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Abstract—In the vast landscape of internet information, recom-
mender systems (RecSys) have become essential for guiding users
through a sea of choices aligned with their preferences. These
systems have applications in diverse domains. Personalization
is a key technique in RecSys, where modern methods leverage
representation learning to encode user/item interactions into
embeddings, forming the foundation for personalized recommen-
dations. However, integrating information from multiple sources
to enhance recommendation performance remains challenging.
This paper introduces a novel approach named PMTRec, the
first personalized multi-task learning algorithm to obtain compre-
hensive user/item embeddings from various information sources.
Addressing challenges specific to personalized RecSys, we de-
velop modules to handle personalized task weights, diverse task
orientations, and variations in gradient magnitudes across tasks.
PMTRec dynamically adjusts task weights based on gradient
norms for each user/item, employs a Task Focusing module to
align gradient combinations with the main recommendation task,
and uses a Gradient Magnitude Balancing module to ensure
balanced training across tasks. Through extensive experiments
on three real-world datasets with different scales, we demonstrate
that PMTRec significantly outperforms existing multi-task learn-
ing methods, showcasing its effectiveness in achieving enhanced
recommendation accuracy by leveraging multiple tasks simul-
taneously. Our contributions open new avenues for advancing
personalized multi-task training in RecSys.

Index Terms—Recommender System, Multi-task Training

I. INTRODUCTION

Regarding the pervasive landscape of information available
on the Internet [1], recommender systems (RecSys) [2] play
a pivotal role in facilitating the exploration of items for
users. RecSys improves the efficiency of information digestion
and has permeated into every corner of our lives, such as
news feeds [3], game suggestions [4], and shopping recom-
mendations [5]. The great commercial value of RecSys also
establishes its indispensability in web services and drives the
success of many Internet companies [6]—[8].

Personalization is the key technique for an effective Rec-
Sys [9]. Personalized RecSys suggests specific candidate items
for each user based on his/her own historical interactions. It
offers each user a distinct experience with the web service
tailored to their interests. Due to the success of representation
learning [10], current state-of-the-art methods [11], [12] in

*The work is finished during an internship at Salesforce Al Research.
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RecSys encode user/item interactions into dense vector repre-
sentations, referred to as embeddings. The embedding of each
user/item contains his/her/its unique information, which is the
bedrock for providing personalized recommendations. Based
on the encoded embedding, these methods recommend items
with the highest similarities for each user. Besides user-item
interactions, more information can be found in web services
and applications such as users’ social networks [13] and item
features [14]. Then, a natural question arises: Can we obtain
a more comprehensive embedding from multiple sources of
information to improve the recommendation performance?

In this paper, we seek to answer this question with multi-
task learning [15], which has been shown effective in various
application domains such as computer vision [16] and natural
language processing [17]. The core idea behind it is to obtain a
comprehensive user/item embedding that can perform multiple
tasks at the same time. As illustrated in Figure 1, we show
three tasks associated with distinct information. The black
edges denote the recommendation task to predict users’ pref-
erence for items, which is the main task for optimization. The
blue edge indicates social information, where the social link
prediction task between users characterizes social information
into embedding of users. The red line represents two items in
the same “Electronics” category. Predicting whether two items
share the same category encodes item category similarity into
item embedding. Training user/item embedding with all these
tasks endows incorporating information from multiple sources,
leading to a more comprehensive vector representation.

Several key challenges are still under-explored when de-
veloping a multi-task learning framework for personalized
RecSys, which are threefold as follows: (1) Personalized task

g
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Recommendation (RS)
Social Prediction

Category Prediction

Fig. 1. A toy example of multi-task learning in RecSys.
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weights. For each user, the importance of different tasks should
be distinct. As illustrated in Figure 1, the suitable task weights
for u; and wuq are different. u; has sufficient item interactions
to obtain an accurate gradient for updating embedding, which
suggests a higher RecSys task weight for u;. However, s
does not interact with any item before, in which case the
RecSys task fails to provide informative information, and it
is beneficial for us to have a higher weight on the Social
Prediction task. Supporting specific task weights for each
user is the first challenge, and it is essential for personalized
training with multiple tasks. (2) Varied task orientations.
The purpose of different tasks is varied, leading to diverged
embedding updates during training, which may conflict with
each other or even be meaningless for improving the main
RecSys task. Handling the varied updating orientations from
multiple tasks to improve the RecSys task poses the second
challenge. (3) Difference in gradient magnitude across tasks.
The loss functions for multiple tasks are inconsistent, and
thus the gradient magnitude could be magnificently different.
Directly averaging all those gradients from multiple tasks may
overlook tasks with smaller gradients. However, balancing the
gradient magnitude difference and making the small gradient
counts are an important yet under-explored challenge.

