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ABSTRACT

In cross-device federated learning (FL) with millions of mobile clients, only a
small subset of clients participate in training in every communication round, and
Federated Averaging (FedAvg) is the most popular algorithm in practice. Exist-
ing analyses of FedAvg usually assume the participating clients are independently
sampled in each round from a uniform distribution, which does not reflect real-
world scenarios. This paper introduces a theoretical framework that models client
participation in FL as a Markov chain to study optimization convergence when
clients have non-uniform and correlated participation across rounds. We apply
this framework to analyze a more practical pattern: every client must wait a min-
imum number of R rounds (minimum separation) before re-participating. We
theoretically prove and empirically observe that increasing minimum separation
reduces the bias induced by intrinsic non-uniformity of client availability in cross-
device FL systems. Furthermore, we develop an effective debiasing algorithm for
FedAvg that provably converges to the unbiased optimal solution under arbitrary
minimum separation and unknown client availability distribution.

1 INTRODUCTION

The massive amounts of data generated on edge devices such as cellphones or sensors offers an op-
portunity to train machine learning (ML) models for various applications. However, communication
and privacy constraints of edge devices preclude the transfer of raw data to the cloud. Federated
learning (FL) (McMabhan et al., 2017; Kairouz et al., 2019; Li et al., 2020a; Yang et al., 2019) has
emerged as a powerful framework to operate within these constraints by keeping decentralized data
on the edge devices and instead moving model training to the edge. Federated model training oper-
ates in communication rounds. In each round, the current model is sent by the central server to edge
clients, which perform model updates using their own local data, and the resulting models are then
averaged by the central server. A typical cross-device FL framework consists of millions of inter-
mittently connected edge clients, in each round only a small subset of them participate in training
(Bonawitz et al., 2019). The subset of participating clients is affected by devices’ intrinsic properties
such as battery status and network connectivity, and also system induced constraints for efficiency
and privacy. In this paper, we seek understand the effect of such client participation patterns on
convergence of federated training.

The federated averaging (FedAvg) algorithm and its variants are widely used in practice (Kairouz
etal., 2019; Wang et al., 2021; Hard et al., 2018; Xu et al., 2023), and the convergence has been ex-
tensively analyzed in literature (Li et al., 2020b; Woodworth et al., 2020; Wang et al., 2022; Karim-
ireddy et al., 2019; Wang & Joshi, 2021; Wang et al., 2020). However, most works assume uniform
client participation which ensures that the model update applied to the global model is an unbiased
estimate of the model update in the full client participation setting. This enables convergence results
for the full-participation setting to be extended to the partial participation setting resulting in an ad-
ditional variance term appearing in the convergence bound (Jhunjhunwala et al., 2022; Karimireddy
et al., 2019; Wang et al., 2020). A generalization of the uniform client participation model is to
consider that each client has an intrinsic availability probability p; that is either known or unknown
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to the central server. The set of participating clients is chosen according to this probability. Such
non-uniform client participation introduces a bias in the model updates received by the server, with
more frequently participating clients dominating the average update. To counter the bias, the central
server can normalize the updates by the corresponding availability probabilities (Wang & Ji, 2022;
Cho et al., 2022) or their estimates (Wang & Ji, 2023; Ribero et al., 2022). We consider the setting
of unknown client availability and analyze the convergence.

Both the uniform and non-uniform client participation models described above assume that client
participation follows a Bernoulli process that is independent across clients and rounds. This assump-
tion fails to capture practical settings where the client participation are correlated across rounds due
to memory or time-dependence constraints. In cross-device FL systems, a device can only be avail-
able for training when it is plugged in for charging, connected to unmetered network and not being
actively used by the owner (Hard et al., 2018; Paulik et al., 2021; Huba et al., 2022). These criterion,
which typically occurs during the night of the devices’ local time, not only results in the client avail-
ability probability for non-uniform client participation, but also correlated client participation of a
periodic pattern due to user preference and time zone (Kairouz et al., 2019; Eichner et al., 2019; Zhu
et al., 2021). More recently, a new criteria is introduced on devices in a FL system to impose a min-
imum separation constraint on successive participation instances of a client (McMahan & Thakurta,
2022; Xu et al., 2023). Specifically, once a client participates in training, it cannot become avail-
able to participate for at least R more rounds (R specified by the central aggregating server). The
minimum separation is introduced to effectively combine differential privacy (DP) and FL (Kairouz
et al., 2021; Choquette-Choo et al., 2023; McMahan et al., 2024) as advanced privacy-preserving
methods, and quickly becomes the default criterion in many FL applications (Xu et al., 2023; Xu &
Zhang, 2024). The client participation across rounds are correlated under the minimum separation
criterion, and the extreme case of very large R will force cyclic client participation as studied in (Cho
et al., 2023; Malinovsky et al., 2023). However, setting R to be the exact value for cyclic client par-
ticipation can be challenging and may cause system slowdown, and these recent work did not study
non-uniform client participation or the large spectrum of minimum separation R in practice. Other
existing convergence analyses of federated training with generalized client participation (Wang &
Ji, 2022; Rodio et al., 2023) do not fully explain the effect of such correlated client participation
patterns, calling for new theoretical advances. See Appendix A for more related work discussions.

In this paper we bridge the gap of algorithms in practical FL system and the theoretical guarantees
on their convergence with correlated client participation and unknown client availability. Our paper
makes the following key contributions: (1) To the best of our knowledge we are the first to ana-
lyze the convergence of FedAvg with a minimum separation constraint on successive participation
instances of each client, which is a general setting widely used in practical FL systems. We show
that such correlated participation patterns can be captured by a Markov chain model. (2) We show
that as the minimum separation R increases, the effective client participation probabilities become
more uniform and reduces the asymptotic bias in the solution attained by the FedAvg algorithm. (3)
We propose a debiased FedAvg algorithm that estimates the unknown client participation probabil-
ities and incorporates them in the local updates. We prove that this algorithm achieves an unbiased
solution that is consistent with the global FL objective under arbitrary minimum separation R.

Notations: For any positive integer N, we denote [N] = {1,...,N}. Let || - ||, | - |l and || - ||oo
denote ly-norm, l;-norm and l..-norm, respectively. For an ordered sequence {i1, ... i}, it is
represented by (i1,...,17;) and we use the same notation for a vector when the context causes no
confusion. Unless otherwise specified, E(-) means the total expectation taken on all randomness.
We use c to denote the vector where all entries are c¢. The d-dimensional Euclidean space is denoted
by R%, and Ri is the space formed vectors where every entry is strictly positive.

2 PROBLEM FORMULATION

We consider the federated learning setting where N clients cooperate to minimize the following
global objective:

: 1 o
min F(zx):= N Zfz(x) (1)
i=1

where f; is the local objective function of client ;. We aim to solve problem equation 1 in the fed-
erated learning setting, i.e., the system implements the some federated learning algorithm which
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operates in rounds. In each round, a subset of the clients participate in training, and each of the
clients in the subset performs multiple local updates based on the local gradients and then commu-
nicates with the server.

Non-uniform and correlated client participation. In this paper, we consider the scenario where
each client requires some resting periods between participation and hence the participation pattern
is correlated over time. Specifically, once participating in the system, an client has to wait as least
R rounds until its next participation, where R is called the minimum separation. In other words,
suppose client ¢’s last participation is in round ;. It may join again at any round ¢ witht > ¢;+1+ R
and not before then. Moreover, when a client is available to be sampled, instead of assuming uniform
sampling, we consider that each client is associated with some unknown strictly positive scalar
p; > 0 to characterize its intrinsic willingness to be sampled at every round. Without loss of
generality, we assume 27]\;1 p; = 1 and hence refer to p; as the availability probability of client
1. Therefore, the client participation pattern is as follows: at each communication round, client ¢ is
sampled to participate in the training process with probability proportional to p; if it has waited for
R rounds after its last participation; otherwise client ¢ cannot be sampled.

The above setting encompasses many of those in existing literature as special cases. For instance,
note that R = 0 means each client is sampled at every round with probability p; independently,
which is consistent with (Wang & Ji, 2023). And the cyclic participation corresponds to the case
R = % — 1 where B number of clients are sampled in each round (Cho et al., 2023), assuming the
total number of clients in the FL population NV is divisible by B. We investigate the potential bias in-
troduced by the non-uniform and correlated client participation on federated algorithm performance
and propose debiasing scheme to mitigate it.

3 MARKOV CHAIN MODEL AND ITS PROPERTIES

In this section, we propose a Markov chain model to capture the correlated participation scenario
described above. Intuitively, the fact that every client cannot be sampled again within R rounds
motivates us to maintain a memory window with length R to track which clients have not waited for
R rounds. In other words, clients that are possible to be sampled in the current round only depend
on which clients appearing in the memory window. This calls for a Markov chain with R-memory,
also known as R-order Markov chain, defined as below.

Definition 1. Let {X;}°, be a stochastic process where X, € X,¥t > 0. It is said to be an
R-order Markov chain if

P(Xy | Xo1, Xo—0, ..., Xo) = P(X; | X4_1,..., Xi_R), Vt > R.

X is called the state space.

If R = 1 itreduces to conventional Markov chain; if R = 0, then the clients can be sampled at each
round with probability p;, independent of the history. In a conventional Markov chain (with R = 1)
with finite state space X, we can use the transition probability matrix P to represent the Markov
chain, where the (¢, j)-th entry of P is [P]; ; = P(Xy = j | Xy—1 = 1), i.e., the probability of
transitioning from state ¢ to state j.

Recall that each client ¢ is associated with a strictly positive availability probability p; > 0,Vi €
[N]. At each round ¢, the server samples a size-B subset of clients S;, where |S;| = B, with
probability for each client proportional to p; to join the training system. Note that only clients
that have waited for R rounds are available. In other words, set S; is sampled with probability
proportional to ), s, Pi from all subsets of size B formed by the available clients. We assume
N = MB for some M > 0 and note that the minimum separation R ranges from 0 to M — 1,
where R = M — 1 corresponds to a cyclic participation pattern where subsets of clients participate
in training in a fixed order.'

