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Abstract

In this work, we study first-order algorithms for solving Bilevel Optimization (BO) where the objective
functions are smooth but possibly nonconvex in both levels and the variables are restricted to closed
convex sets. As a first step, we study the landscape of BO through the lens of penalty methods, in which
the upper- and lower-level objectives are combined in a weighted sum with penalty parameter ω > 0.
In particular, we establish a strong connection between the penalty function and the hyper-objective
by explicitly characterizing the conditions under which the values and derivatives of the two must be
O(ω)-close. A by-product of our analysis is the explicit formula for the gradient of hyper-objective
when the lower-level problem has multiple solutions under mild regularity conditions, which could be of
independent interest. Next, viewing the penalty formulation as O(ω)-approximation of the original BO,
we propose first-order algorithms that find an ε-stationary solution by optimizing the penalty formulation
with ω = O(ε). When the perturbed lower-level problem uniformly satisfies the small-error proximal
error-bound (EB) condition, we propose a first-order algorithm that converges to an ε-stationary point of
the penalty function, using in total O(ε→3) and O(ε→7) accesses to first-order (stochastic) gradient oracles
when the oracle is deterministic and oracles are noisy, respectively. Under an additional assumption on
stochastic oracles, we show that the algorithm can be implemented in a fully single-loop manner, i.e.,
with O(1) samples per iteration, and achieves the improved oracle-complexity of O(ε→3) and O(ε→5),
respectively.

1 Introduction

Bilevel Optimization (BO) [17, 14, 18] is a versatile framework for optimization problems in many applications
arising in economics, transportation, operations research, and machine learning, among others [53]. In this
work, we consider the following formulation of BO:

min
x→X ,y→→Y

f(x, y↑) := Eω [f(x, y
↑; ϑ)]

s.t. y
↑ → argmin

y→Y
g(x, y) := Eε[g(x, y; ϖ)],

(P)

where f and g are continuously di!erentiable and smooth functions, X ↑ Rdx and Y ↑ Rdy are closed convex
sets, and ϑ and ϖ are random variables (e.g., indexes of batched samples in empirical risk minimization). That
is, (P) minimizes f over x → X and y → Y (the upper-level problem) when y must be one of the minimizers
of g(x, ·) over y → Y (the lower-level problem).
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Scalable optimization methods for solving (P) are in high demand to handle increasingly large-scale
applications in machine-learning, including meta-learning [51], hyper-parameter optimization [20, 3], model
selection [38, 24], adversarial networks [25, 23], game theory [56], and reinforcement learning [35, 57].
There is particular interest in developing (stochastic) gradient-descent-based methods due to their simplicity
and scalability to large-scale problems [22, 13, 28, 34, 12, 15, 27, 55, 31, 63]. One popular approach is to
perform a direct gradient-descent on the hyper-objective ϱ(x) defined as follows:

ϱ(x) := min
y→S(x)

f(x, y), where S(x) = argmin
y→Y

g(x, y), (1)

but this requires the estimation of ↓ϱ(x), which we refer to as an implicit gradient. Existing works obtain
this gradient under the assumptions that g(x, y) is strongly convex in y and the lower-level problem is
unconstrained, i.e., Y = Rdy . There is no straightforward extension of these approaches to nonconvex and/or
constrained lower-level problems (i.e., Y ↔ Rdy is defined by some constraints) due to the di"culty in
estimating implicit gradients; see Section 1.2 for more discussion in detail.

The goal of this paper is to extend our knowledge of solving BO with unconstrained strongly-convex
lower-level problems to a broader class of BO with possibly constrained and nonconvex lower-level problems.
In general, however, when there is not enough curvature around the lower-level solution, the problem can
be highly ill-conditioned and no known algorithms can handle it even for the simpler case of min-max
optimization [11, 32] (see also Example 1). In such cases, it could be fundamentally hard even to identify
tractable algorithms [16].

To circumvent the fundamental hardness, there have been many recent works on BO with nonconvex
lower-level problems (nonconvex inner-level maximization in min-max optimization literature) under the
uniform Polyak-#ojasiewicz (PL)-condition [33, 64, 65, 61, 29, 42]. While this assumption does not cover all
interesting cases of BO, it can cover situations in which the lower-level problem is nonconvex and where it
does not have a unique solution. It can thus be viewed as a significant generalization of the strong convexity
condition. Furthermore, several recent results show that the uniform PL condition can be satisfied by practical
and complicated functions such as over-parameterized neural networks [21, 54, 43].

Nevertheless, to our best knowledge, no algorithm is known to reach the stationary point of ϱ(x) (i.e.,
to find x where ↓ϱ(x) = 0) under PL conditions alone. In fact, even the landscape of ϱ(x) has not been
studied precisely when the lower-level problem can have multiple solutions and constraints. We take a step
forward in this direction under the proximal error-bound (EB) condition that is analogous to PL but more
suited for constrained problems1.

1.1 Overview of Main Results

Since it is di"cult to work directly with implicit gradients when the lower-level problem is nonconvex, we
consider a common alternative that converts the BO (P) into an equivalent constrained single-level problem,
namely,

min
x→X ,y→Y

f(x, y) s.t. g(x, y) ↗ min
z→Y

g(x, z), (Pcon)

and finds a stationary solution of this formulation, also known as an (approximate)-KKT solution [45, 44, 67].
(Pcon) suggests the penalty formulation

min
x→X ,y→Y

ωf(x, y) + (g(x, y)↘min
z→Y

g(x, z)), (Ppen)

with some su"ciently small ω > 0. Our fundamental goal in this paper is to describe algorithms for finding
approximate stationary solutions of (Ppen), as explored in several previous works [60, 66, 52, 39].

1In the unconstrained setting, EB and PL are known to be equivalent conditions, see e.g., [33]

2



In pursuing our goal, there are two important questions to be addressed. The first one is a landscape
question: since (Ppen) is merely an approximation of (P), it is important to understand the relationship
between their respective landscapes, which have remained elusive in the literature [11]. The second one is
an algorithmic question: solving (Ppen) still requires care since it involves a nested optimization structure
(solving an inner minimization problem over z), and typically with a very small value of the penalty parameter
ω > 0.

Landscape Analysis. Our first goal is to bridge the gap between landscapes of the two problems (P) and
(Ppen). By scaling (Ppen), we define the penalized hyper-objective ϱϑ(x):

ϱϑ(x) :=
1

ω

(
min
y→Y

(ωf(x, y) + g(x, y))↘min
z→Y

g(x, z)

)
. (2)

As mentioned earlier, without any assumptions on the lower-level problem, it is not possible to make any
meaningful connections between ϱϑ(x) and ϱ(x), since the original landscape ϱ(x) itself may not be well-
defined. Proximal operators are key to defining assumptions that guarantee nice behavior of the lower-level
problem.

Definition 1 The proximal operator with parameter ς and function f(φ) over ! is defined as

proxϖf (φ) := argmin
z→!

{
ςf(z) + 1

2≃z ↘ φ≃2
}
. (3)

We now state the proximal-EB assumption, which is crucial to our approach in this paper.

Assumption 1 (Proximal-EB) Let hϑ(x, ·) := ωf(x, ·) + g(x, ·) and T (x,ω) := argminy→Y hϑ(x, y). We
assume that for all x → X and ω → [0,ω0], hϑ(x, ·) satisfies the (µ, ↼)-proximal error bound:

ς
↓1 ·

∥∥∥y ↘ proxϖhω(x,·)(y)
∥∥∥ ⇐ µ · dist(y, T (x,ω)), (4)

for all y → Y that satisfies ς↓1 · ≃y ↘ proxϖhω(x,·)(y)≃ ↗ ↼ with some positive parameters µ, ↼,ω0 > 0.

As we discuss in detail in Section 3, the crux of Assumption 1 is the guaranteed (Lipschitz) continuity of
solution sets, under which we prove our key landscape analysis result:

Theorem 1.1 (Informal) Under Assumption 1 (with additional smoothness assumptions), for all x → X such
that at least one su!ciently regular solution path y

↑(x,ω) exists for ω → [0,ω0], we have

|ϱϑ(x)↘ ϱ(x)| = O(ω/µ),

≃↓ϱϑ(x)↘↓ϱ(x)≃ = O(ω/µ3).

As a corollary, our result implies global O(ω)-approximability of ϱϑ(x) for the special case studied in several
previous works (e.g., [22, 13, 67, 39]), where g(x, ·) is (locally) strongly-convex and the lower-level problem
is unconstrained. To our best knowledge, such a connection, and even the di!erentiability of ϱ(x), is not fully
understood for BO with nonconvex lower-level problems with possibly multiple solutions and constraints. In
particular, the case with possibly multiple solutions (Theorem 3.1) is discussed under the mild assumptions
of solution-set continuity and additional regularities of lower-level constraints.
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Algorithm. Once we show that ↓ϱϑ(x) is an O(ω)-approximation of ↓ϱ(x) in most desirable circum-
stances, it su"ces to find an ε-stationary solution of ϱϱ(x). However, still directly optimizing ϱϑ(x) is not
possible since the exact minimizers (in y) of hϑ(x, y) := ωf(x, y) + g(x, y) and g(x, y) are unknown. Thus,
we use the alternative min-max formulation:

min
x→X ,y→Y

max
z→Y

ϱϑ(x, y, z) :=
hϑ(x, y)↘ g(x, z)

ω
. (Psaddle)

Once we reduce the problem to finding an ε-stationary point of the saddle-point problem (Psaddle), we may
invoke the rich literature on min-max optimization. However, even when we assume that g(x, ·) satisfies
the PL conditions globally for all y → Rdy , a plug-in min-max optimization method (e.g., [65]) yields an
oracle-complexity that cannot be better than O

(
ω
↓4

ε
↓4

)
with stochastic oracles [40], resulting in an overall

O(ε↓8) complexity bound when ω = O(ε).
As we pursue an ε-saddle point specifically in the form of (Psaddle), we show that we can achieve a better

complexity bound under Assumption 1. We list below our algorithmic contributions.

