
Syntactic Learning over Tree Tiers

Logan Swanson

Stony Brook University

Abstract. This paper presents a polynomial time learning algorithm
for a subclass of the multi tier-based strictly 2-local (MTSL-2) tree lan-
guages. MTSL-2 tree languages are useful in modeling syntactic phenom-
ena in natural language. I define the novel subclass of 2-factor MTSL-2

tree languages, which still captures many syntactic dependencies but is
simpler and more parallel to the definition of MTSL-2 over strings, al-
lowing existing learning algorithms for MTSL-2 string languages to be
easily generalized to this class of tree languages. Although this algorithm
is not intended to be a literal acquisition model, it delivers a key learn-
ability result for subregular syntax, and demonstrates that string-based
learning algorithms can be usefully generalized to tree languages.

Keywords: Formal language theory · Formal learning · Computational syntax
· Tree languages · Subregular linguistics · Tier projection

1 Introduction

Linguistics is driven by two central questions: what is the character of linguistic
knowledge, and how is it acquired from limited data? The program of subregular
linguistics (see [12], [14], and references therein) has identified classes of formal
languages sufficiently expressive to account for phenomena in phonology and
morphology but also sufficiently limited to be efficiently learned from positive
data. There is also evidence that syntactic dependencies over trees are subreg-
ular by virtue of belonging to the class of multi tier-based strictly 2-local tree
languages (MTSL-2) [6, 7]. This class is finite for a fixed alphabet, and is there-
fore learnable in the limit by enumeration, as described by Gold [5]. This paper,
however, provides a more efficient algorithm for learning a linguistically relevant
subclass of MTSL-2 which runs in polynomial time and requires a polynomial-
sized characteristic sample of well-formed trees.

Related work on learning syntactic structures is largely in the realm of prob-
abilistic approaches [1, 3] or the formal learning of context-free grammars and
some relevant superclasses directly from strings [2]. In contrast to these ap-
proaches, the algorithm in this paper is deterministic and receives trees as input
rather than strings. It may seem odd to assume that the input for the learner
includes the actual tree structures, and there is certainly a relevant future direc-
tion in addressing how to learn the tree structures themselves from linear input.
However, it is worth noting that what this paper delivers is a formal learning
result, rather than an explicit theory of language acquisition. The algorithm pre-
sented here proves that a relevant sublass of tree MTSL-2 can be learned from



positive data, and offers mathematical guarantees about time complexity and
requisite input sample. Moreover, the tree structures in subregular syntax are
similar to feature-annotated dependency trees and thus look very similar to the
structure of basic semantics, i.e. predicate-argument relations. Thus, the input a
human learner receives may indeed provide tree structures roughly along these
lines.

This paper uses subregular language classes to connect learning results across
linguistic domains: the class of MTSL is linguistically important over both strings
and trees. As such, the algorithm presented here represents an important step
towards a unified theory of language learning. The paper is laid out as fol-
lows: Sec. 2 introduces the mathematical preliminaries, including a formaliza-
tion of trees and MTSL-2 tree languages. Section 3 defines the tree substructure
of 2-paths and the class of 2-factor MTSL (2FMTSL), which are leveraged in
Sec. 4 to adapt the string MTSL-2 learning algorithm of McMullin et al [15] to
2FMTSL tree languages. In addition to defining the learning algorithm, this sec-
tion demonstrates its behavior on a detailed example based on natural language.
The algorithm is built around identifying missing substructures and calculating
the smallest tier on which they are absent. Section 5 shows how these principles
work together to ensure the algorithm’s correctness and efficiency. Section 6 con-
cludes with some remarks on the larger significance of this result and pointers
for future work.

2 Preliminaries

Trees. We define trees in terms of Gorn domains. A Gorn address a ∈ N∗ is a
string of natural numbers, and a Gorn domain is a set D of Gorn addresses such
that for every string uj with u ∈ N∗ and j ∈ N, it holds that uj ∈D implies both
u ∈D (mother-of closure) and ui ∈D for every 0 f i < j (left sibling closure). The
Gorn address of the root is always the empty string ε. A Σ-tree is a pair ⟨D, ℓð
with Gorn domain D and a labeling function ℓ ∶ D → Σ. The set of all Σ-trees
is denoted TΣ .

