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Abstract
This work analyzes the forward and inverse scattering series for scalar
waves based on the Helmholtz equation and the diffuse waves from the
time-independent diffusion equation, which are important partial differen-
tial equations (PDEs) in various applications. Different from previous works,
which study the radius of convergence for the forward and inverse scattering
series, the stability, and the approximation error of the series under the Lp

norms, we study these quantities under the Sobolev Hs norm, which associates
with a general class of L2-based function spaces. The Hs norm has a natural
spectral bias based on its definition in the Fourier domain: the case s< 0 biases
towards the lower frequencies, while the case s> 0 biases towards the higher
frequencies. We compare the stability estimates using different Hs norms for
both the parameter and data domains and provide a theoretical justification for
the frequency weighting techniques in practical inversion procedures. We also
provide numerical inversion examples to demonstrate the differences in the
inverse scattering radius of convergence under different metric spaces.
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1. Introduction

We are interested in studying the forward scattering Born series and the inverse scattering Born
series of both the Helmholtz equation and the diffuse wave equation. This work is motivated
by the paper of Moskow and Schotland [29], where such studies were conducted under the Lp

function spaces for both parameter and measurement in which the radius of convergence and
the Lipschitz stability constant of the inverse problem change with respect to the choice of p.
There have beenmanyworks extending this analysis to various inverse problems, including the
optical diffusion tomography [28], diffuse waves [30], scalar waves [22], the electromagnetic
scattering [23], the Calderón problem [2], the Schrödinger problem [6], the radiative transport
equation [25] and optimal tomography on graphs [11]. In particular, studies of the radius of
convergence and stability have been extended to general Banach spaces, and the parameter
and data spaces do not have to be the same [31]. In this work, we set the parameter space and
the measurement space as the L2-based Sobolev spaceHa andHb, respectively. We investigate
how different choices of a and b could change the optimization behaviors of solving inverse
problems based on the Helmholtz equation and diffuse wave equation, but similar strategies
can apply to other inverse problems. The L2-based Sobolev spaces are Hilbert spaces, and
the inner products involve the Laplacian operator, thus making them easy to implement from a
computational perspective. After discretization, the corresponding objective function becomes
a weighted least-squares error, and the quadratic nature makes gradient computation efficient.

Practically speaking, inverse medium problems constrained by such equations are often
formulated as PDE-constrained optimization problems, where well-posedness properties of
the inverse problem are translated into the uniqueness of the minimizer, sensitivity to data
noise, rate of convergence, and other features in an optimization framework. The choice of b
for the measurement space Hb then corresponds to the choice of the objective function in the
resulting nonlinear, nonconvex optimization problem. On the other hand, the choice of a for
the parameter space Ha imposes a priori information on the regularity of the parameter one
aims to reconstruct. It could also lead to different gradient flow formulations when passing
the Fréchet derivative to the gradient, thus giving rise to different gradient descent algorithms
for solving such nonconvex optimization problems. Both choices affect the convergence rate
and potentially change the stationary points to which the iterative gradient-based algorithm
converges, even with the same initial guess [34]. We will demonstrate this later in section 6.

There have been numerous works on changing the function spaces for both the parameter
and the data in different applications. It is worth noting that the H→1 semi-norm is closely
related to the quadratic Wasserstein metric from optimal transportation [36, 38]. This con-
nection has been utilized in many imaging and inverse problem applications [13, 37, 43] and
extended to the general Hs norm as an objective function for data-matching inverse prob-
lems [14, 44]. Methods based on the Sobolev gradient [33], where the gradient of a given
functional with respect to the parameter function is taken with respect to the inner product
induced by the underlying Sobolev norm, have demonstrated advantages in image sharpening
and edge-preserving [10, 41]. In [19], it was shown that choosing H1 gradient flow for minim-
izing L1-type objective functions yields a Lipschitz constant independent of the discretization
grid size, achieving an optimal rate of convergence in the gradient descent method. In [15], the
impacts of changing both the data and parameter spaces were discussed in machine learning
in a discrete setup.

To tackle the local minima issues due to the inherent nonconvexity and sensitivity to noise
of the L2 norm as the objective function, there is a general strategy of adding adaptive weights
to different frequency components of the data, which is often referred to as Frequency March-
ing [3, 7], Multiscale/Hierarchical Inversion [9, 17] or Frequency Weighting techniques for
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nonlinear inverse problems [8, 20, 21, 35]. The model parameters should be updated along
directions such that both low-wavenumber and high-wavenumber structures can be appropri-
ately resolved. One way to control the order of updating the low- and high-wavenumber model
components is through the choice of Ha parameter space. Since they are also influenced by
the low- and high-frequency components of the data residual through the gradient descent
update, it is also preferable to have adaptive weights regarding different data frequencies in
the optimization, which can be achieved by tuning different b for the data metric space Hb in
our framework.

The main novelty of this work is to utilize the natural frequency biasing features of the L2-
based Sobolev spaces, as briefly mentioned above, and prove the impact of the choice of the
parameter and data function spaces on the properties of the inverse scattering problems. We
also focus on the class of L2-based Sobolev space for its particular convenience in implement-
ation, while we believe similar conclusions could be drawn for other classes of Sobolev spaces
Wk,p with p fixed and k ∈ Z. To the best of our knowledge, utilizing the spectral properties of
the L2-based Sobolev space to improve the radius of convergence and stability of the inverse
Born series has yet to be considered in the literature. There are three main contributions in our
work. First, we rigorously study the convergence property of the forward scattering series that
maps the parameter in Ha to the scattering data in Hb, and the inverse scattering series that
maps from Hb to Ha. We show that the radius of convergence for the forward scattering series
is only affected by b, but the radius of convergence for the inverse scattering series is affected
by both a and b. Second, through a sequence of theorems, we demonstrate that the choice of
(a,b) consequently changes the stability of the limit of the inverse scattering series with respect
to the small changes in the observed scattering data and changes the approximation error of
the inverse scattering series. Our results show that one can improve the stability by tuning
(a,b). Third, we demonstrate the impact of the choice of these two function spaces in a few
numerical inversion examples to illustrate how one can qualitatively change the performance
of an inversion algorithm.

The rest of the paper is organized as follows. We first present some essential background
in section 2, where we briefly review the problem setups for the Helmholtz equation and the
diffuse wave equation and present assisting lemmas that will be used in the later analysis.
In section 3, we analyze the radius of convergence of the forward scattering series while
embedding the PDE solution into Hb and the variable coefficient into Ha. It is followed
by section 4 where we study the inverse scattering operator that maps Hb → Ha regarding
its convergence, stability, and approximation error. There has been a recent result [18] deriv-
ing the inverse scattering radius of convergence using the geometric function theory under
much weaker assumptions. We also incorporate analogous results here for our Hs-type func-
tion spaces. In section 5, we discuss the results from sections 3 and 4 and how the important
quantities change under different choices of (a,b) pairs. We also compare the radius of conver-
gence and approximation error obtained from the classic approach in [29] and the geometric
approach [18]. It is followed by numerical illustrations of the physical differences between
the scalar wave and the diffuse wave equations on the radius of convergence for both series.
In section 6, we show some numerical inversion examples to demonstrate the improved sta-
bility and radius of convergence under proper (a,b) choices. Conclusion follows in section 7.

2. Preliminaries

In this section, we review some background on the forward problems and some preliminary
results for the L2-based Sobolev norms.
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2.1. Diffuse and scalar waves

We consider the propagation of a scalar wave into a medium whose pressure field u satisfies
the Helmholtz equation

△xu+
ω2

c(x)2
u(x) =−S(x− x1,ω), x ∈ Rn, (2.1)

where ω is the frequency, S(x,ω) is the source term, x1 is the position of the source term,
and c(x) is the spatial-dependent velocity. Equation (2.1) can be derived from the scalar wave
equation assuming the solution is time harmonic. It governs the propagation of time harmonic
acoustic waves of small amplitude in a slowly varying inhomogenous medium [12].

We assume the inhomogenous region is contained inside a ball Ba of radius a, i.e. c(x) = c0
for x ∈ Rn \Ba. Let the wavenumber k= ω/c0 and η(x) = c20/c

2(x)− 1. The scattering prob-
lem becomes

△xu+ k2(1+ η)u=−S(x− x1,ω), x ∈ Rn, (2.2)

where u= ui + us with the incident wavefield ui satisfying

△xui + k2ui =−S(x− x1,ω), x ∈ Rn.

Here, the scattering wavefield us satisfies

△xus + k2us =−k2η(x)u(x,x1),

and the Sommerfeld radiation condition

lim
r→∞

r
n−1
2

(
∂us
∂r

− ikus

)
= 0, us(x,x1) = us(rx̂,x1), (2.3)

where ∥x̂∥= 1. Note that we assume η(x)!−1 for all x ∈ Ba and η(x) = 0 outside Ba. The
solution to equation (2.2) satisfies the Lippmann–Schwinger equation

u(x,x1) = ui(x)+ k2
ˆ
Rn
G(x,y,k)u(y,x1)η(y)dy, (2.4)

where ui(x) =
´
Rn G(x,y,k)S(y,ω)dy and G(x,y,k) is the Green’s function such that with y

fixed,

△xG+ k2G=−δ(x− y).

Note thatG(x,y,k) = G(y,x,k). The expression of the Green’s function depends on the dimen-
sionality of the problem. For example, based on the outgoing Sommerfeld radiation condi-
tion equation (2.3),

G(x,y,k) =

⎧
⎪⎪⎨

⎪⎪⎩

iexp(ik|x→y|)
2k , n= 1,

i
4H

(1)
0 (k|x− y|), n= 2,

exp(ik|x→y|)
4π |x→y| , n= 3.