This paper proposes the first Personalized Multi-task Train-
ing algorithm for Recommender System (PMTRec) to obtain
a more comprehensive user/item embedding from multiple in-
formation sources. Different modules are designed accordingly
to deal with specific challenges. We dive into the gradient
level during the backward propagation to enable personalized
task weights. PMTRec first collects the gradient from each
task during backpropagation and then combines the gradient
on each user embedding separately. PMTRec conducts metic-
ulous user/item-specific gradient level operations rather than
the existing task-wise algorithms [16], [18]-[20]. For a specific
gradient of one user from one task, PMTRec firstly calculates
the norm to measure the importance. A gradient with a
higher magnitude signifies a greater impact on optimizing the
corresponding task. PMTRec then utilizes the gradient norm
to calculate task weight for gradient combination. The gradient
norm on each task for different users is distinct, leading to
personalized gradient weights. We also designed a Task Focus-
ing module to tackle the varied task orientation challenge. We
enforce the learning process gradually, focusing on the main
RecSys task during the training stage, achieved by increasing
the corresponding gradient combination weight. After initial
exploration of other tasks, the Task Focusing module leads
to the combined gradient gradually aligning well with the
RecSys task, leaving the varied task orientations imperceptible
at the final stage. Different tasks generate gradients of different
magnitudes. Multi-task training algorithms overlook gradients
with smaller magnitudes without considering the difference.
Thus, we further propose the Gradient Magnitude Balancing
module to deal with this challenge and balance the training
of all tasks. Code of PMTRec is also published '. Our

Thttps://github.com/YangLiangwei/PMTRec-BigData24
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contributions can be summarised as follows:

o Conceptually, for personalized multi-task learning, we first
illustrate the problem, identify the challenges, and propose
feasible solutions for recommender system.

« Methodologically, we propose the novel PMTRec algorithm
that operates on the gradient level during backpropagation
to provide personalized gradient weights.

« Experimentally, we conduct extensive experiments on three
real-world datasets with varied scales to justify the effec-
tiveness of our proposed PMTRec algorithm.

II. PRELIMINARIES

This section illustrates the preliminaries for PMTRec, in-
cluding a problem statement and multi-task learning.

A. Problem Statement

Given a set of users U = {u1,us,...,u; } and a set of
items Z = {4y, iz, ..., 7|7}, the personalized RecSys task aims
to generate a list of items for a given user u. The most
important information for training a recommendation model
is the currently observed historical interactions, which can be
represented as a user-item bipartite graph G = (V, ), where
V = U UZT and there is an edge (u,?) € € between w and 4 if
u has interacted with ¢ historically. The adjacency matrix of
G is represented by R € RIVI*IVI For implicit feedback [21]
such as clicks, views, and purchases, R, ; = 1 if user u has
interacted with item ¢, and R, ; = 0 otherwise. For explicit
feedback, the user provides, such as rating score, R, ; is the
explicit rating score from u to i. Besides the direct historical
interactions, auxiliary information can also be observed from
both the user and item side, which is termed by profile
P = (P%,P?). P“ contains all the auxiliary information from
the user side, such as features and social friends. P* represents
the item side auxiliary information such as category and co-
view information [22]. Based on all the above information,
personalized RecSys aims to predict the preference score in
the adjacency matrix of G and recommends a list of k items
with the top-k highest score.

B. Multi-task Learning

Multi-task learning (MTL) aims to learn a comprehensive
model to accomplish multiple tasks by training them simul-
taneously. This learning paradigm assumes different tasks
can enhance each other and perform better on all tasks.
Without loss of generality, we integrate and illustrate the
current multi-task learning algorithms [16], [18]-[20] from the
gradient level. Each task is trained and can be categorized
by a loss function £, which directly leads to a gradient
v L after backpropagation [23]. Assuming we have T tasks,
then a list of the gradient for different tasks is obtained
(VL1, VLo, ..., 7Lr). An MTL algorithm can be seen as a
pooling function over the gradient list to obtain the combined
gradient for descent 7 = PoolurL(VL1,VL2,..., VLT).
Different MTL algorithms differ in the design of the pooling
function, which can be parameterized or heuristic.
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III. METHOD

PMTRec is shown in Figure 2, which includes a forward
propagation to gather gradients from multiple tasks and a
backward stage to aggregate gradients from different tasks.
Our contribution lies in the backward stage, which contains
the task focusing and gradient magnitude balancing modules.

A. Forward Propagation

In the forward propagation stage, PMTRec computes the
losses for different tasks. It consists of an encoder to obtain
representation and several task modules for loss computation.

1) Encoder: Current state-of-the-art personalized Rec-
Sys [11], [12] learns an encoder to embed historical inter-
actions G into dense embedding representations as:

E = Encoder(G), ()

where E = (E*, E?). E* € RIUI*d and E* € RIZ1X? represent
the user/item embedding separately. e, € E" is user u’s
embedding, which encodes the specific information related
to w’s historical interaction. e, is the bedrock to provide
personalized recommendation for u, and d is the dimension
size. In PMTRec, we use matrix factorization [21] as the
encoder to directly embed interactions into dense user/item
vectors. PMTRec aims to encode more information into those
vector representation with auxiliary tasks.