Tree relations. We define a few additional relations given u, v,w ∈ N∗, q ∈ N+,
and i < j ∈ N: u ◁ ui (immediate dominance), u ◁+ uq (proper dominance),
ui * u(i + 1) (immediate left sibling), uiv z ujw (precedence).

ε

0

00

000

1

a

d

b

c

a

Fig. 1. Example tree
showing Gorn addresses
(left) and labels (right)

Tree tiers. Let T ¦ Σ be a tier alphabet. Then u◁T w

(immediate tier dominance) iff ℓ(u), ℓ(w) ∈ T and
u◁+w and there is no v such that ℓ(v) ∈ T and u◁+ v

and v◁+w. For example, if T ∶= {a, b, c}, then in Fig. 1
the root ε immediately tier dominates 00 but not 000
— and it both immediately dominates and tier dom-
inates 1. Tier dominance thus is proper dominance
relativized to symbols in the tier alphabet T (cf.[14]).
Furthermore, v is a left tier sibling of w (v *+T w) iff
v z w and there is some u such that u◁T v and u◁T w.
The string of the labels of all tier daughters of u or-
dered by *+T is also called the tier daughter string u◁T

2



of u (if u has no tier daughters, then u◁T = ε). In the example in Fig. 1, the
tier daughter string of the root node ε is ba. For mathematical convenience, we
stipulate that there is a distinguished root marker ⋊ ∉ Σ such that for all v ∈ D
with ℓ(v) ∈ T , it holds that ⋊◁T v iff there is no u ∈D with u◁T v.

(M)TSL-2. Given T ¦ Σ, we call cT ∶ T ∪ {⋊} → ℘(T ∗) a tier daughter string
constraint function. A Σ-tree ⟨D, ℓð ∈ TΣ is well-formed with respect to cT iff
for every u ∈ D with ℓ(u) ∈ T , it holds that u◁T ∈ cT (ℓ(u)). A tree language
L ∈ TΣ is tier-based strictly 2-local (TSL-2) iff there is some cT such that L

is the set of all Σ-trees that are well-formed with respect to cT [9]. It is multi
tier-based strictly 2-local (MTSL-2) iff it is the intersection of one or more TSL-2
tree languages.

✓ x

l

a

l

m

a

m

l

m

: x

l

a

m

l

a

m

m

m

Fig. 2. Example of well-fored tree (left) and ill-formed tree (right)

Example 1. Let Σ ∶= {l,m, a, x}, T ∶= {l,m}, and cT as follows: cT (⋊) ∶= l∗,
cT (l) ∶= l∗ml∗, and cT (m) ∶= l∗. Then the Σ-tree on the left in Fig. 2 is well-
formed with respect to cT , but the one on the right is not because: i) the tier
daughter string of ⋊ is lm, which is not in cT (⋊), ii) the set of tier daughter
strings of nodes labeled m includes the string m, which is not in cT (m), and iii)
the set of tier daughter strings of nodes labeled l includes the strings mm and ε,
which are not in cT (l). This example is inspired by the subregular discussion of
Minimalist syntax in [7]. Intuitively, cT enforces that every landing site l must
have exactly one mover m among its tier daughters, and every m must be the
tier daughter of some l.

Now let T ′ ∶= {l,m, a} with cT ′(⋊) ∶= cT ′(m) ∶= {l,m}
∗, cT ′(l) ∶= {l,m, a}∗,

and cT ′(a) ∶= {a,m}
+. Here cT ′ enforces that a can only appear as a tier daughter

of l or another a, that it cannot be a leaf node on the tier projection, and
that it cannot have l among its tier children. In isolation, these constraints
may seem strange, but in tandem with the constraints on movers and landing
sites outlined above, they enforce a pattern where a can only occur along a
path between a mover and its corresponding landing site. This is inspired by
extraction morphology phenomena like Irish wh-agreement, where some heads,
e.g. complementizers, may appear with a special form a, but only if a mover
moves across them [6]. The set of all Σ-trees well-formed with respect to both
cT and cT ′ is MTSL-2. It contains all trees such that there is a one-to-one
match between movers and (closest) landing sites, and a only occurs along such
movement paths.

