the training of

1.00 1.05 1.10 1.15 1.20

0.064

0.066

0.068

0.070

Re
ca
ll@

40

Epinion

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 10

0.062

0.064

0.066

0.068

0.070

Re
ca
ll@

40

Epinion

1.00 1.05 1.10 1.15 1.20

0.160

0.165

0.170
Re

ca
ll@

40

Video Game

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 10

0.145

0.150

0.155

0.160

0.165

0.170

Re
ca

ll@
40

Video Game

1.00 1.05 1.10 1.15 1.20

0.13

0.14

0.15

Re
ca

ll@
40

Office

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 10

0.12

0.13

0.14

Re
ca

ll@
40

Office

Fig. 5. Sensitivity analysis of PMTRec’s hyper-parameters: α is the in-
crement base in the task focusing module, while τ balances the gradient
magnitude in the balancing module.

PMTRec on the RecSys task at the final stage, showing

the advantages of task focusing. When α is large, PMTRec

focuses the training on RecSys quickly without enough

exploration of auxiliary tasks. It reveals the importance of

learning procedures on auxiliary tasks.

• As τ increases, distinct curve patterns emerge across vari-

ous datasets. For the Epinion dataset, performance initially

reaches a peak before declining. Conversely, optimal per-

formance in the Video Game dataset is achieved with the

smallest τ , while the Office dataset attains its highest per-

formance with the largest τ . Auxiliary tasks are constructed

in different ways for different datasets. It shows uniqueness

of datasets and task construction.

• In most cases, PMTRec does not perform best when α = 1
or τ = 1. When the hyper-parameter is equal to 1, the

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 21,2025 at 01:37:35 UTC from IEEE Xplore. Restrictions apply.

420

0 10 20 30 40 50 60
Epochs

0.00

0.01

0.02

0.03

0.04

Re
ca

ll@
20

Epinion

PMTRec
EW
RLW
PCGrad
GradVac
GradDrop
Aligned MTL
CAGrad
Nash MTL

0 20 40 60 80 100
Epochs

0.000

0.025

0.050

0.075

0.100

Re
ca

ll@
20

Video Game

PMTRec
EW
RLW
PCGrad
GradVac
GradDrop
Aligned MTL
CAGrad
Nash MTL

0 20 40 60 80
Epochs

0.02

0.04

0.06

0.08

Re
ca

ll@
20

Office

PMTRec
EW
RLW
PCGrad
GradVac
GradDrop
Aligned MTL
CAGrad
Nash MTL

Fig. 6. The training curve on three datasets.

corresponding module does not play a role, leading to

inferior performance. It re-validates the effectiveness of each

designed module in PMTRec.

F. RQ5: Training Curve Comparison

As a new multi-task training algorithm, we further show the

training curve of PMTRec in Figure 6. All the baselines are

also included. We have the following observations:

• On the Epinion and Video Game dataset, other baselines

improve quickly at the first few epochs and reach stable

on inferior performance. The improvement of PMTRec is

more stable and achieves the highest performance at the

final stage. At the initial stage, PMTRec tends to explore

auxiliary tasks first without fast improvement on the RecSys

task. With more epochs, the task-focusing module gradually

plays a role in enforcing model train toward the RecSys task.

• On Office dataset, PMTRec also improves stability and

achieves the highest performance compared to other multi-

task training methods. The training curve on the Office

dataset justifies the effectiveness of PMTRec.

• Another interesting finding is PMTRec seems more stable

across datasets. For all three datasets, PMTRec improves

at similar paces. They all improve fastest on 25 epochs and

reach the best performance on about 60 epochs. However,

other baselines do not seem to have a similar property.

All the baselines on the Epinion dataset improve fast at

the initial stage, while no similar trend is observed on the

Office dataset. We assume personalized updates in PMTRec

lead to this observation as it captures the personalization

character of the RecSys task.

V. RELATED WORK

A. Multi-task Learning

Multi-Task Learning (MTL) [37]–[39] is an approach that

focuses on collectively training multiple interconnected tasks.

The goal is to enhance their generalization capabilities by

capitalizing on shared insights across these tasks. There has

been a fast development of MTL in recent years. Cur-

rent methods can be classified into two categories: con-

flict resolution-based methods and randomness-based methods.