Denote X as the collection of all possible ordered subsets of [N] with exactly B elements. Then,

|X| = o(N, B) where o(N, B) = c — !B), represents the total number of B-permutations of [V].

'Any R > M — 1 would resulting in periods with insufficient available clients. We do not consider those
cases here.



Published as a conference paper at ICLR 2025

Considering the stochastic process { X;}i2, where X; € X, the participation pattern in Section 2
can be precisely described by an R-order Markov chain defined in Definition 1. Formally,

PXy =Ty | X1 =11, X4—0=1s,...,X0=1;) =P( Xy =Ty | X1 =T1,..., X4_r =1IR)

2)
where each state 7, € X represents which ordered subset of size B has been sampled at round
k. For example, suppose clients 1 to B are sampled during the current round. (1,2,...,B) and

(2,1,3,...,B) are two different states, although the probability of these two states to appear is
the same. The reason we consider this ordered case is that it allows us to cleanly define the
probability of client 4 to be sampled (which is the marginal distribution of P(X;)) by noting that
P(ito be sampled atround t) = >, P(X; = (i,4,...,ip)). Here we calculate the prob-
ability of client ¢ appearing as the first element in the ordered set X;. The probability of ¢ being
sampled in any position would need an additional scaling factor of B. Since the scaling factor B
is the same for all clients and only the relative frequency across clients contribute towards any bias
effect, ignoring this factor of B would not affect the debiasing calculation.

The above high-order Markov chain equation 2 has some nice properties as summarized below (see
Appendix C for proofs). The insights are important for deriving Theorem 2, which is the reason we
formally present them here.

Proposition 1. The R-th order Markov chain equation 2 maintains the following properties:
(1). The ordered sequence (Zy, 11, . ..,IR) is non-repeated, meaning T; N Ty, = O,V # k.
(2). For any non-repeated (Zo, ...,ZIR),

PXie=Ty| Xe-1=T1,...,.Xt-r=1Ip) = = =1D(@,... Tr)>To- 3)
ZJESL R pj

Otherwise P(X; = Ty | Xe—1 = T1,...,Xi—r = Ir) = 0. Since Iy, is a set with B unique

elements, we define pz, = HeGIk Pe, VIy. ST, . is the collection containing all B-permutations of

N\ Uiz i

(3). Fort > R — 1, define Y; = (Xy4,...,X¢_ry1) € RE. Then {Y,}2 1 is a conven-
tional Markov chain with its cardinality of the state space being d(M, R), where d(M,R) =
5;01 o(B(M — k), B). Moreover its transition probability is

, =T, ke|R—-1
P(Y, = (Zo,J1,-...Jr-1)|Ys-1 = (L1, ..., IR)) = { p(Il"”gR)_’IO T Otkilel“WiS[e ]

4)
Sor any non-repeated (Lo, . .., Ig).

(4).  Define vector wz,, . 15 € RIME) spith (Lo, Ty,...,Lp_1)-th entry as P(Y; =

Io,I]_, . ,IR,1 }/tfl = Il, . ,IR . Then, U(T,.... T S RU(B(]WiR)’B) - Rd(]V[’R) and
(Z1,.-,IR) +

u(Ih...,IR)[(I(h cee aIR—l)] = D1, (ZjeS%LR pj)il > Ovvzo € SELR'

(5). Denote v(g,. .. 7, ,) € RAIME) spith (1, Ta, - .., Tr)-th entry as P(Yy = (Jo, ..., Tr-1) |
Yio1 = (jlaj27 e 'ajR)) Then, VT, s TR) € Ri(B(M_R)7B) and v(jow--,ijﬂ[(jlv . '7jR)] =

PTo (Zjesf'n:R pg)~t > 0forany Jg € 55, .-

Properties (1),(2) essentially state that clients to be sampled in the current round cannot be those
who have not waited for R rounds, which establish the equivalence of our Markov-chain modeling
equation 2 and the participation pattern in Section 2. Property (3) means that we can augment
our state space by considering R-length history to formulate an equivalent Markov chain {Y;}7°
with order 1. The last two properties explicitly shows what entries are for each row and column
of the transition probability matrix of the new Markov chain {Y;}7° .. Also since there are only
o(B(M — R), B) < d(M, R) non-zero entries in every row and column, the transition matrix is
sparse.

A main benefit of this Markov-chain modeling is allowing us to look into the probability of each
client to be sampled as ¢ goes on. Specifically, given any R, denote Pr € R M R)xd(M.E) 45 the
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transition probability matrix of the Markov chain {Y;}$° , where its entry is given by equation 4.
Let pp(t) € RYME) be the state distribution at round ¢ of the Markov chain {Y;}° ,, and ng(t) €

R¥ be the distribution of clients to be sampled at round ¢. We have the following evolution of
distributions with respect to ¢:

nr(t) = Qhor(t), ¢r(t+1) = PLog(t) (5)

for any initial distribution 7z (0) and corresponding ¢r(0) such that nr(0) = Q%L¢r(0), where
Qr = Qr1Qr2and Qg € RIMB)xo(N.B) g defined by

| pa...z)»7 > {JT,Ti,...,Ir} non-repeated
[Qva](Ilr-wlahj _{ @ OR)H , otherwise.

and Qg o € RIW:B)XN jg defined by

1

wmbdz{ov J = (j,*)

, otherwise,

where J = (7, %) denotes that the first entry of Z is j. We are particularly interested in the distribu-
tion of g (t) as t — oo because it helps us characterize the asymptotic performance of existing FL
algorithms. From classical Markov chain literature, we know that if a Markov chain is irreducible
and aperiodic (see formal definitions in Appendix B), it has a stationary distribution which is unique
and strictly positive. We denote (g = lim;_, o ¢ (t) as the stationary distribution of Markov chain
Ppr and we have

(h=CkPr, 7h=ChQr. (6)

where m € RY is marginal stationary distribution of clients to be sampled, i.e., the i-th entry of 75
is given by 7%, = lim;_, 7% (t). On the other hand, if the Markov chain is irreducible and peroidic,
we let (i be the Perron vector?, which is also strictly positive. We now show our Markov chain
is irreducibile and (a)periodic to justify the definitions of (r and 7w in Lemma 1. The proof is in
Appendix C.

Lemma 1. The Markov chain {Y;}2 p with transition matrix Pr defined by equation 4 is irre-
ducible forall M > 1 and 0 < R < M — 1. Further, when R < M — 2, it is also aperiodic.

We provide an example to illustrate the intuition of our Markov-chain model above, considering the
case of N = 4, B = 1, R = 2, i.e., every round one client is sampled, then it has to wait for two
rounds. For instance, if client 1 and client 2 are consecutively selected in the first two rounds, in the
third round only client 3 or 4 can be selected with probabilities of p3/(p3 + p4) or pa/(p3 + p4)
respectively. Then, the state (2, 1) can only transition to (3,2) or (4,2), where the second index
is sampled before the first one as is in equation 2. Similarly, if we are currently at state (1,4), the
previous state has to be (4, 3) or (4,2). One can easily check that Proposition 1 holds. To see how
w is calculated, we take the first entry of 7 as an example:

i = (P23 514HCB a4 1+ ps.2) 51 P34y 1+ PP 2) s+ pras) o
by noting that the remaining p(; ;.1 = 0, ifior j = 1.

The vectors in equation 6 characterize the final distribution according to which clients will be sam-
pled when the communication round ¢ becomes infinitely large. In other words, each client ¢ is
sampled with probability 7%, given some fixed R. Although 7/ is the uniform distribution no
matter what p;’s are (by observing that all clients follow a cyclic participation), we note that 7
for R < M — 1 does not necessarily follow the uniform distribution, because {p1,...,py} are
arbitrary. This will be problematic in the sense that existing federated learning algorithms may no
longer guarantee convergence to the correct and optimal solution of equation 1 no matter how many
rounds of training are implemented. We call this phenomenon the asymptotic bias induced by 7R.
We will characterize both empirically and theoretically this phenomenon in the next section.

>We say v is the Perron vector of the transition matrix P if vT = v7 P, i.e., v is right eigenvector of P
corresponding to eigenvalue 1 and v”'1 = 1.
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4  ASYMPTOTIC BIAS UNDER NON-UNIFORM CORRELATED PARTICIPATION

In this section, we utilize the Markov chain model in the previous section to analyze asymptotic bias
of existing federated learning algorithms caused by R < M — 2 and arbitrary p;’s. In particular,
we consider FedAvg with local gradient descent updates, i.e., at each round, a set Sy with |S;| = B
clients are sampled and after being selected client ¢ updates its model as

xi’o = x4, xi}kﬂ = x;‘;’k — ani(xf;,k), k=0,..., K—-1 @)

where z; denotes the server’s model at round ¢ and % , is the local model maintained by client 7 at

k-th iteration. The server then updates x;,1 = % Doic s, x; - We next show in the following that
FedAvg may not converge to the desired optimal solutions of equation 1. Instead there may exist
some error neighborhood, i.e., the asymptotic bias, that is related to wg, even as ¢ goes to infinity.
Before we formally deliver the result, two standard assumptions are needed.

Assumption 1. There exists G > 0 such that |V f;(z) — VF(x)|* < G?,Vz and Vi € [N].
Assumption 2. Each f; is L-smooth, i.e., |V fi(z) — V fi(y)|| < L||z — y||,Vx,y and Vi € [N].
Then we are ready to state the convergence of FedAvg under correlated client participation (see
Appendix F for the proof).