(2.5)

Here, H(1)
0 denotes the Hankel function of the first kind and |x− y| is the Euclidean distance

between x,y ∈ Rn.
We can also apply our analysis to the diffuse wave equation [26, 29],

△xu− k2(1+ η)u(x) =−S(x− x1,ω), (2.6)
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where u represents the energy density and η(x) is the absorption coefficient, again assumed
to be compactly supported on Ba. We refer to [29, section 2] for details regarding the forward
problem. Let G(x,y,k) be the Green’s function where

△xG− k2G=−δ(x− y),

for a fixed y and k. The analytic form of G also depends on the dimension [27],

G(x,y,k) =

⎧
⎪⎪⎨

⎪⎪⎩

exp(→k|x→y|)
2k , n= 1,

1
2πK0(k|x− y|), n= 2,
exp(→k|x→y|)

4π |x→y| , n= 3,

(2.7)

where K0 has the following integral representations for x> 0

K0(x) =
ˆ ∞

1

exp(−xt)
(t2 − 1)

1
2
dt=

ˆ ∞

0
exp(−xcosh t)dt. (2.8)

We can also define the incident and scattering wavefields for the diffuse wave
equation equation (2.6) under similar assumptions to the case for the Helmholtz
equation equation (2.2). Later, we will use the same set of notations for both the diffuse and
scalar waves, except they have different Green’s functions.

2.2. The L2-based Sobolev space

The following definition of the Sobolev norm is based on the Sobolev spaceWs,p(Ω) for non-
negative s [1].

Definition 1 [Sobolev Space Ws,p(Ω)]. Let 1" p<∞ and s be a nonnegative integer. If a
function f and its weak derivatives Dαf = ∂|α|f

∂xα1
1 ...∂xαn

n
, |α|" s all lie in Lp(Ω), where α is a

multi-index and |α|=
∑n

i=1αi, we say f ∈Ws,p(Ω) and define the Ws,p(Ω) norm of f as

∥ f∥Ws,p(Ω) :=

⎛

⎝
∑

|α|!s

∥Dαf∥pLp(Ω)

⎞

⎠

1
p

.

We also define the space Ws,p
0 (Ω) as the space of functions f ∈Ws,p(Ω) with compact sup-

port [1]. Next, we define the Sobolev norm on the boundary ∂Ω, where the set Ω is bounded
with sufficiently smooth boundaries. We use the following definition from [32, p 4].

Definition 2 (Bounded Domains with Continuous Boundary). Let Ω⊂ Rn be a bounded
domain with the boundary ∂Ω. Suppose the following conditions are satisfied:

• There exist λ,γ > 0, and systems of local charts (xr1,xr2, . . . ,xrn) = (x ′r ,xrn) for r ∈
{1,2, . . . ,m}, and continuous functions ar defined on the closed n− 1 dimensional cubes
defined by |xri|" λ for i ∈ {1,2, . . . ,n− 1}, such that every point x ∈ ∂Ω can be represen-
ted as (x ′r ,a(x

′
r)) for at least one r ∈ {1,2, . . . ,m}.

• Let ∆r denote the set of points x ′r such that |xri|" λ for i ∈ {1,2, . . . ,n− 1}. The points
(x ′r ,xrn) where x ′r ∈∆r and ar(x ′r)< xrn < ar(x ′r)+ γ are in Ω, while the points (x ′r ,xrn)
where x ′r ∈∆r and ar(x ′r)− γ < xrn < ar(x ′r) are not in Ω.

Then, the boundary ∂Ω is called continuous. Furthermore, if the functions ar are all
Lipschitz, then we say Ω has Lipschitz boundary ∂Ω.
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For example, the systems of local charts for the surface of a unit cube in R3 are defined on
the six faces. Next, we use the definition for Rk,µ domains from [32, p 49].

Definition 3 [Bounded Domains of Type Rk,µ]. Let k be a nonnegative integer or infinity,
and let 0" µ" 1. Consider a bounded domainΩ and suppose there exist functions ar,with r ∈
{1,2 . . . ,m} defined on∆r,with continuous derivatives of order" k. Furthermore, suppose for
all multi-indices α with |α|" k and for any x ′r ,y

′
r ∈∆r, |Dαar(x ′r)−Dαar(y ′r)|" c|x ′r − y ′r |µ,

for some constant c> 0. Then, we say Ω ∈Rk,µ.

Using the above definitions, we can define Sobolev spaces on ∂Ω; see [32, p 83].

Definition 4 (Sobolev Space Ws,2(∂Ω)). Let s be a positive integer and consider a domain
Ω ∈Rs→1,1. We define the spaceWs,2(∂Ω) as the space of functions f for which f(x ′r ,ar(x

′
r)) =

fr ∈Ws,2(∆r). We define the Ws,2(∂Ω) norm of f as

∥ f∥Ws,2(∂Ω) :=

(
m∑

r=1

∥ fr∥2Ws,2(∆r)

) 1
2

.

The space Ws,2(∂Ω) also has an inner product: for functions f,g ∈Ws,2(∂Ω), we define

⟨ f,g⟩Ws,2(∂Ω) :=
m∑

r=1

⟨ fr,gr⟩Ws,2(∆r) (2.9)

where for each r ∈ {1,2, . . . ,m}, ⟨ fr,gr⟩Ws,2(∆r) =
∑

|α|!s

´
∆r
Dαfr(x ′r)Dαgr(x ′r)dx

′
r .

We also extend definition 4 to the case where s is a negative integer, by defining the space
W→s,2(∂Ω) as the dual of the space Ws,2(∂Ω), for positive integers s.

Definition 5 (Sobolev Norm ‖ · ‖W−s,2(∂Ω)). Consider a domain Ω with continuous boundary
∂Ω. For functions f and g on ∂Ω, let ⟨ f,g⟩= ⟨ f,g⟩W 0,2(∂Ω) following equation (2.9). For a
function f, we define its W→s,2(∂Ω) norm as

∥ f∥W−s,2(∂Ω) := sup
g∈Ws,2(∂Ω)

⟨ f,g⟩
∥g∥Ws,2(∂Ω)

.

If ∥ f∥W−s,2(∂Ω) <∞, we say f ∈W→s,2(∂Ω).

For convenience, we will refer to the space Ws,2 as Hs and Ws,2
0 as Hs

0 through the rest of
this paper. Next, we state the following Poincaré’s inequality from [39, equation (18.1)], with
a proof similar to [24, theorem 12.17].

Theorem 1 (Poincaré’s Inequality in H1
0(Ba)). For any f ∈ H1

0(Ba), where Ba ⊂ Rn is a ball
of radius a, and for any 1" i " n, we have

ˆ
Ba
| f(x)|2dx" 2a2

ˆ
Ba

∣∣∣∣
∂

∂xi
f(x)
∣∣∣∣
2

dx.

If f ∈ Hs
0(Ba) for a positive integer s! 1, theorem 1 allows us to obtain a lower bound on

∥ f∥Hs(Ba) in terms of ∥ f∥L2(Ba), which leads to the following lemma 1.

6
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Lemma 1. Let f ∈ Hs
0(Ba), where s is a positive integer and Ba ⊂ Rn. We define

P(s,a,n) :=

⎛

⎝
s∑

j=0

(n+j→1
n→1

)

(2a2)j

⎞

⎠
→ 1

2

. (2.10)

Then, ∥ f∥L2(Ba) " P(s,a,n)∥ f∥Hs(Ba).

Proof. Recall that

∥ f∥2Hs(Ba) =
∑

|α|!s

∥Dαf∥2L2(Ba) =
s∑

j=0

∑

|α|=j

∥Dαf∥2L2(Ba).

For a particular multi-index α where |α|= j, after applying theorem 1 for a total of j times, we
have

1
(2a2)j

ˆ
Ba
| f(x)|2dx"

ˆ
Ba
|Dαf(x)|2 dx.

This gives

∥ f∥2Hs(Ba) !
s∑

j=0

∑

|α|=j

1
(2a2)j

∥ f∥2L2(Ba) = ∥ f∥2L2(Ba)

s∑

j=0

∑

|α|=j

1
(2a2)j

.

The number of multi-indicesα s.t. |α|= j is the number of n-tuples (α1, . . . ,αn) of nonnegative
integers (αi ∈ N, ∀i) s.t.α1 + . . .+αn = j. Thus, there are

(n+j→1
n→1

)
multi-indicesαwith |α|= j,

i.e.
∑

|α|=j 1=
(n+j→1

n→1

)
, which completes the proof.

We will prove the following lemma as another generalization of theorem 1.

Lemma 2. Let f ∈ Hs+1
0 (Ba), where s is a positive integer and Ba ⊂ Rn. Then, the following

inequality holds:

1(n+s→1
n→1

)
∑

|α|=s

∥Dαf∥2L2(Ba) "
2a2(n+s
n→1

)
∑

|β|=s+1

∥Dβ f∥2L2(Ba).