2) Multi-task Loss computation: For RecSys, tasks T are
classified into the recommendation task tre.sys and auxiliary
tasks Taux = {t1,%2,..., 1|75, }- Auxiliary tasks can be built
in different ways based on the available information. As
illustrated in Figure 2, Task 1 is built purely from item
embedding E? and item profile . It aims to embed the item’s
profile information to the corresponding item embedding. Task
2 is built in a similar way from the user side. Tasks should be
designed based on the available information for each dataset.
For example, we demonstrate the task design in detail for the
three experimental datasets in Section IV. Feeding embedding
table E encoded from Section III-A1 into the loss computation
module of different tasks, we can obtain the losses:

(ERecS'ysu £17 £27 cey £\»CAux|)
B. Backward Propagation

2)

During the backward propagation stage, PMTRec combines
the gradients in a personalized fashion, i.e., computes specific
gradient weights for each user. It consists of gradient collec-
tion, task focusing and gradient magnitude balancing modules.

1) Gradient Collection: For each user/item, each loss L
in Equation 2 leads to one gradient on the corresponding
embedding vector, denoted as /L. Then a collection of
gradients from different tasks is represented by:

(VeﬁRecSysa Veﬁla VeEQa [EES) Ve£|£AUX\)a (3)

where e is the embedding for one user/item. Then PMTRec
measures the impactfulness of the gradient by [, norm as n; =
| Ve Lt]2. A larger n; indicates the current user/item is more
impactful to optimize task ¢. Then a list of norms is computed
from Equation 3 as (njtis, ., n1,m9, . 02, )-
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Algorithm 1 The training process of PMTRec

Require: Training set G, user/item embedding table E, main Rec-
Sys task Lrecsys, auxiliary tasks Lawx = {L1,L2,..., Lz, |}
a hyper-parameter 7 to control the gradient magnitude, total
training epoch S, learning rate Ir, task-focusing base c.
I: for s=1,2,3,...,t0 S do

2:  for Each mini-batch of user-item interactions B do
3: Grad = [VEERecSys(B)]
Gradient Collection
4: for £ € Lauwx do
5: Grad, = VeL(B)
6: Grad append Grad,
7: end for
8: Grads = Stack(Grad, dim = 0)
9: Norm = Norm(Grads, dim = -1)
Task Focusing
10: Norm[0] = Norm[0] * o®
Gradient Magnitude Balancing
11: Attnweight = Softmax(Norm/7, dim = 0)
12: VE = Sum(Attnueign-unsqueeze(-1) * Grads, dim = 0).
13: E=E—-Ilrxvye.
14:  end for
15: end for

2) Task Focusing: PMTRec treats the RecSys task as the
main task and all the other tasks as auxiliary ones for further
improvement. Auxiliary tasks are built differently, leading to
varied task orientations. Thus we design the Task Focusing
module to focus the training on the main RecSys task gradu-
ally. To this end, a hyper-parameter o > 1 is introduced as the
increasing base. Before transforming the gradient norm from
Section III-B1 into gradient weights, we multiply the weight
on the main RecSys task as:

Init s
nRecSys = nRecSys oo, (4)

where s is the current epoch number. In this design, PMTRec
will explore all tasks first and gradually focus on the main
RecSys task. A larger o will fasten the focusing speed. Though
in exponential design, the following Softmax computation with
built-in log-sum-exp trick ensures the number stability.

3) Gradient Magnitude Balancing: Loss functions within
Equation 2 are different due to the varied task designs, making
the gradient magnitude essentially different. The gradient with
a small magnitude will be overlooked if we directly transform
the gradient norm into gradient weight. Thus, we propose the
gradient magnitude balancing module to balance the impact of
different gradient magnitudes by a Softmax with temperature:

- exp™/7
=,
Yper exprer /T

where 7 is the hyper-parameter to balance gradient magnitude.
All task weights will be the same without being impacted by
different gradient magnitudes when 7 — +o00. Conversely,
PMTRec will only count the gradient with the largest norm
when 7 — —oo. A suitable 7 balance should be selected for
the best gradient magnitude. With Equation 6, we can ob-
tain the gradient weights as (Wrecsys, W1, W2, Wz, ). Then

®)

we
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Fig. 2. Model Framework. Our proposed PMTRec is illustrated in detail with two propagation stages. (1) Forward propagation computes the user/item
embedding and the losses for different tasks. (2) Backward propagation pools the gradient obtained from each task with a personalized gradient combination
for each user/item. The combined gradient is then used to update the embedding with an optimizer. (Best viewed in color)

PMTRec obtains the gradient on the corresponding user/item
by weighted sum on the gradients:

Veﬁ == Z Wt Ve Eta
teT

(6)

where /. is the combined gradient for a specific use/item and
is used to update corresponding embedding e. The variance
in gradient norms observed across distinct tasks for different
users/items culminates in the derivation of personalized gradi-
ent combination weights. It positions PMTRec as a pioneering
instance of personalized multi-task training algorithms.

C. Discussion

RecSys naturally faces the data sparsity issue [24], [25]
as the candidate item pool is too large for each user to
explore. Information from external knowledge such as social
networks [13] and knowledge graph [26]-[28] has proven to
provide extra information to enrich user/item representation.
However, previous methods model external knowledge as part
of the encoder, such as adding auxiliary edges besides the
user-item bipartite graph, which needs sophisticated design
within the encoder. PMTRec proposes another solution, i.e.,
embed the external knowledge into user/item representation
with multi-task training. It can keep the model intact and
embed that information with more tasks.