3



The space of TSL-2 tree languages captures the typology for many syntactic
phenomena, including verb agreement [11], case assignment [10], and movement
patterns [8]. As demonstrated by the above example, MTSL-2 is able to capture
the interactions of multiple TSL-2 phenomena, making it a good candidate to
model the complexity of human languages.

3 2-Paths for MTSL-2

To learn the MTSL2 languages, the algorithm in Sec. 4 constructs tiers for each
potential constraint by identifying illicit substructures which can be made licit
by allowing certain elements to “intervene” in the middle of the substructure.
The “interveners” which impact licitness form the tier for that constraint. To
identify these elements, it is helpful to introduce a tree-based generalization of
the notion of 2-paths given by Jardine and Heinz [13].

Given t ∶= ⟨D, ℓð ∈ TΣ , x, y ∈ Σ, T ¦ Σ and some defined relation RT ∈

{◁T ,*
+

T } over D, x RT y is an RT 2-factor of t on tier T iff there are nodes
u,w ∈D such that ℓ(u) = x, ℓ(w) = y, and u RT w (note that if T is unspecified,
it is taken to be equal to Σ, and ◁T and *+T reduce to ◁ and * in this case).
For any tree t, we define 2facT (t) as the set of all 2-factors present in t on tier
T . A 2-path of t is a pair ⟨ℓ(u) R ℓ(v), IR(u, v)ð (R ∈ {◁,*}) that consists of
a “possible” 2-factor and a set IR(u, v) of intervening symbols. The intervener
set contains all the symbols which would need to be removed from the tree
in order for the 2-factor in question to be present. For u ◁+ w (u,w ∈ N

∗),
I◁(u,w) ∶= {ℓ(x) ∣ u ◁

+ x and x ◁+ w}. That is to say, the set of dominance
interveners for u and w is the set of all labels that occur along the path properly
between u and w. And for uiv z ujw (u, v,w ∈ N∗, i ≠ j ∈ N), I*(uiv, ujw) ∶=
{ℓ(x) ∣ u◁+ x and either (x◁+ uiv or x◁+ ujw) or (uiv z x and x z ujw)}. In
other words, the set of sibling interveners for u and w is the set of all labels
which are dominated by the least common ancestor of u and w and which either
occur on the direct path between u and w or are to the right of u and to the left
of w.

An example tree and its corresponding 2-paths are shown in Tab. 1. Note that
the same 2-factor may appear in multiple 2-paths: in this example, b*a appears
once with no interveners (corresponding to the nodes labeled b and a which are
immediate siblings), and once with c and b as interveners (corresponding to the
higher b node and the same a node).

For any language L, we define define 2paths(L) as the set of all 2-paths which
are present in that language.

a

b c

b a

2-paths: ⟨b * a,∅ð
⟨a◁ b,∅ð ⟨c◁ b,∅ð ⟨b * a,{b, c}ð
⟨a◁ b,{c}ð ⟨c◁ a,∅ð ⟨b * b,{a}ð
⟨a◁ c,∅ð ⟨a◁ a,{c}ð ⟨b * c,∅ð

Table 1. Example tree and 2-paths

4



Using these substructures, we can define a subclass of tree MTSL-2 which
more closely mirrors string MTSL-2:

Definition 1 (2-Factor MTSL). A tree language L ¦ TΣ is 2-factor MTSL
(2FMTSL) iff it can be defined by a conjunction of pairs G ∶= ⟨T0, f0ð' ⟨T1, f1ð'
...⟨Tn, fnð such that L = {w ∈ TΣ ∶ ∀0 f i f n, fi /∈ 2facTi

(w)}
In addition, L must meet the following criteria:

1. Constraint uniqueness: For any 2-factor fi ∉ 2fac(L), there is exactly
one tier Ti such that ⟨Ti, fið ∈ G.

2. Tier-element independence: For each 2-factor fi banned on tier Ti, it
must be the case that i) each tier symbol which is not part of fi is attested in
an intervener set for fi in 2paths(L), and ii) each smallest intervener set
in which those tier symbols are present (for fi in 2paths(L)) contains only
other tier elements which do not themselves show up in smaller intervener
sets.

