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The study of online decision-making problems that leverage contextual
information has drawn notable attention due to their significant applications
in fields ranging from healthcare to autonomous systems. In modern appli-
cations, contextual information can be rich and is often represented as a ma-
trix. Moreover, while existing online decision algorithms mainly focus on
reward maximization, less attention has been devoted to statistical inference.
To address these gaps, in this work, we consider an online decision-making
problem with a matrix context where the true model parameters have a low-
rank structure. We propose a fully online procedure to conduct statistical in-
ference with adaptively collected data. The low-rank structure of the model
parameter and the adaptive nature of the data collection process make this
difficult: standard low-rank estimators are biased and cannot be obtained in a
sequential manner while existing inference approaches in sequential decision-
making algorithms fail to account for the low-rankness and are also biased.
To overcome these challenges, we introduce a new online debiasing proce-
dure to simultaneously handle both sources of bias. Our inference framework
encompasses both parameter inference and optimal policy value inference. In
theory, we establish the asymptotic normality of the proposed online debi-
ased estimators and prove the validity of the constructed confidence intervals
for both inference tasks. Our inference results are built upon a newly de-
veloped low-rank stochastic gradient descent estimator and its convergence
result, which are also of independent interest.

1. Introduction. From personalized medicine to recommendation systems, exploiting
personalized information in decision-making has gained popularity during the last decades
(Kosorok and Laber, 2019; Fang, Wang and Wang, 2023; Qi, Pang and Liu, 2023). In the
widely studied framework of online decision-making with contextual information, decisions
are sequentially made for users based on the current context and historical interactions (Li
et al., 2010; Agrawal and Goyal, 2013; Li, Lu and Zhou, 2017; Lattimore and Szepesvári,
2020). In traditional settings, the context is typically formulated in a vector. However, con-
textual information in modern online decision-making problems is often in a matrix form.
In the skin treatment example shown in Figure 1, the decision-making policy determines
whether an immediate intervention should be applied based on the patient’s current image of
skin condition (a matrix context) and the health outcomes of historical interventions (Akrout
et al., 2019). The inspiration for this example can be traced to the recently growing applica-
tion of mobile Health, which targets to deliver immediate interventions, such as motivational
messages, to individuals through mobile devices according to their current health condition
(Istepanian, Laxminarayan and Pattichis, 2007; Deliu, Williams and Chakraborty, 2022). In
such examples, the context is an image that can be formulated as a matrix. The goal of the
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Fig 1: An illustration of our online decision-making framework with matrix context.

decision-making policy is to decide the best action at each time based on the current matrix
context and all historical interactions.

In this paper, we consider an online decision-making problem with matrix contexts. In
particular, at time t, given a matrix context Xt ∈R

d1×d2 , the policy takes an action at ∈ {0,1}
and observes a noisy reward yt ∈R as

(1) yt = atïM1,Xtð+ (1− at)ïM0,Xtð+ Àt,

where Àt ∈ R is the random noise and ïMi,Xtð = tr(X¦
t Mi), for i ∈ {0,1}, denotes the

matrix inner product. The true matrix parameter Mi is assumed to be of low rank with a rank
r jmin{d1, d2}. In our motivation example, a group of pixels in the image that form a re-
gion can impose a collaborative effect on describing the health outcome, allowing the matrix
parameter to have a low-rank structure (Chen et al., 2019; Xia, 2019; Xia and Yuan, 2021).
In addition, such a low-rank structure is crucial in online decision-making due to its high di-
mensionality compared to its limited sample size. In (1), when at = 1 (with intervention), the
reward is given by ïM1,Xtð+ Àt (health outcome with intervention); when at = 0 (without
intervention), the reward is given by ïM0,Xtð + Àt (health outcome without intervention).
Without loss of generality, our work mainly focuses on a binary action, i.e., at ∈ {0,1} at
each time t, and it can be easily extended to multiple actions in a discrete action space.

While existing sequential decision-making algorithms mainly focused on choosing the
best action to maximize the cumulative reward (Li et al., 2010; Agrawal and Goyal, 2013;
Li, Lu and Zhou, 2017; Lattimore and Szepesvári, 2020), less attention has been paid to sta-
tistical inference in sequential decision-making frameworks. In real-world applications, we
are often not just interested in obtaining the point estimate of the reward function but also a
measure of the statistical uncertainty associated with the estimate. This is especially relevant
in fields such as personalized medicine, mobile health, and automated driving, where it is
often risky to run a policy without a statistically sound estimate of its quality. For example,
online randomized experiments like A/B testing have been widely conducted by technologi-
cal/pharmaceutical companies to compare a new product with an old one. Recent studies (Li
et al., 2021; Shi et al., 2021a, 2023) have used various bandit or reinforcement learning meth-
ods to form sequential testing procedures. In these online evaluation tasks, it is important to
quantify the uncertainty of the point estimate for constructing valid hypothesis testing.

Statistical inference significantly enhances scientific knowledge by applying insights from
prior experiments to improve future research designs, extending beyond the immediate ob-
jectives of in-experiment learning aimed at optimizing decision-making performance. This
knowledge is crucial for capturing the extensive, long-term consequences of actions and
associated rewards. For example, if an inference result learns that certain variables have a
significant impact on the outcomes, this insight can be used to improve the design of future
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experiments (Shi et al., 2022; Zhang, Janson and Murphy, 2021, 2022; Shi et al., 2024). Dif-
ferent from in-experiment learning focusing on maximizing reward within the trial, statistical
inference can lead to more strategic and informed decision-making over time (Simchi-Levi
and Wang, 2023). Therefore, our work aims to provide a comprehensive online inferential
framework applicable throughout a wide range of sequential decision-making algorithms.

Motivated by the importance of statistical inference, we first provide a procedure to con-
duct entry-wise inference on the true matrix parameter Mi under the sequential decision-
making framework. We introduce a matrix T ∈ R

d1×d2 such that ïMi, T ð characterizes the
entries of interest for hypothesis testing. For example, setting T = ej1e

¦
j2

, where {ej1}j1∈[d1]

and {ej2}j2∈[d2] denote the canonical basis vector in R
d1 and R

d2 , respectively, our work al-
lows a valid confidence interval of ïMi, T ð =Mi(j1, j2) for hypothesis testing on whether
the (j1, j2)-th entry of the matrix Mi is zero, i.e.,

(2) H0 :Mi(j1, j2) = 0 v.s. H1 :Mi(j1, j2) ̸= 0,

where Mi(j1, j2) denotes the (j1, j2) entry of Mi. In this case, we can test the effectiveness of
a certain entry in the matrix context for describing the reward. It is worth pointing out that the
form of T is flexible. For example, setting T = ej1e

¦
j2
−ej3e

¦
j4

can test whether Mi(j1, j2) and
Mi(j3, j4) are significantly different. Moreover, our work also enables us to check whether
different actions result in different effectiveness of a certain context entry by testing

(3) H0 :M1(j1, j2)−M0(j1, j2) = 0 v.s. H1 :M1(j1, j2)−M0(j1, j2) ̸= 0.

As Poldrack, Mumford and Nichols (2011) introduced in their neuroimaging book, statistical
inference on the pixel level is able to test whether an individual pixel in an image has a signif-
icant effect on measuring the outcome. In our motivational example in Figure 1, hypothesis
test (2) provides the answer of whether a certain pixel is significant in determining the re-
ward, while hypothesis test (3) helps us understand if the intervention causes a significant
difference in the patient’s health outcome.

In addition to the parameter inference, we further extend our online inference framework
to the optimal policy value. This value represents the best-expected reward a decision-maker
can achieve given complete knowledge of the environment. The need to infer this optimal
value becomes crucial in real-world applications whenever the experimenters need to assess
the best possible reward they can achieve given the currently available interventions. Such
assessment determines the adequacy of current actions in achieving desirable outcomes or
necessitates refinement of the action set. In particular, the optimal policy value attainable
under the current environment is defined as

(4) V ∗ = E
[〈
Ma∗(X),X

〉]
, with a∗(X) = I{ïM1 −M0,Xð> 0},

where a∗(X) indicates the optimal policy for a given context X under our reward function
described in (1). To provide additional clarification, experimenters can assess whether the
current best treatment outcome surpasses a certain threshold (V0) by conducting the follow-
ing one-sided statistical test:

(5) H0 : V
∗ f V0 v.s. H1 : V

∗ > V0.

After exploring the essential aspects of both parameter inference and optimal policy value
inference, we now present our proposed methodology, a procedural framework specifically
designed to address these key areas of statistical estimation and inference in online decision-
making. In particular, we iteratively update a low-rank estimation of Mi under a sequential
decision-making framework with low computational cost. Meanwhile, we simultaneously
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Fig 2: The flow chart of the proposed sequential procedure for a total of n iterations.

maintain an unbiased estimator in an online fashion for inference purposes. We briefly il-
lustrate this online procedure in Figure 2 where the low-rank estimation of Mi is denoted
as M̂ sgd

i,t , and the unbiased estimator for the inference purpose is denoted as M̂unbs
i,t . We

summarize the role and properties of both estimators below.