We further analyze the overhead time complexity caused by
multi-task training. For each user/item, PMTRec firstly com-
putes the norm of an embedding gradient in Section III-B1,
which takes (O(d)). The Task Focusing module in Sec-
tion III-B2 will only cost O(1) as it only computes on the
RecSys task. Then the Gradient Magnitude Balancing module
in Section III-B3 takes O(|7]). To sum up, the overall time
complexity of PMTRec is O((|U| + |Z]) x (d+|T])), where
U,Z,T is the user/item/task set respectively and d is the
embedding dimension. It is noted that the (|{/|+|Z|) dimension
can be easily batched up for parallel computation, which
makes the wall clock time even much faster. The batched
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version of PMTRec is shown in Algorithm 1 with all the
modules marked correspondingly, and /g is the aggregated
gradient on embedding E.

IV. EXPERIMENT

This section empirically evaluates the proposed PMTRec
on three real-world datasets. The goal is to answer the five
following research questions (RQs).

« RQ1: Is PMTRec effective compared with other multi-task
learning algorithms?

e« RQ2: Does each designed task help in improving the
recommendation performance?

¢ RQ3: Does the designed task focusing and gradient magni-
tude balancing module plays a role in PMTRec?

o RQ4: What is the impact of hyper-parameter « and 7?

« RQS5: How does the training curve of the newly proposed
multi-task training algorithm look like?

A. Experimental Setup

1) Datasets: We compare PMTRec against baselines on
three real-world datasets with different sizes. The detailed
data statistics of each dataset are shown in Table I. Epinion 2
collects user’s reviews on items with user’s social friends on
e-commerce website. Based on the available information, the
Social Prediction task (predict whether two users are social
friends) and the Category Prediction task (predict whether two
items belong to the same category) are constructed as auxiliary
tasks. Video Game and Office [14] are both from the Amazon
platform. For the Video Game dataset, we build a co-view and
co-buy prediction task to predict whether two items are co-
viewed/co-buyed together frequently. As for the Office dataset,
we construct the Alignment/Uniformity task [12] to directly
regularize on the embedding table as well as a rating prediction
task to predict the user’s explicit rating score towards items.
Following previous researches [11], [14], a 5-core setting is

Zhttps://www.cse.msu.edu/~tangjili/datasetcode/truststudy.htm
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TABLE I
STATISTICS OF THE DATASETS.

Dataset Epinion Video Game Office
#Users 22,167 55,223 4,905
#Items 296,278 17,408 2,420
#Interactions 922,267 497,577 51,441
Density 0.014% 0.051% 0.433%
Task 1 Social Co-View Alignment
Prediction Prediction Uniformity
Task 2 Category Co-Buy Rating
Prediction Prediction Regression

applied to all datasets, i.e., we remove users/items with less
than 5 interactions to keep the dataset quality.

2) Baselines: We compare PMTRec with 7 baselines in
multi-task learning to test the effectiveness of PMTRec.

o EW: It is the most basic method by directly adding all losses
together to optimize user/item representation.

e GradDrop [29]: It detects the gradient conflict on each pa-
rameter and drops the conflict signal with a scale-measured
probability. A smaller scale is easier to be dropped.

e PCGrad [16]: Project Conflicting Gradients (PCGrad)
changes one of the optimization directions of conflict gra-
dients to make the gradients conflict-free.

e GradVac [18]: Gradient Vaccine (GradVac) is the updated
version of PCGrad to further align the unconflict gradients.

o CAGrad [30]: Conflict-averse gradient descent (CAGrad)
minimizes the average loss function by leveraging the worst
local improvement of individual tasks.

o Aligned MTL [31]: It proposes to use a condition number of
a linear system of gradients as a stability criterion to guide
the multi-task learning optimization.

o Nash MTL [32]: Nash MTL suggests conceptualizing the
process of combining gradients as akin to a bargaining game,
wherein individual tasks engage in negotiation to mutually
agree upon a collective direction for parameter updates.

« RLW [20]: Random Loss Weight (RLW) assigns loss weight
randomly in each epoch to explore the different tasks.