Conflict resolution-based methods aim to identify and solve

the gradient conflict/imbalance from different tasks. MGDA-

UB [40] utilizes multiple gradient descent algorithms to find

a common descending direction among all gradients to avoid

the gradient conflict by solving a quadratic programming

problem. GradNorm [19] aims to solve the gradient imbal-

ance problem by constraining the gradient magnitudes to be

similar. PCGrad [16] modifies the optimization direction of

conflicting gradients, redirecting them to achieve gradient con-

flict resolution and promote coherence among the gradients.

GradVac [18] represents an enhanced iteration of PCGrad, de-

signed to align non-conflicting gradients in similar directions

more effectively. CAGrad [30] employs the concept of worst

local improvement from individual tasks, and it minimizes

the average loss function, thereby guiding the algorithm’s

trajectory through regularization. Aligned MTL [31] suggests

utilizing a conditioned number of linear gradient systems as

a stability criterion, guiding optimizing multi-task learning

to avoid conflict. TAWT [41] proposes target aware cross

task weighted training algorithm. IMTL-G [42] strives to

identify an aggregated gradient characterized by uniform-

length projections onto the gradients of each individual task.

RotoGrad [43] addresses conflict issues by aligning gradient

magnitudes and directions concurrently. It achieves this by

introducing a trainable rotation matrix to modify the gradient

direction for each task, followed by the computation of weights

that enforce uniform gradient magnitudes across all tasks.

On the other hand, randomness-based methods aim to add

more gradient exploration based on multiple tasks. UW [44]

employs consistent uncertainties as loss weights for individual

tasks, which are adaptively adjusted through backpropagation.

GradDrop [29] posits that conflict arises from discrepancies in

gradient signs across various tasks. To mitigate this conflict,

GradDrop drops gradient values based on magnitude-measured

probability. RLW [20] introduces variability by assigning

loss weights randomly in each epoch, facilitating the explo-

ration of task optimization from diverse perspectives. Nash

MTL [32] attains top-notch performance across various Multi-

Task Learning (MTL) benchmarks. The approach advocates

for interpreting the gradient combination process as a form of

bargaining game, where individual tasks negotiate to reach a

consensus on a shared direction for parameter updates.

Previous methods do not consider personalized gradient

combination, which stands PMTRec out from previous meth-

ods. It is the first multi-task training algorithm that supports

assigning different task weights for each user/item.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 21,2025 at 01:37:35 UTC from IEEE Xplore. Restrictions apply.

421

B. Representation Learning for RecSys

The core of existing recommender systems is learning

user/item representations. BPR-MF [21] is one of the most

popular methods to characterize user-item interactions and

train user/item representations. FM [45] further incorporates

real-value attributes of users and items to learn representations.

Additionally, if given a user-item rating matrix, NMF [46]

is widely adopted to learn user/item embeddings. As deep

learning technology develops, NCF [35] is proposed to en-

code user/item IDs with neural networks as embeddings.

Recently, the successes of graph neural network GNN [47]–

[49] prompt the graph-based collaborative filtering, such as

NGCF [36] and LightGCN [11]. Those graph-based collab-

orative filtering methods learn user/item representation via

aggregating neighbor information, which characterizes the

high-order signals in the user-item graph. Learning user/item

representation based on graph embedding also opens more

potential to harness additional information. GraphRec [50]

and ConsisRec [13] devise additional graph propagation on

social graphs, which enables the joint learning of social and

recommendation information. Besides social information be-

tween users, those multiple relations between items [51]–[53],

such as co-view and co-buy, also benefit the representation

learning for the recommendation. The success of contrastive

learning in representation learning [54] motivates the novel

DirectAU [12] loss for the recommendation. DirectAU opti-

mizes the user/item representation by minimizing uniformity

and alignment losses, eliminating the inefficient negative sam-

pling process in learning representation. GraphAU [24] further

considers the graph-related high-order alignment signal during

optimizing user/item representation. With the emerging ability

of large language models (LLM), most recent researches also

investigate improving user/item representation with pre-trained

large language models for the RecSys task. P5 [55] and

OpenP5 [56] train different tasks within large language models

by next-token-prediction task. LlmRec [57] augments user-

item bipartite graph with LLMs to learn a more informative

user/item representation. RLMRec [58] proposes contrastive

alignment and generative alignment to align user/item embed-

ding to the large language model encoded space. CARec [59]

directly aligns the user/item’s ID embedding with semantic

embedding in the iterative alignment phase. Previous research

shows that a more discriminative, comprehensive, and infor-

mative user/item representation is the foundation for effective

RecSys.

