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Abstract—The evolution of large vision-language models
(LVLMs) has shed light on the development of many fields,
particularly for multimodal recommendation. While LVLMs offer
an integrated understanding of textual and visual information of
items from user interactions, their deployment in this domain
remains limited due to inherent complexities. First, LVLMs are
trained from enormous general datasets and lack knowledge
of personalized user preferences. Second, LVLMs struggle with
multiple image processing, especially with discrete, noisy, and
redundant images in recommendation scenarios. To address these
issues, we introduce a new reasoning strategy called Visual-
Summary Thought (VST) for Multimodal Recommendation.
This approach begins by prompting LVLMs to generate textual
summaries of item images, which serve as contextual information.
These summaries are then combined with item titles to enhance
the representation of sequential interactions and improve the
ranking of candidates. Our experiments, conducted across four
datasets using three different LVLMs: GPT4-V, LLaVA-7b, and
LLaVA-13b validate the effectiveness of VST.

Index Terms—Large Vision-Language Models, Multimodal
Recommendation, Reasoning Strategy

I. INTRODUCTION

To address the cold-start issues that recommender systems

(RSs) lack sufficient records of new items/users, multimodal rec-

ommender systems (MMRSs) [1]–[4] are proposed by involving

the complementary content of items from multiple perspectives,

e.g., textual description and visual illustration, thus enriching

the recommender system’s knowledge. Traditional MMRSs

usually first extract features from various modalities and then

use different fusion strategies to combine those features into

a unified representation. Although these methods have shown

promising results, they encounter challenges in efficiently

fusing multimodal knowledge, especially when new modal-

ities are introduced. Ineffective integration and representation

learning can further degrade the RS’s performance [5]–[8].

Additionally, the product image provided by the seller contains

critical marketing highlights that attract buyers, e.g., the game’s

duration and thematic ambiance, elements that traditional

embedding-based MMRSs may struggle to capture effectively.

Meanwhile, the remarkable success of large vision-language

models (LVLMs) [9]–[16] offers encouraging solutions to the
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Fig. 1: Performance of GPT4-V on four representative Amazon

datasets with title-only and title-image concatenation inputs.

above issues encountered by traditional MMRSs. LVLMs are

proficient in comprehending both textual and visual information

about an item since they are trained using vast datasets [17]–

[20]. Their ability to distill and adapt item features across

modalities into natural language space provides more flexibility

to extract information from each modality, thus exhibiting

an opportunity for effective knowledge fusion. It is worth

mentioning that we choose to explore the inference schema

instead of finetuning for two main reasons: (1) Current

LVLMs are extremely large, making deployment and finetuning

impractical. (2) As LVLMs continuously evolve, extensive fine-

tuning on such large models is computationally expensive and

unnecessary. Therefore, we propose a lightweight and plug-and-

play reasoning strategy compatible with all LVLM backbones,

allowing performance improvements to scale with the ongoing

development of LVLMs. Despite the aforementioned strengths,

the incorporation of pretrained LVLMs into MMRSs remains

an under-explored area. Two possible obstacles may hinder the

widespread adoption of LVLMs in MMRSs:

First, LVLMs are trained from vast general knowledge and,

as such, lack domain-specific knowledge for understanding

user preferences revealed through their interactions. This

gap results in the under-exploration of LVLMs’ capacity in

recommendation scenarios. To bridge this gap, it is essential to

integrate additional knowledge to inform LVLMs in the context

necessary for making appropriate recommendations. This

approach, however, introduces the second challenge: LVLMs’
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inefficiency in processing multiple images. Although models

like GPT4-V have been evaluated in video understanding

scenarios to examine their capacity in capturing dynamic

content across frames [9], [10], [21]–[25], the scenario with

MMRSs involves handling multiple, discrete, and noisy images.

This complexity can pose a significant challenge even from a

human perspective, making it difficult to extract meaningful

knowledge from such diverse interactions. Our preliminary

experiments on different datasets with various LVLMs indicate

that a simple concatenation of multiple images with item

titles performs worse than methods relying solely on item

titles for recommendations. Figure 1 shows this issue across

four representative datasets with powerful GPT4-V. Note

that this phenomenon also happens on other datasets using

different LVLMs. Furthermore, current reasoning algorithms,

e.g., in-context learning (ICL) [26], [27] and chain-of-thought

(CoT) [28], [29], are primarily designed for NLP tasks ignoring

visual modality. However, the principal challenge in multimodal

recommendation is how to effectively leverage image-based

knowledge and integrate it into the recommendation process.