3) Evaluation Method: We randomly split the dataset into
a training set (60%), validation set (20%), and test set (20%).
Models are trained on the training set, hyper-parameters are
tuned based on the performance on the validation set, and
the reported results are from the test set. We test the effec-
tiveness of PMTRec on Top-K personalized recommendation
task with three widely adopted evaluation metrics: Recall@K
(R@K), Hit Ratio@K (HR@K), and Normalized Discounted
Cumulative Gain@K (N@K). To comprehensively assess our
model, we present evaluation results for Top-20 and Top-40
recommendations in our experiments. Our evaluation approach
calculates average metrics across all users within the test set.
These metrics are computed based on the rankings of items
that users have not interacted with. To align with established
research practices [11], [12], we adopt the complete full
ranking for evaluation. This method entails ranking all items
that a user has not yet engaged with, thereby providing a
comprehensive evaluation.
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4) Experiment Settings: To make a fair comparison, we test
PMTRec and all the other baselines under the same setting.
User/Item embedding size d is fixed to 32 with Xavier [33]
initialization. To keep simplicity, we directly use the embed-
ding table as the Encoder. It is to be noted that PMTRec
also supports other encoders. We fix the batch size as 2048
and utilize Adam optimizer [34] to optimize the parameters.
For the remaining hyper-parameters, we used the grid search
method to find the optimal settings for PMTRec: the learning
rate is searched in {0.1,0.05,0.01,0.005,0.001}, coefficient of
weight decay is tuned in {1e=2,1e % 176 1e~®}. We search
the task focusing base o from 1.0 to 1.2 with a step size of
0.02, and the temperature 7 in gradient magnitude balancing
module in {10,1,1e7 ', 1e72,1e73 1e74,1e72,1e76}. We
stopped the training early without improvement in successive
10 epochs on the main recommendation task for all the
experiments and reported the results on the test set.

B. RQI: Performance Comparison

We compare PMTRec on 3 real-world datasets with 8
baselines in multi-task learning. The experiment results are
shown in Table II. We can have the following observations:

« PMTRec consistently outperforms the second-best method
on all three datasets. On the Epinion dataset, PMTRec even
surpasses the second best with 9.8% improvement in N@5.
It justifies the effectiveness of PMTRec compared with all
previous multi-task training algorithms for RecSys.

o The improvement of PMTRec for different datasets varies.
PMTRec achieves remarkable improvement on Epinion and
Office datasets while only achieving about 2% improvement
on the Video Game dataset. We assume it is because the
designed tasks do not provide much extra information. The
co-view, co-buy item prediction task can be easily inferred
from user-item interactions.

o RLW nearly always ranks the second best across all three
datasets. RLW randomly assigns task weights in each epoch
during training. It is a quite simple method to add more
randomness for gradient exploration. It surpasses the so-
phisticated designed gradient manipulation methods such
as PCGrad and GradVac by a large margin. The previous
gradient manipulation methods directly consider all the
parameter sets without personalized consideration, which
hinders their performance.

To show the compatibility of PMTRec with the current
widely used RecSys, we further conduct experiments on
different encoders, including MF [21], NGCF [35] and Light-
GCN [11]. Experiment results are shown in Figure 3. We can
observe that PMTRec always achieves the best performance
regardless of the encoder. It shows that PMTRec is compatible
with current RecSys algorithms. Besides, we can also observe
the performance improvement with a more advanced encoder.
It shows the improvement brought by multi-task training is
orthogonal to the encoder, and we can integrate it within
current RecSys algorithms to achieve better performance.
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TABLE II
OVERALL COMPARISON. THE BEST IS BOLDED, AND THE RUNNER-UP IS UNDERLINED.

Dataset Metric EW GradDrop PCGrad GradVac CAGrad Aligned MTL  Nash MTL  RLW PMTRec Imp
R@5 | 00130 00131 00142 00142  0.0142 0.0123 00156 00151 00170  8.97%
R@10 | 0.0219 00224 00233 00233  0.0240 0.0203 0.0251 0.0238  0.0266  597%
Epinion R@20 | 0.0356  0.0355  0.0364 00364  0.0379 0.0314 0.0408 00381 00413  1.22%
R@40 | 0.0562 00570  0.0573 00573  0.0596 0.0494 0.0633  0.0598  0.0639  0.94%
N@5 [ 00128 00130 00137 00137 00139 0.0121 00153 00146  0.0I68  9.80%
N@10 | 0.0161 00164 00170 00170  0.0175 0.0150 0.0188 00178  0.0202  7.44%
N@20 | 0.0205  0.0207 00213  0.0213  0.0221 0.0186 0.0239  0.0225 00249  4.18%
N@40 | 00263 00267 00272 00272  0.0282 0.0236 0.0303 00286 00312  2.97%
R@5 | 0.0435 00435  0.0408 00511  0.0397 0.0321 0.0454  0.0461  0.0467  1.30%
R@10 | 0.0716 00716  0.0654  0.0657  0.0643 0.0528 00732 00730 00750  2.45%
Video Game | R@20 | 0.1109 00974 0.1044 01046  0.1006 0.0843 01128 01129 01154  221%
R@40 | 0.1677  0.1480  0.1591  0.1599  0.1533 0.1296 01682 01668 01713  1.84%
N@5 [ 00347 00347 00326 00329  0.0313 0.0256 0.0360 00365 0.0373  2.19%
N@10 | 0.0451 00451 00416  0.0419  0.0404 0.0333 0.0463  0.0464  0.0478  3.01%
N@20 | 0.0571  0.0497 00535 00538  0.0515 0.0429 0.0584  0.0585  0.0601  2.73%
N@40 | 0.0712  0.0624  0.0670  0.0676  0.0646 0.0541 0.0722  0.0719 00740  2.92%
R@5 | 0.0243  0.0281  0.0213  0.0213  0.0325 0.0144 00224 0.0336 00347  3.27%
R@10 | 0.0401 00458  0.0350  0.0349  0.0513 0.0248 0.0403 00553  0.0594  7.41%
Office R@20 | 0.0655 00752 00576 00576  0.0819 0.0417 0.0685  0.0849  0.0905  6.59%
R@40 | 0.1074  0.1139  0.0893  0.0891  0.1247 0.0676 01100  0.1321 01474  11.58%
N@5 [ 00192 00229  0.0165 0.0165  0.0260 0.0124 00198 00259  0.0281  8.49%
N@10 | 0.0253 00295 00217  0.0217  0.0332 0.0163 0.0267  0.0344 00372  8.13%
N@20 | 0.0334 00387  0.0289  0.0289  0.0428 0.0217 00362 0.0439 00473  7.74%
N@40 | 0.0443 00489 00372  0.0372  0.0539 0.0287 0.0474  0.0562  0.0619  10.14%
Epinion o There is a general trend of performance improvements when
0.06| == Aligned MTL  mmm GradDrop CAGrad I .
NashMTL  mem PCGrad  mEm RLW additional tasks are integrated. For example, the pure Rec-
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Fig. 3. Experiments on different encoders