• M̂ sgd
i,t : Low-rank but biased, sequentially updated low-rank estimation for Mi.

• M̂unbs
i,t : Unbiased but not low-rank, designed for conducting inference of Mi.

In our problem, it is important to maintain both estimators to handle the two tasks of
sequential decision-making and online inference. The methodological contributions of our
proposed procedure can be viewed from three aspects. First, in existing low-rank literature,
a low-rank estimator is typically obtained by solving nuclear-norm penalized optimization
using offline samples (Candes and Plan, 2011; Koltchinskii and Xia, 2015; Chen et al., 2019;
Xia, 2019). However, the offline methods become impractical when handling large-scale ma-
trices due to the substantial storage costs. For instance, storing a single 500 × 500 single-
precision matrix requires about one megabyte, underscoring the significant storage demands
in an offline setting where thousands of such matrices are necessary. In contrast, our proposed
online estimation method exhibits distinct advantages in terms of data storage efficiency by
eliminating the need for local storage of the complete dataset. Our online estimation pro-
cedure uses a single observation at a time and then discards it, which makes this technique
particularly well-suited for high-dimensional datasets. In our method, we sequentially up-
date the low-rank factorization of M̂ sgd

i,t via stochastic gradient descent (SGD) to preserve its

low-rankness. While it is suitable for sequential decision-making, M̂ sgd
i,t is not directly ap-

plicable for statistical inference due to its bias. This motivates our new design of an unbiased
estimator M̂unbs

i,t by sequentially debiasing M̂ sgd
i,t for online inference.

Second, the debiasing procedure to obtain M̂unbs
i,t also requires delicate design since it

needs to compensate for two sources of bias: (1) the bias in M̂ sgd
i,t caused by preserving the

low-rankness, and (2) the bias in adaptive sample collection due to the fact that the samples
are not collected randomly, but rather through the distribution of at which is determined by
the historical information. To illustrate these two types of bias, Figure 3a demonstrates the
bias of the estimator caused by adaptive sample collection, and Figure 3b demonstrates the
bias of the estimator caused by the low-rankness. To fill in the gap, we introduce a new debi-
asing approach to handle both sources of bias simultaneously in a sequential manner. Figure
3c shows that our proposed estimator is unbiased and enables a valid statistical inference.

Third, we further introduce an online estimator tailored for optimal policy value inference.
While most of the existing literature focuses on offline value inference, our proposed esti-
mator for the optimal policy value equips the experimenters with the ability to monitor the
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(a) Bias of the estimator caused
by adaptively collected data.

(b) Bias of the estimator caused
by the low-rankness.

(c) Our proposed debiased esti-
mator

Fig 3: The empirical distributions of two biased estimators and our debiased method. The
center of each empirical distribution is shown in the blue dashed line, and the standard normal
curve is shown in red.

confidence interval of the optimal policy value in a timely manner. Unlike the approach for
parameter inference, which requires a sufficient sample size for both action 1 and action 0 to
ensure adequate information is collected for M1 and M0, the optimal policy value estimator
only leverages samples obtained through the estimated optimal action at each time. As a re-
sult, our approach to inferring the optimal policy value enables the exploration probability to
gradually decrease over time. Additionally, our framework is adaptable to handle scenarios
in which the probabilities of selecting each action, as determined by the decision-making
policy, are unknown and estimated empirically.

In addition to the aforementioned methodological contributions, we further summarize our
theoretical contributions and discuss the technical challenges in our analysis.

• We provide a non-asymptotic convergence result for the sequentially updated low-rank
estimator M̂ sgd

i,t in Theorem 2.2. That is, with high probability,

∥M̂ sgd
i,t −Mi∥F fCÃi

√
dr log2 d

tς
,

for some positive constant C , where d=max{d1, d2}, and ς ∈ (0.5,1). The existing SGD
literature for the low-rank estimation is limited except Jin, Kakade and Netrapalli (2016)
considers a noiseless matrix completion problem with i.i.d. samples. Our work, on the
other hand, deals with noisy reward and the adaptive sampling in the sequential decision-
making setting. In the noiseless scenario, stochastic objective functions share the same
minimizer, with each gradient descent iteration steadily progressing toward this common
minimizer. However, the introduction of noise leads to the steps of SGD targeting varying
minimizers, causing the SGD updates to oscillate or move away from the optimal solution’s
local region. To prevent this from happening, it is crucial to add stabilization measures to
ensure the optimization trajectory consistently advances toward the right direction.

• We establish the asymptotic normality of m̂(i)
T for estimating m

(i)
T = ïMi, T ð in Theorem

3.1. Due to the fact that our data are collected adaptively and sequentially, the analysis
based on offline i.i.d. samples is no longer applicable in our case. Traditional debiasing
approach in the offline low-rank literature (Xia and Yuan, 2021) involves splitting the
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dataset into two independent sets, using one to correct biases in the low-rank estimator
derived from the other one. However, in online decision-making, where data is passed
only once, a sequential debiasing method is necessary. Gathering all data for debiasing
at the end is computationally infeasible and renders existing methods ineffective. Our se-
quential method eliminates the need to store historical data, allowing efficient debiasing at
each step in the online decision-making process. Due to these significant differences, new
proof techniques are necessary to address the dependency on data. In addition, due to both
low-rankness and data adaptivity, our proof involves controlling the additional variance
introduced by our debiasing procedure. As an important step, the convergence result of
M̂ sgd

i,t shown in Theorem 2.2 ensures this additional variance is well controlled.
• For the purpose of statistical inference of the parameter, we propose a fully online estimator

for the variance of m̂(i)
T without storing historical data. We prove the consistency of this

estimator, which provides the guarantees that the asymptotic normality in Theorem 3.3
holds with the estimated standard deviation. This ensures the validity of our constructed
confidence interval for the true matrix parameter.

• Finally, we establish the asymptotic normality of our optimal policy value estimator in
Theorem 4.1, showing that the asymptotic bias of the estimator approaches zero with data
accumulation. We additionally propose a variance estimator for constructing confidence
intervals, and Theorem 4.2 demonstrates the reliability of this estimator, affirming the em-
pirical validity of the generated confidence intervals. Besides addressing the theoretical
challenges posed by non-i.i.d. data collection and the low-rank structure, establishing the
asymptotic normality of the optimal policy value estimator also involves ensuring conver-
gence of the estimated optimal action towards the true optimal action. This is crucial for
controlling the bias resulting from the accumulation of differences between the estimated
and true optimal actions, which is shown to be sufficiently small compared to the variance
of the optimal policy value estimator.

1.1. Related Literature. This section discusses three lines of related work, including on-
line inference based on SGD, statistical inference in bandit and Reinforcement Learning (RL)
settings, and statistical inference for low-rank matrices. The literature review presents the
fundamental differences compared to our work in terms of motivation and problem settings,
which end up with different algorithms and technical tools for theoretical analysis.

Online Inference Based on SGD. Our work is related to a recent growing literature on
statistical inference based on SGD. Fang, Xu and Yang (2018) proposed an online bootstrap
procedure for the estimation of confidence intervals of the SGD estimator. Chen et al. (2020)
studied the statistical inference of the true model parameters by proposing two consistent
estimators of the asymptotic covariance of the averaged SGD estimator, extended by Zhu,
Chen and Wu (2023) to a fully online scenario. Shi et al. (2021b) developed an online es-
timation procedure for high-dimensional statistical inference. Chen et al. (2021) studied the
online inference when the gradient information is unavailable and Tang et al. (2023) extends
the analysis to SGD with momentum. All of these works consider i.i.d. samples and are not
applicable to adaptively collected data. Recently, Chen, Lu and Song (2021a); Chen et al.
(2022) conducted the statistical inference of the model parameters via SGD under online
decision-making settings. Ramprasad et al. (2023); Liu et al. (2023) studied the online in-
ference in linear stochastic optimization with Markov noise. However, none of these works
handles the low-rankness in a matrix estimation.