Thus, effective LVLM-based MMRS requires the design of

specific prompting strategies that can utilize their visual

comprehension strength without caving to the complexities

associated with processing multiple images simultaneously.

Accordingly, we propose a novel Visual-Summary Thought

(VST) reasoning strategy of LVLMs for MMRSs. Our approach

includes two primary components: First, we utilize user histori-

cal interactions as contextual data for the LVLMs’ personalized

recommendations. This involves using sequences of both item

titles and images as inputs to the LVLMs. Second, to overcome

the shortage of handling multiple images, we prompt the

LVLMs with one static image to obtain a corresponding

textual summary. Then, we construct user history sequences

by substituting the images with their textual comprehensions

one by one, serving as an intermediate representation for

LVLMs during the reasoning phase. This strategy allows for the

recommendation based on a more manageable comprehension

of user preferences, transitioning from the complex and noisy

image sequences to a simpler task of understanding visual-

summary enhanced preference dynamics. To validate the

efficacy of our proposed reasoning algorithm, we conduct

experiments using GPT4-V, LLaVA-7b, and LLaVA-13b as

reasoning backbones. We observe consistent improvements over

other existing reasoning strategies, such as concatenation, ICL,

and CoT. Our contributions can be summarized as follows:

• To the best of our knowledge, this is the first attempt

to investigate the reasoning strategies for LVLMs in

multimodal recommendation scenarios. This new paradigm

embraces the ongoing development and potential of

LVLMs, offering a more integrated and effective approach

to multimodal recommendation.

• We introduce a novel Visual-Summary Thought (VST) rea-

soning strategy, specifically designed for the multimodal

recommendation context, to harness the proficiency of

LVLMs’ visual understanding and remedy their deficiency

in handling multiple images simultaneously.

• We conduct comprehensive experiments to evaluate VST,

utilizing both API-based LVLMs like GPT4-V, and open-

source models such as LLaVA-7b and -13b. The consistent

improvements observed across these models demonstrate

the effectiveness of VST for LVLM-based MMRSs.

II. METHODOLOGY

A. Problem definition

In this paper, we follow the problem settings in [30],

[31] that use the pretrained LVLMs as reranker to make

recommendations to user u via reranking the given n candidate

item titles v = {v1, v2, . . . , vn}. For each user, we have their

historical interactions, which is the sequence of title and image

pair of items: u = {(t1, i1), (t2, i2), . . . , (tm, im)}.

B. Preliminary

LVLMs exhibit limitations in handling multiple images. We

evaluated the LVLMs’ ability to handle multimodal inputs

by concatenating the item titles and images of user histories.

Surprisingly, leveraging complementary visual information led

to poorer results than only using item titles as shown in Figure 1.

(An example can be found in section III-D.) This underscores a

critical insight: adding more information to the LVLMs’ prompt

context without a thoughtful design can lead to confusion,

especially with discrete and noisy images full of redundancy.

To address this challenge, we introduce a novel visual-summary

thought of prompting strategy (VST) as shown in Figure 2.

C. Visual-Summary Generation

Existing LVLMs, e.g., GPT4-V and LLaVA, primarily

focus on static image understanding scenarios, where LVLMs

generate textual descriptions of a given image. However, this

paradigm is inefficient for handling multiple images [10].

Existing strategies include concatenating images for LVLM

reasoning [10], or adapting LVLMs to video comprehension

scenarios via finetuning on video datasets [11]–[13], [22]. Yet,

neither approach is suitable for the unique demands of MMRSs,

where the image sequence of a user history is discrete and

noisy, lacking the continuous nature of video frames and

making sequential correlations difficult to discern. To deal

with these issues, we propose leveraging LVLMs’ strengths

in temporal understanding within natural language modality

and their capacity for static image interpretation. Instead of

processing a sequence of images, we focus on distilling critical

marketing highlights from individual image. The prompt can

be formalized as: si = summary(i) ="What’s in this image?"