Proof. Consider pairs of multi-indices α,β where |α|= s, |β|= s+ 1, and α" β. Thus, ∃i ∈
{1, . . . ,n} where βi = αi + 1. We define a ‘weight’ function w(α,β) := βi /|β| on such pairs
of multi-indices. For a fixed β where |β|= s+ 1, we have

∑

|α|=s,α!β

w(α,β) =
∑

{i :βi>0}

βi
s+ 1

= 1, (2.11)

where the sum is taken over all valid α. Furthermore, for a fixed α where |α|= s,

∑

|β|=s+1,α!β

w(α,β) =
n∑

i=1

αi+ 1
s+ 1

=
n+ s
s+ 1

. (2.12)

Using theorem 1 and equations (2.11) and (2.12), we have the following for α" β,

2a2
∑

|β|=s+1

∥Dβ f∥2L2(Ba) !
∑

|β|=s+1

∑

|α|=s

w(α,β)∥Dαf∥2L2(Ba) =
∑

|α|=s

n+ s
s+ 1

· ∥Dαf∥2L2(Ba).

This gives the desired inequality after dividing both sides by
(n+s
n→1

)
.
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Next, we prove the following lemma 3, which will allow us to apply definitions 4 and 5 to
the Green’s function of both the Helmholtz and diffuse wave equations, under the condition
that dist(∂Ω,Ba) = supx∈∂Ω,y∈Ba |x− y|> 0.

Lemma 3. Let s ∈ N+ and the domain Ω ∈Rs→1,1. Suppose dist(∂Ω,Ba) = ε> 0. For any
C∞ function f : [ε,∞) ,→ R, f̃(x) := f(|x− y|) ∈ Hs(∂Ω) for any fixed y ∈ Ba.

Proof. We can express f̃ as the composition of two functions f ◦ g, where g(x) = |x− y|. First,
we claim that g ∈ Hs(∂Ω). For a fixed local chart ∆r, we can write g(x) as

gr(x′r) = |(x′r,ar(x′r))− y|=
√
|x′r− y′|2 +(ar(x′r)− yn)2,

where y ′ = (y1, . . . ,yn→1). Since Ω ∈Rs→1,1, by definition ar ∈ Cs→1(∆r). Furthermore, the
derivatives of ar of order at most s− 1 are all Lipschitz. Thus, from Rademacher’s the-
orem [16], the derivatives of ar of order s exist almost everywhere and we get that ar ∈ Hs(∆r).
We also have gr(x ′r) ∈ Hs(∆r) based on the chain rule.

We define f̃r(x ′r) = f̃(x ′r ,ar(x
′
r)) = f(gr(x ′r)) on the local chart ∆r. Since the range of gr(x ′r)

is a subset of [ε,∞), and f ∈ C∞([ε,∞)), we have f̃r(x ′r) ∈ Hs(∆r) by the chain rule. Since for
every local chart ∆r, we have f̃r(x ′r) ∈ Hs(∆r), we get that f̃(x) ∈ Hs(∂Ω).

Remark 1. We can apply definition 4 to the Green’s function of the 2D and 3D Helmholtz
equations (see equation (2.5)), since the necessary conditions to use lemma 3 apply to such
G(x,y). In 2D, the Green’s function for the Helmholtz equation is G(x,y) = i

4H
(1)
0 (k|x−

y|) = i
4H

(1)
0 (kr), where H(1)

0 (x) ∈ C∞((0,∞)) is the so-called Hankel function, and thus,
i
4H

(1)
0 (kr) ∈ C∞([ε,∞)) for any fixed ε> 0. In 3D, the Green’s function isG(x,y) = f(|x− y|),

where f(r) = exp(ikr)/(4π r). From the product rule, f(n)(r) is a polynomial in exp(ikr) and
r→1, with complex coefficients, ∀n ∈ N. Thus, ∀ε> 0, we also have that f(r) ∈ C∞([ε,∞)).

Similarly, we can also apply definition 4 to the Green’s function of the 2D and 3D diffuse
wave equations (see equation (2.7)). In 2D, the Green’s function isG(x,y) = 1

2πK0(k|x− y|) =
1
2πK0(kr), where K0(x) has the integral representation in equation (2.8) for x> 0. From

equation (2.8), we get K(n)
0 (x) =

´∞
0 (−cosh t)n exp(−xcosh t)dt. Thus, K0(x) ∈ C∞((0,∞)).

This implies that for any fixed ε> 0, we must have 1
2πK0(kr) ∈ C∞([ε,∞)). Finally, in 3D,

the Green’s function is G(x,y) = f(|x− y|), where f(r) = exp(−kr)/(4π r). From the product
rule, f(r) ∈ C∞([ε,∞)) for any fixed ε> 0.

We present lemma 4, which will be used in section 3 to obtain bounds for ∥ f∥Hs(∂Ω).

Lemma 4. Given s ∈ Z, let d be the total number of different multi-indices α where |α|" |s|.
There exists a linear operator

T : Hs(∂Ω)→ L2(∂Ω)× . . .× L2(∂Ω)

such that Tf : ∂Ω ,→ Rd and ∥ f∥Hs(∂Ω) = ∥Tf∥L2 for all functions f ∈ Hs(∂Ω).

Proof. First, if s= 0, then we can takeT to be the identity. Next, consider the case where s> 0.
We define the linear operator T such that for a point

x= (xr1,xr2, . . . ,xrn) = (x′r,xrn) = (x′r,ar(x
′
r))

as defined in definition 2, and a function f ∈ Hs(∂Ω), Tf(x) is the vector with components
Dαfr(x ′r) for each multi-index α ∈ Rn→1 with |α|" s. With this definition of T, we note thatTf
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is a piecewise function which depends on the local chart containing the input x= (x ′r ,ar(x
′
r)).

However, T is still a linear operator in f. From definition 4, this gives ∥ f∥Hs(∂Ω) = ∥Tf∥L2 .
Also, if s> 0, ∥ · ∥H−s(∂Ω) is defined following definition 5. For fixed f ∈ H→s(∂Ω), and

any g ∈ Hs(∂Ω), we have ⟨ f,g⟩" ∥ f∥H−s(∂Ω)∥g∥Hs(∂Ω). Hence, ⟨ f,g⟩ is a bounded linear
functional on Hs(∂Ω) for a fixed f. From the Riesz representation theorem, there is a unique
u ∈ Hs(∂Ω) such that for all g ∈ Hs(∂Ω), ⟨ f,g⟩= ⟨u,g⟩Hs(∂Ω), and moreover, ∥ f∥H−s(∂Ω) =
∥u∥Hs(∂Ω). Since u is unique, there is an operator L : H→s(∂Ω)→ Hs(∂Ω) such that u= Lf. It
is easy to check that L is a linear operator and ∥ f∥H−s(∂Ω) = ∥Lf∥Hs(∂Ω). From the proof for
the case s! 0, there exists a linear operator T1 such that ∥u∥Hs(∂Ω) = ∥T1u∥L2(∂Ω). Thus,

∥ f∥H−s(∂Ω) = ∥u∥Hs(∂Ω) = ∥T1u∥L2(∂Ω) = ∥T1Lf∥L2(∂Ω),

giving T= T1L as the desired linear operator.

3. Forward scattering series

Similar to [29, equation (7)], we apply fixed point iteration beginning with ui in equation (2.4),
which gives the following infinite series:

u(x,x1) = ui(x,x1)+ k2
ˆ
Ba
G(x,y1)η(y1)ui(y1,x1)dy1

+ k4
ˆ
Ba

ˆ
Ba
G(x,y1)η(y1)G(y1,y2)η(y2)ui(y2,x1)dy1dy2 + . . . . (3.1)

Letting φ = u− ui, we can express the infinite series in the following manner:

φ = K1η+K2η⊗ η+K3η⊗ η⊗ η+ . . . (3.2)

where

(Kj f)(x,x1) = k2j
ˆ
Bj

G(x,y1)G(y1,y2) . . .G(yj→1,yj)ui(yj,x1) fdy1 . . .dyj, (3.3)

where for j! 1,

Bj = Ba× . . .×Ba, (3.4)

f = f(y1, . . . ,yj) = η(y1) . . .η(yj). (3.5)

3.1. Bounding the L2 → Hs norm of Kj

We will first provide an upper bound for the quantity ∥Kj∥L2→Hs for any s ∈ Z. To do this, we
will first generalize the operator Kj, which outputs a scalar-valued function when applied to f,
to the operator Aj, which outputs a vector-valued function instead. Then, using lemma 4, we
will convert the problem of bounding ∥Kj f∥Hs , for a function f, into the problem of bounding
∥Aj f∥L2 .

3.1.1. Generalizing the operator Kj. Consider a vector-valued function

v(x,y1) : ∂Ω×Ba → Rd,

where d is the number of different multi-indices α such that |α|" |s|. We define

Aj : L2(B)→ L2(∂Ω× ∂Ω)

9
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such that for function f in equation (3.5) and j! 1, we have

(Aj f)(x,x1) = k2j
ˆ
Bj

v(x,y1)G(y1,y2) . . .G(yj→1,yj) f ui(yj,x1)dy1 . . .dyj. (3.6)

In other words, the operator Aj is a generalization ofKj obtained by replacing the scalar-valued
G(x,y1) with the vector-valued v(x,y1). We first determine an upper bound on the L2 norm of
the operator Aj for j ! 1, and here,

∥Aj f∥2L2 =
m∑

r=1

m∑

r1=1

ˆ
∆r1

ˆ
∆r

|(Aj f)(x,x1)|2dx′rdx′r1 ,

where for a pair of local charts (r,r1), we have x= (x ′r ,ar(x
′
r)) and x1 = (x ′r1 ,ar1(x

′
r1)). We first

prove the following lemma which gives an upper bound on ∥Aj∥L2 . We define

Ca = |Ba|
1
2 sup
y∈Ba

∥ui(y, ·)∥L2(∂Ω).