Statistical Inference in Bandit and RL Settings. Chen, Lu and Song (2021b) stud-
ied the asymptotic behavior of the parameters under the traditional linear contextual bandit
framework. Bibaut et al. (2021) studied the asymptotic behavior of the treatment effect with
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contextual adaptive data collection. Zhan et al. (2021) and Hadad et al. (2021) developed
adaptive weighting methods to construct estimators that are suitable for policy value infer-
ence with adaptive collected data. Deshpande, Javanmard and Mehrabi (2023) and Khamaru
et al. (2021) considered the adaptive linear regression. Zhang, Janson and Murphy (2021,
2022) provided statistical inference for the M-estimators in the contextual bandit and non-
Markovian environment. Ye, Cai and Song (2023) employed a doubly robust estimator for the
optimal policy value inference within an online decision-making framework. In addition to
these references, there are also related inference works in RL. For example, Shi et al. (2022)
constructed the confidence interval for the policy value in the Markov decision process, and
Shi et al. (2024); Bian et al. (2024) further extended the statistical inference to the con-
founded Markov decision processes and doubly inhomogeneous environments, respectively.
The above works are tailored for vector contexts and not for matrix contexts.

Statistical Inference for Low-Rank Matrix. With the sample splitting procedure for ob-
taining an unbiased estimator, Carpentier et al. (2015) constructed confidence sets for the
matrix of interest with regard to its Frobenius norm. Xia (2019) conducted the inference on
the matrix’s singular subspace, reflecting the information about matrix geometry. To conduct
inference on matrix entries, Carpentier and Kim (2018) proposed a new estimator that was
established using the iterative thresholding method. Chen et al. (2019) proposed a debiased
estimator for a matrix completion problem. Xia and Yuan (2021) studied the inference of a
matrix linear form, which established the entry-level confidence intervals. However, none of
the above works is applicable when the data are adaptively collected. As shown in Figure
3, we need to handle two sources of bias in our setting, which demands a new debiasing
procedure.

1.2. Notations and Organization. For a matrix M ∈R
d1×d2 , we use ∥M∥F to denote its

Frobenius norm, ∥M∥ to denote its matrix operator norm, and ∥M∥ℓ1 to denote its vectorized
ℓ1 norm. We use M(i, j) to denote the entry of M at row i and column j. Assume a matrix
has rank r, then we denote the ¼1, ¼r as its largest and smallest singular values, respectively,
and we denote »(M) = ¼1/¼r as the condition number of M . Given a matrix A ∈ R

d1×d2 ,
we denote ïM,Að as the matrix inner product, i.e., ïM,Að = tr(M¦A). For a matrix U ∈
R
d×r , then we denote its orthogonal complement as U§ ∈ R

d×(d−r). We use the notation
C1,C2, . . . to represent the absolute constants, and we use a≲ b to represent afCb for some

absolute constant C . We denote
p−→ and d−→ as convergence in probability and in distribution,

respectively. Finally, we use I{·} to denote the indicator function.
The rest of the paper is organized as follows. In Section 2, we introduce our problem set-

ting and decision-making procedure under the online decision-making framework. In Section
3, we propose the online debiasing procedure to construct an unbiased estimator for inference
purposes. We also present the asymptotic normality of the proposed estimator and prove the
validity of the proposed statistical inference procedure. In Section 4, we outline a procedure
for inferring the value of the optimal policy. In Section 5, we present numerical experiments
to demonstrate the merit of our proposed method. Finally, the supplementary material in-
cludes additional numerical studies, further discussions on assumptions, and comprehensive
proofs of main theorems and technical lemmas.

2. Online Decision Making and Low-Rank Estimation. In this section, we first
present the online decision-making procedure designed to address the exploration-exploitation
dilemma. Subsequently, we propose a sequential low-rank estimation for Mi, denoted as
M̂ sgd

i,t for i= 0,1 and t= 1,2, . . . . The convergence properties of the proposed SGD estima-
tor are discussed in the later part of this section.
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2.1. Sequential Decision Making. In sequential decision-making, the objective is to se-
lect a series of actions over time aiming to maximize the cumulative reward. As described
by our reward model, denoted by (1), the reward, represented by yt at time t, is observed
after the execution of an action at. Let Ft denote the filtration generated by all the histori-
cal randomness up to time t, i.e., Ft = Ã(X1, a1, y1, ...,Xt, at, yt). Then the policy function,
denoted as Ãt, can be formally expressed as

P(at = 1|Ft−1,Xt) = Ãt(Xt, M̂
sgd
1,t−1, M̂

sgd
0,t−1),

and correspondingly, P(at = 0|Ft−1,Xt) = 1 − Ãt(Xt, M̂
sgd
1,t−1, M̂

sgd
0,t−1). Here, the domain

and range of policy function can be specified as Ãt :Rd1×d2 ×R
d1×d2 ×R

d1×d2 → [0,1]. To
streamline notation, we employ Ãt to represent the probability of selecting action at = 1 at
time t, while 1− Ãt denotes the probability associated with selecting at = 0 accordingly.

The estimation and inference procedure introduced in this work is applicable to a wide
range of randomized bandit policies, and here we list three examples.

• ε-Greedy. One widely used policy demonstrating the exploration-exploitation tradeoff is
the ε-greedy approach (Lattimore and Szepesvári, 2020) which allocates εt/2 as the explo-
ration probability while 1− εt/2 for exploitation at each iteration. With any pre-specified
εt ∈ (0,1), Ãt can be explicitly expressed using εt. Specifically, probability of taking action
at = 1 at time t is described as

P(at = 1|Ft−1,Xt) = (1− εt)I
{
ïM̂ sgd

1,t−1 − M̂ sgd
0,t−1,Xtð> 0

}
+

εt
2
.

• Softmax Policy. Our proposed method can also be employed effectively with softmax
policies that utilize exponential weighting schemes to balance exploration and exploitation.
Consider the following probability model for choosing action at = 1,

P(at = 1|Ft−1,Xt) =
exp(ïM̂ sgd

1,t−1,Xtð)
exp(ïM̂ sgd

0,t−1,Xtð) + exp(ïM̂ sgd
1,t−1,Xtð)

.

The action with a higher estimated reward is assigned with a higher probability through
a softmax transformation. Popular applications include EXP3, EXP4 (Auer et al., 2002),
and softmax policy gradient (Mei et al., 2020; Boutilier et al., 2020; Agarwal et al., 2021).

• Thompson Sampling. Thompson Sampling (Lattimore and Szepesvári, 2020) balances
the exploration-exploitation trade-off by sampling from the posterior distribution over the
expected reward for each action. At time t, the algorithm samples the matrix parameter
M̄i,t from the posterior distribution P(i)(·|Ft−1), and chooses the action to be the one that
gives the maximum reward, i.e., at = argmaxi ïM̄i,t,Xtð. As the posterior distribution
may not have an explicit form, approximate sampling could be employed and we discuss
an adapted approach in the supplementary material.

Although our focus in the main paper remains on the aforementioned randomized policies
with known action probabilities to enhance clarity, we also detail a methodology and ac-
companying theoretical analysis for scenarios where action probabilities are unknown. This
discussion is provided in the supplementary material. These popular bandit algorithms typ-
ically select actions at time t based on current estimations of model parameters. Therefore,
an accurate estimation of Mi enables more precise reward predictions, thereby enhancing the
decision-making performance. In the following section, we introduce the methodology for
deriving a sequential and sample-efficient estimator for Mi.
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2.2. Online Low-Rank Estimation via SGD. In this section, we introduce the procedure
to obtain the online low-rank estimator M̂ sgd

i,t . The estimation method needs to meet two
requirements: (1) the estimator should be updated sequentially under the online decision-
making framework, and (2) the estimator should leverage the inherent low-rank structure
to ensure sample efficiency. To accomplish these tasks, we apply SGD to iteratively update
the estimation of the low-rank factorization of Mi. Specifically, for i = 0,1, we solve the
following stochastic optimization problem via SGD,

(6) min
Ui∈Rd1×r,Vi∈Rd2×r

F (Ui,Vi) = E

[
f (Ui,Vi;{X,y})

]
,

where the expectation is taken with respect to the randomness of {X,y}, and the individual
loss function is defined as

(7) f (Ui,Vi;{X,y}) = 1

2

(
y−

〈
UiV¦

i ,X
〉)2

.

If we denote Ui,t and Vi,t as the estimated Ui and Vi at time t, respectively, a naive SGD
approach for implementing the update at time t with learning rate ¸t is given by

(8)
(
Ui,t

Vi,t

)
=

(
Ui,t−1

Vi,t−1

)
− ¸tI{at = i}∇f(Ui,t−1,Vi,t−1;{Xt, yt}),

where ∇f is the gradient of the individual loss function in (7), i.e.,

∇f(Ui,t−1,Vi,t−1;{Xt, yt}) =
(
(ïUi,t−1V¦

i,t−1,Xtð − yt)XtVi,t−1

(ïUi,t−1V¦
i,t−1,Xtð − yt)X

¦
t Ui,t−1

)
.