For each item, we use one image and get the summarization

of each image independently. In this way, we can not only

obtain marketing highlights of items via distilling image

comprehension from LVLMs but also simplify the temporal

user preference understanding from the visual modality to the

textual modality, where LVLMs exhibit proficiency.

D. Visual-Summary Thought for MMRSs

After summarizing each item image, we concat the history

item titles with their visual summary to construct the prompt

for querying user preferences among candidates. The prompt

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 21,2025 at 01:39:59 UTC from IEEE Xplore.  Restrictions apply. 



458

Visual-Summary Generation

"Classic Jenga" game made by 

Hasbro Gaming.

For 6 and older, 1 or more players.  

There's a slogan: "HOW DO YOU 

STACK UP?" relating to both the

stacking nature of the game and 

the competitive aspect of player 

performance.

The image is of the board game "Say 

Anything" packaging.

The box boasts "30 Awards" including 

a "Parents' Choice Fun Stuff" ribbon 

and a "Toy's Top Pick" badge.

For ages 13 and up, suitable for 3-8 

players, as a party game.  

The bottom suggests a party 

atmosphere, fitting for a game that 

likely involves social interaction and 

humor.

The image displays a board game 

named "King of Tokyo: Power Up!" by 

Richard Garfield. 

For 2-6 players, ages 8 and above, 

playtime of around 30 minutes.

Includes the "IELLO" logo, the name of 

the game publisher, and a graphic that 

indicates "Pandakai" character. 

The visual style suggests a fun and 

energetic game, possibly with elements 

of monster combat or city destruction, 

given the title and the imagery. 

The image is of the "Exploding Kittens: Original Edition" card 

game box. 

there's a cartoon of a black kitten with a worried expression4

adds humor and character to the game's concept.

Described as "A CARD GAME for people who are into kittens 

and explosions and laser beams and sometimes goats," 

suggesting quirky and whimsical gameplay. 

For ages 7 and up, 2-5 players, 2 minutes to learn, 15 minutes 

to play, highlighting its accessibility and quick playtime.

There's a badge stating "#1 MOST-BACKED KICKSTARTER 

EVER" which signifies its popularity and success on the 

crowdfunding platform Kickstarter.

Say SomethingClassic Jenga King of Tokyo Exploding Kittens

Reranker

Visual-Summary Thought

Fig. 2: Framework of Visual-Summary Thought of LVLMs for Multimodal Recommendation. Text in yellow highlights some

key features obtained through visual-summary generation.

TABLE I: Statistics of the datasets after sampling.

Datasets #Users #Items #Interactions Sparsity

Sports 200 1750 2333 99.33%
Clothing 200 1291 1362 99.47%
Beauty 200 2024 2797 99.31%
Toys 200 1684 1967 99.42%

is structured in two parts: the first outlines the user’s purchase

history in chronological order, demonstrated by each item’s title

and visual summary. The second segment directs the LVLMs to

rerank the candidates represented by their titles. An illustrative

prompt might be:

"[Here is a chronological list of my purchase history for

some products including the title and the description of each

product. {(t1, si1), . . . , (tm, sim)}][There are |n| candidate

products I am considering to buy: {v1, . . . , vn}. Please rank

these |n| candidate products based on the likelihood I would

like to purchase next most according to the given purchase

history. You cannot generate products that are not in the given

candidate list.]".

III. EXPERIMENTS

A. Experimental Settings

a) Dataset: In this paper, we adopt the same dataset as

in [32] that uses the Amazon Review datasets for evaluation.

Due to the limitation of the inference rate, following the

common practice [30], [33], we only sample 200 users for

evaluation. We report the statistics of such datasets in Table I.

b) Metrics: Following the leave-one-out evaluation strat-

egy adopted in prior works [34]–[38], we treat the last item in

each historical interaction sequence as the ground-truth (target)

item. We adopt Recall@K (R@K) and NDCG@K (N@K) to

evaluate the ranking performance of the LVLMs over candidate

items, which consist of the title of the target item and the 9

random sampled items following [30].

c) Implementation Details: For open-source LVLMs, we

use Fastchat to launch models and conduct the model inference

on a single GeForce RTX 4090.