Lemma 5. Let µA := k2 supy∈Ba ∥G(y, ·)∥L2(Ba) and νA := k2Ca sup
y∈Ba

∥v(·,y)∥L2(∂Ω). Then, the

operator Aj defined by equation (3.6) satisfies

∥Aj∥L2 " νAµ
j→1
A .

Proof. From the Cauchy–Schwarz inequality,

|(Aj f)(x,x1)|2 " k4j∥ f∥2L2

ˆ
Bj

|v(x,y1)G(y1,y2) . . .G(yj→1,yj)ui(yj,x1)|2dy1 . . .dyj.

Let x= (x ′r ,ar(x
′
r)) and x1 = (x ′r1 ,ar1(x

′
r1)). We first bound ∥A1∥L2 :

∥A1η∥2L2 " k4∥η∥2L2

m∑

r=1

m∑

r1=1

ˆ
∆r

ˆ
∆r1

ˆ
Ba
|v(x,y1)ui(y1,x1)|2dy1dx′r1dx

′
r

= k4∥η∥2L2

ˆ
Ba
∥v(·,y1)∥2L2(∂Ω)∥ui(y1, ·)∥

2
L2(∂Ω)dy1

" k2∥η∥L2Ca sup
y1∈Ba

∥v(·,y1)∥L2(∂Ω).

Thus, ∥A1∥L2 " k2Ca sup
y1∈Ba

∥v(·,y1)∥L2(∂Ω). Now, we estimate ∥Aj∥L2 where j ! 2:

∥Aj f∥2L2 " k4j∥ f∥2L2

ˆ
Bj

|G(y1,y2) . . .G(yj→1,yj)|2dy1 . . .dyj

sup
y1∈Ba,yj∈Ba

m∑

r=1

m∑

r1=1

ˆ
∆r

ˆ
∆r1

|v(x,y1)ui(yj,x1)|2dx′r1dx
′
r.

This gives

∥Aj∥L2 " k2j Jj→1 sup
y∈Ba

∥ui(y, ·)∥L2(∂Ω) sup
y∈Ba

∥v(·,y)∥L2(∂Ω),

10
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where Jj→1 :=
(´

Bj
|G(y1,y2) . . .G(yj→1,yj)|2dy1 . . .dyj

) 1
2
. As shown in [29, equation (30)],

Jj→1 " |Ba|
1
2

(
sup
y∈Ba

∥G(y, ·)∥L2(Ba)

) j→1

,

which gives ∥Aj∥L2 " νAµ
j→1
A based on their definitions.

Remark 2. If d= 1 and v(x,y) = G(x,y), then the operators Aj and Kj are the same. Thus, the
bound proved in lemma 5 is a more general version of the bound proved in [29]. Our bound
is different in that νA contains a factor of supy∈Ba ∥ui(y, ·)∥L2(∂Ω), which is a minor correction
to [29, equation (25)].

3.1.2. Bounding ‖Kj‖L2→Hs . In this section, we will consider the operator

Kj : L2(Bj)→ Hs(∂Ω)× L2(∂Ω)

defined in equation (3.3) for s ∈ Z. Using lemmas 4 and 5, we will get an upper bound on
∥Kj∥L2→Hs for any s ∈ Z. We define

∥Kj f∥2Hs×L2 :=
m∑

r1=1

ˆ
∆r1

∥(Kj f)(·,x1)∥2Hs(∂Ω)dx
′
r1 ,

where x1 = (x ′r1 ,ar1(x
′
r1)) and ∥(Kj f)(·,x1)∥Hs(∂Ω) is defined through definition 4.

Lemma 6. Let µs := k2 supy∈Ba ∥G(y, ·)∥L2(Ba) and νs := k2Ca sup
y∈Ba

∥G(y, ·)∥Hs(∂Ω) for s ∈ Z.

Then, the operator Kj in equation (3.3) satisfies ∥Kj∥L2→Hs " νsµ
j→1
s .

Proof. From lemma 4, there exists a linear operator T acting only on x such that

∥Kj f∥Hs×L2 = ∥TKj f∥L2(∂Ω×∂Ω)

where TKj f(x,x1) ∈ Rd for some positive integer d. Then, for fixed x1,

TKj f(·,x1) = T

(
k2j
ˆ
Bj

G(·,y1)G(y1,y2) . . .G(yj→1,yj)f(y1, . . . ,yj)ui(yj,x1)dy1 . . .dyj

)

= k2j
ˆ
Bj

TG(·,y1)G(y1,y2) . . .G(yj→1,yj)f(y1, . . . ,yj)ui(yj,x1)dy1 . . .dyj,

where the last equation follows sinceT is linear. Letting v(·,y1) = TG(·,y1), which is a vector-
valued function in x, we get

(Aj f)(x,x1) = k2j
ˆ
Bj

v(x,y1)G(y1,y2) . . .G(yj→1,yj)f(y1, . . . ,yj)ui(yj,x1)dy1 . . .dyj.

From lemma 5, we have

∥Kj f∥Hs×L2 = ∥Aj f∥L2 " νAµ
j→1
A ∥ f∥L2 ,

where µA = µs, and

νA = k2Ca sup
y∈Ba

∥TG(·,y)∥L2(∂Ω) = k2Ca sup
y∈Ba

∥G(·,y)∥Hs(∂Ω) = νs,

following from lemma 4 and the fact that G is symmetric.
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3.2. Bounding the Ha → Hb norm of Kj

We can now derive a bound on the norm of the operator

Kj : Ha(Bj)→ Hb(∂Ω)× L2(∂Ω),

where a and b are integers and a! 0. Consider the function f defined in equation (3.5) based
on η ∈ Ha

0 (Ba). Then, based on Bj defined in equation (3.4), we have

∥ f∥2L2 =

ˆ
Bj

|η(y1)|2|η(y2)|2 . . . |η(yj)|2dy1dy2 . . .dyj = ∥η∥2jL2 .

Because f is the function obtained by copying the same η(y) for a total of j times, we can
simply define

∥ f∥Ha := ∥η∥jHa , (3.7)

as done in [40]. We now prove the following lemma.

Lemma 7. Let a,b ∈ Z, and a! 0. Define

µab := k2P(a,a,n) sup
y∈Ba

∥G(y, ·)∥L2(Ba), (3.8)

νab := k2P(a,a,n)Ca sup
y∈Ba

∥G(y, ·)∥Hb(∂Ω). (3.9)

Then, the operator Kj defined by equation (3.3) satisfies ∥Kj∥Ha→Hb " νabµ
j→1
ab .

Proof. First, note that the following equations hold:

νab = νbP(a,a,n), µab = µbP(a,a,n). (3.10)

We have ∥ f∥L2 = ∥η∥jL2 , and from equation (3.7), we get ∥ f∥Ha = ∥η∥jHa . Since η ∈ Ha
0 (Ba),

we can apply lemma 1 and obtain ∥η∥L2 " ∥η∥HaP(a,a,n). From lemma 6,

∥Kj f∥Hb×L2 " ∥ f∥L2νbµ
j→1
b " ∥ f∥Haνbµ

j→1
b P(a,a,n)j = ∥ f∥Haνabµ

j→1
ab ,

and the proof is completed.

Remark 3. Through a method similar to [29, proposition 2.1], one can obtain an upper bound
1/µab on the radius of convergence of the series in equation (3.1) under the Ha → Hb norm.

Remark 4. From equations (3.8) and (3.9), we see that both µab and νab decrease as a
increases while b is fixed. As b increases while holding a constant, µab is constant, while
νab increases.

4. Inverse scattering series

In this section, we study the properties of the inverse scattering series. In section 4.1, we prove
the convergence, stability, and approximation error of the inverse scattering series under the
Hb → Ha operator norm in lemma 8, theorem 2, theorem 3, and theorem 4, using the clas-
sic approach in [29]. In section 4.2, we present similar results using the geometric approach
in [18], where the assumptions are less strict. Later in section 5, we will compare analogous
theorems under the classic and geometric approaches in detail.

12
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4.1. Classic approach

First, we present theorems and proofs similar to analogous results in [29] under the Lp ,→ Lp

operator norm where p! 2, which are also derived in generality for Banach spaces in [6].
Moreover, these results have been improved in [31], and their analysis applies to our setting
as well. Thus, we omit the proofs of theorem 2 and theorem 3. However, we provide sharper
bounds on the approximation error in theorem 4, sowe include its proof and proofs of necessary
lemmas in A for completeness. This will be important as we analyze how the constants from
these theorems change with respect to different choices of a and b in section 5.

As in [29], we assume that η can be expressed as a series based on φ = u− ui:

η =K1φ +K2φ⊗φ +K3φ⊗φ⊗φ + . . . , (4.1)

and substituting equation (3.2) into equation (4.1) gives the solution for Kj, as shown in [29]:

K1 = K+
1 ,

Kj =−

⎛

⎝
j→1∑

m=1

Km

∑

i1+...+im=j

Ki1 ⊗ . . .⊗Kim

⎞

⎠K1 ⊗ . . .⊗K1, (4.2)

where K1 = K+
1 is the regularized pseudoinverse of the operator K1. We will first analyze the

convergence of the inverse scattering series equation (4.1) under the Hb → Ha norm, where
a! 0 and a,b are integers. Here, η, which is the perturbation from the homogeneous medium,
belongs to Ha

0 (Ba) and the scattering data φ(x,x1) = u(x,x1)− ui(x,x1) belongs to Hb(∂Ω)×
L2(∂Ω) where x1 denotes the source location and x represents the receiver location. We will
denote

∥Kj∥ba = ∥Kj∥Hb→Ha

for convenience. Next, we will first find an upper bound on ∥Kj∥ba in lemma 8.