Theorem 1. Suppose Assumptions 1,2 hold and assume |V F(x)|| < D, Y with some finite D > 0.
Then for any T > 27, 10g Tinie choosing a = O(l/(TmmKﬁ)), FedAvg with local updates
equation 7 generates the trajectory {xt}tT:_Ol satisfying

~ 2 ~ [ Tmiz 1 1 2
BIVFGnIP <0 (22 ) +0 (1) +0 (lmn - xl?). ®)
forany 0 < R < M — 1, where Zp is drawn uniformly from xg, ..., xp_1, @() hides logrithmic

actors, and Ty, denotes the mixing time>of Markov chain equation 5. Moreover, the bias term
g q
2 . . . .
(’)(Hﬂ'R — %INHl) shown in equation 8 is unavoidable.

Theorem 1 implies that without any debiasing technique, FedAvg can only converge to a solution
with unavoidable asymptotic bias which is measured by the distance between 7 (defined in equa-
tion 6) and the uniform distribution. Except for R = M —1, where 7, is the uniform distribution,
for R < M — 2, there is generally some gap between 7 and (1/N )1y, which shows that FedAvg
may fail to perform under correlated client participation. However, if 7 is not too far away from the
uniform distribution, we expect FedAvg to converge to a solution reasonably close to the optimal so-
lution of equation 1. We next investigate what factors influence the distance from 7y to the uniform
distribution. We find that one factor is the spread among p;’s. Stated by the following proposition,
if all p;’s are equal, no gap between 7z and (1/N)1y exists (see Appendix D for the proof).

Proposition 2. Suppose py =ps =+ =py = % Then forany0 < R< M — 1, mgp = ﬁlN.

When p;’s are not equal to each other, we turn to understand how R affect 7. In fact, we em-
pirically observe that mr approaches the uniform distribution as R increases. This key observation
is illustrated in Figure 1. We consider the case where N = 500, B = 1 and assign each client
a random p; > 0. We then calculate 7 for each R ranging from 0 to N — 1 and measure its
distance from the uniform distribution. As shown in the figure, increasing R causes mr moving to-
wards the uniform distribution. One explanation for this observation is that when R becomes larger,
fewer clients are ready to be sampled in the current round, because many clients have not waited
for enough rounds and hence are not available. Rather than dictated by the availability probabil-
ity p;’s, which is the case for a small R and many available clients, here the sampling process is
mostly determined by the waiting requirement. In the extreme case, when R = M — 1, at each
round, only B clients are available, hence all clients are sampled with equal frequency. Another
point suggested by this observation is that we can choose a large minimum separation R in the
practical scenario to reduce the asymptotic bias for existing FL algorithms, even with unknown p;’s.

3Please refer to Appendix B for the formal definition of the mixing time.
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Algorithm 1 Debiasing FedAvg for correlated client participation

1: Input: initial point xg, stepsizes {a}, some 7 > 0, \g = O, t; = 0,Vi € [N] for each client

2: fort =0,1,...,7T do

3: A batch of clients S; with size |S¢| = B is selected. The server sends current ¢ and model x;
to clients in .S;.

4:  fori € S, in parallel do

5: Each client sets #; < t; + 1 and calculates A} = —%— and v} =

6

7

(t+1)B NiN®
fork=0,1,...,K —1do
Client ¢ updates its local model by

Tiwpr = Tk — Vil ). ©)
8: end for
9:  end for _
10:  The server updates its model 7,11 = £ >, 5, Ttk

11: end for
12: Output: Z7 sampled uniformly from {x;}7 '

The above empirical observation verifies the formal the- 07

orem that characterizes the debiasing effect of increasing
minimum separation R in Theorem 2. (see Appendix D
for the proof).

norm(rmg - unif(N))

Theorem 2. Given a set of p;’s, with at least one ele-

ment p; % % Without loss of generality, let py,...,pB

be the B smallest values among all p;’s. Define qp :=
B . <

Zj:1 pj, then qg < 1/M. There exists a § > 0, T T R R

such that if any size-B batch of clients B; picking from minimum separation R

1 -
INTA [B] 65 = |Zl€5y‘ p— sl < 0 then mp Figure 1: |[mr—1n/N||1 as R increases
converges to a neighborhood of %1 N characterized by (N = 500, B = 1)

{r]lm = %1nli = O(NY)} as R ranging from 0 1o

M — 1. When R = M — 1, wpr—1 is the uniform distri-

bution supported on [N].

Theorem 2 states that when the availability probabilities p;’s of clients are not too far away from
each other or when B is relatively large (i.e., J;’s are small for all j), and when the total number
of clients [V is large, mr approaches the uniform distribution as R increases. It is worth noting that
practically when the requirements in Theorem 2 are not strictly satisfied, the effect of increasing R
on TR can be still observed as shown in Figure 1.

5 DEBIASING FEDAVG AND ITS CONVERGENCE

As we discuss in the previous section, existing federated learning algorithms like FedAvg cannot
guarantee convergence to the correct optimal solution if R < M —2 and p;’s are arbitrary. Although
we can reduce the asymptotic bias caused by 7 by increasing R, it may still be problematic under
some particular circumstances. Clients have intermittent and non-uniform availability, and forcing
a large minimum separation R in practice may cause significant slowdown of the training in the FL
system due to the small number of available clients. The minimum separation R can be relatively
small and the p;’s can be very different from each other, which then suggests by Figure 1 and The-
orem 2, mr can be far from the uniform distribution, making the asymptotic bias non-negligible.
We next design a debiasing process that can be easily integrated into the existing federated learn-
ing algorithms to address asymptotic bias. Our proposed algorithm based on FedAvg is given by
Algorithm 1.

The main difference between our algorithm and vanilla FedAvg lies in the stage of local updates
(Lines 5 and 7). Specifically, we require each client to maintain an estimator of its corresponding
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component of 7, which is only updated when the client is sampled. This estimator is later used to
scale the gradient step during the local update. The estimator is designed by counting the times the
client has been sampled and then used to compute the running empirical frequency of the client’s
participation. Recall that 7% represents the frequency of client i to be selected when ¢ is large enough
(i.e., when the Markov chain equation 5 becomes steady, meaning ¢r(c0) = (g). If we reweigh the
local objective function f; by 7% (corresponding to v} = N in equation 9), this weighting cancels
the asymptotic bias introduced by unbalanced sampling, which drives the trajectory of the server’s
models towards the correct solution of equation 1. If we know 7%, for every client in prior, the
above-mentioned reweighting method provides us with unbiased solutions. Then, \? serves as a role
to iteratively approximate 7% round by round, which yields Algorithm 1. Also note that Algorithm
1 reduces to FedAvg if fixing \i = 1/N,Vi € [N]. This shows the advantage of our algorithm:
it is computationally cheap in the sense that each client only maintains two additional scalars (A
and v}) and can be easily embedded with existing algorithms by just multiplying the learning rates
by vi. We note that other federated algorithms suffering from asymptotic bias due to non-uniform
sampling could also benefit from our debiasing technique based on simple counting.

However, formally characterizing the convergence of v} to remains challenging due to the

samples of clients are not independent across different rounds. In particular, the clients sampled
in the current round may affect those in the future, which makes the conventional concentration
tools and law of large numbers not applicable. To address this challenge, we carefully analyze the
transition of the Markov chain equation 5 and its influences on the marginal distribution of clients
to be sampled to conclude that A is an unbiased estimate of 7% asymptotically. Then, we further
leverage the fact that the Markov chain is irreducible as stated in Lemma 1 to show that \? is almost
surely strictly positive even ¢ is infinite, concluding the convergence of v/} to —*~, as summarized

WEN ’
in Lemma 2 (see Corollary 2 in Appendix G for the proof).
Lemma 2. Given \g = Oy, then v},Vi € [N] in Algorithm 1 satisfies
E|l7|% < 0 (75
for any t > 0, where v} = v} — ﬁ and vy = (U}, ..., 0}); Tmix is the mixing time of Markov

chain equation 5.

Based on the above, we can achieve the following convergence result of Algorithm 1 (see Appendix
G for the proof).

Theorem 3. Suppose Assumptions I and 2 hold. Forany 0 < R < M —1andT > iz 108 T
(with ¢t being some constant), choosing a« = O(1/(Tmin KNT)), the output of Algorithm I satisfies

E|VF(ir)|> = O (%) +0 (%)

where T is defined as that in Theorem I; Ty, 1S the mixing time of Markov chain equation 5.

Comparing to Theorem 1, no bounded gradient assumption is needed to reach the convergence
of our algorithm. Unlike the result in (Cho et al., 2023) where clients are forced to participate
in the system cyclically, our bound shown in Theorem 3 does not grow as the number of clients
increases. Particularly, for the bounds in (Cho et al., 2023) to be non-vacuous, the total number of
communication round 7" should be proportional to the number of clients, which could be hard to
satisfy in practice especially when client number is super large. To prove Theorem 3 we critically
rely on the fact that the Markov chain equation 5 is aperiodic to make analysis go through. That is
to say our bound does not suit for R = M — 1, which is the limitation of our analysis. However,
since R = M — 1 is the cyclic case, where the Markov chain follows much nicer structure, one may
be able to get a better bound (Cho et al., 2023).

We remark that our convergence result achieves nearly the same order of rate as Markov-sampling
SGD literature (Beznosikov et al., 2024; Even, 2023) (where rates of O(m / VT + Tz T)
are obtained). However, their analysis only suits for the first-order Markov chain and no debiasing
results are presented, while our results generalize to high-order Markov chain and guarantee ap-
proaching unbiased solutions. We note that utilizing variance-reduced techiques may accelerate the
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convergence rate for Markov-sampling SGD (Even, 2023). Then whether variance reduction can be
used in our problem to design faster algorithms would be an interesting future direction.