C. RQ?2: Task Investigation

This section aims to investigate whether each designed task
helps improve the recommendation performance. Towards this
end, we experiment with individual tasks, and Table IIT shows
the influence of tasks on recommendation performance across
different datasets. To have a thorough investigation on the
effectiveness of multi-task learning in RecSys, we conduct
these experiments with different encoders, including MF [21],
NGCF [36] and LightGCN [11]. We can have the following
observations in this experiments:

« We observe the improvements across all three datasets
comparing pure BPR performance and the one combining
BPR, T1, and T2. On the Epinion dataset, PMTRec im-
proves the BPR performance from 0.0117 to 0.0170 on
R@5 with two extra auxiliary tasks, a 45.2% improvement.
The huge improvement indicates the necessity of combining
knowledge from extra tasks to alleviate the data sparsity
problem in RecSys. The experiment results also validate
PMTRec can effectively fuse the knowledge from auxiliary
tasks to improve the RecSys performance.
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Sys task on the Epinion dataset achieves an N@5 of 0.0118.
Adding T1 increases to 0.0158, and adding T2 increases to
0.0166. Jointly combining the two tasks achieves the best
performance of 0.0168.

The impact of individual tasks varies among datasets. On
Epinion and Video Game datasets, RecSys performance
gradually improves with more tasks. However, the addition
of T2 on the Office dataset results in a performance drop,
which indicates the auxiliary tasks should be designed
carefully to align with the main RecSys task.

D. RQ3: Ablation Study

Ablation study experiment on task focusing and gradient

magnitude balancing modules is shown in Figure 4. We can
have the following observations:

o« We observe performance deterioration across all three

datasets upon omitting any module. It shows each module
contributes to the effectiveness of PMTRec.

Excluding the task-focusing module leads to a slight de-
cline in the Epinion and Video Game datasets but substan-
tially decreases the Office dataset. Notably, Recall@40 and
NDCG @40 drop by 5.7% and 4.7% on Office, respectively.
It reveals that gradually focusing the training on the main
RecSys task can improve the main RecSys task, which is
overlooked by all previous multi-task training algorithms.
The omission of the gradient magnitude balancing module
has a marked impact on the Epinion and Video Game
datasets. Specifically, the Recall@40 and NDCG @40 met-
rics are decreased by 4.4% and 7.6% on Epinion, and by
14.7% and 15.1% on Video Game, highlighting the module’s
critical role in model performance.
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TABLE III
TASK INVESTIGATION. BOLDED SCORES INDICATE THE BEST PERFORMANCE, WHILE UNDERLINED SCORES REPRESENT THE SECOND-BEST.