This paper proposes to directly learn user/item representa-

tion under a multi-task learning paradigm and proposes the

first personalized multi-task training method PMTRec. It can

encode information from multiple tasks to obtain a more

comprehensive and informative user/item representation.

VI. CONCLUSION

This paper introduces PMTRec, a novel multi-task training

algorithm specifically designed for recommender systems.

This algorithm distinctively supports personalized gradient

combinations for individual user/item. It intricately navigates

the backpropagation process, manipulating gradients directly

at their level. Within PMTRec, two principal modules are con-

structed: a task-focusing and a gradient magnitude balancing

module. The former progressively concentrates training efforts

on the primary recommender system (RecSys) task, whereas

the latter equilibrates gradients of varying magnitudes. Empir-

ical evaluations conducted on real-world datasets substantiate

PMTRec’s efficacy. As the first multi-task training algorithm

designed explicitly for the recommender system, we also open-

sourced PMTRec for further research.

ACKNOWLEDGMENT

This work is supported in part by NSF under grants III-

2106758, and POSE-2346158

REFERENCES

[1] V. Mayer-Schönberger and K. Cukier, Big data: A revolution that will

transform how we live, work, and think. Houghton Mifflin Harcourt,
2013.

[2] L. Lü, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou,
“Recommender systems,” Physics reports, vol. 519, no. 1, pp. 1–49,
2012.

[3] C. Wu, F. Wu, T. Qi, Q. Liu, X. Tian, J. Li, W. He, Y. Huang, and X. Xie,
“Feedrec: News feed recommendation with various user feedbacks,” in
Proceedings of the ACM Web Conference 2022, 2022, pp. 2088–2097.

[4] L. Yang, Z. Liu, Y. Wang, C. Wang, Z. Fan, and P. S. Yu, “Large-scale
personalized video game recommendation via social-aware contextual-
ized graph neural network,” in Proceedings of the ACM Web Conference

2022, 2022, pp. 3376–3386.

[5] Y. Gu, Z. Ding, S. Wang, and D. Yin, “Hierarchical user profiling
for e-commerce recommender systems,” in Proceedings of the 13th

International Conference on Web Search and Data Mining, 2020, pp.
223–231.

[6] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system:
Algorithms, business value, and innovation,” ACM Transactions on

Management Information Systems (TMIS), vol. 6, no. 4, pp. 1–19, 2015.

[7] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD inter-

national conference on knowledge discovery & data mining, 2018, pp.
974–983.

[8] Z. Liu, L. Zou, X. Zou, C. Wang, B. Zhang, D. Tang, B. Zhu, Y. Zhu,
P. Wu, K. Wang et al., “Monolith: real time recommendation system
with collisionless embedding table,” arXiv preprint arXiv:2209.07663,
2022.

[9] X. Qian, H. Feng, G. Zhao, and T. Mei, “Personalized recommenda-
tion combining user interest and social circle,” IEEE transactions on

knowledge and data engineering, vol. 26, no. 7, pp. 1763–1777, 2013.

[10] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis

and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[11] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn:
Simplifying and powering graph convolution network for recommenda-
tion,” in Proceedings of the 43rd International ACM SIGIR conference

on research and development in Information Retrieval, 2020, pp. 639–
648.

[12] C. Wang, Y. Yu, W. Ma, M. Zhang, C. Chen, Y. Liu, and S. Ma, “Towards
representation alignment and uniformity in collaborative filtering,” in
Proceedings of the 28th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, 2022, pp. 1816–1825.

[13] L. Yang, Z. Liu, Y. Dou, J. Ma, and P. S. Yu, “Consisrec: Enhancing
gnn for social recommendation via consistent neighbor aggregation,”
in Proceedings of the 44th international ACM SIGIR conference on

Research and development in information retrieval, 2021, pp. 2141–
2145.

[14] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering,” in proceedings

of the 25th international conference on world wide web, 2016, pp. 507–
517.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 21,2025 at 01:37:35 UTC from IEEE Xplore. Restrictions apply.

422

[15] Y. Zhang and Q. Yang, “An overview of multi-task learning,” National

Science Review, vol. 5, no. 1, pp. 30–43, 2018.