Lemma 8. Suppose j ! 2 and (µab + νab)∥K1∥ba < 1. Let

C := ∥K1∥ba exp
(

1
1− (µab + νab)∥K1∥ba

)
. (4.3)

Then, the operator Kj :
(
Hb(∂Ω)× L2(∂Ω)

)j → Ha(Ba) defined by equation (4.2) satisfies

∥Kj∥ba " C(µab + νab)
j∥K1∥jba.

Moreover, for all φ ∈ Hb(∂Ω)× L2(∂Ω), we have

∥Kjφ⊗ . . .⊗φ∥Ha " C(µab + νab)
j∥K1φ∥jHa .

We then present theorem 2, which gives an upper bound on the radius of convergence of
the inverse scattering series and estimates the series limit η̃.

Theorem 2. Suppose ∥K1∥ba < 1/(µab + νab) and ∥K1φ∥Ha < 1/(µab + νab). Then, the
inverse scattering series converges under the Hb → Ha norm. Furthermore, if N! 1 and η̃
is the limit of the inverse scattering series, the following bound holds:

∣∣∣∣∣∣

∣∣∣∣∣∣
η̃−

N∑

j=1

Kjφ⊗ . . .⊗φ

∣∣∣∣∣∣

∣∣∣∣∣∣
Ha

" C
[(µab + νab)∥K1φ∥Ha ]N+1

1− (µab + νab)∥K1φ∥Ha
, (4.4)

where C is defined in equation (4.3).
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Next, we present a result bounding the perturbations in η based on the perturbations in φ
up to multiplication by an explicit stability constant in theorem 3.

Theorem 3. Consider scattering data φ1 and φ2, and let M :=max{∥φ1∥Hb ,∥φ2∥Hb}. Let η1
and η2 denote the corresponding limits of the inverse scattering series, and let

C∗ :=max
{

1
µab + νab

,C
}
, (4.5)

where C is defined in equation (4.3). Furthermore, let

C̃ :=
C∗(µab + νab)∥K1∥ba

(1− (µab + νab)∥K1∥baM)2
. (4.6)

If ∥K1∥ba < 1/(µab + νab) and M∥K1∥ba < 1/(µab + νab), the following bound holds:

∥η1 − η2∥Ha < C̃∥φ1 −φ2∥Hb×L2 .

While the inverse scattering series converges under the conditions of theorem 2, its limit is
not equal to η in general. In theorem 4, we give an upper bound on the distance between the
series limit η̃ and η.

Theorem 4. LetM :=max{∥η∥Ha ,∥K1K1η∥Ha} and let

Cab :=
C∗(µab + νab)

(1− (µab + νab)M)2
. (4.7)

If ∥K1∥ba < 1/(µab + νab), ∥K1φ∥Ha < 1/(µab + νab), and M< 1/(µab + νab), then the
approximation error of the partial sum of equation (4.1) satisfies the following bound:
∥∥∥∥η−

N∑

j=1

Kjφ⊗ . . .⊗φ

∥∥∥∥
Ha

" Cab∥(I−K1K1)η∥Ha +C
[(µab + νab)∥K1φ∥Ha ]N+1

1− (µab + νab)∥K1φ∥Ha

where C is defined in equation (4.3).

Note that theorem 4 also implies the following by taking N→∞.

Corollary 1. Suppose the hypotheses of theorem 4 hold. Then, the approximation error of the
inverse scattering series satisfies the following bound:

∥η− η̃∥Ha " Cab∥η−K1K1η∥Ha , (4.8)

where η̃ is the limit of the inverse scattering series and Cab is defined in equation (4.7).

4.2. Geometric approach

Recent work [18] has improved on the results in [6, 29, 31] through a different approach,
obtaining estimates on the radius of convergence and approximation error of the inverse scat-
tering series with more relaxed assumptions. The results in [29] can easily be adapted to our
setup. We thus include statements and omit the proofs which are similar to those in [29]. We
will later investigate how these results change with respect to the choices of a and b and how
they are compared with those from the classic approach.

First, we present theorem 5, which provides a radius of convergence estimate for the inverse
scattering series, with different conditions from theorem 2. Themain difference is that theorem
5 no longer requires an upper bound for ∥K1∥ba, which is difficult to achieve in realistic set-
tings unless the regularization coefficient is very large [18].
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Theorem 5. Let C1 =max{2,∥K1∥baνab}. Then, the inverse scattering series converges if
∥K1φ∥Ha < r, where

r=
1

2µab

(√
16C2

1 + 1− 4C1

)
(4.9)

is the radius of convergence.

Next, we present theorem 6, which provides an estimate on the approximation error of the
inverse scattering series with different conditions than theorem 4.

Theorem 6. Suppose that the forward scattering series and the inverse scattering series both
converge, so ∥K1φ∥Ha < r, where r is defined in equation (4.9). Let η̃ be the sum of the inverse
scattering series andM1 :=max{∥η∥Ha ,∥η̃∥Ha}. Define the constant C̃ab by

C̃ab :=

(
1− νab∥K1∥ba

(1+ νab∥K1∥ba −µabM1)2

)→1

. (4.10)

IfM1 <
1

µab

(
1−

√
νab‖K1‖ba

1+νab‖K1‖ba

)
, then the approximation error can be bounded above as

∥∥∥∥η−
N∑

j=1

Kjφ⊗ . . .⊗φ

∥∥∥∥
Ha

" C̃ab∥(I−K1K1)η∥Ha

+
2µab√
16C2

1 + 1

(
∥K1φ∥Ha

r

)N+1 1

1− ‖K1φ‖Ha
r

.

5. Discussion and summary of results

In this section, we analyze how the radius of convergence, stability, and approximation error
of the inverse scattering series in section 4 change with respect to a and b. The discussion
could shed light on how to choose the metric space for the parameter η and the choice of the
objective function in the corresponding inverse data-matching problems. In section 5.1, we
first interpret the results in section 4.1 obtained by the classic approach. In section 5.2, we then
compare the results from the classic approach and the geometric approach given in section 4.2,
followed by numerical illustrations on the radius of convergence for the scalar and diffuse
waves in section 5.3.

5.1. Discussions on results in section 4.1

In this subsection, we analyze and interpret the results presented in section 4.1 using the classic
approach.

5.1.1. Radius of convergence and assumptions. Based on theorem 2, the inverse scattering
series will converge if

∥K1∥ba <
1

µab + νab
, ∥K1φ∥Ha <

1
µab + νab

.

The radius of convergence of the inverse scattering series, 1/(µab + νab), controls the allowed
sizes of ∥K1∥ba and ∥φ∥Hb needed to apply our results in section 4. An increased radius of
convergence is beneficial, as it indicates that the inverse scattering series will converge under
a relatively large perturbation in data, ∥φ∥Hb . We can thus apply the results from section 4 to
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more cases. As a increases, both µab and νab decrease, causing 1/(µab + νab) to increase. As
b decreases, νab will decrease and µab remains constant, causing 1/(µab + νab) to increase.
To sum up, the radius of convergence of the inverse scattering series increases as a increases
and b decreases. The radius of convergence of the forward scattering series increases as a
increases and does not depend on b.

To apply the results from section 4, wewill assume that the conditions of lemma 8, theorems
2–4 hold. As the size of ∥K1∥ba is determined by regularization [29, remark 3.2], we will
assume that

∥K1∥ba = Q/(µab + νab), (5.1)

for a fixed constant 0< Q< 1 independent of a and b.

5.1.2. Analyzing stability and approximation error. We first analyze how the constant C in
equation (4.3), and the constant C∗ in equation (4.5), change with respect to a, b under the
above assumptions. Based on the assumption in equation (5.1), we have

C=
Qexp

[
(1−Q)→1

]

µab + νab
, C∗ =max

{
1

µab + νab
, C
}
, (5.2)

implying that both C and C∗ are proportional to 1/(µab + νab), the inverse scattering series
radius of convergence. Thus, under the assumption in equation (5.1), we see that C and C∗

decrease as a decreases and b increases.

5.1.2.1. Stability Constant. For scattering data φ1 and φ2 and the corresponding limits η1 and
η2 of the inverse scattering series, we show in theorem 3 that if M=max{∥φ1∥Hb ,∥φ2∥Hb}
and the conditions

∥K1∥ba < 1/(µab + νab), M∥K1∥ba < 1/(µab + νab) (5.3)

hold, then

∥η1 − η2∥Ha < C̃∥φ1 −φ2∥Hb×L2 ,

where C̃ is defined in equation (4.6). From the assumption in equation (5.1), we get

C̃=
C∗Q

(1−QM)2
.

Note that M is independent of a, so C̃ decreases as a decreases. It indicates that we obtain
better stability in the inverse scattering problem if we seek the parameter in a weaker (and thus
bigger) function space.