• In contrast to previous work on bilevel or min-max optimization, (e.g., [22, 67, 64]), Assumption 1
holds only in a neighborhood of the lower-level solution. In fact, we show that we only need a nice
lower-level landscape within the neighborhood of solutions with O(↼)-proximal error.

• While we eventually set ω = O(ε), it can be overly conservative to choose such a small value of ω from
the first iteration, resulting in a slower convergence rate. By gradually decreasing penalty parameters
{ωk} polynomially as k↓s for some s > 0, we save an O(ε↓1)-order of oracle-complexity, improving
the overall complexity to O(ε↓7) with stochastic oracles.

• If stochastic oracles satisfy the mean-squared smoothness condition, i.e., the stochastic gradient is
Lipschitz in expectation, then we show a version of our algorithm can be implemented in a fully
single-loop manner (i.e., only O(1) calls to stochastic oracles before updating the outer variables x)
with an improved oracle-complexity of O(ε↓5) with stochastic oracles.

Our results match the best-known complexity results for fully first-order methods in stochastic bilevel opti-
mization [39] with strongly convex and unconstrained lower-level problems, and can also be applied to BO
where the lower-level problem satisfies the PL condition, as studied in [67]. See Section 4 for more details on
our algorithm.

1.2 Related Work

Since its introduction in [8], Bilevel optimization has been an important research topic in many scientific
disciplines. Classical results tend to focus on the asymptotic properties of algorithms once in neighborhoods
of global/local minimizers (see e.g., [60, 59, 14]). In contrast, recent results are more focused on studying
numerical optimization methods and non-asymptotic analysis to obtain an approximate stationary solution of
Bilevel problems (see e.g., [22, 13]). Our work falls into this category. Due to the vast volume of literature on
Bilevel optimization, we only discuss some relevant lines of work.

Implicit-Gradient Descent As mentioned earlier, initiated by [22], a flurry of recent works (see e.g.,
[13, 28, 34, 12, 15, 27]) study stochastic-gradient-descent (SGD)-based iterative procedures and their finite-
time performance for solving (P) when the lower-level problem is strongly-convex and unconstrained. In such
cases, the implicit gradient of hyper-objective ϱ(x) is given by

↓xf(x, y
↑(x))↘↓2

xyg(x, y
↑(x))

(
↓2

yyg(x, y
↑(x))

)↓1↓yf(x, y
↑(x)),
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where y↑(x) = argminw→Rdy g(x,w). Two main challenges in performing (implicit) gradient descent are (a)
to evaluate lower-level solution y

↑(x), and (b) to estimate Hessian inverse (↓2
yyg(x, y

↑(x)))↓1. For (a), it is
now well-understood that instead of exactly solving for y↑(xk) for every k

th iteration, we can incrementally
solve for y↑(xk), e.g., run a few more gradient steps on the current estimate yk, and use it as a proxy for the
lower-level solution [13]. As long as the contraction toward the true solution (with the strong convexity of
g(xk, ·)) is large enough to compensate for the change of lower-level solution (due to the movement in xk), yk
will eventually stably stay around y

↑(xk), and can be used as a proxy for the lower-level solution to compute
the implicit gradient. Then for (b), with the Hessian of g being invertible for all given y, we can exploit the
Neumann series approximation [22] to estimate the true Hessian inverse using yk as a proxy for y↑(xk).

Unfortunately, the above results are not easily extendable to nonconvex lower-level objectives with potential
constraints Y . One obstacle is, again, to estimate the Hessian-inverse: now that for some y → Y , the Hessian
of g may not be invertible even if ↓2

yyg(x, y
↑(x)) is invertible at the exact solution. Therefore, in order to

use an approximate yk as a proxy to y
↑(xk), we need a certain high-probability guarantee (or some other

complicated arguments) to ensure that the algorithm remains stable with the inversion operation. The other
obstacle, which is more complicated to resolve, is that the implicit gradient formula may no longer be the
same if the solution is found at the boundary of Y . In such a case, explicitly estimating ↓ϱ(x) would not
only require an approximate solution but also require the optimal dual variables for the lower-level solutions
which are unknown (see Theorem 3.1 for the exact formula). However, computing the optimal solution as
well as the optimal dual variables is even more challenging when we only access objective functions through
stochastic oracles. Therefore, it is essential to develop a first-order method that does not rely on the explicit
estimation of the implicit gradient to solve a broader class of BO, aside from the cost of using second-order
derivatives in large-scale applications.

Nonconvex Lower-Level Objectives In general, BO with nonconvex lower-level objectives is not com-
putationally tractable without further assumptions, even for the special case of min-max optimization [16].
Therefore, additional assumptions on the lower-level problem are necessary. Arguably, the minimal assump-
tion would be the continuity of lower-level solution sets, otherwise, any local-search algorithms are likely
to fail due to the hardness of (approximately) tracking the lower-level problem. The work in [11] considers
several growth conditions for the lower-level objectives (including PL), which guarantee Lipschitz continuity
of lower-level solution sets, and proposes a zeroth-order method for solving (P). The work in [52] assumes
the PL condition, and studies the complexity of the penalty method in deterministic settings. The work in [2]
introduces a notion of parameteric Morse-Bott functions, and studies some asymptotic properties of their
proposed gradient flow under the proposed condition. In all these works as well as in our work, underlying
assumptions involve some growth conditions of the lower-level problem, which is essential for the continuity
of lower-level solution sets.

Penalty Methods Studies on penalty methods date back to 90s [46, 60, 1, 66, 30], when the equivalence
is established between two formulations (P) and (Ppen) for su"ciently small ω > 0. However, these results
are often limited to relations within infinitesimally small neighborhoods of global/local minimizers. As we
aim to obtain a stationary solution from arbitrary initial points, we need a comprehensive understanding
of approximating the global landscape, rather than only around infinitesimally small neighborhoods of
global/local minimizers.

The most closely related work to ours is a recent work in [52], where the authors study the penalty method
under lower-level PL-like conditions with constraints Y as in ours. However, the connection established in
[52] only relates (Ppen) and ε-relaxed version of (Pcon), and only concerns infinitesimally small neighborhoods
of global/local minimizers as in older works. Furthermore, their analysis is restricted to the double-loop
implementation of algorithms in deterministic settings. In contrast, we establish a direct connection between
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↓ϱ(x) and ↓ϱϑ(x) when they are well-defined, and our analysis can be applied to both double-loop and
single-loop algorithms with explicit oracle-complexity bounds in stochastic settings.

Implicit Di!erentiation Methods Another popular approach to side-step the computation of implicit
gradients is to construct a chain of lower-level variables via gradient descents, a technique often called
automatic implicit di!erentiation (AID), or iterative di!erentiation (ITD) [50, 63, 41, 31, 26]. The benefit
of this technique is that now we do not require the estimation of Hessian-inverse. In fact, this construction
can be seen as one constructive way of approximating the Hessian-inverse. However, when the lower-level
problem is constrained by compact Y , more complicated operations such as the projection may prevent the
use of the implicit di!erentiation technique.

2 Preliminaries

We state several assumptions on (P) to specify the problem class of interest. Our focus is on smooth objectives
whose values are bounded below:

Assumption 2 f and g are twice continuously-di"erentiable and lf,1, lg,1-smooth jointly in (x, y) respectively,
i.e., ≃↓2

f(x, y)≃ ↗ lf,1 and ≃↓2
g(x, y)≃ ↗ lg,1 for all x → X , y → Y .

Assumption 3 The following conditions hold for objective functions f and g:

1. f and g are bounded below and coercive, i.e., for all x → X , f(x, y), g(x, y) > ↘⇒ for all y → Y , and
f(x, y), g(x, y) ⇑ +⇒ as ≃y≃ ⇑ ⇒.

2. ≃↓yf(x, y)≃ ↗ lf,0 for all x → X , y → Y .

We also make technical assumptions on the domains:

Assumption 4 The following conditions hold for domains X and Y:

1. X ,Y are convex and closed.

2. Y is bounded, i.e., maxy→Y ≃y≃ ↗ DY for some DY = O(1). Furthermore, we assume that Cf :=
maxx→X ,y→Y |f(x, y)| = O(1) is bounded.

3. The domain Y can be compactly expressed with at most m1 ⇐ 0 inequality constraints {gi(y) ↗
0}i→[m1] with convex and twice continuously-di"erentiable gi, and at most m2 ⇐ 0 equality constraints
{hi(y) = 0}i→[m2] with linear functions hi.

We note here that the expressiveness of inner domain constraints Y is only required for the analysis, and not
required in our algorithms as long as there exist e"cient projection operators. While there could be many
possible representations of constraints, only the most compact representation would matter in our analysis. We
denote by ”X and ”Y the projection operators onto sets X and Y , respectively. NX (x) denotes the normal
cone of X at a point x → X .

Next, we define the distance measure between sets:

Definition 2 (Hausdor! Distance) Let S1 and S2 be two sets in Rd. The Hausdor" distance between S1

and S2 is given as

dist(S1, S2) = max

{
sup
ς1→S1

inf
ς2→S2

≃φ1 ↘ φ2≃, sup
ς2→S2

inf
ς1→S1

≃φ1 ↘ φ2≃
}
.

For distance between a point φ and a set S, we denote dist(φ, S) := dist({φ}, S).
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Throughout the paper, we use Definition 2 as a measure of distances between sets. We define the notion of
(local) Lipschitz continuity of solution sets introduced in [11].

Definition 3 (Lipschitz Continuity of Solution Sets [11]) For a di"erentiable and smooth function f(w, φ)
on W ⇓!, we say the solution set S(w) := argminς→! f(w, φ) is locally Lipschitz continuous at w → W if
there exists an open-ball of radius ↼ > 0 and a constant LS < ⇒ such that for any w

↔ → B(w, ↼), we have
dist(S(w), S(w↔)) ↗ LS≃w ↘ w

↔≃.