d) Baseline Models: As there is no previous work that

only utilizes the inference capacity of LVLMs for multimodal

recommendation, we adopt the commonly chosen prompting

strategies used in NLP tasks: in-context-learning (ICL) and

chain-of-thought (CoT) for comparison. MM: The plain prompt,

using the simple concatenation of the historical item titles and

images as the first segment. The second part keeps the same

as VST. MM-ICL: For ICL, we match each prefix of the

user’s historical interaction sequence with its corresponding

successor as demonstration examples. For example: "[Here

is a chronological list of my purchase history: {(t1, i1), . . . ,

(tm−1, im−1)}] [Then if I ask you to recommend a new product,

you should recommend tm. Now I’ve just purchased tm, I want

to buy a new product...]". The remaining part is the same as the

second part of VST. MM-CoT: For CoT, we adopt zero-shot

CoT by adding "Please think step by step." to the second part

of the prompt, while the first part is the same as MM. For

example: "[Here is a chronological list of my purchase history:

{(t1, i1), . . . , (tm, im)}][There are |n| candidate products I am

considering to buy . . . Please think step by step by considering

my preferences based on the given titles and image sequence

of the purchased products.. . . ]".

Note that we focus on exploring different reasoning strategies

of LVLMs in MMRSs with zero-shot settings. It is out of our

scope to compare with traditional full-shot methods that are

trained on the target datasets.

B. Overall Performance

To demonstrate the effectiveness of our proposed VST

strategy, we employ GPT4-V, LLaVA-7b, and LLaVA-13b

as pretrained LVLMs and conduct experiments with four

different prompt strategies across four public datasets. The

complete experimental results are shown in Table II. From

the table, we can observe that our proposed VST reasoning

strategy achieves the best or comparable performances across

all datasets, demonstrating the effectiveness of our approach.

Notably, our approach has a better performance on Sports

dataset than others. We observe the characteristic of this dataset
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TABLE II: Performance comparison of different prompt strategies. Target items are guaranteed to be included in the candidate

sets. We highlight the best and the second-best results.

Dataset Metric
GPT4-V LLaVA-7b LLaVA-13b

MM MM-ICL MM-CoT VST MM MM-ICL MM-CoT VST MM MM-ICL MM-CoT VST

Sports

R@5 0.6900 0.6950 0.5750 0.7250 0.1300 0.1900 0.1800 0.3283 0.2250 0.3300 0.2300 0.3750
R@10 0.8600 0.8600 0.8150 0.9000 0.2950 0.3400 0.3250 0.5067 0.3200 0.4850 0.3250 0.6250
R@20 0.8700 0.8650 0.8300 0.9050 0.3100 0.3500 0.3550 0.5117 0.3400 0.5000 0.3450 0.6350
N@5 0.4880 0.5126 0.4186 0.5263 0.0703 0.1138 0.1043 0.1769 0.1395 0.2087 0.1393 0.2244
N@10 0.5435 0.5666 0.4961 0.5834 0.1243 0.1619 0.1506 0.2345 0.1706 0.2598 0.1701 0.3063
N@20 0.5461 0.5678 0.4999 0.5846 0.1281 0.1646 0.1580 0.2357 0.1755 0.2637 0.1752 0.3086

Clothing

R@5 0.6550 0.7100 0.6300 0.6950 0.1400 0.1650 0.1700 0.2800 0.3650 0.3200 0.2550 0.3950
R@10 0.8950 0.9050 0.8150 0.9300 0.2750 0.3100 0.2600 0.3250 0.6700 0.5450 0.4200 0.6200
R@20 0.9000 0.9050 0.8200 0.9350 0.2900 0.3150 0.2600 0.3250 0.6950 0.5450 0.4200 0.6250
N@5 0.4781 0.5580 0.4631 0.5322 0.0851 0.1156 0.1086 0.1875 0.2248 0.2062 0.1554 0.2594
N@10 0.5555 0.6205 0.5238 0.6085 0.1287 0.1633 0.1386 0.2025 0.3234 0.2787 0.2058 0.3329
N@20 0.5569 0.6205 0.5252 0.6098 0.1326 0.1646 0.1386 0.2025 0.3301 0.2787 0.2085 0.3343