However, as b increases, C∗ decreases while M increases. Furthermore, the rate at which
M increases is unknown, as this depends on φ1 and φ2, causing the change in C̃ to be unclear.
However, as b increases, it is less likely that the second condition in equation (5.3) holds, in
which case the bound on C̃may not hold as the inverse scattering series could fail to converge.
To this end, it is also beneficial to consider a weaker function space for the data, i.e. to use
a weaker norm as the objective function in the corresponding PDE-constrained optimization
problem to invert η computationally.
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5.1.2.2. Approximation Error. Under the assumptions of theorem 4, we provide a bound on
the approximation error of the inverse scattering series in equation (4.8). This bound decreases
with the constant Cab, which is defined in equation (4.7). Based on equation (5.2), we get

Cab =
max

{
1,Qexp

[
(1−Q)→1

]}

(1− (µab + νab)M)2
, (5.4)

where M=max{∥η∥Ha ,∥K1K1η∥Ha}. Since Q is a constant independent of a and b, Cab

increases if and only if the constant (µab + νab)M increases. Next, observe that

∥K1K1η∥Ha " ∥K1∥ba · ∥K1∥Ha→Hb · ∥η∥Ha =
Q∥K1∥Ha→Hb∥η∥Ha

µab + νab
" Qνab∥η∥Ha

µab + νab
,

in which we applied equation (5.1) and lemma 7. SinceQ< 1, this gives ∥K1K1η∥Ha " ∥η∥Ha ,
implying thatM= ∥η∥Ha . Thus, (µab + νab)M increases in b, since ∥η∥Ha and µab are con-
stant in b and νab increases in b.

Next, note that µab + νab = (µb + νb)P(a,a,n) based on equation (3.10). Thus, as a
changes, Cab increases if and only if P(a,a,n)∥η∥Ha increases. From lemma 2, we have

1(n→1
n→1

)∥η∥2L2(Ba) "
2a2( n
n→1

)
∑

|α|=1

∥Dαη∥2L2(Ba) " . . ." (2a2)a+1
(n+a
n→1

)
∑

|α|=a+1

∥Dαη∥2L2(Ba).

This implies
∑

|α|!a ∥Dαf∥2L2(Ω)

∑a
j=0

(n+j−1
n−1 )

(2a2)j

"
∑

|α|!a+1 ∥Dαf∥2L2(Ω)

∑a+1
j=0

(n+j−1
n−1 )

(2a2)j

.

Thus, P(a,a,n)∥η∥Ha is increasing in a. To sum up, Cab increases in both a and b.

5.2. Comparing classic and geometric approaches

Next, we compare the results from section 4.1 obtained from a classic approach with sim-
ilar results from section 4.2 obtained using geometric function theory. Certainly, theorem 5
and theorem 6, obtained through geometric function theory, are improvements in the sense
that the assumption on ∥K1∥ba is removed. However, for this comparison, we use the same
assumptions so that all theorems based on both approaches are valid.

5.2.1. Radius of convergence. We begin by analyzing the radius of convergence of the
inverse scattering series. The classic approach, shown in theorem 2, yields a radius of conver-
gence of r= 1/(µab + νab). On the other hand, the assumption equation (5.1) implies that 2>
νab∥K1∥ba, which means theorem 5 yields a radius of convergence of r= (

√
65− 8)/(2µab).

Comparing the two, we see that theorem 5 yields a larger radius of convergence whenever
νab > µab(2

√
65+ 15). This occurs when b is sufficiently large, based on equations (3.8)

and (3.9). Based on our numerical setup in section 5.3, the threshold varies for the particu-
lar PDE forward model and occurs when b≈ 1 for the scalar wave and b≈ 4 for the diffuse
wave, as shown in figure 2(a). In this figure, we also plot the radius of convergence of the
inverse scattering series under our assumptions given by both the classic and the geometric
approaches for both diffuse and scalar waves as b increases. The radius of convergence given
by the geometric approach is constant in b. Although the µab values are very different between
the diffuse and scalar waves, their geometric radii of convergence are visually close due to the
multiplication by the constant (

√
65− 8)/2≈ 0.03.
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5.2.2. Approximation error. Next, we compare theorems 4 and 6, which both analyze
the approximation error of the inverse scattering series. As they are proven using different
approaches, they lead to different bounds and conditions. For this analysis, we assume that the
conditions of both theorems hold, and that

M1 =M= ∥η∥Ha , and M= Q2/(µab + νab),

for a fixed 0< Q2 < 1, similar to the assumption in equation (5.1). Under these assumptions,
the conditions of theorem 4 are satisfied. On the other hand, the condition of theorem 6 can be
expressed in terms of Q and Q2 as:

Q2 <
µab + νab

µab

(
1−

√
νabQ

µab + νab + νabQ

)
= (1+R)

(
1−

√
RQ

1+R+RQ

)
, (5.5)

whereR= νab/µab, constant in a and decreasing as b increases. Since we know 0< Q< 1 and
R> 0, the last term in equation (5.5) has a global minimum in this region, and the minimum
value is around 0.737. Furthermore, for sufficiently large R, Q2 can be larger than 1, which is
an improvement from theorem 4 which requires 0< Q2 < 1. To sum up, theorem 4 requires
0< Q,Q2 < 1 while theorem 6 does not have these strict assumptions. On the other hand,
theorem 6 poses a condition on the relationship among R, Q and Q2; see equation (5.5).

Next, we compare the bounds on the approximation error of the limit of the inverse scatter-
ing series. For theorem 4, this bound is controlled by the constant Cab given in equation (5.4),
while the bound in theorem 6 is controlled by the constant

C̃ab =

(
1− νab∥K1∥ba

(1+ νab∥K1∥ba −µabM1)2

)→1

=

(
1− QR(1+R)

(1+R+RQ−Q2)2

)→1

,

under all the assumptions above. As Q approaches 1, the constant Cab rapidly blows up. How-
ever, there is no such issue with C̃ab, provided that the constraint equation (5.5) is met. Also,
under equation (5.5), C̃ab does not blow up even if Q2 approaches 1. However, Cab →+∞
again in this case. From this perspective, theorem 6 is an improvement over theorem 4. Note
that the second error terms of the bound in theorem 4 and theorem 6 are controlled by the
radius of convergence of the inverse scattering series. The larger the radius, the smaller the
error obtained from truncating the series, and as discussed previously, whether an approach
leads to an increased radius of convergence depends on b.

5.3. Numerical illustrations

In this section, we compare the radius of convergence for both the forward and inverse scat-
tering series in R3.

5.3.1. Sobolev space on a sphere. Given s ∈ N, we define the spherical Sobolev space [5]

Hs(Sn→1) =
{
f ∈ L2(Sn→1) : ∥ f∥2Hs(Sn−1) = ∥ f∥2L2(Sn−1) + ∥(−∆Sn−1)s/2f∥2L2(Sn−1) <∞

}
,

where ∆Sn−1 is the Laplace–Beltrami operator on the unit sphere in Rn. We equip the space
Hs with the Sobolev norm ∥ · ∥Hs(Sn−1). Similar to the definition of the Hs(Rn) norm through
the Fourier transform [1], the spherical Sobolev spaces have an equivalent definition using the
spherical harmonic transform, which allows us to extend the definition to the case where s is
a real number [4]. More precisely, the space of spherical harmonics of degree - on Sn→1 has
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an orthonormal basis Y'k for 1" k" N(n,-), where

N(n,0) = 1, N(n,-) =
(2-+ n− 2)Γ(-+ n− 2)

Γ(-+ 1)Γ(n− 1)
, -! 1.

Every f ∈ L2(Sn→1) can be expressed in a spherical harmonic expansion of the form

f =
∞∑

'=0

N(n,')∑

k=1

f̂'kY'k, f̂'k =
ˆ
Sn−1

f · Y'k dσ.

The Sobolev space Hs(Sn→1) with a real number s is defined by

Hs(Sn→1) =

{
f ∈D ′(Sn→1) : ∥ f∥ ′

Hs(Sn−1) =

( ∞∑

'=0

N(n,')∑

k=1

(1+ -)2s |̂f'k|2
) 1

2

<∞
}

(5.6)

where D ′(Sn→1) is the space of distributions on Sn→1. We remark that the norms ∥ · ∥Hs(Sn−1)

and ∥ · ∥ ′
Hs(Sn−1) are norm-equivalent but not the same.

5.3.2. Forward scattering series. We compute µab inR3 for varying a (the radius of Ba) and
a (which controls the parameter space). First, recall that

µab = k2P(a,a,n) sup
y∈Ba

∥G(y, ·)∥L2(Ba)

and note that µab does not depend on b. In the case of the Helmholtz equation equation (2.2),
we have G(x,y) = exp(ik|x− y|)/(4π |x− y|). Then, we have

µab = k2P(a,a,n) sup
y∈Ba

(ˆ
Ba

1
16π2|x− y|2 dx

) 1
2

=
k2

4π
P(a,a,n)

(ˆ
Ba

1
|x|2 dx

) 1
2

= k2P(a,a,n)
( a
4π

) 1
2
.

For the diffuse wave equation (2.6), we have G(x,y) = exp(−k|x− y|)/(4π |x− y|), which
gives

µab = k2P(a,a,n) sup
y∈Ba

(ˆ
Ba

exp(−2k|x− y|)
16π2|x− y|2 dx

) 1
2

=
k2

4π
P(a,a,n)

(ˆ
Ba

exp(−2k|x|)
|x|2 dx

) 1
2

= k2 exp
(
−ka

2

)
P(a,a,n)

(
sinh(ka)
4π k

) 1
2

.

Again, we can see that µab does not depend on Hb for both equations.
We compare the values of 1/µab, the radius of convergence of the forward scattering series,

for the Helmholtz equation and the diffuse wave in figure 1, where we set k= 1. First, we let
a increase, with a ∈ {0,1} fixed. As shown in figure 1(a), while the radius of convergence for
the diffuse wave equation is bounded below as a increases, the radius of convergence for the
Helmholtz equation goes to 0 as a increases. Also, note that for both the Helmholtz and diffuse
wave equations, 1/µab increases as a increases, which aligns with our analysis in section 5.1.2.
The amount of increase becomes more significant as a becomes smaller (i.e. the support of the
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Figure 1. The radius of convergence of the forward scattering series (a) for Helmholtz
and diffuse wave equations under the Ha → Hb norm as a (the radius of ball Ba) ranges
from 1 to 11, and (b) as a ranges from 0 to 10.

parameter perturbation η becomes smaller), as a result that P(a,a,n) defined in equation (2.10)
decreases in a.