Constrained Optimization We introduce some standard notions of regularities from nonlinear constrained
optimization [4]. For a general constrained optimization problem Q : minς→! f(φ), suppose ! can be com-
pactly expressed with m1 ⇐ 0 inequality constraints {gi(φ) ↗ 0}i→[m1] with convex and twice continuously
di!erentiable gi, and m2 ⇐ 0 equality constraints {hi(φ) = 0}i→[m2] with linear functions hi.

Definition 4 (Active Constraints) We denote I(φ) ↑ [m1] the index of active inequality constraints of Q at
φ → !, i.e., I(φ) := {i → [m1] : gi(φ) = 0}.

Definition 5 (Linear Independence Constraint Qualification (LICQ)) We say Q is regular at a feasible
point φ → ! if the set of vectors consisting of all equality constraint gradients ↓hi(φ), ⇔i → [m2] and the
active inequality constraint gradients ↓gi(φ), ⇔i → I(φ) is a linearly independent set.

A solution φ
↑ of Q satisfies the so-called KKT conditions when LICQ holds at φ↑: the KKT conditions are

that there exist unique Lagrangian multipliers ↽↑
i ⇐ 0 for i → I(φ↑) and ⇀

↑
i → R for i → [m2] such that

φ
↑ → ! and ↓f(φ↑) +

∑
i→I(ς→) ↽

↑
i↓gi(φ↑) +

∑
i→[m2]

⇀
↑
i ↓hi(φ↑) = 0. (5)

For such a solution, we define the strict complementary slackness condition:

Definition 6 (Strict Complementarity) Let φ↑ be a solution of Q satisfying LICQ and the KKT condition
above. We say that the strict complementary condition is satisfied at φ↑ if there exist multipliers ↽↑

, ⇀
↑ that

satisfy (5), and further ↽↑
i > 0 for all i → I(φ↑).

Other Notation We say ak ↖ bk if ak and bk decreases (or increases) in the same rate as k ⇑ ⇒, i.e.,
limk↗↘ ak/bk = !(1). Throughout the paper, ≃ · ≃ denotes the Euclidean norm for vectors, and operator
norm for matrices. [n] with a natural number n → N+ denotes a set {1, 2, ..., n}. Let ”S(φ) be the projection
of a point φ onto a convex set S. We denote Ker(M) and Im(M) to mean the kernel (nullspace) and the
image (range) of a matrix M respectively. For a symmetric matrix M , we define the pseudo-inverse of M
as M † := U(U≃

MU)↓1
U

≃ where the columns of U consist of eigenvectors corresponding to all non-zero
eigenvalues of M .

3 Landscape Analysis and Penalty Method

In this section, we establish the relationship between the landscapes of the penalty formulation (Ppen) and the
original problem (P). Recalling the definition of the perturbed lower-level problem hϑ(x, y) := ωf(x, y) +
g(x, y) from Assumption 1, we introduce the following notation for its solution set: For ω → [0,ω0] with
su"ciently small ω0 > 0, we define

l(x,ω) := min
y→Y

hϑ(x, y), T (x,ω) := argmin
y→Y

hϑ(x, y). (6)
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ϱ(x) ϱϑ(x) ϱ(x) ϱϑ(x)

Figure 1: ϱ(x) and ϱω(x) in Examples: (left) Example 1, (right) Example 2. Blue dashed lines compare ϱω(x) to the
original hyper-objective ϱ(x).

We call l(x,ω) the value function, and T (x,ω) the corresponding solution set. Then, the minimization
problem (Ppen) over the penalty function and ϱϑ defined in (2) can be rewritten as

min
x→X

ϱϑ(x) where ϱϑ(x) =
l(x,ω)↘ l(x, 0)

ω
.

We can view ϱϑ(x) as a sensitivity measure of how the optimal value miny→Y g(x, y) changes when we
impose a perturbation of ωf(x, y) in the objective. In fact, it can be easily shown that

lim
ϑ↗0

ϱϑ(x) =
⇁

⇁ω
l(x,ω)|ϑ=0+ = ϱ(x).

However, this formula provides only a pointwise asymptotic equivalence of two functions and does not imply
the equivalence of the gradients ↓ϱϑ(x) and ↓ϱ(x) of the two hyper-objectives. In the limit setting, we
check whether

↓ϱ(x) =
⇁
2

⇁x⇁ω
l(x,ω)|ϑ=0+

?
=

⇁
2

⇁ω⇁x
l(x,ω)|ϑ=0+ = lim

ϑ↗0
↓ϱϑ(x). (7)

Unfortunately, it is not always true that the above relation (7) holds, and the gradient of ↓ϱ(x) may not even
be well-defined, as illustrated in Examples 1 and 2 in the following section.

In what follows, we derive two assumptions: one concerning solution-set continuity (Assumption 5) and
another addressing the regularities of lower-level constraints (Assumption 6). Under these assumptions, we
establish the main theorem of this section, Theorem 3.1. This, in turn, leads to the derivation of the second
inequality in our landscape analysis result, as presented in Theorem 1.1 and shown in Theorem 3.8.

3.1 Su"cient Conditions for Di!erentiability

The following two examples illustrate the obstacles encountered when claiming limϑ↗0↓ϱϑ(x) ⇑ ↓ϱ(x)
or even when simply ensuring the existence of ↓ϱ(x).

Example 1 Consider the bilevel problem with X = Y = [↘1, 1], f(x, y) = x
2 + y

2, and g(x, y) = xy.
Note that limϑ↗0 ϱϑ(x) ⇑ x

2+1 for all x → [↘1, 1]\{0}, where we have limϑ↗0 ϱϑ(0) ⇑ 0. See Figure 1.
Therefore ϱ(x) is a pointwise convergent point of ϱϑ(x). However, neither ϱ(x) nor ϱϑ(x) is di"erentiable
at x = 0.

This example also implies that the order of (partial) di!erentiation may not be swapped in general. Even
when the lower-level objective g(x, y) is strongly convex in y, the inclusion of a constraint set Y , even when
compact, can lead to a nondi!erentiable ϱ, as we see next.

Example 2 Consider an example with X = [↘2, 2], Y = [↘1, 1], f(x, y) = ↘y, and g(x, y) = (y ↘ x)2.
In this example, ϱ(x) = 1 if x < ↘1, ϱ(x) = ↘x if x → [↘1, 1], and ϱ(x) = ↘1 otherwise. Thus ϱ(x) is
not di"erentiable at x = ↘1 and 1, while ↓ϱϑ(1) = 0 and ↓ϱϑ(↘1) = ↘1 for all ω > 0.

8



There are two reasons for the poor behavior of ↓ϱ(x). First, in Example 1, the solution set moves
discontinuously at x = 0. When the solution abruptly changes due to a small perturbation in x, the problem
is highly ill-conditioned — a fundamental di"culty [16]. Second, in Example 2, even though the solution
set is continuous thanks to the strong convexity, the solution can move nonsmoothly when the set of active
constraints for the lower-level problem changes. The result is frequently nonsmoothness of ϱ(x), so ↓ϱ(x)
may not be defined at such x. In summary, we need regularity conditions to ensure that these two cases do
not happen.

We first consider assumptions that obviate solution-set discontinuity so situations like those appearing in
Example 1 will not occur.

Assumption 5 The solution set T (x,ω) := argminy→Y hϑ(x, y) is locally Lipschitz continuous, i.e., T (x,ω)
satisfies Definition 3 at (x,ω).

We note here that the di!erentiability of the value function l(x,ω) requires Lipschitz continuity of solution
sets (not just continuity). When the solution set is locally Lipschitz continuous, it is known (see Lemma A.2)
that the value function l(x,ω) is (locally) di!erentiable and smooth.

As we have seen in Example 2, however, the Lipschitz-continuity of the solution set alone may not be
su"cient in the constrained setting. We need additional regularity assumptions for constrained lower-level
problems. Recalling the algebraic definition of Y in Assumption 4, we define the Lagrangian of the constrained
(ω-perturbed) lower-level optimization problem:

Definition 7 Given the lower-level feasible setY satisfying Assumption 4, let {↽i}m1
i=1 ↔ R+ and {⇀i}m2

i=1 ↔ R
be some Lagrangian multipliers. The Lagrangian function L(·, ·, ·|x,ω) : Rm1

+ ⇓ Rm2 ⇓ Rdy ⇑ R at (x,ω)
is defined by

L(↽, ⇀, y|x,ω) = ωf(x, y) + g(x, y) +
∑

i→[m1]
↽igi(y) +

∑
i→[m2]

⇀ihi(y).

We also define the Lagrangian LI(·|x,ω) : R|I|
+ ⇓Rm2 ⇓Rdy ⇑ R restricted to a set of constraints I ↑ [m1]:

LI(↽I , ⇀, y|x,ω) = ωf(x, y) + g(x, y) +
∑

i→I ↽igi(y) +
∑

i→[m2]
⇀ihi(y). (8)

When the context is clear, we always let I in (8) be I(y) at a given y. The required assumption is the existence
of a regular and stable solution that satisfies the following:

Assumption 6 The solution set T (x,ω) contains at least one y
↑ → T (x,ω) such that LICQ (Definition 5)

and strict complementary condition (Definition 6) hold at y↑, and ↓2LI(·, ·, ·|x,ω) (the matrix of second
derivatives with respect to all variables ↽I , ⇀, y) is continuous at (↽↑

I , ⇀
↑
, y

↑).

Assumption 6 helps ensure that the active set I(y↑) given in Definition 4 does not change when x or ω is
perturbed slightly.