[16] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, “Gra-
dient surgery for multi-task learning,” Advances in Neural Information

Processing Systems, vol. 33, pp. 5824–5836, 2020.

[17] D. Dong, H. Wu, W. He, D. Yu, and H. Wang, “Multi-task learning
for multiple language translation,” in Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume

1: Long Papers), 2015, pp. 1723–1732.

[18] Z. Wang, Y. Tsvetkov, O. Firat, and Y. Cao, “Gradient vaccine: Investi-
gating and improving multi-task optimization in massively multilingual
models,” arXiv preprint arXiv:2010.05874, 2020.

[19] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “Gradnorm:
Gradient normalization for adaptive loss balancing in deep multitask
networks,” in International conference on machine learning. PMLR,
2018, pp. 794–803.

[20] B. Lin, F. Ye, Y. Zhang, and I. W. Tsang, “Reasonable effectiveness of
random weighting: A litmus test for multi-task learning,” arXiv preprint

arXiv:2111.10603, 2021.

[21] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” arXiv preprint

arXiv:1205.2618, 2012.

[22] Z. Fan, Z. Liu, C. Wang, P. Huang, H. Peng, and S. Y. Philip, “Sequential
recommendation with auxiliary item relationships via multi-relational
transformer,” in 2022 IEEE International Conference on Big Data (Big

Data). IEEE, 2022, pp. 525–534.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533–536, 1986.

[24] L. Yang, Z. Liu, C. Wang, M. Yang, X. Liu, J. Ma, and P. S. Yu, “Graph-
based alignment and uniformity for recommendation,” in Proceedings of

the 32nd ACM International Conference on Information and Knowledge

Management, 2023, pp. 4395–4399.

[25] H. Yin, Q. Wang, K. Zheng, Z. Li, and X. Zhou, “Overcoming data
sparsity in group recommendation,” IEEE Transactions on Knowledge

and Data Engineering, vol. 34, no. 7, pp. 3447–3460, 2020.

[26] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge
graph attention network for recommendation,” in Proceedings of the 25th

ACM SIGKDD international conference on knowledge discovery & data

mining, 2019, pp. 950–958.

[27] S. Wang, L. Yang, J. Gong, S. Zheng, S. Du, Z. Liu, and S. Y. Philip,
“Metakrec: collaborative meta-knowledge enhanced recommender sys-
tem,” in 2022 IEEE International Conference on Big Data (Big Data).
IEEE, 2022, pp. 665–674.

[28] S. Wang, Z. Fan, J. Gong, X. Wei, and S. Y. Philip, “Transgnn: Towards
knowledge enhanced top-k recommendation via transformed heteroge-
neous graph neural network,” in 2023 IEEE International Conference

on Big Data (BigData). IEEE, 2023, pp. 304–314.

[29] Z. Chen, J. Ngiam, Y. Huang, T. Luong, H. Kretzschmar, Y. Chai,
and D. Anguelov, “Just pick a sign: Optimizing deep multitask models
with gradient sign dropout,” Advances in Neural Information Processing

Systems, vol. 33, pp. 2039–2050, 2020.

[30] B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu, “Conflict-averse gradi-
ent descent for multi-task learning,” Advances in Neural Information

Processing Systems, vol. 34, pp. 18 878–18 890, 2021.

[31] D. Senushkin, N. Patakin, A. Kuznetsov, and A. Konushin, “Independent
component alignment for multi-task learning,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 20 083–20 093.

[32] A. Navon, A. Shamsian, I. Achituve, H. Maron, K. Kawaguchi,
G. Chechik, and E. Fetaya, “Multi-task learning as a bargaining game,”
arXiv preprint arXiv:2202.01017, 2022.

[33] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in International Conference on Artificial

Intelligence and Statistics, 2010, pp. 249–256.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[35] X. He and T.-S. Chua, “Neural factorization machines for sparse pre-
dictive analytics,” in Proceedings of the 40th International ACM SIGIR

conference on Research and Development in Information Retrieval,
2017, pp. 355–364.

[36] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph
collaborative filtering,” in Proceedings of the 42nd international ACM

SIGIR conference on Research and development in Information Re-

trieval, 2019, pp. 165–174.
[37] R. Caruana, “Multitask learning,” Machine learning, vol. 28, pp. 41–75,

1997.
[38] L. Li, H. Zhu, S. Zhao, G. Ding, and W. Lin, “Personality-assisted multi-

task learning for generic and personalized image aesthetics assessment,”
IEEE Transactions on Image Processing, vol. 29, pp. 3898–3910, 2020.