Model \ Tasks \ Epinion Video Game Office
‘ ‘ R@5 R@20 N@s N@20 ‘ R@5 R@20 N@s5s N@20 ‘ R@5 R@20 N@s N@20
BPR 0.0117  0.0349 0.0118 0.0198 | 0.0427 0.1085 0.0336  0.0553 | 0.0281 0.0729 0.0243  0.0402
ME +T1 0.0158 0.0395 0.0158 0.0238 | 0.0469 0.1151 0.0373 0.0600 | 0.0372 0.0860 0.0304 0.0470
+T2 0.0167  0.0414 0.0166  0.0249 | 0.0465 0.1161 0.0368 0.0596 | 0.0232 0.0684 0.0190 0.0345
+T1,T2 | 0.0170 0.0413  0.0168 0.0250 | 0.0467 0.1154 0.0374 0.0601 | 0.0347 0.0905 0.0281  0.0473
BPR 0.0118  0.0294 0.0121 0.0180 | 0.0433 0.1105 0.0344 0.0565 | 0.0232 0.0689 0.0197  0.0355
NGCF +T1 0.0181 0.0461 0.0185 0.0278 | 0.0463  0.1139  0.0369 0.0593 | 0.0281 0.0812 0.0201  0.0382
+T2 0.0184 0.0481 0.0187 0.0287 | 0.0450 0.1117 0.0359  0.0579 | 0.0202 0.0688 0.0145 0.0308
+T1,T2 | 0.0195 0.0507 0.0199 0.0302 | 0.0463 0.1138 0.0370  0.0594 | 0.0354 0.0823 0.0295 0.0454
BPR 0.0122  0.0320 0.0129 0.0195 | 0.0418 0.1041  0.0331 0.0538 | 0.0260 0.0723  0.0216  0.0380
LichtGCN +T1 0.0173  0.0459 0.0178  0.0273 | 0.0442 0.1133  0.0355 0.0585 | 0.0338 0.0846  0.0258  0.0450
& +T2 0.0201 0.0499 0.0196 0.0296 | 0.0445 0.1138 0.0356  0.0585 | 0.0221 0.0713 0.0165 0.0332
+T1,T2 | 0.0198 0.0511 0.0197 0.0301 | 0.0448 0.1144 0.0355 0.0586 | 0.0338 0.0931 0.0280  0.0466
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Fig. 4. Ablation study of PMTRec. Variant 1 omits the task focusing module,
Variant 2 excludes the gradient magnitude balancing module, and Variant 3
represents the full PMTRec.

E. RQ4: Hyper-Parameter Sensitivity

This section aims to study the Hyper-parameter sensitivity
of PMTRec. It introduces two hyper-parameters in different
modules. « is the multiplying base in the task-focusing mod-
ule. With a larger «, the training of PMTRec is faster focused
on the main RecSys task. 7 is the temperature in the gradient
magnitude balancing module. All task weights will be the
same without being impacted by different gradient magnitudes
when 7 — +o0. Conversely, PMTRec will only count the
gradient with the most prominent norm when 7 — —oo. We
show the experiment results on all three datasets in Figure 5.
From the results, we can observe that:

« With the increase of «, the performance of PMTRec firstly
increases to the peak point and then quickly decreases. At
the initial stage, increasing « will focus the training of
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Fig. 5. Sensitivity analysis of PMTRec’s hyper-parameters: « is the in-
crement base in the task focusing module, while 7 balances the gradient
magnitude in the balancing module.

PMTRec on the RecSys task at the final stage, showing
the advantages of task focusing. When « is large, PMTRec
focuses the training on RecSys quickly without enough
exploration of auxiliary tasks. It reveals the importance of
learning procedures on auxiliary tasks.

As T increases, distinct curve patterns emerge across vari-
ous datasets. For the Epinion dataset, performance initially
reaches a peak before declining. Conversely, optimal per-
formance in the Video Game dataset is achieved with the
smallest 7, while the Office dataset attains its highest per-
formance with the largest 7. Auxiliary tasks are constructed
in different ways for different datasets. It shows uniqueness
of datasets and task construction.

In most cases, PMTRec does not perform best when o = 1
or 7 = 1. When the hyper-parameter is equal to 1, the
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Fig. 6. The training curve on three datasets.

corresponding module does not play a role, leading to
inferior performance. It re-validates the effectiveness of each
designed module in PMTRec.

F. RQS5: Training Curve Comparison

As a new multi-task training algorithm, we further show the
training curve of PMTRec in Figure 6. All the baselines are
also included. We have the following observations:

¢ On the Epinion and Video Game dataset, other baselines
improve quickly at the first few epochs and reach stable
on inferior performance. The improvement of PMTRec is
more stable and achieves the highest performance at the
final stage. At the initial stage, PMTRec tends to explore
auxiliary tasks first without fast improvement on the RecSys
task. With more epochs, the task-focusing module gradually
plays a role in enforcing model train toward the RecSys task.

« On Office dataset, PMTRec also improves stability and
achieves the highest performance compared to other multi-
task training methods. The training curve on the Office
dataset justifies the effectiveness of PMTRec.

« Another interesting finding is PMTRec seems more stable
across datasets. For all three datasets, PMTRec improves
at similar paces. They all improve fastest on 25 epochs and
reach the best performance on about 60 epochs. However,
other baselines do not seem to have a similar property.
All the baselines on the Epinion dataset improve fast at
the initial stage, while no similar trend is observed on the
Office dataset. We assume personalized updates in PMTRec
lead to this observation as it captures the personalization
character of the RecSys task.
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V. RELATED WORK
A. Multi-task Learning