3.2 Asymptotic Landscape

We show that Assumptions 5 and 6 are nearly minimal to ensure the twice-di!erentiability of the value
function l(x,ω) which, in turn, guarantees asymptotic equivalence of ↓ϱϑ(x) and ↓ϱ(x). In the sequel, we
state our main (local) landscape analysis result only under the two assumptions at a given point (x,ω), which
is given in the following theorem:
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Theorem 3.1 Suppose T (·, ·) satisfies Assumption 5 in a neighborhood of (x,ω). If there exists at least one
y
↑ → T (x,ω) that satisfies Assumption 6, then φ2

φxφϑ l(x,ω) exists and can be given explicitly by

⇁
2

⇁ω⇁x
l(x,ω) =

⇁
2

⇁x⇁ω
l(x,ω) (9)

= ↓xf(x, y
↑)↘

[
0 ↓2

xyhϑ(x, y
↑)
]
(↓2LI(↽

↑
I , ⇀

↑
, y

↑|x,ω))†
[

0
↓yf(x, y↑)

]
.

If this equality holds at ω = 0+, then ϱ(x) is di"erentiable at x, and limϑ↗0↓ϱϑ(x) = ↓ϱ(x).

Theorem 3.1 generalizes the expression of ↓ϱ(x) from the case of a unique solution to the one with multiple
solutions, significantly enlarging the scope of tractable instances of BO. Up to our best knowledge, there
are no previous results that provide an explicit formula of ↓ϱ(x), even when the solution set is Lipschitz
continuous, though conjectures have been made in the literature [61, 2] under similar conditions.

Remark 3.2 (Set Lipschitz Continuity) While we require the entire solution set T (x,ω) to be Lipschitz
continuous, the proof indicates that we need only Lipschitz continuity of solution paths passing through
y
↑ (that defines the first-order derivative of l(x,ω) and satisfies other regularity conditions) in all possible

perturbation directions of (x,ω). Nonetheless, we stick to a stronger requirement of Definition 3, since our
algorithm requires a stronger condition that implies the continuity of entire solution sets.

Remark 3.3 (Lipschitz Continuity in ω) While we require T (x,ω) to be Lipschitz continuous in both x

and ω, well definedness of ↓ϱ(x) requires only Lipschitz continuity of T (x, 0+) in x (which sometimes can
be implied by the PL condition only on g as in [11, 52, 61]). Still, for implementing a stable and e!cient
algorithm with stochastic oracles, we conjecture that it is essential to have the Lipschitz continuity assumption
on the additional axis ω.

We conclude our asymptotic landscape analysis with a high-level discussion on Theorem 3.1. The key
step in our proof is to prove the following proposition:

Proposition 3.4 (Necessary Condition for Lipschitz Continuity) Suppose T (x,ω) satisfies Assumption 5
at (x,ω). For any y↑ → T (x,ω) that satisfies Assumption 6, the following must hold:

⇔v → span(Im(↓2
yxhϑ(x, y

↑)),↓yf(x, y
↑)) :

[
0
v

]
→ Im(↓2LI(↽

↑
I , ⇀

↑
, y

↑|x,ω)). (10)

Formally, perturbations in (x,ω) must not tilt the flat directions of the lower-level landscape for T (x,ω)
to be continuous. While it is easy to make up examples that do not meet the condition (e.g. Example 1),
several recent results show that the solution landscape may be stabilized for complicated functions such
as over-parameterized neural networks [21, 54, 43]. In Appendix B.4, we prove a more general version of
Theorem 3.1 (see Theorem B.2), of possible broader interest, concerning the Hessian of l(x,ω).

3.2.1 Special Case: Unique Solution and Invertible Hessian

When the Hessian is invertible at the unique solution, the statement can be made stronger since we can
deduce solution-set Lipschitz continuity from the well-understood solution sensitivity analysis in constrained
optimization [6]. That is, we can provide a strong su"ciency guarantee for the Lipschitz continuity of
solution-sets.
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Proposition 3.5 (Su"cient Condition for Lipschitz Continuity) Suppose y↑ → T (x,ω) is the unique lower-
level solution at (x,ω). Suppose that Assumption 6 holds at y↑ with corresponding Lagrangian multipliers
↽
↑
, ⇀

↑. Further, suppose that ↓2L↑
I is invertible. Then T (x,ω) is locally Lipschitz continuous at (x,ω).

Thus, the uniqueness of the solution along with LICQ, strict complementarity, and invertibility of the Hessian
is strong enough to guarantee the Lipschitz continuity of solution sets. Therefore, we can conclude that
φ2

φxφϑ l(x,ω) exists and that the order of di!erentiation commutes under Assumption 6.

Theorem 3.6 Suppose y↑ → T (x,ω) is the unique lower-level solution at (x,ω). If Assumption 6 holds at y↑,
and ↓2L↑

I is invertible, then φ2

φxφϑ l(x,ω) exists and can be given explicitly by

⇁
2

⇁ω⇁x
l(x,ω) =

⇁
2

⇁x⇁ω
l(x,ω)

= ↓xf(x, y
↑)↘

[
0 ↓2

xyhϑ(x, y
↑)
]
(↓2LI(↽

↑
I , ⇀

↑
, y

↑|x,ω))↓1

[
0

↓yf(x, y↑)

]
.

If this equality holds at ω = 0+, then ϱ(x) is di"erentiable at x, and limϑ↗0↓ϱϑ(x) = ↓ϱ(x).

3.3 Landscape Approximation with ω > 0

We can view ↓ϱϑ(x) as an approximation of φ
φϑ

(
φ
φx l(x,ω)

)
|ϑ=0+ via finite di!erentiation with respect to ω.

Assuming that φ2

φϑφx l(x,ω) exists and is continuous for all small values of ω, we can apply the mean-value
theorem and conclude that ↓ϱϑ(x) =

φ2

φϑφx l(x,ω
↔) for some ω↔ → [0,ω]. Thus, ≃↓ϱϑ(x)↘↓ϱ(x)≃ is O(ω)

whenever φ2

φxφϑ l(x,ω) is well-defined and uniformly Lipschitz continuous over [0,ω].
To work with nonzero constant ω > 0, we need the regularity assumptions to hold in significantly

larger regions. The crux of Assumption 1 is the guaranteed Lipschitz continuity of solution sets (see also
Assumption 5) for every given x and ω, which is also crucial for the tractability of lower-level solutions by
local search algorithms whenever upper-level variable changes:

Lemma 3.7 Under Assumption 1, T (x,ω) is (lg,1/µ)-Lipschitz continuous in x and (lf,0/µ)-Lipschitz con-
tinuous in ω for all x → X ,ω → [0, ↼/Cf ].

An additional consequence of Lemma 3.7 is that, by Lemma A.2, l(x,ω) is continuously di!erentiable and
smooth for all x → X and ω → [0, ↼/Cf ]. This fact guarantees in turn that ϱϑ(x) is di!erentiable and smooth
(though ϱ(x) does not necessarily have these properties).

While Assumption 1 is su"cient to ensure ϱϑ(x) is well-behaved, we need additional regularity conditions
to ensure thatϱ(x) is also well-behaved. Therefore when we connectϱ(x) andϱϑ(x), we make two more local
assumptions that are non-asymptotic versions of Assumption 5 and 6. The first concerns Hessian-Lipschiztness
and regularity of solutions.

Assumption 7 For a given x, there exists at least one y
↑ → T (x, 0) such that if we follow the solution path

y
↑(ω) along the interval ω → [0,ω0],

(1) all y↑(ω) satisfies Assumption 6 with active constraint indices I and Lagrangian multipliers↽↑
I(ω), ⇀

↑(ω)
of size O(1) and

(2) ↓2
f,↓2

g, {↓2
gi}m1

i=1 are lh,2-Lipschitz continuous at all (x, y↑(ω)).

In the unconstrained settings with Hessian-Lipschitz objectives, Assumption 7 is implied by Assumption 1
for all x → X ,ω → [0, ↼/Cf ].

The second assumption is on the minimum nonzero singular value of active constraint gradients.
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Assumption 8 For a given x, there exists at least one y
↑ → T (x, 0) such that if we follow the solution path

y
↑(ω) along the interval ω → [0,ω0], all solutions y↑(ω) satisfy Definition 5 with minimum singular value

smin > 0. That is, for all ω → [0,ω0], we have

min
v:⇐v⇐2=1

∥∥[↓gi(y↑(ω)), ⇔i → I | ↓hi(y↑(ω)), ⇔i → [m2]
]
v
∥∥ ⇐ smin.

Note that smin in the constrained setting depends purely on the LICQ condition, Definition 5.

Theorem 3.8 Under Assumptions 1 - 4, we have

|ϱϑ(x)↘ ϱ(x)| ↗ O
(
l
2
f,0/µ

)
· ω,

for all x → X and ω → [0, ↼
2Cf

]. If, in addition, Assumptions 7 and 8 hold at a given x, then

≃↓ϱϑ(x)↘↓ϱ(x)≃ ↗ O

(
l
4
g,1l

3
f,0

µ3s3min

+
lh,2l

2
g,1l

3
f,0

µ3s2min


· ω.

The proof of Theorem 3.8 is given in Appendix B.5.

Remark 3.9 (Change in Active Sets) A slightly unsatisfactory conclusion of Theorem 3.8 is that when
↓ϱ(x) is not well-defined due to the nonsmooth movement of the solution set as in Example 2, it does
not relate ↓ϱϑ(x) to any alternative measure for ↓ϱ(x). Around the point where ϱ(x) is non-smooth, some
concurrent work attempts to find a so-called (ε, ↼)-Goldstein stationary point [11], which can be seen as an
approximation of gradients via localized smoothing (but only in the upper-level variables x). While this is an
interesting direction, we do not pursue it here. Instead, we conclude this section by stating that an ε-stationary
solution of ϱϑ(x) is an O(ε+ ω)-KKT point of (Pcon) (this claim is fairly straightforward to check, see for
example, Theorem B.3 in Appendix B.6).

4 Algorithm

In the previous section, we investigated how and when the penalty-based method can yield an approximate
solution of the original Bilevel optimization problem (P). In this section, we describe algorithms that find a
stationary point of the penalty function using only access to first-order (stochastic) gradient oracles.

We have the following assumptions on the first-order (stochastic) oracles and e"cient projection operators
required to develop our algorithms.