However, this naive implementation is not applicable to our analysis for two reasons. First,
the stochastic gradient given in the above form is no longer an unbiased estimator of the pop-
ulation gradient ∇F (Ui,t−1,Vi,t−1) because this stochastic gradient depends on the adaptive
distribution of at while the population gradient does not. Second, our analysis requires that
Ui,t and Vi,t stay in a neighborhood such that F (Ui,t,Vi,t) enjoys the smoothness and strong
convexity, but this naive approach may destroy this geometric property of F as discussed
later in Section 2.3. To address the aforementioned two concerns, we propose our stochastic
gradient as

g(Ui,t−1,Vi,t−1;{Xt, yt, at, Ãt})(9)

=
I{at = i}

iÃt + (1− i)(1− Ãt)

(
(ïUi,t−1V¦

i,t−1,Xtð − yt)XtVi,t−1RVD
− 1

2

V QVQ
¦
UD

1

2

UR
¦
U

(ïUi,t−1V¦
i,t−1,Xtð − yt)XtUi,t−1RUD

− 1

2

U QUQ
¦
VD

1

2

VR
¦
V

)
.

We describe the procedure of obtaining the above auxiliary matrices at each iteration in Al-
gorithm 1. The inverse weight 1/[iÃt +(1− i)(1− Ãt)] is applied to compensate for the bias
in the naive stochastic gradient in (8) caused by the adaptive distribution of at, where we re-
call that Ãt is the shorthand notation for P(at = 1|Ft−1,Xt). Besides the inverse weighting,
our form of g also serves as a computationally efficient method for re-normalizing Ui,t−1 and
Vi,t−1 to ensure that each iterate stays in a neighborhood. We provide more explanations and
benefits of choosing g as our stochastic gradient in Section 2.3. Given the designed stochastic
gradient g, our updating rule is

(10)
(
Ui,t

Vi,t

)
=

(
Ui,t−1

Vi,t−1

)
− ¸tg(Ui,t−1,Vi,t−1;{Xt, yt, at, Ãt}),

where we require the learning rate ¸t to decay as t grows to diminish the effect of the
noise in the convergence analysis. We defer the discussion of the learning rate to Sec-
tion 2.4. To further clarify this updating rule, we take at = 1 at time t for example,



10

Algorithm 1 One-Step SGD Update at time t

1: Input: Ui,t−1, Vi,t−1 for i= 0,1, Xt, yt, at, πt, ηt

2: RUDUR
¦
U ← SVD

(
U¦at,t−1Uat,t−1

)
, RVDVR

¦
V ← SVD

(
V¦at,t−1Vat,t−1

)
.

3: QUDQV ← SVD
(
D

1

2

UR¦
URVD

1

2

V

)
.

4: For i= 0,1, update Ui,t, Vi,t using (10).

5: Output: Ui,t, Vi,t, RU , DU , RV , DV

then g(U0,t−1,V0,t−1;{Xt, yt, at, Ãt}) = (0,0)¦, which implies U0,t, V0,t (for the action
at = 0) are not updated. Meanwhile, the singular value decomposition (SVD) is applied to
U¦
1,t−1U1,t−1 and V¦

1,t−1V1,t−1 after U1,t−1 and V1,t−1 are updated according to (10). The

one-step update at time t is summarized in Algorithm 1. Finally, we set M̂ sgd
i,t = Ui,tV¦

i,t,
which will be used for the decision policy in the next iteration.

2.3. Explanation of the Form of Stochastic Gradient. We first discuss the necessity of
applying the inverse weighting to compensate for the bias caused by the adaptive distribution
of at. Then we discuss the necessity of renormalizing Ui,t−1 and Vi,t−1 at each time t. Finally,
we demonstrate that Algorithm 1 only requires computing the SVD for an r × r matrix
instead of a d1× d2 matrix at each iteration for re-normalization, which makes our algorithm
computationally efficient.

As the SGD update is implemented under the online decision-making setting, the samples
are collected through the action at according to our decision-making policy at each time.
This implies that the sample used for each update is not collected randomly but based on
the “past experience” inherited in the distribution of at. Since the action at determines either
(U1,t,V1,t), or (U0,t,V0,t) to be updated at time t, we need to eliminate this bias so that
the estimation for both i = 0 and 1 can be treated equally. Inspired by Chen, Lu and Song
(2021a), we apply the inverse weight that serves as a distribution correction that compensates
for the aforementioned bias using the fact E [I{at = i}|Xt,Ft−1] = iÃt + (1− i)(1− Ãt).

To ensure the convergence of our algorithm, we need Ui,t and Vi,t to stay in a local
region. The naive implementation of SGD such as (8) might end up with an estimator
Ui,t very large and Vi,t very small or vice versa even though Ui,tV¦

i,t is a reasonable es-
timate of Mi (Jin, Kakade and Netrapalli, 2016). To see it, assuming we have matrices
A ∈ R

d1×r and B ∈ R
d2×r , then AB¦ = ÃB̃¦ even if Ã is very small while B̃ very large,

e.g. Ã = ¶A and B̃ = ¶−1B for some very small scalar ¶. To avoid this situation, we can
apply re-normalization at the beginning of each iteration by setting Ũat,t−1 = WUD

1

2 and
Ṽat,t−1 = WVD

1

2 , where WUDW¦
V is the top-r SVD of Uat,t−1V¦

at,t−1, meaning that WU

and WV are the top-r singular vectors. On the other hand, we leave (Ũ1−at,t−1, Ṽ1−at,t−1)

unchanged from the last iteration, i.e., (Ũ1−at,t−1, Ṽ1−at,t−1) = (U1−at,t−1,V1−at,t−1). Then
a straightforward way to deal with this concern is to plug the renormalized version Ũat,t−1

and Ṽat,t−1 into (8) with the inverse weighting

(11)
(
Ui,t

Vi,t

)
=

(
Ũi,t−1

Ṽi,t−1

)
− ¸t

I{at = i}
iÃt + (1− i)(1− Ãt)

∇f(Ũi,t−1, Ṽi,t−1;{Xt, yt}).

In this case, the strong convexity and smoothness of F can be guaranteed within the neigh-
borhood of (Ũi,t−1, Ṽi,t−1). Unfortunately, this naive approach requires computing the SVD
of a d1×d2 matrix at each iteration, which incurs a huge computational cost. Nonetheless, the
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low-rankness of Ui,t and Vi,t allows us to compute a cheaper SVD on r× r matrices U¦
i,tUi,t

and V¦
i,tVi,t instead. The resulting alternative approach, described in Algorithm 1 using (9) as

the stochastic gradient, handles the re-normalization issue in a computationally efficient way.
It only remains to show the equivalency between (10) and (11), which demonstrates that the
re-normalization can be done by applying the SVD of r× r matrices.

LEMMA 2.1 (Jin, Kakade and Netrapalli 2016). The updating rules given by (10) and

(11) are equivalent in the sense that, at any time t, the updates Ui,t, Vi,t from (10), and U ′
i,t

and V ′
i,t from (11), satisfy the relation U ′

i,tV ′¦
i,t = Ui,tV¦

i,t.

Lemma 2.1 follows directly from Lemma 3.2 in Jin, Kakade and Netrapalli (2016), estab-
lishing computational equivalence between two SVD procedures. While the renormalization
technique is adapted for computational efficiency, our statistical convergence analysis for
stochastic gradient descent differs due to two reasons. Firstly, our framework encompasses
noisy observations, where each stochastic gradient descent iteration does not progress toward
a common minimizer. Secondly, our approach requires the integration of decision-making
policies throughout data collection. These differences call for new tools to analyze the con-
vergence of our low-rank estimation.

2.4. Convergence Analysis of Low-Rank Estimation. Before presenting the convergence
results, we introduce the following assumptions for our true model.

ASSUMPTION 1. We consider the reward model (1). For i ∈ {0,1},

(i) The noise Àt given at = i are i.i.d. sub-Gaussian random variables with parameter Ãi,

E[Àt|at = i] = 0, E[À2t |at = i] = Ã2
i , E[esÀt |at = i]f es

2Ã2

i , ∀s ∈R.

(ii) The context matrix Xt has i.i.d standard Gaussian entries, i.e., Xt(j1, j2) ∼ N (0,1).
Moreover, Xt is independent from Ft−1 and Àt, and {Xt} are i.i.d. across all t.

(iii) The true matrix parameter Mi is low-rank with rank rjmin{d1, d2}, and its condition

number is »(Mi)f » for a positive constant ».