Beauty

R@5 0.6300 0.6300 0.5500 0.6200 0.2450 0.1800 0.1450 0.2750 0.2650 0.2900 0.2300 0.3200
R@10 0.8450 0.8700 0.6400 0.9000 0.4050 0.3150 0.1700 0.4000 0.3750 0.4200 0.3200 0.5500
R@20 0.8500 0.8750 0.6500 0.9000 0.4200 0.3200 0.1750 0.4000 0.3850 0.4200 0.3250 0.5600
N@5 0.4503 0.4395 0.3964 0.4536 0.1484 0.1202 0.1006 0.1769 0.1641 0.1928 0.1398 0.2183
N@10 0.5197 0.5183 0.4264 0.5439 0.1996 0.1641 0.1087 0.2179 0.2008 0.2361 0.1692 0.2942
N@20 0.5211 0.5195 0.4290 0.5439 0.2035 0.1655 0.1101 0.2179 0.2033 0.2361 0.1706 0.2970

Toys

R@5 0.5500 0.6450 0.4950 0.6300 0.1450 0.1150 0.1300 0.3000 0.1875 0.3400 0.2600 0.3617
R@10 0.7650 0.7800 0.6950 0.8000 0.2750 0.1450 0.1700 0.3800 0.2550 0.4250 0.3800 0.5150
R@20 0.7750 0.7800 0.7050 0.8000 0.2850 0.1550 0.1850 0.3950 0.2663 0.4350 0.3800 0.5200
N@5 0.4184 0.4789 0.3967 0.4399 0.0857 0.0842 0.0835 0.2035 0.1389 0.2373 0.1832 0.2412
N@10 0.4883 0.5227 0.4349 0.4958 0.1281 0.0941 0.0977 0.2299 0.1614 0.2648 0.2228 0.2919
N@20 0.4911 0.5227 0.4376 0.4958 0.1305 0.0966 0.1015 0.2336 0.1642 0.2672 0.2228 0.2932

is that the titles contain much more noise, making the alignment

between textual and visual information more challenging for

the employed LVLMs. In contrast, through visual-summary

generation, VST can better leverage visual modality and capture

more relevant information from the image, reducing the impact

of the noise from different modalities to some extent. Another

observation is that the more powerful the LVLM backbone

becomes, i.e., with the evolution from LLaVA-7b to LLaVA-

13b to GPT4-V, the better VST performs. This supports the

benefit of designing such a lightweight reasoning-only strategy

for MMRSs. Moreover, VST outperforms other reasoning

strategies regardless of the choice of LVLMs, which supports

its effectiveness tailored to MMRS scenarios.

C. Ablation Study

To analyze the effectiveness of the VST reasoning principle,

we conduct an ablation study on six variants of the proposed

strategy. The results on Toys dataset using LLaVA-13b are

shown in Figure 3. The reported results are the average of

a minimum of three repeated runs, aimed at minimizing the

impact of randomness. titleSum-VST refers to the prompt

that also lets LVLMs distill information from the title of an

item: st = summary(t) ="What information can you get

from the title?", then appended by the summary distilled from

the corresponding image. title-based VST refers to instructing

LVLMs to distill information from an image by taking item

title into consideration, where si = summary(i) ="This is

an image related to t. Please provide a detailed description of

the given image."

From the results, we have the following observations: (1)

VST can capture more meaningful information from both

textual and visual modalities. The results show that VST has

the capability to significantly enhance the ranking performance

compared to non-VST-based strategies. The improvement stems

from VST’s proficiency in multimodal understanding and serves
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Recall@10 Recall@20 NDCG@10 NDCG@20

title-only image-only title-image (MM) VST

title-VST titleSum-VST title-based VST

Fig. 3: Ablation study. Performance of LLaVA-13b with

different prompts on Toys dataset.

better in sequential scenarios, where information from different

sources needs to be integrated effectively. (2) Information

from the title can boost performance, but it depends on the

quality of the title and the alignment between the title and

the image. Compared to the results among VST, title-VST,

titleSum-VST, and title-based VST, we can observe that adding

the title information doesn’t yield improvement. This lack of

improvement is likely due to the visibility of toy titles in images

or the easy identification of entities mentioned in titles from the

images themselves. Therefore, combining title information with

VST does not provide substantial additional benefits. Whether

to include titles during reasoning remains a hyperparameter

decision dependent on the quality of titles in each dataset.