Assumption 9 The projection operations”X ,”Y onto setsX ,Y , respectively, can be implemented e!ciently.

Assumption 10 We access first-order information about the objective functions via unbiased estimators
↓f(x, y; ϑ),↓g(x, y; ϖ), where E[↓f(x, y; ϑ)] = ↓f(x, y) and E[↓g(x, y; ϖ)] = ↓g(x, y). The variances
of stochastic gradient estimators are bounded as follows:

E[≃↓f(x, y; ϑ)↘↓f(x, y)≃2] ↗ ω
2
f , E[≃↓g(x, y; ϖ)↘↓g(x, y)≃2] ↗ ω

2
g ,

for some universal constants ω2
f ,ω

2
g ⇐ 0.

Throughout the rest of the paper, we assume that Assumption 1 holds.
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Algorithm 1 Double-Loop Algorithm with Large Batches
Input: total outer-loop iterations: K, step sizes: {αk, γk}, proximal-smoothing parameters: {▷k : ▷k →
(0, 1]}, inner-loop iteration counts: {Tk}, outer-loop batch size: {Mk}, penalty parameters: {ωk}, proximal
parameter: ς, initializations: x0 → X , y0, z0 → Y

1: Initialize wy,0 = y0, wz,0 = z0

2: for k = 0...K ↘ 1 do
3: # Inner-Loop Proximal-Operation Solvers
4: u0 ↙ wy,k, v0 ↙ wz,k

5: for t = 0, ..., Tk ↘ 1 do
6: ut+1 ↙ ”Y


ut ↘ γk(ωkf

k,t
wy + g

k,t
wy + ς

↓1(ut ↘ yk))


7: vt+1 ↙ ”Y


vt ↘ γk(g

k,t
wz + ς

↓1(vt ↘ zk))


8: end for
9: wy,k+1 ↙ uT , wz,k+1 ↙ vT

10: # Proximal-Smoothing on Lower-Level Variables
11: yk+1 ↙ (1↘ ▷k)yk + ▷kwy,k+1

12: zk+1 ↙ (1↘ ▷k)zk + ▷kwz,k+1

13: # (Projected) Gradient Descent on Upper-Level Variables
14: xk+1 ↙ ”X


xk ↘ ↽k

Mk

∑Mk
m=1(ωkf

k,m
x + g

k,m
xy ↘ g

k,m
xz )



15: end for

4.1 Stationarity Measures

Since we showed in the previous section that ↓ϱϑ(x) is an O(ω)-approximation of ↓ϱ(x) in most desirable
circumstances, now we consider finding a stationary point (x↑, y↑, z↑) of ↓ϱϑ(x). Under Assumption 1, we
can show that this is equivalent to finding the stationary point of (Psaddle) defined as the following:

y
↑ = proxϖhω(x→,·)(y

↑), z
↑ = proxϖg(x→,·)(z

↑), ↘ (↓xhϑ(x
↑
, y

↑)↘↓xg(x
↑
, z

↑)) → NX (x
↑), (11)

where NX (x↑) is the normal cone of X at x↑. We define a notion of approximate stationary points as follows.

Definition 8 We say (x, y, z) is an ε-stationary point of (Psaddle) if it satisfies the following:

1

ς
≃y ↘ proxϖhω(x,·)(y)≃ ↗ ωε,

1

ς
≃z ↘ proxϖg(x,·)(z)≃ ↗ ωε,

1

ς
≃x↘”X {x↘ ς(↓xhϑ(x, y)↘↓xg(x, z)}≃ ↗ ωε.

The lemma below relates the ε-stationarity of (Psaddle) to the landscape of ↓ϱϑ(x):

Lemma 4.1 Let (x↑, y↑, z↑) be an ε-stationary point of (Psaddle).

1. For all x → X , ↓ϱϑ(x) is well-defined, and x
↑ is a (1 + lg,1/µ)ε-stationary point of ϱϑ(x).

2. Supposing in addition that Assumptions 7 and 8 hold at x↑, then x↑ is a ((1+lg,1/µ)ε+Lϑω)-stationary
point of ϱ(x), where Lϑ = O


l
4
g,1l

3
f,0/(µ

3
s
3
min)


.

The first part of the lemma is a consequence of Lemma 3.7, while the second part is from Theorem 3.8.
Henceforth, we aim to find a saddle point of formulation (Psaddle).
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4.2 First-Order Method with Large Batches

We first consider solving a stochastic saddle-point problem by applying (projected) stochastic gradient descent-
ascent, alternating between upper-level and lower-level variables, with multiple iterations for the lower-level
variables (y, z) per single iteration in the upper-level variables (x). There are two technical challenges that we
aim to tackle specifically for the form (Psaddle) with Assumption 1.

1. Technically speaking, the main di!erence from many previous works (e.g., [28, 13, 12]) is that now
we no longer have a global contraction property of inner iterations toward solution sets. To be more
specific, when the lower-level objective the PL-condition for all y → Rdy , the distance between the
current (lower-level) iterates and solution-sets contracts globally after applying inner gradient steps,
i.e., if updating zk+1 ↙ zk ↘ ▷k↓yg(xk, zk) at the kth iteration before updating xk, we get

E[dist(zk+1, T (xk, 0))|Fk] ↗ (1↘ ↽k) · dist(zk, T (xk, 0)),

for some ↽k → (0, 1]. However, we assume that the error-bound condition only holds at points with O(↼)
proximal error. That is, unless y and z remain close to the solution set (with high probability if gradient
oracles are stochastic), we cannot guarantee that dist(zk, T (xk, 0)) is improved (in expectation) as the
outer-iteration k proceeds.

2. Eventually, we want ω = O(ε) since ϱϑ(x) is ideally an O(ω)-approximation of ϱ(x) up to first-order.
However, to set ω = O(ε) from the first iteration is overly conservative, resulting in an overall slowdown
of convergence. We decrease the penalty parameters {ωk} gradually, to improve the overall convergence
rates and the gradient oracle complexity.

To address issue 1, we propose a smoothed surrogate of ϱϑ(x, y, z) via proximal envelope (often referred
to as Moreau Envelope [48]) with su"ciently small ς ∝ 1/lg,1:

h
↑
ϑ,ϖ(x, y) = min

w→Y

(
hϑ(x, y, w) := hϑ(x,w) +

1

2ς
≃w ↘ y≃2

)
,

g
↑
ϖ(x, z) = min

w→Y

(
g(x, y, w) := g(x,w) +

1

2ς
≃w ↘ z≃2

)
, (12)

and consider the following alternative saddle-point problem with proximal envelopes:

min
x→X ,y→Y

max
z→Y

ϱϑ,ϖ(x, y, z) :=
h
↑
ϑ,ϖ(x, y)↘ g

↑
ϖ(x, z)

ω
. (13)

This formulation is convenient because the inner-minimization problem is strongly convex, so we always have
a unique and well-defined lower-level optimizer to chase.

Note that↓h
↑
ϑ,ϖ(x, y) = ↓hϑ(x,w↑

y)wherew↑
y = proxϖhω(x,·)(y), and similarly,↓g

↑
ϖ(x, z) = ↓g(x,w↑

z)
where w↑

z = proxϖg(x,·)(z). That is, to apply gradient descent-ascent on ϱϑ,ϖ(x, y, z), we need only solve for
proximal operations associated with hϑ(x, ·) and g(x, ·). While we may not be able to compute the proximal
operators exactly, we can introduce intermediate variables wy,k, wz,k that chase the solution of proximal
envelopes. We then design the inner loop of the algorithm to solve the proximal operation using Tk inner
iterations. Later, we make particular choices of the number of inner iterations Tk to achieve the best oracle
complexity and convergence rates.

To address issue 2 above, we simply choose ωk = k
↓s for some chosen constant s > 0. This rate of

decrease of ωk is optimized to achieve the best oracle complexity and convergence rates to reach an ε-stationary
point of ϱϱ,ϖ(x, y, z). We summarize the overall double-loop implementation in Algorithm 1, where we
define:

f
k,t
wy = ↓yf(xk, ut; ϑ

k,t
wy), g

k,t
wy = ↓yg(xk, ut; ϖ

k,t
wy), g

k,t
wz = ↓yg(xk, vt; ϖ

k,t
wz),
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Algorithm 2 Single Loop Algorithm with Momentum Assistance
Input: total outer-loop iterations: K, step sizes: {αk, γk}, proximal-smoothing parameters: {▷k : ▷k →
(0, 1]} penalty parameters: {ωk}, momentum schedulers: {◁k : ◁k → (0, 1]}, proximal parameter: ς,
initializations: x0 → X , y0, z0 → Y

1: Initialize wy,0 = y0, wz,0 = z0

2: for k = 0...K ↘ 1 do
3: # Proximal-Operation Solvers
4: wy,k+1 ↙ ”Y


wy,k ↘ γk(ωk fk

wy + gkwy + ς
↓1(wy,k ↘ yk))



5: wz,k+1 ↙ ”Y
{
wz,k ↘ γk(gkwz + ς

↓1(wz,k ↘ zk))
}

6: # Proximal-Smoothing on Lower-Level Variables
7: yk+1 ↙ (1↘ ▷k)yk + ▷kwy,k+1

8: zk+1 ↙ (1↘ ▷k)zk + ▷kwz,k+1

9: # (Projected) Gradient Descent on Upper-Level Variables
10: xk+1 ↙ ”X


xk ↘ αk


ωk

fk
x + gkxy ↘ gkxz



11: end for

f
k,m
x = ↓xf(xk, wy,k+1; ϑ

k,m
x ), g

k,m
xy = ↓xg(xk, wy,k+1; ϖ

k,m
xy ), g

k,m
xz = ↓xg(xk, wz,k+1; ϖ

k,m
xz ).

We mention here that one may try Tk = Mk = O(1), in which case Algorithm 1 becomes a single-loop
algorithm. However, as we see in the analysis, the optimal scheduling of Tk and Mk should increase with k

(see also Remark 5.3).