Assumption 1 indicates that the observed yt after taking action is corrupted by a sub-
Gaussian noise with parameter Ãi, which is a common assumption in online decision-making
literature (Lattimore and Szepesvári, 2020). Additionally, we assume the context matrix Xt

has i.i.d. standard Gaussian entries, which is a typical and convenient assumption in the low-
rank matrix regression literature (Xia, 2019), and this contextual information received at each
time is i.i.d. and independent from the noise. We note that the Gaussian condition is not ex-
clusive and can be extended to include other distributions. For instance, in the supplementary
material, we discuss an alternative design of the contextual matrix that can broaden the scope
of our inference framework, moving beyond online low-rank regression to include the case
of online low-rank matrix completion. Finally, we assume that the matrix is well conditioned
with a known rank r, which is common in existing low-rank literature (Xia and Yuan, 2021;
Zhu et al., 2022; Chen et al., 2019, 2024). A theoretical analysis for the case of unknown
r remains unclear even in the traditional matrix regression problems and deserves a careful
investigation in future works.

We then discuss the initialization of Ui and Vi for i= 0,1. Given a low-rank initialization
M̂ init

i (i.e., M̂ sgd
i,0 ), we can obtain Ui,0 and Vi,0 by applying the SVD on M̂ init

i . We denote
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W init
U and W init

V as the top-r left and right singular vectors of M̂ init
i , along with a diagonal

matrix containing top-r singular values denoted as Dinit. Then we set

(12) Ui,0 =W init
U (Dinit)

1

2 , and Vi,0 =W init
V (Dinit)

1

2 .

For theoretical analysis, we require the following assumption on initialization.

ASSUMPTION 2. With Ãi specified in Assumption 1, the initialization M̂ init
i satisfies∥∥M̂ init

i −Mi

∥∥
F
fCÃi for i= 0,1, and some constant C > 0.

The procedure of obtaining such initialization can be seen as the random exploration phase
in the bandit problem. Since the samples are independent in the random exploration phase,
such initialization condition is mild and can be satisfied by existing low-rank estimation
literature (Xia, 2019).

ASSUMPTION 3. The probabilities Ãt and 1− Ãt, defined in Section 2.1, satisfy

min{Ãt,1− Ãt} g t−´p0,

for some 0f ´ < 1 and p0 ∈ (0,1).

This assumption ensures sufficient exploration by preventing the exploration probability
from decaying too rapidly. When ´ = 0, it requires a constant lower bound p0 for exploration,
which is a common assumption in SGD-based inference (Chen, Lu and Song, 2021a; Chen
et al., 2022). However, for estimation, Assumption 3 provides flexibility by allowing the
lower bound of the exploration probability to decay over time for any ´ > 0 for the estimation
resuls in this section and the policy value inference in Section 4.

With all these assumptions, we are ready to present the convergence result of our online
low-rank estimation obtained through Algorithm 1. Recall that we define d =max{d1, d2}
and set M̂ sgd

i,t = Ui,tV¦
i,t at each iteration. To simplify the notations, we assume ∥M0∥ =

∥M1∥= 1, and define ¼r =min{¼r(M1), ¼r(M0)} with the condition number »f 1/¼r .

THEOREM 2.2. Define the learning rate ¸t = c ·(max{t, t⋆})−³, and t⋆ =
(
µ2dr log2 d

) 1

α−β

for some constant c > 0 and ³ ∈ (´,1). Assume the signal-to-noise ratio ¼r

Ãi
g 10C for some

constant C > 0 and Assumptions 1–3 hold. For any large enough µ > 0, with probability at

least 1− 4n
dγ , we have for 1f tf n,

∥∥∥M̂ sgd
i,t −Mi

∥∥∥
F
fC1µÃi

√
dr log2 d

t³−´
,

for some positive constant C1.

REMARK 1. Theorem 2.2 can be generalized to accommodate a relaxed initial condition

∥M̂ init
i −Mi∥F f C¼r . This generalization is formally stated in Theorem D.1 of the sup-

plementary material. Specifically, if the initialization falls outside original region defined in

Assumption 2 but within the relaxed one, a burn-in phase of estimation ensures that the same

convergence rate can be achieved for sufficiently large t.

When ´ = 0, the estimation error rate in Theorem 2.2 reduces to Õ(
√

dr/t³), ignoring
the logarithm factors, which closely aligns with the statistically optimal rate in the offline
setting (Xia, 2019) as one specifies ³ to be close to 1. For ´ > 0, the decision-making policy
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allows for a decaying exploration probability, which may increase the estimation error but
could benefit the decision-making objectives. Specifically, under an ε-greedy policy with
εt = p0t

−´ , the cumulative regret over a time horizon of n is bounded by Õ(n1−α−β

2 +
n1−´), ignoring logarithmic terms and dimensionality, where the two terms correspond to
the regret due to exploitation and exploration, respectively. The parameter ´ represents a
tradeoff between online decision-making and the estimation error. Setting ´ = 1

3³ with ³

approaches 1, the cumulative regret is of the order n2/3. A similar tradeoff in online decision
making and parameter estimation has also been observed in Simchi-Levi and Wang (2023).

Having developed our online estimation method along with its associated error rate, we
now proceed to present the framework for statistical inference. Section 3 details the method-
ology and theoretical foundation for parameter inference, while Section 4 focuses on infer-
ring the optimal policy value.

3. Parameter Inference. In this section, we propose an online framework for conduct-
ing entry-wise statistical inference on the parameter Mi, which leverages the low-rank es-
timation from the earlier section. Particularly, we propose a sequential debiasing procedure
that can obtain an unbiased estimator by removing the two types of bias inherited in M̂ sgd

i,t
simultaneously as shown in Figure 3. We first introduce our proposed online debiasing pro-
cedure. We then present the asymptotic normality of our proposed unbiased estimator, which
serves as the theoretical foundation for conducting the inference. Finally, we propose the es-
timation of the variance of this unbiased estimator and show the consistency of the estimator.
It is worth pointing out that our estimation can be obtained in a fully online fashion without
storing historical data.

3.1. Online Debiasing Procedure. As discussed in the existing low-rank matrix infer-
ence literature (Xia, 2019; Chen et al., 2019; Xia and Yuan, 2021), debiasing is a commonly
used method that handles the bias caused by preserving the low-rankness. Unlike existing
debiasing approaches, our debiasing procedure needs to deal with two sources of bias. First,
even though the estimation method via SGD in Section 2.2 ensures that Ui,t and Vi,t are un-
biased estimators for the corresponding low-rank factorization of Mi, there is no guarantee
that Ui,tV¦

i,t is an unbiased estimator for Mi. Second, because the data collection is adaptive
through the action at, we also need to handle the bias introduced by the adaptive samples in
the bandit setting. To fill in the gap, we introduce a new debiasing procedure to eliminate both
types of bias due to low-rankness and data adaptivity. The unbiased estimator obtained from
our proposed online debiasing procedure is described as follows: taking i = 1 for example,
we define

M̃1,t = M̂ sgd
1,t−1 +

I{at = 1}
Ãt

(yt − ïM̂ sgd
1,t−1,Xtð)Xt,

at time t, and then update an online unbiased estimator

M̂unbs
1,t = (M̃1,t + (t− 1)M̂unbs

1,t−1)/t,

as the running average of M̃1,t. We apply the inverse weighting in M̃1,t to compensate for
the bias caused by the adaptive distribution of at. Additionally, (yt − ïM̂ sgd

1,t−1,Xtð)Xt in the

second term of M̃1,t can be seen as the gradient of f(M) = 1
2(yt−ïM,Xtð)2 at M̂ sgd

1,t−1. This

gradient does not impose low-rank constraint and thus pushes M̂ sgd
1,t−1 towards the direction

of an unbiased estimation of M1. Moreover, it is important to note that we use M̂ sgd
1,t−1 instead

of M̂ sgd
1,t to obtain M̃1,t. Otherwise, M̃i,t would no longer be an unbiased estimator of Mi
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Algorithm 2 One-Step Online Debiasing Update

1: Input: M̂unbs
i,t−1 , M̂sgd

i,t−1, for i= 0,1, Xt, yt, πt, at

2: For i= 0,1, M̃i,t← M̂
sgd
i,t−1 +

I{at=i}
iÃt+(1−i)(1−Ãt)

(yt − ïM̂sgd
i,t−1,Xtð)Xt.

3: M̂unbs
i,t ← (M̃i,t + (t− 1)M̂unbs

i,t−1 )/t.

4: Output: M̂unbs
1,t , M̂unbs

0,t

because updating M̂ sgd
1,t uses the observation Xt, causing the dependence between M̂ sgd

1,t and
Xt. Finally, we obtain our unbiased estimator for the inference purpose as

(13) M̂unbs
1,n =

1

n

n∑

t=1

M̂ sgd
1,t−1 +

1

n

n∑

t=1

I{at = 1}
Ãt

(yt − ïM̂ sgd
1,t−1,Xtð)Xt,

which is essentially the average over M̃1,t. To see the unbiasness of M̂unbs
1,n more formally,

we define ∆t−1 =M1 − M̂ sgd
1,t−1, and rewrite equation (13) by adding and subtracting M1.