Every 2FMTSL language is an MTSL-2 language where each tier-daughter string
function is strictly 2-local [16]: each banned factor x◁ y indicates that y is a
banned symbol in cT (x), and each banned factor x * y indicates that xy is a
banned substring cT (u) for all u ∈ T . However, a 2FMTSL grammar can only
enforce constraints on 2-factors which are illicit on a particular tier, without
regard to daughter string languages for particular symbols. This is further re-
stricted to languages where no 2-factor needs to be banned on incomparable tiers
(constraint 1), all tier elements are independent from all non-tier elements (i.e.,
no tier element is limited to only showing up next to a non-tier element), and any
dependency between tier elements is symmetrical (constraint 2). Both of these
constraints are necessary for this learning approach because a core assumption
of the algorithm in Sec. 4 is that a given 2-factor is banned on a single tier (this
is critical for establishing polynomial time complexity). If 2-factors need to be
banned on multiple incomparable tiers, or if there are non-tier elements which
always occur in tandem with tier elements, it makes it impossible to accurately
construct a single tier with the correct members. This qualification is important
to investigate further in future work, especially in the domain of syntax where
this kind of dependence between elements which must always appear together is
much more common than in phonology.

The grammar for a 2FMTSL language is a basis for a set of MTSL-2 lan-
guages: it provides a foundational set of tier projections and constraints, over
which any type of symbol-specific daughter string constraints can be layered.

4 Learning Algorithm

With these preliminaries in place, I turn to the central result of this paper: a
learning algorithm for the class of 2FMTSL tree languages. The Multi Tier-based
2-Strictly Local Inference Algorithm (MT2SLIA), defined in Algorithm 1, builds
directly on the string MTSL-2 algorithm in [15]. The MT2SLIA leverages the
idea that any 2-factor which is absent in the input sample must be banned on
some tier, and uses the notion of 2-paths to systematically construct this tier.

5



The algorithm proceeds by iterating through all 2-factors which are absent in
the input data. For each of these, the tier is initialized to the symbols present in
the 2-factor. Then, all the attested intervener sets for this 2-factor are considered
in batches by ascending cardinality. In each batch, all elements of each set which
does not contain any tier elements are added (simultaneously) to the tier. The
final tier is added to the grammar, paired with the corresponding 2-factor.

Algorithm 1 MT2SLIA

G := {}
B := 2fac(TΣ) − 2fac(Input)
foreach f ∶= ρ1Rρ2 ∈ B:

Ti ∶= {ρ1, ρ2}
V ∶= {I for ⟨x, Ið ∈ 2paths(Input) where x = f}
for cardinality c in {1, . . . , ∣Σ∣}:

Vc ∶= {s ∈ V where ∣s∣ = c}
N ∶= {}
foreach v ∈ Vc:

if : ¬#σ[σ ∈ v ' σ ∈ T ]
then: N ∶= N ∪ v

T ∶= T ∪N

G ∶= G ∪ {⟨Ti, ρ1Rρ2ð}
return ⋀

p∈G

p

I will illustrate how this algorithm learns a specific 2FMTSL language. Recall
the MTSL-2 language L from example 1: t ∈ L iff t is well-formed with respect to
both cT (one-to-one match between movers m and closest landing sites l) and cT ′

(a can only occur along movement paths). We will learn an 2FMTSL superset
grammar for this language, which generates a close approximation of the true
pattern, but cannot enforce that l nodes have exactly one m tier daughter, only
that two m nodes cannot be immediate tier siblings. This constraint, which is
string TSL-2, could be learned using the tiers output by MT2SLIA by applying
any TSL-2 string learning algorithm to the tier daughter strings of l.