4.3 A Fully Single-Loop First-Order Algorithm

A drawback of double-loop implementation is that we have to wait for an increasingly large number of samples
(since we design Tk or Mk to be increased in k) to be collected before we can improve the objective. A natural
question is whether we can keep incrementally updating upper-level variables x without waiting for too many
inner iterations or for the evaluation of large batches. If the stochastic oracle satisfies the mean-squared
smoothness assumption and allow two points to be queried simultaneously, then we can implement the
algorithm in single-loop (that replace the inner loops with a single step, and avoid the use of large poly(ε↓1)
batches):

Assumption 11 Stochastic oracles allow 2-simultaneous query: the algorithm can observe unbiased esti-
mators of ↓f(x, y),↓g(x, y) at two di"erent points (x1, y1), (x2, y2) for a shared random seed ϑ and ϖ.
Furthermore, gradient estimators satisfy the mean-squared smoothness condition:

E[≃↓f(x1, y1; ϑ)↘↓f(x2, y2; ϑ)≃2] ↗ l
2
f,1(≃x1 ↘ x2≃2 + ≃y1 ↘ y2≃2),

E[≃↓g(x1, y1; ϖ)↘↓g(x2, y2; ϖ)≃2] ↗ l
2
g,1(≃x1 ↘ x2≃2 + ≃y1 ↘ y2≃2).

We define momentum-assisted gradient estimators recursively for the inner loop proximal-solvers as follows:

gkwz := ↓yg(xk, wz,k; ϖ
k
wz) + (1↘ ◁k)


gk↓1
wz ↘↓yg(xk↓1, wz,k↓1; ϖ

k
wz)


,

fk
wy := ↓yf(xk, wy,k; ϑ

k
wy) + (1↘ ◁k)


fk↓1
wy ↘↓yf(xk↓1, wy,k↓1; ϑ

k
wy)


,

gkwy := ↓yg(xk, wy,k; ϖ
k
wy) + (1↘ ◁k)


gk↓1
wy ↘↓yg(xk↓1, wy,k↓1; ϖ

k
wy)


,
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where ◁k → (0, 1], and ◁0 = 1 (and thus, ignores (k↘ 1)th terms at k = 0). Formulas for the update to upper-
level variables x are defined similarly. A single-loop alternative to Algorithm 1 can be defined as in Algorithm
2. Our analysis shows that the momentum-assisted technique leads to improvement in sample-complexity
upper bounds.

5 Analysis

In this section, we provide our main convergence results for Algorithm 1 and Algorithm 2.

5.1 Analysis of Algorithm 1

We first define the proximal error of y and z at the kth iteration as:

#y
k := ς

↓1 · (yk ↘ proxϖhωk (xk,·)(yk)), #z
k := ς

↓1 · (zk ↘ proxϖg(xk,·)(zk)).

For measuring the error in x, we define 2

x̂k := ”X


xk ↘ αk


↓xhϑk(xk, proxϖhωk (xk,·)(yk))↘↓xg(xk, proxϖg(xk,·)(zk))


,

#x
k := α

↓1
k (xk ↘ x̂k).

Next, we define

$ϑ,ϖ(x, y, z) :=
h
↑
ϑ,ϖ(x, y)↘ g

↑
ϖ(x, z)

ω
+

C

ω
(g↑ϖ(x, z)↘ g

↑(x)), (14)

with some universal constant C ⇐ 4, and finallly we define the potential function as

Vk := $ϑk,ϖ(xk, yk, zk) +
Cw↽k

ωkς


≃wy,k ↘ proxϖhωk (xk,·)(yk)≃

2 + ≃wz,k ↘ proxϖg(xk,·)(zk)≃
2

, (15)

where Cw > 0 is some su"ciently large universal constant, and ↽k := Tkγk/(4ς) is a target improvement rate
for chasing proximal operators per outer-iteration. We are now ready to state our main convergence theorem.

Theorem 5.1 Suppose that Assumptions 1-4 and 9-10 hold, with parameters and stepsizes satisfying the
following bounds, for all k ⇐ 0:

ς < c2/lg,1, ωk < c1lg,1/lf,1, Tkγk < c3ς, ▷k ↗ c4 ∝ 1, αk ↗ c5ς(1 + lg,1/µ)
↓1

,

αk ↗ c6ς
3min(µ2

, ↼
2
/D

2
Y) · ▷k,

ωk ↘ ωk+1

ωk+1
↗ c7ς

2min(µ2
, ↼

2
/D

2
Y) · ▷k,

(16)

with some universal constants c1, c2, c3, c4, c5, c6, c7 > 0 as well as the following:

ς▷k + αk ↗ c8T
2
k γ

2
k , ⇔k, (17)

with some universal constant c8 > 0. Then the iterates of Algorithm 1 satisfy

E

K↓1

k=0

αk

16ωk
≃#x

k≃2 +
ς▷k

16ωk
(≃#y

k≃
2 + ≃#z

k≃2)

↗ E[V0 ↘ VK ] (18)

+O(Cf ) ·
K↓1

k=0

(
ωk ↘ ωk+1

ωk+1

)
+

O(lg,1/µ+ Cw)

ς

(
K↓1

k=0

ω
↓1
k

(
αk

Mk
+ ς

↓1
T
2
k γ

3
k

)
(ω2

kω
2
f + ω

2
g)


.

2Note that !x
k is a stricter stationarity measure on x than Definition 8 as long as ωk → ε, since the function g : [0,↑) ↓ R

defined by g(s) := ↔x↗”X {x+ sw} ↔/s with any w ↘ Rdx is monotonically nonincreasing (see e.g., Lemma 2.3.1 in [5])
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The proof of Theorem 5.1 is given in Appendix C. We mention here that problem-dependent constants
may not be fully optimized and could be improved with more careful analysis. Still, there are two major
considerations for the stepsizes: (i) the relations between (i) ▷k and αk and (ii) the relations between αk

(or ς▷k) and Tkγk. Regarding (i), the conditions (16) require αk/▷k ↖ ς
2min(µ, ↼/DY)2. E!ectively, this

relation determines the number of updates of the yk and zk variables for each update of xk. The condition is
necessary to ensure that yk and zk always remain relatively close to the solution-set T (xk,ωk) and T (xk, 0) in
expectation, which is crucial to convergence to a stationary point of the saddle-point problem (13). Regarding
(ii), the relation between αk and Tkγk in (17) is required for approximately evaluating the proximal operators
without solving from scratch at every outer iteration.

As a corollary, with proper design of step-sizes, we can give a finite-time convergence guarantee for
reaching an approximate stationary point of ϱϑ(x). To simplify the statement, we treat all problem-dependent
parameters as O(1) quantities.

Corollary 5.2 Let αk = c↽ς(k + k0)↓a, ▷k = c⇀(k + k0)↓b, γk = c⇁(k + k0)↓c, and ωk = cϑ(k + k0)↓s,
Tk = (k + k0)t, Mk = (k + k0)m with some proper problem-dependent constants c↽, c⇀ , c⇁ , cϑ, and k0. Let
R be a random variable drawn from a uniform distribution over {0, ...,K ↘ 1}, and let ε = ωK . Under the
same conditions in Theorem 5.1, the following holds after K iterations of Algorithm 1: for the optimal design
of rates, we set a = b = 0, s = 1/3, and

(a) if stochastic noises are present in both upper-level objective f and lower-level objective g (i.e., ω2
f ,ω

2
g >

0), then let c = t = m = 4/3.

(b) If stochastic noises are present only in f (i.e., ω2
f > 0, ω2

g = 0), then let c = t = m = 2/3.

(c) If we have access to exact information about f and g (i.e., ω2
f = ω

2
g = 0), then let c = t = m = 0.

Then, we have ≃↓ϱϱ(xR)≃ ↖ logK
K1/3 with probability at least 2/3. If Assumption 7 and 8 additionally hold at

xR, then we also have ≃↓ϱ(xR)≃ ↖ logK
K1/3 .

Note that the overall gradient oracle complexity (or simply sample complexity) to have E[≃↓ϱϱ(xR)≃] = O(ε)
is given by O(K · (MK + TK)) with K = O(ε↓1/s) and MK = TK = O(εt/s). Thus, we have O(ε↓7),
O(ε↓5), and O(ε↓3) sample-complexity upper-bounds for fully-stochastic, only upper-level stochastic, and
deterministic cases respectively.

Remark 5.3 (Single-Loop Implementation with Algorithm 1) While we design TK = MK = O(ε↓4) to
achieve the best complexity bound in stochastic scenarios, we can also find di"erent rate scheduling for which
TK = MK = O(1). For instance, when X = Rdx , we can change the coe!cients of noise-variance terms
from O(αk/Mk) to O(α2

k), and schedule the rates of step-sizes such that left-hand side of (18) converges.
However, we found that such a single-loop design may result in overall worse complexity bounds unless
momentum-assistance techniques are deployed.

5.2 Analysis of Algorithm 2

In addition to quantities defined before, we also should track the noise-variance terms in momentum-assisted
gradient estimators. We first define the expected gradients Gk

wy, Gk
wz, G

k
x as follows:

G
k
wz := ↓yg(xk, wz,k), G

k
wy := ωk↓yf(xk, wy,k) +↓yg(xk, wy,k),

G
k
x := ωk↓xf(xk, wy,k+1) +↓xg(xk, wy,k+1)↘↓xg(xk, wz,k+1).
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Next, we define error terms ekwz, e
k
wy, e

k
x in these gradient estimators as follows:

e
k
wz := gkwz ↘G

k
wz, e

k
wy := ωk

fk
wy + gkwy ↘G

k
wy, e

k
x := ωk

fk
x + (gkxy ↘ gkxz)↘G

k
x.