It is worth noting that although a uniform minimum separation R for all clients is placed throughout
the paper, we also allow each client maintains its own specific R;,Vi € [N]. In this more general
case, we could still use the same modeling technique as in Section 3 where the order of the Markov
chain is chosen to be an upper bound of all R;’s (e.g. max; R;). Then Theorems 1 and 3 can
be obtained without any modification as the analysis stays valid for any irreducible and aperiodic
Markov chain. However, Theorem 2 becomes tricky in this case as our proof highly relies on nice
properities of the Markov chain summarized by Proposition 1 which now cease to hold. Therefore,
more advanced mathematical tools might be needed in order to obtain similar statements as Theorem
2 when clients have various R;’s.

6 NUMERICAL RESULTS

In this section, we provide numerical experiments to illustrate our theoretical results. In particular,
we compare vanilla FedAvg with our proposed algorithm (Algorithm 1) under non-uniform and
correlated client participation described in Section 2. For simplicity, we partition the NV clients into
M groups and exactly one group of clients are selected at each round to fully participate in the
system. Here we choose N = 100, M = 20. Since all clients in the same group participate in
the system together once being sampled, we only need to associate availability probabilities to each
group, where p; oc i =157 € [M] is a long-tailed distribution.

Synthetic dataset. We test Vanilla FedAvg and Debiasing FedAvg (Algorithm 1) under a synthetic
dataset constructed following (Sun & Wei, 2022): for each client i, A; € R™*4 ig the feature
matrix, where n; is the number of local samples and d is the feature dimension. Every entry of A;
is generated by a Gaussian distribution A(0, (0.5:)~ d) We then generate b; € R™, the labels of
client 7, by first generating a reference pomt 9 € R%, where 0; ~ N(u;, I4). And p; is drawn
from N (a, 1) with « ~ AN(0,100). Then b; = A; 9, + € with € ~ N(0,0.251,,). We set
d = 20,n; = 100,Vi € [N]. And we define f;(z) = ,%Z?:l log(% ((A 7], z) + b; )%+ 1)
where A;[j,:] represents the j-th row of A; and b;[j] is the j-th entry of b;. The outcomes are
shown in Figures 2a,2b, where Figure 2a shows that Vanilla FedAvg suffers from bias which can be
mitigated by increasing R, and Figure 2b shows that Debiasing FedAvg effectively reduces bias no
matter what value of R is set.

MNIST dataset. We also test our proposed algorithm under the MNIST dataset. Each client
maintains a three-layer fully-connected neural network for training. All learning rates are chosen to
be with the order of O(10~3). In Figure 3c, we compare Debiasing FedAvg with Vanilla FedAvg
and FedVARP (Jhunjhunwala et al., 2022), and Debiasing FedAvg can effectively mitigate the bias
effect. Another interesting empirical observation is that increasing R can possible fasten the speed
of both Debiasing and Vanilla FedAvg (as shown by Figures 3a,3b). This is yet not characterized by
our theoretical demonstration. Here we conjecture that larger R corresponds to smaller mixing time
Tmiz and hence faster rate as the bounds in Theorems 1,3 scale with respect to 7,,,;,. We provide
more detailed and intuitive discussions in Appendix I.

7 LIMITATIONS

Our Markov-chain framework works for that all clients share the same static minimum separation
R and in the last paragraph of Section 5 we further allow static client-specific R;’s. However,
more practical scenarios call for even time-varying R, which lies outside the scope this paper. In
Theorem 2, we force the availability probabilities p;’s not too far away from each other to make the
theory hold, while this assumption is not required in practice. Moreover, Theorems 1,3 do not enjoy
speedup in the number of clients as FL literature when clients are uniformly sampled. We believe
it is mainly due to the non-uniformity and time-correlation of the client sampling process and more
advanced mathematical tools are needed to show speedup in the Markov setting.

Many of the challenges in cross-device federated learning can also be addressed by system design in
addition to algorithm design. For example, incorporating trusted execution environment (TEEs) in
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Figure 2: Experiments on synthetic dataset. (a) The training loss of Vanilla FedAvg (after conver-
gence) with different R is shown. Larger R leads to smaller bias. (b) Debiasing FedAvg is tested
under different values of R, where the red line represents Vanilla FedAvg when clients are sampled
under an oracle uniform distribution. The subfigure on the right shows that all curves reach unbiased
objective after convergence, indicating that the asymptotic bias is effectively canceled.
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Figure 3: Experiments on MNIST. (a) The convergence of our Debiasing FedAvg under different
client minimum separation R configurations. The red horizontal line is the convergence value of the
objective function by vanilla FedAvg when clients are sampled under an oracle uniform distribution.
Our Debiasing FedAvg converges to the unbiased objective with larger R converges faster. (b) For
Vanilla FedAvg, increasing R causes smaller bias. (¢) When R = 8, Vanilla FedAvg, FedVARP and
Debiasing FedAvg are compared. Note that both Vanilla FedAvg and FedVARP are designed only
for uniform client sampling and hence are significantly affected by bias from client participation.

the FL system (Huba et al., 2022; Daly et al., 2024) can potentially provide more control on client
sampling.

8 CONCLUSION

In this paper, we consider FL. with non-uniform and correlated client participation, where every
client must wait as least R rounds (minimum separation) before participating again, and each client
has their own availability probability. A high-order Markov chain is introduced to model this prac-
tical scenario. Based on this Markov-chain modeling, we are able to study the convergence per-
formances of existing FL algorithms. Due to the effect of non-uniformity and time correlation, FL.
algorithms can only converge with asymptotic bias, which can be reduced by increasing minimum
separation R as shown by our empirical and theoretical results. Finally, we propose a debiasing algo-
rithm for FedAvg that guarantee convergence to unbiased solutions given arbitrary non-uniformity
and minimum separation 2.
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A RELATED WORK

Non-uniform & correlated client participation. There is a recent surge of efforts to investigate
FL with non-uniform client participation both from theoretical and empirical perspectives. Earlier
work presumes that clients are sampled by the server uniformly, which guarantees the global model
held by the server is an unbiased estimate as that in the full participation setting and hence allows
extension of convergence results for the full-participation setting to the partial-participation setting
(Jhunjhunwala et al., 2022; Karimireddy et al., 2019; Yang et al., 2021; Bian et al., 2024). The
above-mentioned uniform participation is, however, far from the reality as clients may have their in-
trinsic sampling probabilities p;’s that are non-uniform due to, for example, intermittent availability
resulting from practical constraints. Recent works analyzed the convergence behaviors of FL algo-
rithms when such p;’s are known as a prior or controllable (Wang & Ji, 2022; Karimireddy et al.,
2019; Chen et al., 2020; Fraboni et al., 2021). However, pointed out by (Bonawitz et al., 2019; Wang
et al., 2021), client participation pattern can highly depend on the underlying system characteristics,
which is thus hard to know or control. As characterized by (Wang & Ji, 2022; Xiang et al., 2024),
such unknown and non-uniform participation statistics causes a bias in the model updates as more
frequently participating clients dominate the average update. In order to mitigate the effect of bias,
(Patel et al., 2022; Ribero et al., 2022; Wang & Ji, 2023) introduced reweighting mechanisms com-
bined with dynamically estimating client participation distributions. Such idea is also introduced
in asynchronous distributed learning literature (Ram et al., 2009). Most works aiming at analyzing
non-uniform participation, however, rely on the unrealistic assumption that every client participates
in the system independently, which fails to capture practical scenarios where each client’s partici-
pation is influenced by others across rounds(Kairouz et al., 2019; Eichner et al., 2019; Zhu et al.,
2021). One interesting time-correlated participation pattern is that clients have to wait for at least
R (called minimum separation) rounds between consecutive participation (McMahan & Thakurta,
2022; Xu et al., 2023). In particular, imposing a minimum separation constraint has been empiri-
cally shown to benefit privacy preservation in FL applications (Kairouz et al., 2021; Choquette-Choo
etal., 2023; Xu et al., 2023; Xu & Zhang, 2024). Instead, such time-correlated participation has not
been fully investigated theoretically. The only work that partially captures the above case is (Cho
et al., 2023) where the clients are forced to follow a cyclic participation, which is an extreme case of
very large R. Therefore, in this paper we study convergence performances of FL algorithms under
non-uniform and correlated client participation, which provides theoretical explanations for their
empirical counterparts in practice.

Stochastic optimization with Markov-sampling. Another line of related works is stochastic
gradient-based optimization under Markov-sampling. Unlike classical stochastic optimization lit-
erature where i.i.d. samples are drawn during the training process (Allen-Zhu & Hazan, 2016;
Allen-Zhu, 2017; Johnson & Zhang, 2013; Defazio et al., 2014), many contexts, including TD-
learning and reinforcement learning (RL), require to optimize the objective function by utilizing
samples generated by a Markov chain (Tsitsiklis & Van Roy, 1996; 1999; Bhatnagar et al., 2007;
Sutton et al., 1999). Recently, the work (Even, 2023) provided convergence guarantees for SGD
under Markov-sampling when the objectives are convex, strongly convex and non-convex. Then
(Beznosikov et al., 2024) further proposed an accelerated method and generalized the analysis to
variational inequalities. Both of them restrict on the first-order Markov chains. It has been shown
by literature that gradient-based methods converge to the optimal solution of the objective induced
by the stationary distribution of the underlying Markov chain (Even, 2023; Beznosikov et al., 2024).
This indicates that the final solution is biased if the stationary distribution is non-uniform and ex-
isting literature cannot deal with such bias problem. In contrast, in this paper our analysis suits
for higher-order Markov chains and the proposed algorithm enables the convergence to an unbiased
solution without any information and constraint on the Markov chain and stationary distribution.

B PRELIMINARIES OF MARKOV CHAINS

In this section, we summarize several notions and properties of the conventional Markov chain (i.e.,
first-order Markov chain). We only focus on finite Markov chains, meaning the state space is finite.
Note that for a finite Markov chain, we can use its transition matrix to uniquely represent it.

Definition 2. Given a finite Markov chain with transition matrix P, we say it is irreducible if its
induced graph is strongly connected, i.e., every state can be reached from every other state.
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Note that [P*];. ; is the probability transiting from state ¢ to state j with exactly k steps, based on
which we introduce the definition of aperiodic and periodic Markov chains.