Next, in figure 1(b), we plot the radius of convergence for a ∈ {0,1,2, . . . ,10} for both the
Helmholtz and diffuse wave equations. We set a= 1 and k= 1. Since P(a,a,n) increases in
a, we see that 1/µab increases in a, which is also shown in figure 1(b). The value of 1/µab

appears to converge for both the Helmholtz and diffuse wave equations as a increases when
a= 1. For a" 1/

√
2, the series in equation (2.10) does not converge, so for such a, the value

of 1/µab would grow arbitrarily large as a increases. The specific constant 1/
√
2 is due to

the coefficient of 2 in theorem 1, which is not sharp and can be improved with more precise
estimates of the Poincaré constant.

5.3.3. Inverse scattering series. We compute µab and νab assuming thatΩ is a ball of radius
100 centered at zero andBa is centered at (98,0,0)with radius a= 1 unless otherwise specified.
We also assume that ui(x,x1) = G(x,x1) by setting the source to be a delta function. Since
ui = G, we get

νab = k2P(a,a,n)|Ba|
1
2

(
sup
y∈Ba

∥G(y, ·)∥L2(∂Ω)

)(
sup
y∈Ba

∥G(y, ·)∥Hb(∂Ω)

)
.

Since we are considering the case where Ω is a ball, we use the definition from equation (5.6)
to compute ∥G(y, ·)∥L2(∂Ω) and ∥G(y, ·)∥Hb(∂Ω) for any y ∈ Ba and b ∈ R. We use the software
SHTools [42] to perform spherical transforms. The radius of convergence of the inverse scat-
tering series (µab + νab)→1, for both the Helmholtz and diffuse wave equations, are plotted
in figure 2. We set a= 1 and k= 1. In figure 2(a), we set a= 0 and compute (µab + νab)→1 as
b ranges from −2 to 6. Due to the factor ∥G(y, ·)∥Hb(∂Ω), which grows exponentially based
on equation (5.6), νab increases exponentially in b. Thus, the radius of convergence for the
inverse scattering series decreases exponentially in b for both the Helmholtz and diffuse wave
equations. Furthermore, since (µab + νab)→1 is bounded above by 1/µab, and the latter is con-
stant in b, it explains why the decay of (µab + νab)→1 is similar to that of a sigmoid function.
In figure 2(a), we also plot the radius of convergence obtained using the geometric approach
in theorem 5, which is constant in b under the same assumptions of theorem 2.
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Figure 2. The radius of convergence of the inverse scattering series, (a) as b ranges from
−2 to 5, (b) for the Helmholtz equation as a ranges from 0 to 10 and (c) for the diffuse
wave equation as a ranges from 0 to 10. The radius of convergence obtained using the
geometric approach is also shown in (a), under the assumption that the conditions of
both theorems 2 and 5 hold. We set a= 1 and k= 1 in all three plots.

Figure 3. The radius of convergence of the inverse scattering series (a) as a ranges from
0 to 10 when a= 0.5, (b) for the Helmholtz equation as a ranges from 0.5 to 1.5, and
(c) for the diffuse wave equation as a ranges from 0.5 to 1.5. We set k= 1 in all plots.

Also, the radius of convergence for the inverse scattering series is much less sensitive to
increases in b for the diffuse wave equation than in the case of the Helmholtz equation. This is
due to the exponential decay of the Green’s function for the diffuse wave equation, as shown
in equation (2.7). Since the radius of the domain is relatively large, the terms ∥G(y, ·)∥L2(∂Ω)

and ∥G(y, ·)∥Hb(∂Ω) are small due to this exponential decay. This causes νab to be far smaller,
only having a visible effect on the radius of convergence when b> 2. We do not see much
difference in the radius obtained from the geometric approach due to the multiplication by a
small constant; see section 5.2.2 for details.

In figures 2(b) and (c), we fix b and compute the radius of convergence of the inverse
scattering series as a increases from 0 to 10. Note that using different choices of b causes
the radius of convergence for the Helmholtz equation to change significantly. On the other
hand, for the diffuse wave equation, b can be safely increased to 2.5 without significantly
decreasing the radius of convergence. Due to the factor of P(a,a,n) in both µab and νab, the
radius of convergence increases as a increases, similar to figure 1(b). Similarly, the behavior
of the radius of convergence as a grows large depends on a. When a" 1/

√
2, P(a,a,n) is

unbounded as a increases.
In figure 3(a), we demonstrate how the radius of convergence behaves as a increases for

smaller a (we set a= 0.5). Since P(a,a,n) is unbounded as a increases if a is sufficiently
small, the radius of convergence of the inverse scattering series will grow arbitrarily large as a
increases. In figures 3(b) and (c), we plot the radius of convergence for both the Helmholtz and
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diffuse wave equation as a ranges from 0.5 to 1.5.We set a= 0 since the only effect of a on µab

and νab is an extra multiplicative factor of P(a,a,n). The radius of convergence decreases as
a increases, and while changing b has a significant effect on the Helmholtz equation, b needs
to be at least 2.5 to impact the radius of convergence in the case of the diffuse wave equation.

6. Numerical inversion examples

In this section, we present some numerical examples to show the impact of choosing different
Ha for the parameter space and Hb for the data space in an optimization framework to solve
the inverse scattering problems.

6.1. The gradient formulation

To begin with, we explain first how the chosen pair (a,b) changes the gradient calculation in
the PDE-constrained optimization framework. Consider the optimization problem

min
η∈Ha

Jb(η) =
1
2
∥F(η)−φ∥2Hb , (6.1)

where φ is the observed data, F is the forward operator that maps the parameter η to the data,
which can be represented in the form of equations (3.1) and (3.2). We denote by Gab(η) the
gradient of the objective function Jb(η).

By the Riesz representation theorem, ∀η ′, we have

(Gab(η),η
′)Ha = lim

ε→0

Jb(η+ εη′)− Jb(η)
ε

=

ˆ
Ω

δJb
δη

η′dx= (G0b(η),η
′)L2 ,

where G0b(η) =
δJb
δη denotes the gradient assuming η ∈ L2. We then have the relation

Gab(η) = (I−∆)→aG0b(η).

As a result, for the same objective function, the gradient with the assumption that η ∈ H1 (i.e.
η has a higher regularity) is smoother than assuming that η ∈ L2. Similarly, the L2 gradient
δJb
δη depends on the choice of b. Recall that K1 is the linearization of the nonlinear forward
operator F . We then have

δJb
δη

= K∗
1(I−∆)b (F(η)−φ) ,

where K∗
1 denotes the adjoint operator of K1. If we use K1 instead of K∗

1 , it yields the Gauss–
Newton method. Combining the above equations, we have

Gab(η) = (I−∆)→aK∗
1(I−∆)b (F(η)−φ) . (6.2)

We remark that the two Laplacian operators ∆ in equation (6.2) above do not act on the same
domain. The first one acts on the model parameter space, while the second one is defined over
the data space. Nevertheless, it is evident from equation (6.2) that both a and b directly change
the gradient in the PDE-constrained optimization.

Similarly, to calculate the linear action of K1, the pseudo-inverse of K1 defined in equation
(4.2), it is equivalent to another optimization problem

min
η∈Ha

1
2
∥K1η−φ∥2Hb . (6.3)

Again, the solution changes with respect to the chosen (a,b), especially when the data is noisy.
After discretization, the two norms are reflected in two weight matrices in a least-squares
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Figure 4. (Setting One) (a): The true scatterer η. (b)–(d): The reconstructed results after
100 iterations of L-BFGS algorithms under different (a,b) choices.

Figure 5. (Setting Two) (a): The true scatterer η. (b)–(d): The reconstructed results after
100 iterations of L-BFGS algorithms under different (a,b) choices.

problem. We refer to [15] where the impact of the weights in the resulting discrete problem is
rigorously analyzed under different assumptions on K1.

6.2. Inversion examples

Next, we present a few inversion examples based on the scalar wave equation equation (2.1),
where the forward problem is not too smoothing, and the phenomena of using different norms
are easy to observe.

We consider a square domain Ω= [0,1]2 discretized with the spatial spacing dx= dz=
0.005. The spatial unit is kilometer (km). We use point sources placed on the top of the
domain at depth zs = 0.1 and horizontal location xs ∈ {0,0.05,0.1, . . . ,1}. The measured data
are recorded from the bottom of the domain at the depth zr = 0.95 and horizontal location
xr ∈ {0,2dx,4dx, . . . ,1}. We use a single frequency ω= 21 Hz and the background velocity
c0 = 2.5 km s→1, so we have k= ω/c0 = 8.4; see equation (2.2).

We consider two different true scatterer η, which are shown in figure 4(a) (Setting One)
and figure 5(a) (Setting Two), respectively. Note that both scatterers are C∞, sharing a similar
circular structure, but the one in figure 5(a) is a smoothed version of the scatterer in figure 4(a)
through a Gaussian filter. We choose these two examples to demonstrate the different radius of
convergence for the inverse scattering series under different (a,b) pairs. The inversion results
under Setting One are shown in figure 4 for three cases: (a= 0,b= 0), (a= 1,b= 0), and
(a= 0,b=−1). Similarly, inversion results under the same three cases for Setting Two are
shown in the rest of figure 5.
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Figure 6. (Setting Two with noise) (a): Noisy data from one of the point sources.
(b)–(d): The reconstructed results after 100 iterations of L-BFGS algorithms under dif-
ferent (a,b) choices while the reference data is polluted by white noise as shown in (a).