[39] X. Tang, Y. Qiao, F. Lyu, D. Liu, and X. He, “Touch the core:
Exploring task dependence among hybrid targets for recommendation,”
in Proceedings of the 18th ACM Conference on Recommender Systems,
2024, pp. 329–339.

[40] O. Sener and V. Koltun, “Multi-task learning as multi-objective opti-
mization,” Advances in neural information processing systems, vol. 31,
2018.

[41] S. Chen, K. Crammer, H. He, D. Roth, and W. J. Su, “Weighted training
for cross-task learning,” arXiv preprint arXiv:2105.14095, 2021.

[42] L. Liu, Y. Li, Z. Kuang, J. Xue, Y. Chen, W. Yang, Q. Liao, and
W. Zhang, “Towards impartial multi-task learning.” iclr, 2021.

[43] A. Javaloy and I. Valera, “Rotograd: Gradient homogenization in mul-
titask learning,” arXiv preprint arXiv:2103.02631, 2021.

[44] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in Proceedings

of the IEEE conference on computer vision and pattern recognition,
2018, pp. 7482–7491.

[45] S. Rendle, “Factorization machines,” in 2010 IEEE International con-

ference on data mining. IEEE, 2010, pp. 995–1000.
[46] D. Lee and H. S. Seung, “Algorithms for non-negative matrix factor-

ization,” Advances in neural information processing systems, vol. 13,
2000.

[47] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[48] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger,
“Simplifying graph convolutional networks,” in International conference

on machine learning. PMLR, 2019, pp. 6861–6871.
[49] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-

gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
[50] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph

neural networks for social recommendation,” in The world wide web

conference, 2019, pp. 417–426.
[51] D. Xu, C. Ruan, J. Cho, E. Korpeoglu, S. Kumar, and K. Achan,

“Knowledge-aware complementary product representation learning,” in
Proceedings of the 13th International Conference on Web Search and

Data Mining, 2020, pp. 681–689.
[52] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Product

knowledge graph embedding for e-commerce,” in Proceedings of the

13th international conference on web search and data mining, 2020,
pp. 672–680.

[53] Z. Fan, Z. Liu, S. Heinecke, J. Zhang, H. Wang, C. Xiong, and
P. S. Yu, “Zero-shot item-based recommendation via multi-task product
knowledge graph pre-training,” arXiv preprint arXiv:2305.07633, 2023.

[54] T. Wang and P. Isola, “Understanding contrastive representation learning
through alignment and uniformity on the hypersphere,” in International

Conference on Machine Learning. PMLR, 2020, pp. 9929–9939.
[55] S. Geng, S. Liu, Z. Fu, Y. Ge, and Y. Zhang, “Recommendation as

language processing (rlp): A unified pretrain, personalized prompt &
predict paradigm (p5),” in Proceedings of the 16th ACM Conference on

Recommender Systems, 2022, pp. 299–315.
[56] S. Xu, W. Hua, and Y. Zhang, “Openp5: An open-source platform for

developing, training, and evaluating llm-based recommender systems,”
in Proceedings of the 47th International ACM SIGIR Conference on

Research and Development in Information Retrieval, 2024, pp. 386–
394.

[57] W. Wei, X. Ren, J. Tang, Q. Wang, L. Su, S. Cheng, J. Wang, D. Yin, and
C. Huang, “Llmrec: Large language models with graph augmentation
for recommendation,” in Proceedings of the 17th ACM International

Conference on Web Search and Data Mining, 2024, pp. 806–815.
[58] X. Ren, W. Wei, L. Xia, L. Su, S. Cheng, J. Wang, D. Yin, and

C. Huang, “Representation learning with large language models for
recommendation,” arXiv preprint arXiv:2310.15950, 2023.

[59] C. Wang, L. Yang, Z. Liu, X. Liu, M. Yang, Y. Liang, and S. Y. Philip,
“Collaborative semantic alignment in recommendation systems,” arXiv

preprint arXiv:2310.09400v3, 2024.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 21,2025 at 01:37:35 UTC from IEEE Xplore. Restrictions apply.