With the definition of yt from (1), we then have

M̂unbs
1,n =M1 +

1

n

n∑

t=1

I{at = 1}ÀtXt/Ãt

︸ ︷︷ ︸
Ẑ1

+
1

n

n∑

t=1

(
I{at = 1}ï∆t−1,XtðXt

Ãt
−∆t−1

)

︸ ︷︷ ︸
Ẑ2

.

Then both Ẑ1 and Ẑ2 are sum of martingale difference sequence by noting that for Ẑ1

E

[
I{at = 1}

Ãt
ÀtXt

∣∣∣Ft−1

]
= E

[
E

[
I{at = 1}

Ãt
ÀtXt

∣∣∣Ft−1,Xt

] ∣∣∣Ft−1

]
= 0,

and similarly for Ẑ2, Assumption 1 implies that

E

[
I{at = 1}ï∆t−1,XtðXt

Ãt
−∆t−1

∣∣∣Ft−1

]

=E

[ï∆t−1,XtðXt

Ãt
E

[
I{at = 1}

∣∣∣Ft−1,Xt

]
−∆t−1

∣∣∣Ft−1

]
= 0.

A similar debiasing procedure also applies to the case when i = 0 by replacing the Ãt by
(1 − Ãt) due to the fact that E[I{at = 0}|Xt,Ft−1] = 1 − Ãt. We summarize the online
debiasing procedure at each time t in Algorithm 2.

As we mentioned earlier, the debiasing procedure eliminates both sources of bias simul-
taneously disregarding maintaining the low-rankness. In this case, M̂unbs

i,n obtained after n-
iterations is not low-rank. Since the true parameter Mi has a low-rank structure, we can apply
a low-rank projection on the M̂unbs

i,n by its left and right top-r singular vectors to yield an

improved estimate for the inference purpose, which is denoted as M̂proj
i,n . Recall that we tar-

get to conduct the statistical inference on m
(i)
T = ïMi, T ð that we discussed in Section 1, the

corresponding estimator for the inference purpose is defined as

(14) m̂
(i)
T =

〈
M̂proj

i,n , T
〉
.

While M̂unbs
i,n serves as an unbiased estimator for Mi, it should be noted that M̂proj

i,n
does not necessarily possess this property. In theory, we can show that this additional bias in
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m̂
(i)
T is quantifiable and negligible under mild assumptions that we introduce in Section 3.2.

Moreover, to obtain M̂proj
i,n , we need to compute the SVD for a d1 × d2 matrix M̂unbs

i,n , and
this computation is only required once after n-iterations. Because of its heavy computation
cost, M̂proj

i,t is not suitable for replacing the online estimator M̂ sgd
i,t for the decision-making

purpose as M̂ sgd
i,t only requires computing the SVD of an r× r matrix at each iteration.

3.2. Asymptotic normality of m̂
(i)
T . We start the discussion on asymptotic normality by

introducing several assumptions for the theoretical analysis. We denote Ui and Vi as the left
and right singular vectors of the true matrix parameter Mi.

ASSUMPTION 4. There exists a constant ³T > 0 such that

³T ∥T∥F
√

r

d1
f ∥U¦

i T∥F, ³T ∥T∥F
√

r

d2
f ∥TVi∥F.

To perform statistical inference for m(i)
T = ïMi, T ð, Assumption 4 ensures that T does not

lie entirely in the null space of Mi by imposing a lower bound on ∥U¦
i T∥F and ∥TVi∥F.

ASSUMPTION 5. There exists a constant µ > 0 such that, for i ∈ {0,1},

max
{√d1

r
max
j∈[d1]

∥e¦j Ui∥,
√

d2
r

max
j∈[d2]

∥e¦j Vi∥
}
f µ.

Assumption 5 imposes an incoherence condition on the spectral space of the true matrix
parameters M0,M1, indicating that their singular vectors should not be overly sparse. While
not required to establish asymptotic normality, it simplifies the expression of the asymptotic
distribution. Further discussion is provided in Section E.13 of the supplementary material.

ASSUMPTION 6. As n,d1, d2 →∞, assume

max
{
√

dr log2 d

n³
,

Ãi
¼r

√
d2r

n

}
→ 0,

where Ãi is defined in Assumption 1, and ³ ∈ (0,1) is specified in Theorem 2.2. In addition,

there exist constants µ, µd, ¼ > 0 such that n= o(dµ), ¼r g ¼, and d1/d2 + d2/d1 f µd.

Assumption 6 requires conditions on the sample size and signal-to-noise ratio for reliable
entry-level parameter inference. Under the additional assumption that the matrix T , which
specifies the linear form under inference, is low-rank, the second condition may be relaxed to
(Ãi/¼r)

√
dr/n= o(1). Section E.13 of the supplementary material outlines key supporting

arguments for this relaxation, while a rigorous analysis is deferred to future work.

THEOREM 3.1. Under Assumptions 1–6 with ´ = 0, and if we denote Ãt(X) := P(at =

1|Ft−1,Xt =X) with Ãt(X)
p−→ Ã∞(X) for any X . As n,d1, d2 →∞, we have

m̂
(i)
T −m

(i)
T

ÃiSi/
√
n

d−→N (0,1) , i= 0,1,

where

S2
i =

∫
〈
Ui,§U

¦
i,§XViV

¦
i +UiU

¦
i XVi,§V

¦
i,§, T

〉2

iÃ∞(X) + (1− i)(1− Ã∞(X))
dPX ,
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Theorem 3.1 assumes ´ = 0 in Assumption 3, requiring the policy to maintain a constant
lower bound p0 for exploration. To ensure asymptotic normality of the parameter for each
action, it mandates that each action is pulled sufficiently often to gather enough information
for reliable parameter inference. As we will discuss in Section 4, the restriction on ´ = 0 can
be relaxed for the inference of optimal policy value.

Theorem 3.1 provides a key insight: incorporating a debiasing step improves the estimation
rate to n−1/2. This improvement stems from the additional averaging performed during the
debiasing procedure, which mitigates fluctuations across multiple iterates. As a result, the
variance of the averaged sequence is reduced, leading to faster convergence. This acceleration
behavior is analogous to the vector case studied in Polyak and Juditsky (1992).

The above result allows us to derive the asymptotic normality of the difference between
two estimators. The following corollary demonstrates the asymptotic behavior of the differ-
ence between m̂

(1)
T − m̂

(0)
T , and thus provides the theoretical guarantee for the hypothesis

testing mentioned in (3).

COROLLARY 3.2. Under Assumptions of Theorem 3.1, as n,d1, d2 →∞, we have

(
m̂

(1)
T − m̂

(0)
T

)
−
(
m

(1)
T −m

(0)
T

)
√

(Ã2
1S

2
1 + Ã2

0S
2
0)/n

d−→N (0,1) .

The intuition of proving Corollary 3.2 is that the main terms in m̂
(i)
T −m

(i)
T , i= 0,1, are

uncorrelated while the remainder terms are negligible. Therefore, the asymptotic variance of
(m̂

(1)
T − m̂

(0)
T )− (m

(1)
T −m

(0)
T ) is given by the sum of two individual variances.

3.3. Parameter Inference. With the asymptotic normality shown in Theorem 3.1, we are
in a position to answer the inferential question about m(i)

T by constructing an online data-

dependent confidence interval. In this section, we show that the asymptotic normality of m̂(i)
T

remains valid after we replace S2
i and Ã2

i by their estimators. To achieve this goal, we only
need to prove the consistency of the proposed variance estimator.

Throughout this section, we use Ûi,t and V̂i,t to denote the left and right top-r singular
vectors of M̂ sgd

i,t , and Ûi,t§, V̂i,t§ as their orthogonal complements. To obtain a consistent

estimator of S2
i in Theorem 3.1, we need first to demonstrate that the Ûi,tÛ

¦
i,t and V̂i,tV̂

¦
i,t are

consistent estimators for UiU
¦
i and ViV

¦
i , where Ui and Vi denote the left and right top-r

singular vectors of Mi respectively. Indeed, by the matrix perturbation theorem (Davis and
Kahan, 1970; Wedin, 1972), for some positive constant C we have

max
{
∥Ûi,tÛ

¦
i,t −UiU

¦
i ∥F,∥V̂i,tV̂

¦
i,t − ViV

¦
i ∥F

}
fC ·

∥M̂ sgd
i,t −Mi∥F

¼r
.

The convergence rate of M̂ sgd
i,t shown in Theorem 2.2 enables us to prove the consistency of

the variance estimator, which leads to the following asymptotic normality of m̂(i)
T with the

estimated S2
i and Ã2

i .