D. Case Study

In this section, we compare the ranking lists generated

by LLaVA-13b using VST with title-only and title-image

concatenation prompts. The results are shown in Figure 4.

Here are our observations from comparing the outputs: Both

title-only and VST strategies successfully rank the target item

as the first position, while the naive concatenation of title

and image places it fourth. This discrepancy suggests that

raw images may contain an excess of information, which
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CASE STUDY

Title-only

Input: UHI + Title + CRI 

Output: 

1. Don9t Let the Pigeon Drive the Bus Game 

2. TabletTopics Family: Questions to Start Great Conversations

3. Kid Chuck Bumper Cars

......

10. Wikki Stix Big Count Box

Title

1. Mastermind

2. Say Anything

3. My First Lab Duo-Scope Microscope

4. King of Tokyo Power Up Expansion Game

5. Foam Maverick Pogo Stick

6. Helicopter with Gyro

7. Volcano Making Kit

Image Description

1. The image shows the game <Mastermind,= a well-known board game. The packaging indicates that this game

is meant for two players, who are typically aged 8 and above. It9s a logic game.

2. The image appears to be the cover of a board game called <Say Anything.= It's a party game designed for 3-8 

players who are 13 years of age or older. The bottom indicates the party atmosphere of the game. The cover also

boasts that the game has won 30 awards, signaling its popularity and recognition in the gaming community.

&&

7. The image displays a science kit, including a segmented dish, &, a plastic volcanic structure. It is designed for

educational purposes to model volcanic eruption, potentially for school-age children as a learning tool.

Title-Image

1. Mastermind

2. Say Anything

&&

7. Volcano Making Kit

VST

Input: UHI + Image Description + CRI

Output: 

1. Don9t Let the Pigeon Drive the Bus Game 

2. TabletTopics Family: Questions to Start Great Conversations

3. Paint Cups with Color-Coded Lids

......

10. Flyer Scooter

User9s Historical Interaction Instruction (UHI)

Here is a chronological list of my purchase history for some toys-related products including the title / title and image / image description of each product.

Candidate Reranking Instruction (CRI)

There are 10 candidate products I am considering to buy:

{& Flyer Scooter, Paint Cups with Color-Coded Lids, Don9t Let the Pigeon Drive the Bus Game, Wear Charms Spectacular Spinner &}

Please rank these 10 candidate products that I would like to purchase next most according to the given purchase history.

Title-Image

Input: UHI + Title-Image + CRI

Output:

1. Paint Cups with Color-Coded Lids

&&

4. Don9t Let the Pigeon Drive the Bus Game

&&

10. Wikki Stix Big Count Box

Fig. 4: Case study. Text in red indicates the target item. Text in orange, purple, or blue indicates the pattern to describe the

item for the corresponding prompt. Text in yellow highlights some key features obtained through visual-summary generation.

could be perceived as redundant and introduce additional noise

into our ranking task. On the other hand, the VST strategy

offers a more refined approach. By utilizing VST, we not only

incorporate information from the title but also extract richer and

more relevant details from the image itself. Such details also

align closely with the marketing selling points of the product.

Consequently, the VST strategy emerges as a more effective

prompt for multimodal recommendation, as it combines textual

and visual cues to provide a comprehensive understanding of

the item, thereby enhancing the performance of the ranking.

IV. CONCLUSION

In this work, we investigate the performance of different

reasoning strategies for LVLMs in multimodal recommendation

scenarios and identify a notable limitation in LVLMs’ capability

to handle multiple images effectively. To bridge this gap, we

propose the Visual-Summary Thought (VST) strategy, which

leverages LVLMs’ visual understanding to distill information

from individual images. Extensive experiments conducted

on four real-world datasets using three LVLMs demonstrate

the effectiveness of VST. However, our approach has some

limitations: it does not integrate the strengths of traditional

recommender systems and may have high time complexity,

though pre-computing can mitigate this. In the future, we

will explore opportunities to combine the strength of both

full-shot traditional MMRSs and the inference strategies of

LVLMs. Additionally, we will assess the generalization of VST

across domains with more complex visual information, such as

artworks. Furthermore, future work could refine VST to better

capture nuanced sequential correlations among user behaviors.
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