Definition 3. The period of state i is the greatest common divisor (g.c.d.) of the set {k € N |
[Pk]m' > 0}. If every state has period 1 then the Markov chain is aperiodic, otherwise it is periodic.

In order words, the period of state ¢ can be achieved by calculating the g.c.d. of the number of steps
starting from ¢ and returning back. If the Markov chain is also irreducible, we have the following.
Lemma 3. If the Markov chain is irreducible, every state has the same period.

Next important result states the convergence of the Markov chain.

Lemma 4. Suppose a finite Markov chain with transition matrix P is irreducible and aperiodic.
Then, there exist some p € (0,1) and C > 0 such that

max [|P*(z, ) — 7| v < Cp"

where T is the unique, strictly positive stationary distribution; || - || v denotes the total variation.

Lemma 4 implies that starting from any initial distribution, the Markov chain converges to
the stationary distribution at linear rate. Without confusion, we denote dry (P*, 171) =
max, | P*(z,-) — 7|lrv. Note that dpy (P*,177) = 1||P* — 177||. Then, we define the
mixing time of the chain.

Definition 4. Given any € > 0, the mixing time t,,;;(€) is defined as ty;,(¢) := inf{l > 1 |
dry (P, 17T < €}. Conventionally, we denote T,iy = tmiz(1/4).

Lemma 5. We have the following statements:
(1). dry (PP 17T < dpy (P 17T, vt > 0.
(2). Fork > 2t (27%) < (k — D) Timia.

(3). Moreover,

T
> drv(P*1n7) < comimia, VT 20
k=0
for some constant cy > 0.

Proof. The first two claims are shown in (Levin & Peres, 2017). To see the third claim, we note that

T o]
Z dT\/(ka7 17T'T) S Z dTv(Pk, 17TT)
k=0 k=0

Tmix o0 tm,im(27(k+1))

<> dpv(Par) 4> Y dev(PhanT)
=0

k=21=t ;s (2-5)+1

S dTV(P7 17TT)Tmim + Z(tmix(27(k+1)) - tmlx(Zik))2ik
k=2

0o
S dTV(P7 ]-ﬂ'T)Tmim + Z k2ik7-mim
k=2

S dTV (P7 17TT)Tmix + 2Tmix
which completes the proof with ¢y = dry (P, 177) + 2. O
C PROOFS OF PROPOSITION 1 AND LEMMA 1

C.1 PROOF OF PROPOSITION 1

Property (1) follows from equation 2, where by definition within R + 1 rounds, the clients cannot
participate in the system twice or more. Property (2) follows from the fact that every client is
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sampled with probability proportional to its availability probability p; if it has waited for R rounds.
Property (3) then directly follows from the definition of the first-order Markov chain and Properties
(1), (2). Properties (4) and (5) are due to the observation that every row and column has exactly
0(B(M — R), B) non-zero entries due to Property (3).

C.2 PROOF OF LEMMA 1

It is obvious that the Markov chain is irreducible in the sense that all ordered sequences (Z, . ..,Zg)
can be observed due to every client has strictly positive probability to be selected. To see that it is
aperiodic for R < M — 2, we only need to show that starting from the state (Z1,...,Zr) where
Iy = ((k—1)B+1,...,kB),k=1,..., R, both R+1 steps and R+ 2 steps can be possibly taken
such that the first return happens, which implies aperiodicity. This is because if a Markov chain is
irreducible, all the states have the same period by Lemma 3.

Then, we consider the following two constructed sequence. Let 5~y =
(Zy,...,Zr,Ipy1, 1, ..., Ig) for state Zpy1 = (RB + 1,...,(R 4+ 1)B), where the length
of hy is 2R + 1. Denote hqlk] as the entry at the k-th position. We construct the sequence
{Y},Y;H_l, . ,Y;H_R} asYiyp—1 = (hl[k‘ mod (2R + 1)], ceey hl[(k—FR— 1) mod (2R + 1)]), k=

.,2R+1, i.e., starting from (Z1, ..., Zg) exactly R+ 1 steps are taken to firstly return. Similar
to the definition of hq, let hy = (Z4,...,Zr,Zr+1,Zr+2, 21, - - ., Zr) with its length 2R + 2 and
state Zp12 = ((R+ 1)B + 1,(R + 2)B). We then construct the sequence {Yz,...,Yi g1} as
Yitk—1 = (helk mod (2R +2)],...,ho[(k+ R —1) mod (2R + 2)]), k =1,...,2R + 2, which
then suggests exactly R + 2 steps are required to return back to (Z1, . .., Zg). Combining these two
cases leads to the Markov chain is aperiodic for any R < M — 2.

D PROOFS OF PROPOSITION 2 AND THEOREM 2

D.1 PROOF OF THEOREM 2

Let us first consider the case when B = 1 and given p; > 0, p; = }v pi ,Vi = 2,...,N. Then,
forany 0 < R < N — 1 and any (jo,-..,jr—1), pick an arbitrary jr € {]0,...,3371}0. By
denoting bg = b(Pg[, (Jo,---,Jr-1)])s br+1 = b(Pr41[, (Jo,---,Jr)]) (Which are the column
sums for each column of Pr and Pg.y1, respectively) and letting Si := {jo,...,jr-1}> Sr+1 :=
{Jjo,- .., jr} for notation simplicity. By observing that when 7 is exactly the uniform distribution,
the sum of Pp for each column is exactly one, we then tend to prove that the column sum of Pg

asymptotically approaches one as R increases. We have four cases.
Case I: jo = {1}. Then, for any 0 < R < N — 2, utilizing last two properties in Proposition 1,
brir—br=p1 Y, 1+ >, pi—p) ' =p1 Y (1t > pi—p)

k€S, 1€S% keSE i€SE

—1 1

=p Y (it (V- R-2) BN -R-1)
KESG keSS
1-— 1 1
:pl(NfRfl)( N (N R*Q)) —p1(N — R)( N (N Rfl))
Letr = N — R— 1. We simply bp, as
pir p(N-1)  p(1- "0
o+ R (r—1) 1—p p1+ 72 (r—1)
Then,
N -1 1 1
bR+1*bR:P1(1*p11( )) o T
—Di Pt RE(r—1) pt 5B
_mn-p), pN-1) L—pi, -1 L—p1 \-1
=51 ¢ 1—p, Vot g = D) (o )
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which is strictly positive for p; < 1/N forall0 < R < N — 2.

Case II: {1} € S%. ;. Then, we obtain p;, = 52 and hence

N-1
1-—p _ 1—p _
bR/Pjo:(Pjo‘Fm(N—R—l)) 1+(N—R—1)(P1+N71(N—R—1)) !
o N—l 1—p1 1
A sn Ht g7
B N -1 N-1 p(N-1) 1
- - —

(I-p)(r+1) 1-p L=p1 pr+ 78r

where we let 7 = N — R — 1. Then, denoting p = }Vi”i and o = py /P yields

1 P1
57’(7’+ 1) B pPP(r+a—-1)(r+a)
_(r+a)r+a—1)—ar(r+1)
 opr(r+ D+ a)(r+a—1)
B (1-a)r?+(a—1)r+ala—1)
prir+ D)(r+a)(r+a-1)
B (1-a)r?—7r—a)
Copr(r+D)(r+a)(r+a—1)
Note that when p; < 1/N, a < 1, which indicates b1 — bg > 0,V0 < R < N — 3 by observing
r? —r — a > 0. Moreover, note that bg > 1,VR < N — 2 in this case by

1 ! (1—-a)r
= 1-— = 1>1
7"—1—1+ T+« (7“—i—1)(7"—|—04)+

(bR+1 - bR)/pjo =

br

for « < 1. And a straightforward calculation gives by_o < %, which then indicates |bp — 1| <
1, VR<N -1

Case II: {1} € S and {1} ¢ S%.,. In this case, pj, = 72 = p. Then, a simple calculation
gives

(brt1 = br)/pjs =
when p; < 1/N.

Case IV: {1} ¢ S%. Then, all the clients are available in both S% and S%_, have availability
probability p. Then, it is obvious that bp = 1,VO< R < N — 1.

For Cases I, Il and IV, we conclude that whenp; < 1/Nandp; = %21 i =2,..., N, |bry1—1| <

N-1
|br — 1|,¥0 < R < N — 2 by further noting that by_; = 1. By Case II, we then have all
|br — 1| converges to [0,0.5] as R increases. Observe by_; = 1 corresponds to the case that

(n—1 is exactly the uniform distribution and so is 7wy _;. This indicates that 7 converges to some
neighborhood of the uniform distribution %1 ~. In order to characterize this neighborhood, we
turn to carefully analyze Case II, i.e., |bg — 1| < 0.5. Noting that Case II corresponds to at most
1 — R/N portion of columns in Pg and so does g, therefore the neighborhood is characterized by
{m |7 — ¥ 1nllh = O(1/N)}.

Next, in order to prove the statement, we perturb each p;, = %v_—pi ,t = 2,..., N by some scalar
€; such that Zf\; €; = 0. Note that bg11 — bp is continuous in (ez, ..., €x) and so is wg, which

then implies that there exists some positive A > 0 such that bp1 — bgr preserves the original
properties as before the perturbation is added for all |¢;| < A. Therefore, we achieve the statement
that g converges to the neighborhood {7 | ||7 — & 1n|[1 = O(1/N)} when B = 1. Obtaining
the statement for B > 1 follows the same technique by noting that we can always calculate the
equivalent p; for each batch with size B. Specifically, given a batch of clients, say B;, then p; =
11 jes; Pi /C' with suitable normalization constant C' and we can then obtain the convergence of 7p
to a neighborhood of the uniform distribution by similar development.
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D.2 PROOF OF PROPOSITION 2

The proof of Proposition 2 is straightforward by observing that by = 1,VR when p; = 1/N,Vi €
[N]. Then 17 Pr = 17, VR which indicates 7 is always the uniform distribution.