THEOREM 3.3. Under Assumptions of Theorem 3.1, as n,d1, d2 →∞, we have

m̂
(i)
T −m

(i)
T

Ã̂iŜi/
√
n

d−→N (0,1), i= 0,1,
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where

(15) Ã̂2
i =

1

n

n∑

t=1

I{at = i}
iÃt + (1− i)(1− Ãt)

(yt − ïM̂ sgd
i,t−1,Xtð)2,

(16)

Ŝ2
i =

1

n

n∑

t=1

I{at = i}
〈
Ûi,t−1§Û

¦
i,t−1§XtV̂i,t−1V̂

¦
i,t−1 + Ûi,t−1Û

¦
i,t−1XtV̂i,t−1§V̂

¦
i,t−1§, T

〉2

iÃ2
t + (1− i)(1− Ãt)2

.

It is worth pointing out that acquiring estimators Ŝ2
i and Ã̂2

i only requires storing the partial
sums instead of all historical data. At time t, estimators Ŝ2

i and Ã̂2
i get updated by computing

the running average of (15) and (16) for both i= 0 and 1, and note that only Ûat,t−1Û
¦
at,t−1

and V̂at,t−1V̂
¦
at,t−1 need to be calculated at each iteration. We present the method of obtaining

Ûat,t−1Û
¦
at,t−1 and V̂at,t−1V̂

¦
at,t−1 in the fourth to the last line inside the for loop of Algorithm

3. Meanwhile, we can obtain the corresponding orthogonal complements used in (16) via

Ûat,t−1§Û
¦
at,t−1§ = I − Ûat,t−1Û

¦
at,t−1, and V̂at,t−1§V̂

¦
at,t−1§ = I − V̂at,t−1V̂

¦
at,t−1,

where I denotes the identity matrix.
Given the result of Theorem 3.3, we can thus construct the data-dependent confidence

interval for the true parameter m(i)
T . In particular, at any confidence level ³ ∈ (0,1) we can

construct the confidence interval

(17)
[
m̂

(i)
T − z³/2Ã̂iŜi/

√
n, m̂

(i)
T + z³/2Ã̂iŜi/

√
n
]
,

where z³/2 denotes the standard score of normal distribution for the upper ³/2-quantile. The

whole procedure of conducting the inference for m(i)
T is summarized in Algorithm 3. It is

also worth pointing out that due to Corollary 3.2, we extend the result of Theorem 3.3 to

(m̂
(1)
T − m̂

(0)
T )− (m

(1)
T −m

(0)
T )√

(Ã̂2
0Ŝ

2
0 + Ã̂2

1Ŝ
2
1)/n

d−→N (0,1),

which allows us to test the difference in effectiveness between the actions.

4. Inference for Optimal Policy Value. In this section, we investigate the statistical in-
ference of optimal policy value as defined in (4). In contrast with Section 3, which requires
the exploration probability to be lower bounded by constant, we relax this condition by per-
mitting the exploration probability to gradually diminish over time for optimal policy value
inference. Echoing the debiasing technique outlined in Equation (13) from Section 3.1, we
adopt a similar strategy to develop an estimator for inferring the optimal policy value. The
construction of this estimator also incorporates a correction term designed for bias reduction.
Due to space limitations, this section focuses on scenarios where exploration probabilities
are known. We defer the optimal policy value inference procedure when these probabilities
are unknown yet estimated to Section A of the supplementary material.

4.1. Estimator for Optimal Policy Value. We now present our estimator for the optimal
policy value. This estimator after n iterations is defined as follows:

(18) V̂n =
1

n

n∑

t=1

〈
M̂ sgd

â(Xt),t−1,Xt

〉
+

1

n

n∑

t=1

I{at = â(Xt)}
1− et

(
yt −

〈
M̂ sgd

â(Xt),t−1,Xt

〉)
,
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Algorithm 3 Online Inference of m(i)
T

1: Input: M̂ init
1 , M̂ init

0 , Ui,0, Vi,0 r.

2: Initialization: M̂unbs
i,0 ← M̂ init

i , M̂sgd
i,0 ← M̂ init

i , for i= 0,1.

3: for t← 1 to n do
Observe a contextual matrix Xt.
Compute πt according to the policy.
Decide the action at by Ber(πt).
Receive reward yt according to (1).

For i= 0,1, M̂unbs
i,t ← Algorithm 2 (M̂unbs

i,t−1 , M̂sgd
i,t−1, Xt, yt, at, πt).

Ui,t, Vi,t,RU , DU , RV , DV ← Algorithm 1 (Ui,t−1, Vi,t−1, Xt, yt, at, πt).

Ûat,t−1Û
¦
at,t−1←RUD

−1
U R¦

U , V̂at,t−1V̂
¦
at,t−1←RVD

−1
V R¦

V .

Ûat,t−1§Û
¦
at,t−1§← I − Ûat,t−1Û

¦
at,t−1, V̂at,t−1§V̂

¦
at,t−1§← I − V̂at,t−1V̂

¦
at,t−1.

Update σ̂2i and Ŝ2
i by computing the running average of (15) and (16).

M̂
sgd
i,t ←Ui,tV

¦
i,t.

4: Compute the top-r singular vectors of M̂unbs
i,n to obtain M̂

proj
i,n , and then we calculate m̂

(i)
T by (14).

5: Obtain the confidence interval as (17).

where

(19) â(Xt) = I{ïM̂ sgd
1,t−1 − M̂ sgd

0,t−1,Xtð> 0},
and et := 1 − P(at = â(Xt)|Ft−1,Xt). In the formation of this optimal policy value esti-
mator, â(Xt) represents the estimated optimal action at time t, and et represents the prob-
ability for exploration. To elaborate, if â(Xt) = 1, the exploration probability becomes
et = P(at = 0|Ft−1,Xt) = 1 − Ãt. Similar to the debiasing process used in parameter in-
ference described in (13), we also employ inverse probability weighting to correct distribu-
tional bias in this scenario. However, there is a key distinction: in parameter inference, the
weighting factor is derived from the probability of taking each possible action, while here
it suffices to use only the exploitation probability for the inverse weighting. This distinction
arises because bias correction in parameter inference leverages samples gathered from each
action individually. In the case of the optimal policy value estimator, however, we exclusively
use samples collected from the estimated optimal action, regardless of whether it is action 1
or 0, to formulate this bias reduction. This forms the key reason that we allow a relaxed
exploration probability in this section.

In Equation (18), we can view the first term as a direct estimator for the optimal policy
value. However, relying on this direct estimate exclusively can lead to potential failure when
M̂ sgd

i,t does not offer an accurate estimate of Mi. In the context of our study, where M̂ sgd
i,t

is inherently biased, the latter term of (18) serves as a corrective mechanism, functioning in
a manner analogous to how we formulated M̂unbs

i,t in Section 3. For optimal policy value
inference, samples contributed to the estimation should be selectively obtained from the ex-
ploitation part, which explains the reason that our estimator presented in (18) only takes the
samples generated by the estimated optimal action.

4.2. Asymptotic Normality. We start the discussion on the asymptotic normality of the
optimal policy value estimator (18) by introducing the following assumptions.
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ASSUMPTION 7. For ³ in the learning rate specified in Theorem 2.2 and ´ specified in

Assumption 3 such that ³− ´ > 1
2 , as n,d1, d2 →∞,

max
{
√

dr log2 d

n³−´
,

Ãi∥M1 −M0∥−1
F dr log2 d

n³−´− 1

2

}
→ 0.

In addition, there exist constants µ, µd > 0 such that n= o(dµ) and d1/d2 + d2/d1 f µd.

Assumption 7 consists of two components: the first part ensures that M̂ sgd
i serves as

a consistent estimator of Mi, and the second condition ensures that the gap between M1

and M0 is sufficiently large compared to the noise, making the optimal action distinguish-
able. With these considerations, we are now prepared to discuss the asymptotic normality of√
n(V̂n − V ∗).

THEOREM 4.1. Under the conditions of Theorem 2.2 and Assumption 7, if we de-

note e∗t (X) = P(at ̸= a∗(Xt)|Ft−1,Xt = X) with e∗t (X)
p−→ e∗∞(X) for any X . Then as

n,d1, d2 →∞, we have

V̂n − V ∗

SV /
√
n

d−→N (0,1) ,

where

S2
V =

∫
a∗(X)Ã2

1 + (1− a∗(X))Ã2
0

1− e∗∞(X)
dPX +VarX

[
ïMa∗(X),Xð

]
.

Theorem 4.1 establishes the asymptotic normality of our proposed optimal policy value
estimator. This asymptotic variance consists of two distinct components. The first term in S2

V

serves as the weighted average variance of the noise, conditional on the optimal action for
a given context. On the other hand, the second term in S2

V captures the variance associated
with the context. If the estimated optimal action â(Xt) converges to the true optimal action
a∗(Xt), then the weight assigned to the first component of S2

V is determined by the limiting
probability associated with exploitation. Note that the asymptotic probability of exploration
e∗∞(X) is allowed to be zero in this scenario, which marks the fundamental difference from
the parameter inference in Theorem 3.1.