Suppose we are given the sample in Fig. 3, as well as (for compactness, since
these phenomena are symmetric) the mirror images of those trees.

x

x l

a

x m

l

a

m

x

x x

l

m

x

l

a

a

m

x

x

l

m

x

l

m

x

l

m

l

m

x

l

x m

x

l

x

a

m

x

x

l

a

m

x

l

m

l

a

m

l

a

m

x

l

x

m

l

m

Fig. 3. Input sample for learning the MTSL-2 language in example 1

6



We first determine which 2-factors are absent in the input, shown in Tab. 2.

⋊ ◁ l (⋊ ◁m) (⋊ ◁ a) ⋊ ◁ x

l ◁ l l ◁m l ◁ a l ◁ x

m◁ l (m◁m) (m◁ a) m◁ x

(a◁ l) a◁m a◁ a a◁ x

x◁ l x◁m x◁ a x◁ x

l * l l *m l * a l * x

m * l (m *m) (m * a) m * x

a * l (a *m) (a * a) a * x

x * l x *m x * a x * x

Table 2. Set of all possible immediate dominance and immediate left sibling 2-factors,
with unattested ones in parenthesis

Then, we calculate the tier for each unattested 2-factor Ã1RÃ2 starting from
T ∶= {Ã1, Ã2}. Tab. 3 shows the evaluation of all intervener sets for each 2-
factor, ordered by size. All elements of intervener sets which do not contain any
existing tier elements are inserted (in batches by intervener set size, which will
be essential to estabilishing polynomial sample size in Sec. 5) into T . At each
step, the constraint and the tier will be added to G. The final grammar consists
of all 2-factors from Tab. 3 paired with their corresponding final tier.

2-factor Interveners Tier

⋊ ◁m {l} {l, x}
{l, a}

{l, x, a}
{l,m,x}
{l,m, a}

{l,m,x, a} {m} {m, l}

⋊ ◁ a {l} {l, x}
{l, a}

{l, a,m} {a} {a, l}

m◁m {l} {l, a} {m} {m, l}

m◁ a {l} {m,a} {m,a, l}

a◁ l {m} {a, l} {m,a, l}

m *m {l} {l, a} {l, a, x} {l,m, a, x} {m} {m, l}

m * a {l} {l, x} {l,m,x} {l,m, a, x} {m,a} {m,a, l}

a *m {l} {l, x} {l,m,x} {l,m, a, x} {m,a} {m,a, l}

a * a {l} {a} {a, l}
Table 3. Tier calculation for each missing 2-factor. Grayed-out elements are those
which are already on the tier by the time that intervener set is considered. Sets con-
taining such elements (crossed out) are not added to the tier.

In the final grammar, the {m, l} constraints (⋊ ◁ m, m ◁ m, and m * m)
ensure that each mover must be dominated by a landing site, and two movers
cannot be consecutive tier-children of the same landing site (two movers for a
single target). In addition, an agreeing head can only appear below a landing site,
but never above one unless a mover intervenes. The {m,a, l} sibling constraints
broaden the restrictions against multiple movers for a single target by preventing
any adjacent tier-sibling movement path elements (m or a).

By leveraging the properties of 2FMTSL, the MT2SLIA is able to learn the
bulk of the constraints needed to enforce multiple interacting TSL patterns of
the type found in natural language.

5 Identification in Polynomial Time and Data

In this section, I establish that the MT2SLIA constitutes a conclusive learnability
result by proving that it identifies the class of tree 2FMTSL in the limit from

7



positive data in the sense of Gold [5], with polynomial bounds on time and
data as per de la Higuera [4]. The proof relies on establishing a representative
sample and demonstrating that it characterizes the language with respect to the
MT2SLIA.

Definition 2 (Representative Sample). For a 2FMTSL language L over
alphabet Σ whose grammar is G = ⟨T0, f0ð ' ⟨T1, f1ð ' ... a set D of trees is a
representative sample iff all of the following hold:

1. ∀x ∈ 2fac(TΣ)[x ∉ {f ∶ #⟨T, fð ∈ G} Ô⇒ x ∈ 2fac(D)]
2. ∀⟨T, fð ∈ G[∀Ã ∈ T − symbols(f)[#⟨f, V ð ∈ 2paths(D)[Ã ∈ V ' ¬#⟨f, V ′ð ∈

2paths(L)[Ã ∈ V ′ ' ∣V ′∣ < ∣V ∣ ]]]]

This essentially states that a representative sample must contain all 2-factors
which are not banned on any tier, and that for each banned 2-factor, each symbol
of the tier on which it is banned (except those already present in the 2-factor)
must be attested as an intervener for that 2-factor as part of a smallest intervener
set that it could be part of.