E INTERMEDIATE LEMMAS

In this section, we present some useful intermediate results under the following generalized set-

ting: we consider a general global objective function defined as Fy,(z) := vazl w; fi(x) where
Zi]\il w; = 1 and w; > 0,Vi € [N]. And we consider the following local update
Tk = Typ — gV iz ) (10)

where ¢/ = % for some positive sequence y?. Note that the above update equation 10 is a general-
here g; = *¢ f posit q y;. Note that the ab. pdate equation 10 g 1

ized version of equation 9 in Algorithm 1. Then we have the following useful lemmas when forcing
the update equation 10.

Lemma 6. Under Assumption 1, we have for any x

IVEy(z) = VF(2)|| < G
IV fi(z) — VE,(2)| < 2G, Vi € [N].

Proof. Note that Assumption 1 implies

N
IVEy(z) = VF ()] = || Zwi(vfi(x) = VE(2))|
< szvai ( )H

e m=

| /\

Then, for any ¢ € [N]
I9i(2) = VEu(@)]| IV fi(z) - VR@)| + IV Ful(z) — VF(z)] < 2G.
O
Lemma 7. Given any t and i, we have ||xf; v — Tl < AYEL7E|VE, (2)|? + 492L72G?, Vk =

0,....K, whenagmin{gKL,gKLq }and’y<1/3

Proof. During the t-th communication round, S; and qi are fixed. Then, for any 8 > 0 and a <
min{ 7, B%qi}, using Lemma 6 gives
[2hs = @ell* < (L + 87N 2), — 2]|* + (1 + B)(@)*(a) ||V filz}) |

< U+ BTNk — al” +3(1 + B)(a)*(a))* (IV filz),) — Vil

HIV fi(ae) = VE(z)|” + [V Eu(20)]1?)

< M+ BTNk — el® + 3(1 + B)(agy*)* (L2||lz), — 2¢]|* + 4G? + | VFu () ||)

BN 3(1+ i
< (U4 ek — a2+ SEEBE 2y e 4ue? VB

B2L2
2
=+ @357 43287 — a4 2 (a6 4 (9 R ) )
2
< exp (1 ik )|| —a + XA 46 4 [0 R @0
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for any 6 > 1. Unrolling the above gives forany k =0,..., K — 1
K—1
; 1+642 \ 3(1+ B)y?
|2k — x]|* < Z exp ( 7 k;) (L+5)y (G* + | VEu(z)]1?)
k=0

E Pr?
which further indicates by choosing v < 1/3
K—1
i 1 3 1+
|2k — z]|2 < Z 20p-1 30+ O (4G? + [|[VEy(z)])?)

ﬂsz

1—62K”3 3(1L+8)y* o 2
=T e UG IVEu@)?)
_ (R —1)3y°
< 72

2
5
73 (467 + [ VFu(20)])

(A4G® + ||[VE,(z4)|?)

IN

when choosing § = 8K.
O
Lemma 8. Foranyt > T, we have ||xy — 2, ||? < 4y2L7272G% +~2 L~ TZl i IVE ()|

when oo < min{ g7, g 8KLq -} and v <1/3.
Proof. Note that
|2e41 — $t||2 Z xt K fﬂt||
1651
A Z 2} g — ell®
LES
< %(4@2 + IV Fula)]?).
Then,
t—1
e = zer P = | D @1 — al?

l=t—r

t—1
<7 Y o —al?

l=t—7

42
< ﬁ#GufT Z IV E, ().
l=t—T1

O

Lemma9. Foranyl € [t—7,t]witht > 7> land a < min{SIQLq -} withy < min{ 5, £}

) SKLq
we have

m%{qEHVF <xl>||2 <AE|VFy (x4 T)||2 + 167‘272G2.

Proof. Foranyt — 7 <[ <t, we have
E|[VE, (@) < 2BV Fy ()| + 2E|[V Fu (1) — VEu ()
t—1
<272 37 BIVE, )| +87°7°G? + 2|V Ey ()|
I=t—7
< 27242 . mg?(gEHVFw(J;l)HQ +87242G? + QIEHVFw(xt,T)HQ

<< max E||VE,(2)|? +829°G? + 2E| VFy (.||

1
2 t—7r<I<t
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where the second inequality follows Lemma 8 and we use vy < 1/(27) in the last inequality. Finally,
taking the maximum over [ on the left-hand side completes the proof. O

Lemma 10. Define F,, := Zf\il w; f; for Zf\i1 w; = 1,w; > 0. Suppose Assumptions 1,2 hold.

Considering any sequence y; that satisfies Zf\il yi = 1,y > a ! > 0,Vi € [N],t > 0 and
letting qi = %,Vi € [N], then, given T > Ty, log(1/6) with 0 < § < 1, for a < g=kp with
t

: 1 L 1
Y S mln{m, 38477 g}, we have VT > T,

T-1 T-1
T L BRI < S SR [ TRl
+ 32aLG? (37 +6y72 1 2% + 1222 + HZjL)
32G2 Tz:lEHthz + 82827
where a = amax;{w;}, G = (G}, ...,G") with @ = qz — 45 and cy is some constant. Moreover,

w]‘

Ar :=E[Fy(2;) — min F,(z)] < 2 G2+E[ w(To) — F

Proof. For notation simplicity, we drop subscript ¢ for 2% . Define ¢} = 7;— Note that
’ t

K-1

Tl =1 — Z gtV fi(xh)

K-1
1 7 7
Tl =T - o > D agiVfi(a})
i€5, k=0

where S; denotes the subset of clients drawn in the ¢-th round. Due to the smoothness of every f;,
we have

L
ElFy(er1) = Fole)] S E(VEy (20), 241 — 20) + SEl|2141 — ol
Considering ¢ > 7 for any 7 > 0,

K-1
E<VFw(Z‘t),$t+1 — Z‘t> = _E<VFw(xt)7% Z Z aqzvfl(x;c»

1€S¢ k=0

K-1
= B(VFu(rer) ~ VFu(n), 35 30 agiVi(a})

i€St k=0

€1
K-1

E(-VEu ()3 3 3 0gfVfilre))

'LESt k=0

€2

E(~VE,(zi—) Z Z aq;(Vfi(z},) — Vfi(zt)))

ZES{ k=0

€3

E(—VFy(xi—;) Z Z gt (Vfilz)) — Vfi(zi—r))) .

'LESt k=0

€4
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We first note that according to the conditions on yg, w; < qg § aw; with some positive constant

a < oo forevery i € [N]and V¢ > 0. Then by choosing o < g7 — < min{ g7, m}
114t

with v < 1/3 and w,,, = max; w;.
2

1
e1 < SE|VE(x) = VE(wir)|? + ]E

Z Z ag;V fi(x},)

’LGSf k=0

£33 adh(VAG) — Vi)

L? 9
S 7E||$t—$t_7—” +E
€Sy k=0

2

=
B DD agiVfi(w)

1€S: k=0

L? 9
< 7]E||5Ut —xt.||° + KE

LS S @l —mtnﬂ
1ESt k=0
2

1 K-1 )
52 D aqVii(z)

i€S, k=0
2 t—1 2,72
T 2 2_ 22 2, v G
< — E||VE, 2 E|VEF,
< l:Z IVE@)I? + 272926 + EIVE (@)l + 15
2
+ G ; Viilz)

2 t—1
™ 2 2
<7 Y BVl + (20 SEIVE )

I=t—71

2 2
16L2 SBL2)7 ¢ 64L2

where we use Lemmas 7 and 8 in the fourth inequality; we use the fact E[| 5 3. s, Vfi(zt) 2 <
2E||VFy(z1)||? + 8G?/B in the last inequality. Next we turn to bound e. Note that

€y = —aKE (<vo T— 7' Z Qtvfz Tt 7’)> | ‘Ft T)]
lESt
aK 1 . aK
= KA ) B zsj AV S—r) | Fo) P R BV ()|
aK 1 ;
R BE (G Y 6V | Fe)?
1E€ES
aK 1 ; aK
< PRIV ularor) =B S ¥ h(ri-n) | Fion)* = IV Eulof

1 . aK
< aKE|VEu(re7) ~ (g 3 aiVfilwe ) | Fon)l? — S BNV Fu(re )P
1€Sy
2

+aKE % > (4 = d)V fi(wi—r)

1€St

where ¢! = % and F;_ is the filtration up to t—7. Next, we provide the bound for E|V F, (z;—,)—

E(% Yics, WV fi(wi—7) | Fi—r)||?. Since we are focusing on the case for a particular R, without
causing confusion, we drop R for notation simplicity in the following analysis.

Denoting g := lim;_, o, P(S; = S), we have
7'ri _ Zs‘z wgz _ 25'7 1’1)51
= —% =
Zi:l ZS wS‘i B
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where S; denotes any set with size B containing i. Then, for any vectors {v;}¥,, we have

Syl oYyl -—Bzvz

sesies i=1 g,

where S is the collection of all sets with size B. Thus, by letting v; = w;V f;(x;—) in the above,
we obtain

BV Py (o) ~ B 3 aiVilo—r) Fomr)

iGSt

= E|VF,(z_r) — ZZP (St = S|Fir)diV filae—r)|?
SGSzES
2

LS S (P8, = S1Fer) — ) 4V i)

sSesies

by noting ¢! = w;/7'. Moreover, P(S; = -) can be uniquely induced by ¢(t) defined by equa-
tion 6 under proper linear transformations, which also indicates that P(S; = - | F;—,) = P(S; =

- | S¢—r). Thus, Lemma 4 implies |P(S; = S | Fi—r) — V5| < c16mmin/1/CK for some ¢; > 0,

VS when 7 > Ty, log(1/6) with C§ = < g ) Then,

E||VFu(r ) ~ Bl 3 @ Viilre )i r)

1€S}

% SN (P(Si = S|Fer) = 5) ¢V filwe—r)

SeS ieS
2
1 .