4.3. Optimal Policy Value Inference. With the asymptotic normality introduced in The-
orem 4.1, we next construct a valid confidence interval for the optimal policy value. We first
propose the empirical estimator for S2

V in a fully online fashion without requiring any storage
for d1 × d2 context matrix Xt. Define the online estimator as

Ŝ2
V =

1

n

n∑

t=1

Ã̂2
1,tI
{〈

M̂ sgd
1,t−1 − M̂ sgd

0,t−1,Xt

〉
> 0
}
+ Ã̂2

0,tI
{〈

M̂ sgd
1,t−1 − M̂ sgd

0,t−1,Xt

〉
f 0
}

1− et

+
1

n

n∑

t=1

〈
M̂ sgd

â(Xt),t−1,Xt

〉2 −
( 1
n

n∑

t=1

〈
M̂ sgd

â(Xt),t−1,Xt

〉)2
,(20)

where for i= 0,1,

(21) Ã̂2
i,t =

1

t

t∑

s=1

I{as = i}
iÃs + (1− i)(1− Ãs)

(
ys −

〈
M̂ sgd

i,s−1,Xs

〉)2
.
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Algorithm 4 Online Inference of Optimal Policy Value V ∗

1: Input: M̂ init
1 , M̂ init

0 , Ui,0, Vi,0, r.

2: Initialization: M̂sgd
i,0 ← M̂ init

i , for i= 0,1.

3: for t← 1 to n do
Observe a contextual matrix Xt.
Obtain πt = P(at = 1|Ft−1,Xt) according to the decision-making policy.
Update â(Xt) by equation (19), and calculate et← 1− P(at = â(Xt)|Ft−1,Xt).
Decide the action at by Ber(πt).
Ui,t, Vi,t← Algorithm 1 (Ui,t−1, Vi,t−1, Xt, yt, at, πt)

M̂
sgd
i,t ←Ui,tV

¦
i,t.

Get the estimator value V̂t by equation (18).
Update the variance estimator Ŝ2

V by equation (20).

4: Obtain the two-sided confidence interval with critical value z: (V̂n − zŜV /
√
n, V̂n + zŜV /

√
n).

It is important to note that the running summation in (20) and (21) can be sequentially up-
dated. Theorem 4.2 below shows that Ŝ2

V is a consistent estimator for S2
V , and thus the asymp-

totic normality is also guaranteed with the estimated variance.

THEOREM 4.2. Under the conditions of Theorem 4.1, we have Ŝ2
V is a consistent esti-

mator of S2
V , i.e., Ŝ2

V

p−→ S2
V . Furthermore, as n,d1, d2 →∞, we have

V̂n − V ∗

ŜV /
√
n

d−→N (0,1) .

In light of Theorem 4.2, constructing a confidence interval for the optimal policy value V ∗

becomes feasible. This opens the door to hypothesis testing to evaluate the performance of
the currently available actions in achieving a desired level of outcome, even under the opti-
mal policy. This addresses inferential questions posed in Equation (5). Unlike the parameter
inference discussed in Section 3, which necessitates computing the SVD for a d1×d2 matrix
at the end of the online sequence for low-rank projection, the value inference approach intro-
duced in this section sidesteps the computational overhead associated with SVD calculations.
Finally, we summarize the optimal policy value inference procedure in Algorithm 4.

5. Simulation Studies. In this section, we present extensive numerical studies to eval-
uate the performance of our online inference procedure. In the presented synthetic simula-
tions, we consider a Gaussian noise Àt|at = i ∼ N(0, Ã2

i ) with the noise level Ãi = 0.1 for
both i = 0,1. We generate the true low-rank matrices M1 and M0 with rank r = 3, and di-
mensions d = d1 = d2 = 50. The singular vectors, Ui, Vi ∈ R

d×r , are generated from the
singular space of random Gaussian matrices. We set top-r singular values of Mi to be 1,
i.e., ¼1(Mi) = ¼2(Mi) = ¼3(Mi) = 1. For the simulation study of the parameter inference,
we adopt ε-greedy policy with ε = 0.1. The additional simulation results for optimal value
inference with ε→ 0 are illustrated in Section B of the supplementary material. We set the
learning rate ¸t = 0.1(max{t, t⋆})−0.99 with t⋆ = 300. Finally, the initialization M̂ init

i is
obtained from a nuclear-norm penalized estimation (Negahban and Wainwright, 2011) with
pre-collected offline data.

We first validate the asymptotic normality of m̂(i)
T with T = e1e

¦
1 by plotting the histogram

of
√
n(m̂

(i)
T −m

(i)
T )/Ã̂iŜi from 5000 independent trails with n= 1000 and 3000. We present

the histogram of
√
n(m̂

(i)
T −m

(i)
T )/Ã̂iŜi for i= 1 in Figure 4. The result for i= 0 is similar
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TABLE 1
Coverage Probability, Average Confidence Interval Length and corresponding standard deviation for the

scenario T = T1 and T = T2 based on 5000 independent trails.

Coverage Probability Average CI Length

T1

n= 1000
i= 0 0.909 0.018
i= 1 0.913 0.010

n= 2000
i= 0 0.923 0.013
i= 1 0.925 0.008

n= 3000
i= 0 0.929 0.011
i= 1 0.936 0.006

T2

n= 1000
i= 0 0.906 0.065
i= 1 0.908 0.042

n= 2000
i= 0 0.924 0.048
i= 1 0.923 0.031

n= 3000
i= 0 0.931 0.039
i= 1 0.930 0.026

TABLE 2
Coverage Probability, Average Confidence Interval Length for r = 3,5,7 for T = T1 and n= 3000 based on

5000 independent trails.

Coverage Probability Average CI Length

r = 3
i= 0 0.929 0.011
i= 1 0.936 0.006

r = 5
i= 0 0.917 0.015
i= 1 0.921 0.014

r = 7
i= 0 0.913 0.021
i= 1 0.906 0.021

(a) n= 1000, r = 3 (b) n= 3000, r = 3

Fig 4: Empirical distribution of
√
n(m̂

(1)
T −m

(1)
T )/Ã̂1Ŝ1 based on 5000 independent trails for

T = e1e
¦
1 . The red curve refers to the density of standard normal.

and hence is omitted. As shown in Figure 4, as n increases, the empirical distribution of√
n(m̂

(i)
T −m

(i)
T )/Ã̂iŜi gets closer to the standard normal distribution.

In Table 1, we present the coverage probability and average confidence interval length
in two scenarios with T = T1 = e1e

¦
1 and T = T2 = e1e

¦
1 + 2e2e

¦
2 − 3e3e

¦
3 . The cov-

erage probability is calculated as the ratio of the 5000 independent trails that fall into(
m̂

(i)
T − 1.96Ã̂iŜi, m̂

(i)
T +1.96Ã̂iŜi

)
, which is the 95% confidence interval constructed by the
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(a) n= 3000, r = 3 (b) n= 3000, r = 5 (c) n= 3000, r = 7

Fig 5: Empirical distribution of
√
n(m̂

(1)
T −m

(1)
T )/Ã̂1Ŝ1 based on 5000 independent trails for

ranks r = 3, 5, 7 and T = e1e
¦
1 .

standard deviation estimation. The interval length is calculated as 2× 1.96Ã̂iŜi. We present
the result as n= 1000, 2000, and 3000. As shown in Table 1, for both T1 and T2, as n grows,
the coverage probability is closer to 0.95, and the confidence interval length decreases. In ad-
dition, when we increase the ∥T∥F, i.e., from ∥T1∥F to ∥T2∥F, the true Si gets larger which
causes the average length of confidence interval increases.

In Table 2, we compare the converge probability and the average confidence interval
lengths across different true ranks r. As the rank r increases, the coverage probability shrinks,
and the confidence interval length increases. We also compare the histograms for r = 3,5,7
in Figure 5, and the normal approximation gets slightly worse as the true rank increases.

Acknowledgment. The authors thank the editor Professor Lan Wang, the associate ed-
itor and three anonymous reviewers for their valuable comments and suggestions which led
to a much improved paper. Will Wei Sun acknowledges support from the National Science
Foundation (SES 2217440). Any opinions, findings, and conclusions expressed in this mate-
rial are those of the authors and do not reflect the views of the National Science Foundation.

SUPPLEMENTARY MATERIAL

Supplement to “Online Statistical Inference in Decision Making with Matrix Con-

text”. The supplementary material includes extensions of optimal policy value inference,
additional numerical studies, and discussions on the assumptions. Finally, it provides proofs
of all theoretical results and supporting technical lemmas.
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