From figure 4(b), we observe that the less smooth scatterer shown in figure 4(a) is out-
side the radius of convergence by considering the inverse scattering as a map from L2 to L2.
Figure 4(b) is full of wrong features and shares few similarities with the ground truth. In con-
trast, figure 4(a) is within the radius of convergence under the setups of (a= 0,b=−1), and
(a= 1,b= 0) since figures 4(c) and (d) both recover the location and concentration of the
scatterer, which are the main features of figure 4(a). We remark that this phenomenon matches
our theoretical results in section 4 and our follow-up discussions in section 5 where we con-
clude that both increasing a and decreasing b will increase the radius of convergence for the
inverse scattering series.

For comparison, we also perform inversion where the ground truth is the smoother scat-
terer shown in figure 5(a). When a= b= 0, the inverted result in figure 5(b) also recovers the
primary features of the ground truth, such as the location, concentration, and contrast of the
scatterer. This shows that the η shown in figure 5(a) is within the radius of convergence for
the case a= b= 0 while the one in figure 4(a) is not. The inversion result in figure 5(c) is the
closest to the ground truth after the same number of iterations since the choice a= 1 imposes
an a priori assumption on the regularity of the scatterer, we aim to invert, and meanwhile,
our ground truth is indeed a smooth function. Note that we do not have an explicit regular-
ization term here, but the choice of b plays a role in enforcing an implicit regularization for
the inversion. On the other hand, the recovery in figure 5(d) using b=−1 is visually more
oscillatory than the case b= 0 in figure 5(b) while both set a= 0. This is because the squared
H→1 norm as the objective function has small weights on the high-wavenumber components
of the data misfit and thus overlooked the differences, resulting in slow convergence on the
high-wavenumber components of the parameter. We refer interested readers to [14, 15, 44] for
a detailed discussion on the trade-offs of using the Hs norms. We also note that in practice,
varying a and b can improve the reconstructed results as it can ensure that η is in the radius
of convergence early on in optimization (large a or small b) while later fall into regimes with
better data sensitivity to improve resolution (small a or large b).

Having illustrated the different radius of convergence, we show an example regarding the
stability with respect to data noises. The setup remains the same as Setting Two except that
the reference data is now polluted with white noise; see figure 6(a) for an illustration. The
inversion results under the same three cases are shown in the rest of figure 6. We do not
have a regularization term in the objective function. The L2 ,→ L2 setting in figure 4(b) overfit
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the noise (see figure 6(b)), while the a priori assumption that η ∈ H1 prevented the recon-
struction in the case (a= 1,b= 0) from being polluted by the noisy data (see figure 6(c)).
Finally, the inversion result by embedding the noisy data into the weaker H→1 space also
helped mitigate the high-frequency noise due to the natural smoothing property of the weak
norm (see figure 6(d)).

7. Conclusion

In this work, we generalize the results in [29] and consider a different class of function spaces
to analyze the inverse scattering series for Helmholtz and diffuse wave equations. Specifically,
we analyze the convergence property of the forward scattering series that maps the parameter
inHa to the scattering data inHb and the convergence, stability, and approximation error of the
inverse scattering series. Since we express all the results and constants explicitly in terms of a
and b, we could analyze how the choices ofHa andHb for the parameter and the scattering data,
respectively, impact certain properties of the inverse scattering problem. For example, we can
increase the radius of convergence for the inverse scattering series by using a stronger function
space Ha for the parameter while using a weaker metric space Hb for the scattering data,
which corresponds to better convexity when using weaker Hs norm as the objective function
in practice [44]. Also, we can obtain a smaller stability constant by considering a weaker space
for the parameter Ha, but it is at the cost of obtaining a reconstruction with less regularity.
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Appendix. Proofs of lemmas and theorems in section 4

Here, we provide the proof of lemma 8 and theorem 4. The proofs are based on results and
proof techniques in [29, section 3]. We include the proofs simply for completeness, as we
explicitly state the values of all constants in section 4.

Proof of lemma 8

We provide a bound on the quantity ∥Kj∥ba in lemma 8.
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Proof of lemma 8. Consider j ! 2. From equation (4.2), we first have the bound

∥Kj∥ba "

⎛

⎝
j→1∑

m=1

∥Km∥ba
∑

i1+...+im=j

∥Ki1∥Ha→Hb . . .∥Kim∥Ha→Hb

⎞

⎠∥K1∥jba

" ∥K1∥jba

⎛

⎝
j→1∑

m=1

∥Km∥ba
∑

i1+...+im=j

νabµ
i1→1
ab . . .νabµ

im→1
ab

⎞

⎠ , (A.1)

where we have used lemma 7 to obtain the second inequality. Using equation (A.1), the rest
of the proof follows similarly as in [31, lemma 2.1].

Proof of theorem 4

While the inverse scattering series converges under the conditions of theorem 2, its limit is not
equal to η in general. In theorem 4, we give a bound on the distance between this limit and η.

Proof of theorem 4. The first part of the proof uses the following derivations from [31,
theorem 2.1]. Since ∥K1∥ba < 1/(µab + νab) and ∥K1φ∥Ha×L2 < 1/(µab + νab), the inverse
scattering series

η̃ =
∑

j

Kjφ⊗ . . .⊗φ (A.2)

converges. Also, since M< 1/(µab + νab), the forward scattering series

φ =
∑

j

Kjη⊗ . . .⊗ η

converges as well. Substituting the forward scattering series for φ into equation (A.2) gives

η̃ =
∑

j

K̃jη⊗ . . .⊗ η

where K̃1 =K1K1 and for j ! 2,

K̃j =

⎛

⎝
j→1∑

m=1

Km

∑

i1+...+im=j

Ki1 ⊗ . . .⊗Kim

⎞

⎠+KjK1 ⊗ . . .⊗K1,

as defined in [29, equation (67)]. Using the formula for Kj in equation (4.2), we get

K̃j =

⎛

⎝
j→1∑

m=1

Km

∑

i1+...+im=j

Ki1 ⊗ . . .⊗Kim

⎞

⎠(I−K1K1 ⊗ . . .⊗K1K1).

Since η− η̃ = η−K1K1η− K̃2η⊗ η+ . . ., we get

∥η− η̃∥Ha " ∥η−K1K1η∥Ha +
∞∑

j=2

∥K̃jη⊗ . . .⊗ η∥Ha
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using the triangle inequality. Next, consider ∥K̃jη⊗ . . .⊗ η∥Ha , for j ! 2. We first get

∥K̃jη⊗ . . .⊗ η∥Ha "
j→1∑

m=1

∥Km∥ba
∑

i1+...+im=j

∥Ki1∥Ha→Hb . . .∥Kim∥Ha→Hb

· ∥η⊗ . . .⊗ η−K1K1η⊗ . . .⊗K1K1η∥Ha .

Letting ψ = η−K1K1η and using [31, equation (29)] gives

∥η⊗ . . .⊗ η−K1K1η⊗ . . .⊗K1K1η∥Ha " jM j→1∥ψ∥Ha .

Our proof is distinct from the literature after this point. From the proof of lemma 8,

j→1∑

m=1

∥Km∥ba
∑

i1+...+im=j

∥Ki1∥Ha→Hb . . .∥Kim∥Ha→Hb " C(µab + νab)
j

since the left-hand side of this equation is the same as the right-hand side of equation (A.1),
except with the factor of ∥K1∥jba removed. This means, for j ! 2, we have

∥K̃jη⊗ . . .⊗ η∥Ha " C∥ψ∥Ha jM j→1(µab + νab)
j,

which gives

∥η− η̃∥Ha " ∥ψ∥Ha +C∥ψ∥Ha

∞∑

j=2

jM j→1(µab + νab)
j

" C∗∥ψ∥Ha

∞∑

j=1

jM j→1(µab + νab)
j, (A.3)

and this series converges since (µab + νab)M< 1. Computing this sum gives

∥η− η̃∥Ha " C∗(µab + νab)∥η−K1K1η∥Ha

(1− (µab + νab)M)2
= Cab∥η−K1K1η∥Ha . (A.4)

We can split the approximation error into two terms with the triangle inequality:
∣∣∣∣∣∣

∣∣∣∣∣∣
η−

N∑

j=1

Kjφ⊗ . . .⊗φ

∣∣∣∣∣∣

∣∣∣∣∣∣
Ha

"

∣∣∣∣∣∣

∣∣∣∣∣∣
η−

∑

j

K̃jη⊗ . . .⊗ η

∣∣∣∣∣∣

∣∣∣∣∣∣
Ha

+

∣∣∣∣∣∣

∣∣∣∣∣∣
η̃−

N∑

j=1

Kjφ⊗ . . .⊗φ

∣∣∣∣∣∣

∣∣∣∣∣∣
Ha

.

Using theorem 2, we finally obtain
∣∣∣∣∣∣

∣∣∣∣∣∣
η−

N∑

j=1

Kjφ⊗ . . .⊗φ

∣∣∣∣∣∣

∣∣∣∣∣∣
Ha

" Cab∥η−K1K1η∥Ha +C
[(µab + νab)∥K1∥ba∥φ∥Hb ]N+1

1− (µab + νab)∥K1∥ba∥φ∥Hb

where C is defined in equation (4.3).
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