Lemma 1. For a language L, the size of the representative sample D for L is
polynomial in the size of G for any grammar G of L.

Proof. The first condition requires that any 2-factor which is not banned on
some tier is present in the sample. There are at most 2 ⋅ ∣Σ∣2 such 2-factors, each
of which can be constructed with at most 3 nodes (inserting a shared parent
node for sibling 2-factors), giving a total size of 6 ⋅ ∣Σ∣2

The second condition requires that for each banned 2-factor, each tier symbol
from the tier on which it is banned must be attested as an intervener in the
smallest possible intervener set it can be contained in. Since there are at most
2 ⋅ ∣Σ∣2 banned 2-factor and ∣Σ∣ symbols on any tier, this condition imposes an
additional 6 ⋅ ∣Σ∣3 space requirement.

Taken together, the space complexity of the representative sample is O(∣Σ∣3),
and therefore polynomial in both the size of the alphabet and the size of the
grammar (assuming all alphabet symbols are used in the grammar).

Lemma 2. Given an input sample I of size n, tree-MT2SLIA runs in polyno-
mial time in the size of n.

Proof. The algorithm will first need to compute 2-factors and 2-paths for I.
As discussed in Sec. 2, 2-paths can be computed using Gorn addresses. Gorn
addresses can be mapped to nodes in a single tree traversal (i.e., linear time in
the number of nodes). Each pair of nodes must be considered both as possible
dominance 2-factors and possible sibling 2-factors, and all other nodes must be
considered as possible interveners. Membership of each node in the intervener
set can be decided in linear time at worst, by comparing each symbol in the
Gorn addresses of the relevant nodes (the maximum length of a Gorn address is
the size of the tree). Thus, the time complexity of computing 2-paths is O(n4).

8



Once the 2-paths have been computed, finding the attested 2-factors is trivial,
since these are simply the 2-factors from any 2-path where the intervener set is
the empty set.

Then, the algorithm will execute the outer for-loop. This loop will run at most
2 ⋅ ∣Σ∣2 times. Σ itself is bounded by the size of the input (in the worst case,
each node will have a different label), and so we will just use n going forward.
The two inner loops together iterate through all intervener sets (just once, even
though these are two loops. The middle loop is just handling bucketing by size.),
of which there are at most n2 (one for each pair of nodes). Thus, the for-loop
runs in O(n4) time.

In total, the algorithm runs in O(n4 + n4) = O(n4) time.

Lemma 3. Given any superset I of a representative sample D for a 2FMTSL
tree language L with grammar G = ⟨T0, f0ð' ⟨T1, f1ð' ...' ⟨Ti, fið, the MT2SLIA
will return a grammar G′ = G.

Proof. Consider the set B of all the 2-factors which are banned on any tier in
G. Since I contains only valid trees in L, these 2-factors must all be absent
from I. By definition of a representative sample, all other possible 2-factors over
Σ must be present in D, and therefore also in I. Thus, the set which will be
iterated over in the outer loop, B′ = B. Each 2-factor f ′i ∈ B

′ will be associated
to some tier T ′i . Since B′ = B, f ′i must also be part of some pair ⟨Tj , f

′

ið ∈ G.
T ′i will be determined by finding all intervener sets for f ′i , and considering them
in groups from the smallest cardinality to the largest. T ′i will be the union of
all the intervener sets for which no element of that set shows up in a smaller
intervener set. By definition of the representative sample, each element of Tj

must show up in the smallest possible intervener set. Thus, each element of
Tj will be added to T ′i . Furthermore, no matter what data is in I, no symbol
which is not part of Tj can be attested in an intervener set without a member
of Tj (otherwise this would be an illicit construction). Since all elements in
Tj are guaranteed to show up in intervener sets without any non-tier elements
(which are consequently smaller), they will have been added to T ′i already by the
time any intervener set containing a non-tier element is considered. Therefore,
T ′i will contain all and only the elements of Tj , i.e. T

′

i = Tj . Since B′ = B,
G′ = ⟨T0, f0ð ' ⟨T1, f1ð ' ... ' ⟨Ti, fið = G.