<E Z Z(P(St = S|Fi—r) — ¢5)@.V filwi—r)

€S [|SeS

1
S Clﬂ—mzna2 ZHQ*sz xt T H 1
1ES

< A8 (B VFy(21-7)|1? +4G?)
where we use the fact that
IV fi(xe—r)|? < 2|V Fy (24— )||* + 8G2.

Utilizing the following

Bl (6~ d) Ve )P =Bl 3 @(Vileer) ~ VE(r ) + V()|

1€Sy S
< 8GZE| G2 + 2E [[|Ge I3 IV F (we—r)[I]

where we denote §; = ¢! — ¢'. Then we bound e5 as
aK -
ez < 7(20152 —DE|VF (2| + 20K G*(6* + 4E[|G:[|%.) + 2a KE[[|Ge ]| 2|V F (—7)|?].
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In order to bound e3, note that according to Lemma 7 for o < g < ot th

[ K-1
1 ; .
s <E|5 S aqilIVE ()|l ||V filz}) - Vfi(xt)H]
L™ ieS, k=0
[ K-1 .
1 ag)?K 2, .
<E|5 2 %Hw (@ )2 + o= 2 — 2o
B ; 2K
L 1€S:y k=0
'1 K—-1 9 2
< — 2 9 9
B| L) (128L2K||VF (@I + 21V Pl + 4G ))]
L €St k=0
2k 2 2 2 2
= 128L2]E||V w(@e—) | + EHVFw(SCf)H + 2v°G”-.

Finally, based on Lemma 8, similarly we obtain

tU\H

> Z aqy|[VF (ze—r) [V file) — Vfi(xtr)]

zGSt =

« K L2
Z (‘”’ IVE @I + Sl = o] )]
i€Sy k=0

42 ~Ar -1

2 5 9
- 128L2EHVF(5W I+ 7( Z E|V Ey(x)[|” 4 47G7).

,_.

D:J\H

l=t—T

Thus, denoting @ = a max;{w; }

1+
B Fuler P < EFa(e) ~ Fowe] + 20T S Bign, )

l=t—7

2 2 3~2 ~
n (7 + 1+ 7 ) E||V Fy(2)]® + alLGQEIIthIiO

16L

2 6412
yc3 62
4alL

2 3
22 2
2 + 272 4 24272
+'yG(+ + 2y +[+1[2>

752 v 2

Y ~
o E Nal V() P] + 62
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which implies that

. 16aLTy2(1+~2) 4
AV E, (#1-0)|? < 16GLE[F (2,) — Fy(zen)] + o L LT S g9, (a2
I=t—T1

4L
+AE [ @31V Fur () 7] + 167G2E||€1}H2

-
+ (16aL7 + 8ay + ‘W) BV Fy () ||? + 47c362G?
+16aLy*G? | 2 + 272 4 29272 + +— i
16L2
Fry (2c152 + —) E||V Fy (2, )||?
3ay
< 16aLE[Fy(x:) — Fy(xes1)] + (16aL'y + 8ay + 4) E||VE, (2:)|?

Y (20162 + E +32aLry(1 + )) E||V Fy (2,0 )2

+AE [ @31V Fu(2-1)[I7] + 169G*E|1 I3, + 4yc16*G?
3

16aL~2G? [ 2 + 272 + 24272 + 87%42(1
+ 16aL~y (+T+’YT+T’Y(+’Y)+L+16L2

where we make use of
t—1
> E|VE, ()| < 47E|VE, (zi—-)|* + 167G
l=t—T1

by Lemma 9. Under the following conditions

1 oay _ 1 1

2¢25% < =, < = <

A =% arp =360 1S m{ 7 3Rda)
1

6dalry < —

G = 190

which implies 32aL7(1+~%) < & and hence 2¢362 + £ + 32aL7(1+~%) < 1, then we obtain

.
NE||V Ey(2—r)||? < 326LE[F, (1) — Fu(2e41)] + 27 (mam + 8y + ‘”) E|VF, (x|

+89E [[1Ge] 2 IV Fur (-7 [IP] + 329G?E| I3, + 87¢16°G

2 3
—r 202 2 2,2 4,2
+32aLy°G <2+27 + 29272 4 87492 (1 4 +2 )+L+ 16L2)
Summing over 7 <t < T — 1 gives
T-1 34y
VY EVFEy(2-,)|* < 32aLA, + 2y (16aL7+8a’y+> Z]EHVF ()|
t=T1
T—1 T—1
+87 Y B (162 IV Fu o) [°] + 320G D EJlGil%
t=1
22 2 3 252 2
+32aL~y*G? (34672 + = +16L2 (T —7) 4+ 8vc10°G*(T — 7).

where A, = E[F,,(z,) — F*] and we use 7?72 < 1/4. Again leveraging Lemma 9, we observe

T-1 T-1
N EIVE()]? <43 E|VE,(z—r)|? + 167%4°GHT — 7)
t=1 t=1
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which thus renders

T-1
1 32aLA,
ZEHVF (ze—r)* < ST T TZE 1612 1V Fo (20— ) ]

2y 3 42
+ 32aLG? (37 + 672 +5+ T4 ) + 8c25°G*?

16 L2 16 L

32G2
Z E||Ge %

by noting that 16aL~y + 8ay + 3a7 S

In the following, we turn to bound A ;. Noting that

K-1 K—1
Fy(@e41) — Fu(z) < —aK(VE,(2), BK SN Vi I S V)
i€St k=0 i€Sy k=0
aK || 1 P 2 oK
< — _ 2
<7 || BR X L (VA VE)) | I Fael

o] 1 i
by a < 17 < 57 - Moreover, since

2
K
2 X
<3N (@2l — ] + 4G?)
BK -
1€S¢ k=0
2 2 2
< 292||VF, (2| + 8G

K—
=Y S (VAi(el) - V()

i€St k=0

we conclude that
B _% o2 2 2 a2
Fu(zi41) = Fu(ze) < 2 (1 =29)|[VFu(@e)[” + 4aKG" < QdLG
which implies

* ’}/T 2 *
A, = E[F, —Ff < — F, — Fr.
T [Fu(zr) ] < QdLG + Fy (o) w

F CONVERGENCE ANALYSIS OF FEDAVG UNDER CORRELATED CLIENT
PARTICIPATION

In this section, we provide the convergence analysis of Vanilla FedAvg for correlated client partici-
pation. We first show FedAvg suffers from unavoidable bias (stated in Theorem 1), summarized by
the following proposition.

Proposition 3. There exists a problem case such that FedAvg converges with unavoidable asymptotic
bias.

Proof. We consider a problem case with N =3, B =1, R =1. Weset p; = 0.25,p2 = 0.25,p3 =
0.5and f;(z) = 4(z —)%,4 = 1,2,3 and 2 € R. In this case, we have the Markov chain induced
by the problem denoted by P € R3*3, Letting 7 € R? be the stationary distribution of P, a
straightforward calculation gives m; = my = 0.3, 73 = 0.4. Then we obtain the server’s update of
FedAvg given by

T = P + (1= Bi
where 3 = (1 — a)® < 1 with a being the stepsize of local updates; i, is the index of the sampled
client at round ¢ which is a random variable. Taking the expectation on both sides yields

Elwe1] = BE[we] + (1 — B)u" P'I
= BE[z;] + (1 = B)(u" P* = x") [ + (1 = B)n" I
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where u = (p1,p2,p3), and I = (1,2, 3) is the vector formed by clients’ indices. Noting that the
third term vanishes as ¢ — oo due to the convergence the Markov chain (shown by Lemma 4), we

conclude that lim;_, o, E[x;] = Zle ;¢ which is the minimizer of F,(x) := 25:1 7 fi(z) but
not F(x) = %E?Zl fi(@). And |F'(xTT)| = |I" (7 — 113)|. Therefore, the bias in Theorem 1 is
unavoidable. O

Then we show the convergence result of FedAvg.

Theorem 4. Suppose Assumptions 1,2 hold and assume |VF(x)|| < D,Vx. Then, by choosing
a=0(F)and T > 27,5 10g Tz, the output T generated by FedAvg satisfies

A i log TG?
B Fan|? =0 (52) + 0 (P HETEN 1 0 (orlog' T +%)6Y)

N
where Ay := E[F(x0) — min, F(z)] and Ty, is the mixing time.

1
‘o ((G2 DY) - 1N||%)

Proof. For FedAvg, we have y¢ = 1/N. Utilizing Lemma 10 and setting w; = %, it yields

T—7—1 T-1 T-1
1 32LA 8D? 36G> 167G?
E F 2 < ]E ~ 112 ]E ~ 112
7o 2 BIVF@OI < S+ g D Blalh + 7 3Bl + 7

R
L 1612 16L

%, we conclude

2% 3
+32LG? <37 T ML AR s > +8252G2.

Then noting that ||G||%, < 7,7, |7 — & 1n

. A G? 1
BIVFGnIP =0 (50) + 0 (75 ) +0 (7 49267 +0 (6 + D)l - anl?)
~T T N
by setting § = 1/ V/T. For the above to be true, we need T' > 7 = Tmiz log T, which is actually
always satisfied for T' > 27,,;, log Ty, To see this, we observe that if T < Tﬁu-m, Tmiz logT <

2T iz 108 Tonizs if T > 72, Tmiz log T < V/T'log T < T. This completes the proof. O

The following corollary restates the convergence result of Theorem 1.

Corollary 1. Suppose all conditions in Theorem 4 hold. Then, choosing o = O(1/(KTpmieV'T)),
the output T of FedAvg satisfies

A mix 1
BIVFGnI? < 0 (22 ) +0 (0 + 6A)lnn - ginll?).