Finally, we we redefine the potential function:

Vk := $ϑk,ϖ(xk, yk, zk) +
Cw

ωkς


≃wy,k ↘ proxϖhωk (xk,·)(yk)≃

2 + ≃wz,k ↘ proxϖg(xk,·)(zk)≃
2


+
Cης

2

ωkγk↓1


≃ek↓1

x ≃2 + ≃ekwy≃2 + ≃ekwz≃2

, (19)

with some properly set universal constants Cw, Cη > 0. For technical reasons, we require here one additional
assumption on the boundedness of the movement in wy,k.

Assumption 12 For all x → X and y, z → Y , let w↑
y := proxϖhω(x,·)(y) = argminw→Y hϑ(x, y, w) and

w
↑
z := proxϖg(x,·)(z) = argminw→Y g(x, z, w) where hϑ(x, y, w) and g(x, z, w) are defined in (12). We

assume that

≃↓whϑ(x, y, w
↑
y)≃ ↗ Mw, ≃↓wg(x, z, w

↑
z)≃ ↗ Mw,

for some (problem-dependent) constant Mw = O(1).

We are now ready to state the convergence guarantee for the momentum-assisted fully-single loop
implementation.

Theorem 5.4 Suppose that Assumptions 1-4, 9-12 hold, with parameters and step-sizes satisfying(16) as well
as the following relations for all k ⇐ 0:

ς▷k + αk ↗ c8γk, ◁k+1 ⇐ c9ς
↓2 ·max

(
(lg,1/µ)αkγk, γ

2
k

)
. (20)

Then the iterates of Algorithm 2 satisfy the following inequality:

E

K↓1

k=0

αk

16ωk
≃#x

k≃2 +
▷k

16ωkς

(
≃yk ↘ w

↑
y,k≃2 + ≃zk ↘ w

↑
z,k≃2

)

↗ E[V0 ↘ VK ]

+
K↓1

k=0

((
ωk ↘ ωk+1

ωk

)
·O(Cf ) +

O(M2
w)ς

2

Cwωkγk

(
ωk ↘ ωk+1

ωk+1

)2

+ Cης
2O(◁2k+1)

ωkγk
(ω2

kω
2
f + ω

2
g)



+ CηO(ς2l2g,1)

(
hϑ0(x0, y0, wy,0)↘ h

↑
ϑ0,ϖ(x0, y0)

ω0
+

g(x0, z0, wz,0)↘ g
↑
ϖ(x0, z0)

ω0

)
.

We then give a corollary analogous to Corollary 5.2, with proper design of step-sizes. As before, to
simplify the statement, we treat all problem-dependent parameters as O(1) quantities.

Corollary 5.5 Let αk = c↽ς(k + k0)↓a, ▷k = c⇀(k + k0)↓b, γk = c⇁(k + k0)↓c, ωk = cϑ(k + k0)↓s and
◁k = (k + k0)↓n with some proper problem-dependent constants c↽, c⇀ , c⇁ , cϑ, and k0. Let R be a random
variable drawn from a uniform distribution over {0, ...,K ↘ 1}, and let ε = ωK . Under the same conditions
in Theorem 5.4, the following claims hold after K iterations of Algorithm 2.

(a) If stochastic noise is present in both upper-level objective f and lower-level objective g (i.e., ω2
f ,ω

2
g > 0),

then let a = b = c = 2/5, s = 1/5, and n = 4/5. Then ≃↓ϱϱ(xR)≃ ↖ logK
K1/5 with probability at least

2/3.
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(b) If stochastic noises are present only in f , let a = b = c = 1/4, s = 1/4, and n = 1/2. Then
≃↓ϱϱ(xR)≃ ↖ logK

K1/4 with probability at least 2/3.

(c) If we have access to exact gradient information, let a = b = c = 0, s = 1/3, n = 0. Then
≃↓ϱϱ(xR)≃ ↖ logK

K1/3 with probability at least 2/3.

If Assumption 7 and 8 additionally hold at xR, then the same conclusion holds for ≃↓ϱ(xR)≃.

Note that since Algorithm 2 only uses O(1) samples per iteration, the overall sample-complexity is upper-
bounded by O(ε↓5), O(ε↓4), and O(ε↓3) for fully-stochastic, only upper-level stochastic, and deterministic
cases respectively. That is, momentum assistance not only enables single-loop implementation, but also
improves the overall sample complexity.

6 Conclusion

This paper studies a first-order algorithm for solving Bilevel Optimization when the lower-level problem and
perturbed versions of it satisfy a proximal error bound condition when the errors are small. We establish an
O(ω)-closeness relationship between the penalty formulation ϱϑ(x) and the hyper-objective ϱ(x) under the
proximal-error bound condition, and then we develop a fully first-order stochastic approximation scheme for
finding a stationary point of ϱϑ(x), and study its non-asymptotic performance guarantees. We believe our
algorithm to be simple and general, and useful in many large-scale scenarios that involve nested optimization
problems. Below, we discuss several issues not addressed in this paper, that may become the subjects of
fruitful future research.

Tightness of Results. Can our complexity result can be improved in terms of its dependence on ε while
using only first-order oracles? Recent work in [10] shows that when the lower-level problem is unconstrained
and strongly convex, oracle complexity can be improved to O(ε↓2) with deterministic first-order gradient
oracles. Can similar improvements be found in the complexity when stochastic oracles and constraints are
present in the formulation?

Lower Level x-Dependent Constraints. When the lower-level constraints depend on x, it is also possible
to derive an implicit gradient formula when the lower level problem is non-degenerate. For instance, [62] has
studied the case in which the lower-level objective is strongly convex and there are lower-level linear equality
constraints that depend on x. In general, with x-dependent constraints, we cannot avoid estimating Lagrangian
multipliers, as they are needed in the implicit gradient formula. Even to find the stationary point of penalty
functions, ↓ϱϑ(x) requires Lagrangian multipliers (see the Envelope Theorem [47]). An interesting future
direction would be to develop an e"cient first-order algorithm for this case.

General Convex Lower-Level. One interesting special case is when g(x, ·) is merely convex, not necessarily
strongly convex. There have been recent advances in min-max optimization for nonconvex-concave problems;
see for example [7, 58, 37, 36, 49, 68]. We note that when g(x, ·) is convex, an ε-stationary point of (Psaddle)
is also an ε-KKT solution of (Pcon). The first paper to investigate this direction in deterministic settings is
[45], to our knowledge. An important future direction would be to extend their results to stochastic settings.

Nonsmooth Objectives. We could also consider nonsmooth objectives in both levels where e"cient proximal
operators are available for handling the nonsmoothness. It would also be interesting in future work to see
whether the analysis in this paper needs to be changed significantly in order to handle nonsmooth objectives.
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Appendix A Auxiliary Lemmas

Throughout the section, we take ς ↗ c1/lg,1 and ω < c2lg,1/lf,1 with su"ciently small universal constants
c1, c2 → (0, 0.01]. We also assume that Assumptions 2-4 hold by default.

Theorem A.1 (Danskin’s Theorem) Let f(w, φ) be a continuously di"erentiable and smooth function on
W ⇓!. Let l↑(w) := minς→! f(w, φ) and S(w) := argminς→! f(w, φ), and assume S(w) is compact for
all w. Then the directional derivative of l↑(w) in direction v with ≃v≃ = 1 is given by:

Dvl
↑(w) := lim

↼↗0

l
↑(w + ↼v)↘ l

↑(w)

↼
= min

ς→S(w)
′v,↓wf(w, φ)∞. (21)

Lemma A.2 (Proposition 5 in [52]) For a continuously-di"erentiable and L-smooth function f(w, φ) in
W⇓!, consider a minimizer function l↑(w) = minς→! f(w, φ) and a solution mapS(w) = argminς→! f(w, φ).
If S(w) is LS-Lipschitz continuous at w, then l

↑(w) is di"erentiable and L(1 + LS)-smooth at w, and
↓l

↑(w) = ↓wf(w, φ↑) for any φ↑ → S(w).

Lemma A.3 For any x1, x2 → X , and y1, y2 → Y , the following holds:

≃proxϖg(x1,·)(y1)↘ proxϖg(x2,·)(y2)≃ ↗ O(ςlg,1)≃x1 ↘ x2≃+ ≃y1 ↘ y2≃.

The same property holds with hϑ(x, ·) instead of g(x, ·).

Lemma A.4 For any x → X , y → Y and ω1,ω2 → [0,ω], the following holds:

≃proxϖhω1 (x,·)(y)↘ proxϖhω2 (x,·)(y)≃ ↗ O(ςlf,0)|ω1 ↘ ω2|.

Lemma A.5 For the choice of ς < 1/(4lg,1) and ω < c · lg,1/lf,1 with su!ciently small c > 0, h↑ϑ,ϖ(x, y) is
continuously di"erentiable and 2ς↓1-smooth jointly in (x, y).

Appendix B Deferred Proofs in Section 3

Below, we first provide the proofs of Proposition 3.5 and Theorem 3.6.

B.1 Proof of Proposition 3.5

The proof is based on the celebrated implicit function theorem. See Appendix C.7 in [19], for instance.
We first show that if y↑(x,ω) → T (x,ω) is unique, then there exists ↼ > 0 and ↼y > 0 such that for all
≃(x↔,ω↔) ↘ (x,ω)≃ < ↼, the solution satisfies T (x↔,ω↔) ↔ B(y↑, ↼y) and is singleton where B(y↑, ↼y) is an
open ball of radius ↼y centered at y↑. When the context is clear, we simply denote y↑(x,ω) as y↑.