Multi-Task Learning (MTL) [37]-[39] is an approach that
focuses on collectively training multiple interconnected tasks.
The goal is to enhance their generalization capabilities by
capitalizing on shared insights across these tasks. There has
been a fast development of MTL in recent years. Cur-
rent methods can be classified into two categories: con-
flict resolution-based methods and randomness-based methods.
Conflict resolution-based methods aim to identify and solve
the gradient conflict/imbalance from different tasks. MGDA-
UB [40] utilizes multiple gradient descent algorithms to find
a common descending direction among all gradients to avoid
the gradient conflict by solving a quadratic programming
problem. GradNorm [19] aims to solve the gradient imbal-
ance problem by constraining the gradient magnitudes to be
similar. PCGrad [16] modifies the optimization direction of
conflicting gradients, redirecting them to achieve gradient con-
flict resolution and promote coherence among the gradients.
GradVac [18] represents an enhanced iteration of PCGrad, de-
signed to align non-conflicting gradients in similar directions
more effectively. CAGrad [30] employs the concept of worst
local improvement from individual tasks, and it minimizes
the average loss function, thereby guiding the algorithm’s
trajectory through regularization. Aligned MTL [31] suggests
utilizing a conditioned number of linear gradient systems as
a stability criterion, guiding optimizing multi-task learning
to avoid conflict. TAWT [41] proposes target aware cross
task weighted training algorithm. IMTL-G [42] strives to
identify an aggregated gradient characterized by uniform-
length projections onto the gradients of each individual task.
RotoGrad [43] addresses conflict issues by aligning gradient
magnitudes and directions concurrently. It achieves this by
introducing a trainable rotation matrix to modify the gradient
direction for each task, followed by the computation of weights
that enforce uniform gradient magnitudes across all tasks.
On the other hand, randomness-based methods aim to add
more gradient exploration based on multiple tasks. UW [44]
employs consistent uncertainties as loss weights for individual
tasks, which are adaptively adjusted through backpropagation.
GradDrop [29] posits that conflict arises from discrepancies in
gradient signs across various tasks. To mitigate this conflict,
GradDrop drops gradient values based on magnitude-measured
probability. RLW [20] introduces variability by assigning
loss weights randomly in each epoch, facilitating the explo-
ration of task optimization from diverse perspectives. Nash
MTL [32] attains top-notch performance across various Multi-
Task Learning (MTL) benchmarks. The approach advocates
for interpreting the gradient combination process as a form of
bargaining game, where individual tasks negotiate to reach a
consensus on a shared direction for parameter updates.

Previous methods do not consider personalized gradient
combination, which stands PMTRec out from previous meth-
ods. It is the first multi-task training algorithm that supports
assigning different task weights for each user/item.
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B. Representation Learning for RecSys

The core of existing recommender systems is learning
user/item representations. BPR-MF [21] is one of the most
popular methods to characterize user-item interactions and
train user/item representations. FM [45] further incorporates
real-value attributes of users and items to learn representations.
Additionally, if given a user-item rating matrix, NMF [46]
is widely adopted to learn user/item embeddings. As deep
learning technology develops, NCF [35] is proposed to en-
code user/item IDs with neural networks as embeddings.
Recently, the successes of graph neural network GNN [47]-
[49] prompt the graph-based collaborative filtering, such as
NGCF [36] and LightGCN [11]. Those graph-based collab-
orative filtering methods learn user/item representation via
aggregating neighbor information, which characterizes the
high-order signals in the user-item graph. Learning user/item
representation based on graph embedding also opens more
potential to harness additional information. GraphRec [50]
and ConsisRec [13] devise additional graph propagation on
social graphs, which enables the joint learning of social and
recommendation information. Besides social information be-
tween users, those multiple relations between items [S51]-[53],
such as co-view and co-buy, also benefit the representation
learning for the recommendation. The success of contrastive
learning in representation learning [54] motivates the novel
DirectAU [12] loss for the recommendation. DirectAU opti-
mizes the user/item representation by minimizing uniformity
and alignment losses, eliminating the inefficient negative sam-
pling process in learning representation. GraphAU [24] further
considers the graph-related high-order alignment signal during
optimizing user/item representation. With the emerging ability
of large language models (LLM), most recent researches also
investigate improving user/item representation with pre-trained
large language models for the RecSys task. PS5 [55] and
OpenP5 [56] train different tasks within large language models
by next-token-prediction task. LlmRec [57] augments user-
item bipartite graph with LLMs to learn a more informative
user/item representation. RLMRec [58] proposes contrastive
alignment and generative alignment to align user/item embed-
ding to the large language model encoded space. CARec [59]
directly aligns the user/item’s ID embedding with semantic
embedding in the iterative alignment phase. Previous research
shows that a more discriminative, comprehensive, and infor-
mative user/item representation is the foundation for effective
RecSys.

This paper proposes to directly learn user/item representa-
tion under a multi-task learning paradigm and proposes the
first personalized multi-task training method PMTRec. It can
encode information from multiple tasks to obtain a more
comprehensive and informative user/item representation.

VI. CONCLUSION

This paper introduces PMTRec, a novel multi-task training
algorithm specifically designed for recommender systems.
This algorithm distinctively supports personalized gradient
combinations for individual user/item. It intricately navigates
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the backpropagation process, manipulating gradients directly
at their level. Within PMTRec, two principal modules are con-
structed: a task-focusing and a gradient magnitude balancing
module. The former progressively concentrates training efforts
on the primary recommender system (RecSys) task, whereas
the latter equilibrates gradients of varying magnitudes. Empir-
ical evaluations conducted on real-world datasets substantiate
PMTRec’s efficacy. As the first multi-task training algorithm
designed explicitly for the recommender system, we also open-
sourced PMTRec for further research.
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