Proof. The proof is straightforward by simply plugging in v = O(1/(7vT)) and T = Ty, log T
to Theorem 4. O

G CONVERGENCE ANALYSIS OF ALGORITHM 1
We first provide the following theorem showing that y! serves as a reasonable estimation of 7.

Theorem 5. For any real-valued function f € RN and any initial distribution i € RY, we have
the following:

L 11 L 11
E, (T J(Xy) —W£f> =7 ZMTQL(PE—K};)QRJC
=0
= 2
TEr, ( J(Xe) — W£f> < fTR(I — InTR) f + commax | Fl| 2N Timix
2

T— 2 T-1
1 1
TE, (T FX0) - W%Ef) < TE,, (T S 50 - w£f> + 30N g2 e
t=0
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where E,,(-) means the initial state X follows p; g = diag(mg[i]) and QL is defined such that
[LTQL = (, and CEQR =ug=f— 7r£f1N; Tz 1S the mixing time of Pg.

Proof. We firstly show the first equality. Note that

1 T—1 1 T—1
< > F(x) —- wa> 7 2 (W PRQRf — CRQRS)
t=0 k=0
1 T—1
=7 n"(Pf — 1¢E)Qrf
k=0

where we observe that u7'1 = 1.

Then we turn to show the second inequality. By the definition, we have

= 2 g T-1
Er, (T > rx) - w£f> = Varr, (f(Xo)) + > (T = k)Cova, (f(Xo), f(Xk)).
t=0 k=1

(11

For any £, let (; and ’7Tk be the distributions after the Markov chain evolves k steps. Then, we have
Ck+1 = (jk Pr and 7Tk = CEQR Defining Qk € RN*d(M.E) a5 an inverse mapping from 7, to
C»ie., (T =7} Ty, it is straightforward to venfy that we can always pick a nonnegative Q such

that Q1 = 1y in the sense that the freedom of Qy, is (N — 1) x d(M, R) — N when forcing both
CkT = ﬂkTQk and Q1 = 1y to hold. Moreover,
Covry, (f(Xo Zm (1)) _[QuPEQR]:; £ () Zm iRl () ()
J

= fTHRQkPRQRf — fTORINTRSf
= fTRQk (P — 1(H)QrS

where we utilize le = 1. Further, HQ;CHOO = 1,Vk > 0 since Qk is nonnegative. Then,

Covar (£(X0), F(Xr)) < Tmaxl| FII3 | Qrllo | PR — 1¢ o

Substituting it into equation 11 yields

( fot —wa> < Vare (F(X0)) +2 Y Covay (F(X0), f(X1))

k=1

T
< Varr, (f(X0)) + 2Tmaxl| F 12 1Qrlloe Y 1P = 1¢E ]|
k=0

S fTHR(I - 1N7r£)f + COWmafo”c%o“QR”oonim

where we make use of Lemma 5. Finally noting that || Qr|lco < |Qr,1|loc|@R,2]|cc < N completes
the proof of the second inequality.

To obtain the third inequality, defining g(i) = f(i) — 7% f we aim to bound
- 2 | T
k:: k=0
= 2 T—
<7 E.g9°(Xk) = Erpg*(X +7 Z Z 9(X1)) = Erp (9(Xk)g(X2))|-
k=0 k=0 I=k
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For notation simplicity, we drop the subscript R without confusion to get

B (9(Xk)9(X1)) = By (9(X1)9(X0))]

= Zﬂig(j)((QkPkQ)iJ — ) > QP Q) — 7r)g(r)

r

= |22 mig(N@(P" = 1¢T)Q)i; Y (Qu(P™* = 1¢T)Q);59(r)

.
< [lgl3 NZ[1P" = 1¢7 oo

Thus, by Lemma 5,

k=0 k=0
S Tot(pk T2 o 2 201,112 -«

< 7 2 WTQLPF —1M)Q9 + ZeoN gl Y i
k=0 k=0

T-1
1 Tt pk T 2 2 2
< T;Ou QL(P" = 1¢M)Qg? + 260N || T

1
< fCOHL(]”icNTmim + ZCON2”9||ZOTmim
< SCONQHQHgonim
where g? denotes the elementwise square of g. Combining all the above completes the proof. O

Then, the following corollary induced by Theorem 5 is exactly Lemma 2.

Corollary 2. Given initial A\g = Oy and let V,f = )\}N as in Algorithm 1, we have

~ Tmiz
E|l7|% < 0 (75

~i_ i1 | ~N
where Uy = vy — — and vy = (U, ..., 1} ).

Proof. By Theorem 5, setting f = e; for any i, we have

i N2 mizx
E(\ —m)? = 0 ( . ) (12)
Note that
E() = B (T o lp|(Am 2W>a P\, > a)
¢ N2 it N2 Nir; b= b=
i 2
1 At — T i i
+ 7 l( i ) Al <a| PN, < a) (13)

for any positive a. Moreover, due to the Markov chain in Section 3 is irreducible by Lemma 1, every
client will be visited infinitely as ¢ goes to infinite, which then implies there always exists some
strictly positive constant ag independent of ¢ such that A\ > ag > 0 almost surely for any i € [N].
Combining equation 12,equation 13 we conclude

~i Tmix
B|l7}%, = 0 (7).
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G.1 CONVERGENCE PROOF OF ALGORITHM 1

The following lemma is useful to derive the convergence proof of Algorithm 1.

Lemma 11. Supposing that the stochastic scalar sequence E[U; (t)?] < u(t) with u being a mono-
tonically decreasing positive function w.r.t. t and assuming that U1 (t) < @ < oo almost surely, then
given any §,€ > 0, for all t > inf{ty | u(tg)/8? < €/u?} and stochastic scalar sequence Us(t),

E [U1(t)°U2(t)] < (e + 6*)E[Ua(1)].

Proof. For any § > 0, we have for all t > inf{tq | u(to)/6? < €/u?}

E[U1(t)*Ua(t)] = P(UL(t) > O)E[U1(t)*Ua(t) | Ur(t) > 0] + P(UL(t) < $)E[U1(t)*Ua(t) | Un(t) < 6]
P(U(t) > 6)@’E[U(t)] + 6°E[Us(t)]

(e + 6")E[U(1)]

where we use the Markov inequality in the last step, i.e.,

<
<
P(U,(t) > 8) < P(U1(t)* > 6%) < %

Then we are ready to provide the proof for Theorem 3.

Proof of Theorem 3: As discussed in the proof of Corollary 2, we know that there exists a positive
a~! which lower bounds each \! for all ¢ almost surely, implying that o} < % (a+ wfn%n). Then for
any t > T > /T, (with ¢’ being some constant), we have

_ 1
E (|73 IVF (ze-) ] < -E[VF ()|

— 16
by Lemmas 2 and 11. Further Utilizing Lemma 10 with setting w; = %, we obtain
1« 64aLh, | 64G> <

327G?
—— Y E|VF(xi)|> < P 16¢36°G?

2 2
+ 64aLG? (37 SRS S A B )

t=T

L 16L2 ~ 16aL

for 7 > Ty max{c’,log(1/6)}. Similar to the proofs of Theorem 4, setting § = 1/+/T, with
T > 'z 10g iz for some constant ¢, we finally conclude that

E|VF(ir)|? = O (%) +0 (;>

by choosing v = O(1/(rV/T)) with 7 = Q(7pirlogT) and by leveraging the fact that
f:_Tl E||74|%, = O(Tmix log T) implied by Lemma 2. This completes the proof.

H ADDITIONAL EXPERIMENTS

In this section, we compare Vanilla FedAvg, Debiasing FedAvg (ours) and FedVARP under the
CIFAR10 dataset given the same participation pattern as in Section 6. Each client maintains a CNN
with three convolution layers. Learning rates for three algorithms are selected to be with the order of
O(1073). In Figure 4, Debiasing FedAvg achieves the highest training accuracy due to its debiasing
nature as shown in Theorem 3, while Vanilla FedAvg and FedVARP suffer from bias. Moreover,
in Table 1, the training and test accuracies for different R are presented, where one can see that
Debiasing FedAvg achieves the best performance.
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Figure 4: Experiments on CIFAR10. The training accuracies of Vanilla FedAvg, Debiasing FedAvg
(ours) and FedVARP are compared given different values of R. The results show that Debiasing
FedAvg achieves the highest accuracy and outperforms the other two, since FedAvg and FedVARP
suffer from bias.

Algorithms k=5 &=10 R=15
g Train acc  Test acc Train acc  Test acc Train acc  Test acc
FedAvg 74.9% 67.6% 75.3% 68.8% 75.6% 70.1%

FedVARP 76.7% 68.0% 77.5% 69.4% 79.5% 72.5%
Debiasing 79.3% 73.8% 81.5% 74.9% 82.9% 74.1%
FedAvg

Table 1: Training and test accuracies for different R under CIFAR10

I THE INFLUENCE OF R ON CONVERGENCE RATES

In this section, we discuss the effect of different values of R on the convergence rates of Debiasing
FedAvg and Vanilla FedAvg as observed empirically in Figure 3. We simulate the “effective” client
sampling distribution (i.e., 7 (¢)) as time evolves for different minimum separation R, where we set
N = 100, B = 1. The code for all experiments can be found through https://github.com/
Starrskyy/debias_f1. Figure 5 shows the total variation distance of the evolution of client
sampling distributions to their corresponding stationary 7r’s. Clearly increasing R, the convergence
rate of “effective” client sampling distribution to the stationary distribution also increases, implying
the decrease of mixing time 7,,,;,, (see Appendix B for details). Combining this observation together
with Theorems 1 and 3 leads to that larger R implies faster convergence rate, which then consistently
explains the observation in Figure 3. However, the above explanation is only from an empirical
perspective. More rigorous explanations need theoretical advance in the convergence results to
reveal explicitly the relation between the rates and values of R.
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Figure 5: Convergence of client sampling distribution to 7, for different R (N = 100, B = 1).
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