Theorem 1. For any 2FMTSL tree language L, the MT2SLIA identifies a gram-
mar for L in polynomial time and data.

Proof. From lemmas 1, 2, and 3.

6 Conclusion

This paper introduces tree-MT2SLIA which is guaranteed to induce a 2FMTSL
grammar over trees in polynomial time and data, and defines the required repre-
sentative sample. The class of 2FMTSL captures many of the patterns described
in the subregular syntax literature, and can be combined with existing string-
TSL2 learning algorithms to capture the remainder. In tandem with this fact,

9



the learnability results given in this paper make the (2F)MTSL tree languages
a viable candidate for representing the space of possible human languages. Next
steps for this work include formalizing how these algorithms can fit together, and
also connecting this approach with existing strategies for learning tree structure
from surface strings to offer a complete picture of syntactic learning. This algo-
rithm demonstrates the utility of subregular linguistics in finding unified learning
strategies that generalize across different linguistic domains, and marks a step
towards understanding how humans learn language.

7 Acknowledgements

The work carried out for this project was supported by the National Science
Foundation under Grant No. BCS-1845344.

References
1. Bod, R.: From exemplar to grammar: Integrating analogy and probability in lan-

guage learning. Cognitive Science 33(4), 752–793 (2008)
2. Clark, A.: Beyond Chomsky normal form: Extending strong learning algorithms for

PCFGs. In: International Conference on Grammatical Inference. pp. 4–17. PMLR
(2021)

3. Clark, A.: Strong learning of probabilistic tree adjoining grammars. Proceedings
of the Society for Computation in Linguistics 4(1), 406–414 (2021)

4. De La Higuera, C.: Characteristic sets for polynomial grammatical inference. Ma-
chine Learning 27, 125–138 (1997)

5. Gold, E.M.: Language identification in the limit. Information and control 10(5),
447–474 (1967)

6. Graf, T.: Diving deeper into subregular syntax. Theoretical Linguistics 48(3-4),
245–278 (2022)

7. Graf, T.: Subregular linguistics: bridging theoretical linguistics and formal gram-
mar. Theoretical Linguistics 48(3-4), 145–184 (2022)

8. Graf, T.: Typological implications of tier-based strictly local movement. In: Pro-
ceedings of the Society for Computation in Linguistics 2022. pp. 184–193 (2022)

9. Graf, T., Kostyszyn, K.: Multiple wh-movement is not special: The subregular com-
plexity of persistent features in minimalist grammars. Proceedings of the Society
for Computation in Linguistics 4, 275–285 (2021)

10. Hanson, K.: A TSL Analysis of Japanese Case. Proceedings of the Society for
Computation in Linguistics 6(1), 15–24 (2023)

11. Hanson, K.: A computational perspective on the typology of agreement (2023),
http://www.kennethhanson.net/files/hanson-nyubb2023-agreement-slides.pdf

12. Heinz, J.: The computational nature of phonological generalizations. Phonological
typology, Phonetics and Phonology pp. 126–195 (2018)

13. Jardine, A., Heinz, J.: Learning tier-based strictly 2-local languages. Transactions
of the Association for Computational Linguistics 4, 87–98 (2016)

14. Lambert, D.: Relativized adjacency. Journal of Logic Language and Information
32, 707–731 (2023)

15. McMullin, K., Aksënova, A., De Santo, A.: Learning phonotactic restrictions on
multiple tiers. Proceedings of the Society for Computation in Linguistics 2(1),
377–378 (2019)

16. McNaughton, R., Papert, S.A.: Counter-Free Automata (MIT research monograph
no. 65). The MIT Press (1971)

10