To begin with, we first argue that we can take ↼ small enough such that solutions cannot happen outside
the neighborhood of y↑. Note that unions of all solution sets are contained in B(0, R) with some finite
R < ⇒ due to Assumption 4. For any ↼y > 0, let q↑ = miny→(Y⇒B(0,R))/B(y→,↼y) ωf(x, y) + g(x, y), and let
M = maxy→B(0,R)(≃ω↓xf(x, y)+↓xg(x, y)≃+ f(x, y)) (the finite maximum exists since f, g are smooth).
Since T (x,ω) is singleton, we have q

↑
> l(x,ω). Thus, there exists 0 < ↼0 ∝ (q↑ ↘ l(x,ω))/M , such that

for all (x↔,ω↔) → B((x,ω), ↼0), we have T (x↔,ω↔) ↑ B(y, ↼y).
Next, by regularity and strict complementary slackness of y↑, there exists a unique (↽↑

, ⇀
↑) such that

↽
↑
i > 0 for all i → I(y↑), ↽↑

i = 0 for all i /→ I(y↑), and ↓L(↽↑
I , ⇀

↑
, y

↑|x,ω) = 0. Since we assumed
↓2L(↽↑

I , ⇀
↑
, y

↑|x,ω) being invertible, we can apply implicit function theorem. That is, there exists an
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su"ciently small ↼ > 0 such that for all (x↔,ω↔): |(x↔,ω↔)↘ (x,ω)| < ↼, we can take ↼λ,▷ , ↼y > 0 such that
there is a unique (↽↔

I , ⇀
↔
, y

↔)

↓LI(↽
↔
I , ⇀

↔
, y

↔|x↔,ω↔) = 0,

inside the local region ≃(↽↔
I , ⇀

↔)↘ (↽↑
, ⇀

↑)≃ < ↼λ,▷ and ≃y↔ ↘ y≃ < ↼y. Thus, we can take ↼ > 0 su"ciently
small such that ↼λ,▷ can be su"ciently small to keep ↽

↑
I non-negative.

Furthermore, in this local region, T (x↔,ω↔) ↑ B(y, ↼y) for all (x↔,ω↔) → B((x,ω), ↼↔) where ↼
↔ =

min(↼0, ↼), which in turn implies that T (x↔,ω↔) is a singleton and uniquely given by the implicit function
theorem. Therefore, T (x,ω) is di!erentiable and thus locally Lipschitz continuous. In addition, T (x,ω) is
always singleton over B((x,ω), ↼↔). ↭

B.2 Proof of Theorem 3.6

Recall the local region given in the proof of Proposition 3.5. We note that the implicit function theorem
further says that in this local region, we can define di!erentiation of y with respect to x and ω such that

dy
↑(x,ω)

dω
= ↘

[
0 I

]
↓2LI(↽

↑
I , ⇀

↑
, y

↑|x,ω)↓1

[
0

↓yf(x, y↑)

]
,

↓xy
↑(x,ω) = ↘

[
0 I

]
↓2LI(↽

↑
I , ⇀

↑
, y

↑|x,ω)↓1

[
0

↓2
yxhϑ(x, y

↑)

]
.

As a consequence, φ2

φϑφx l(x,ω) is given by

⇁
2

⇁ω⇁x
l(x,ω) =

⇁

⇁ω
(ω↓xf(x, y

↑(x,ω)) +↓xg(x, y
↑(x,ω)))

= ↓xf(x, y
↑(x,ω)) + ω↓2

xyf(x, y
↑(x,ω))

dy
↑(x,ω)

dω
+↓2

xyg(x, y
↑(x,ω))

dy
↑(x,ω)

dω

= ↓xf(x, y
↑(x,ω))↘

[
0 ↓2

xyhϑ(x, y
↑(x,ω))

]
(↓2L|↑I)↓1

[
0

↓yf(x, y↑(x,ω))

]
.

Similarly, di!erentiation in swapped order is also given by

⇁
2

⇁x⇁ω
l(x,ω) =

⇁

⇁x
f(x, y↑(x,ω))

= ↓xf(x, y
↑(x,ω)) +↓xy

↑(x,ω))≃↓yf(x, y
↑(x,ω))

= ↓xf(x, y
↑(x,ω))↘

[
0 ↓2

xyhϑ(x, y
↑(x,ω))

]
(↓2L↑

I)
↓1

[
0

↓yf(x, y↑(x,ω))

]
.

Hence φ2

φxφϑ l(x,ω) exists. If this holds at ω = 0+, then we have limϑ↗0 ϱϑ(x) = ϱ(x). ↭

B.3 Proof of Proposition 3.4

We instead prove the general version of Proposition 3.4:

Theorem B.1 Suppose that f(w, φ) in W ⇓ ! is continuously-di"erentiable and L-smooth with W,!
satisfying Assumption 4. Let l↑(w) = minς→! f(w, φ). Assume the solution mapS(w) = argminς→! f(w, φ)
is locally Lipschitz continuous at w. For any φ

↑ → S(w) such that (1) φ↑ satisfies Definition 5 and 6 with
Lagrangian multipliers ↽↑, and (2) ↓2L|↑I is locally continuous at (w,↽↑

, φ
↑) jointly in (w,↽, φ). Then the

following must hold:

⇔v → Im(↓2
ςwf(w, φ

↑)) :

[
0
v

]
→ Im(↓2L(↽↑

, φ
↑|w)).
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Then Proposition 3.4 follows as a corollary.

Proof. We show this by contradiction. For simplicity, we assume that Let {gi}i→I(ς→) be a set of active
constraints of ! at φ↑. To simplify the discussion, we assume no equality constraints (there will be no change
in the argument). Suppose there exists v → Im(↓2

ςwf(w, φ
↑)) such that ≃v≃ = 1 and (0, v) is not in the

image of Lagrangian Hessian. Let (0, v) = vKer + vIm be the orthogonal decomposition of v into kernel and
image of the Hessian of Lagrangian. Note that we can take v such that ≃vKer≃ > 0. Let (dx, dω) be such that
%(↼) · v = ↓2

ςwf(w, φ
↑)dw.

Since S(w) is locally Lipschitz continuous, there exists ↼ > 0 and LT < ⇒ such that for all ≃dw≃ < ↼,
there exists ≃dφ≃ < LT ↼ such that φ↑ + dφ → S(w + dw). We can take ↼ small enough such that inactive
inequality constraints stay inactive with dφ change. Thus, when considering d↽, we do not change coordinates
that correspond to inactive constraints.

We claim that there cannot exist (d↽, dφ) with ≃dφ≃ < LT ↼ that can satisfy

↓L(↽↑ + d↽, φ
↑ + dφ|w + dw) = 0.

First, we show that d↽ cannot be too large. Note that

↓L(↽↑ + d↽, φ
↑|w)↘↓L(↽↑

, φ
↑|w) =



i→I(ς→)

(d↽i)↓gi(φ
↑)

= [↓gi(φ
↑), i → I(φ↑)]  

B

[d↽i, i → I(φ↑)]

Since we assumed that B is full-rank in columns, the minimum (right) singular value smin of B is strictly
positive, i.e., smin > 0. On the other hand, by Lipschitz-continuity of all gradients, perturbations in w, φ can
change gradients of Lagrangian only by order O(↼):

↓L(↽↑ + d↽, φ
↑ + dφ|w + dw)↘↓L(↽↑ + d↽, φ

↑|w) ↗ L≃dw≃  
perturbed by dw

+


i→I(ς→)

(↽↑
i + d↽i)L≃dφ≃

  
perturbed by dς

.

Thus, since (dw, dφ) = O(↼), we have

(smin ↘O(↼))≃d↽≃+O(↼)(1 + ≃↽↑≃) = 0. (22)

By taking ↼ < smin small enough, and due to the existence of Lagrange multipliers ≃↽↑≃ < ⇒, we have
proven that ≃d↽≃ = O(↼) with su"ciently small ↼.

Next, we check that

↓L(↽↑ + d↽, φ
↑ + dφ|w + dw,!)↘↓L(↽↑

, φ
↑|w)

= %(↼) · (vKer + vIm) +↓2L(↽↑
, y

↑|w)
[
d↽

dφ

]
+ o(↼).

However, vKer is not in the image of ↓2L, and o(↼) terms cannot eliminate %(↼) · vKer if ↼ ∝ ≃vKer≃. Thus,
↓L(↽↑ + d↽, φ

↑ + dφ|w + dw,!) cannot be 0, which implies there is no feasible optimal solution in ↼-ball
around φ

↑ if we perturb w in direction dw. This contradicts S(w) being locally Lipschitz continuous. Thus,
(10) is necessary for S(w) to be locally Lipschitz continuous. ↭
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B.4 Proof of Theorem 3.1

Similarly to the proof of Proposition 3.4, we prove the following general version:

Theorem B.2 Suppose that f(w, φ) in W ⇓ ! is continuously-di"erentiable and L-smooth with W,!
satisfying Assumption 4. Let l↑(w) = minς→! f(w, φ). Assume the solution mapS(w) = argminς→! f(w, φ)
is locally (uniformly) Lipschitz continuous at all neighborhoods of w. For w → W , if there exists at least one
φ
↑ → S(w) such that (1) φ↑ satisfies Definition 5 and 6 with Lagrangian multipliers ↽↑, and (2) ↓2

f,↓2L↑
I

is locally continuous at (w,↽↑
I , φ

↑) jointly in (w,↽I , φ), then ↓2
l
↑(w) exists and is given by

↓2
l
↑(w) = ↓2

wwf(w, φ
↑)↘

[
0 ↓2

wςf(w, φ
↑)
]
(↓2LI(↽

↑
I , φ

↑|w))†
[

0
↓2

ςwf(w, φ
↑)

]
. (23)

Theorem 3.1 follows as a corollary by only taking φ2

φxφϑ and φ2

φϑφx parts with w = (ω, x).

Proof. Let φ↑t → S(w+ tv) be the closest solution to φ
↑ → S(w), and let ↽↑

t be the corresponding Lagrangian
multiplier. Let I := I(φ↑) be a set of active constraints of ! at φ↑. As in the proof of Theorem B.1, to
simplify the discussion, we assume there is no equality constraints (including equality constraints needs
only a straightforward modification). We first show that the active constraints I does not change due to the
perturbation tv in w when the solution set is Lipschitz continuous. To see this, note that all inactive inequality
constraints remain strictly negative gi(φ) < 0 for all i ∈= I(φ↑). For active constraints, due to Definition 6,
we have ↽

↑
i > 0 for all gi(φ↑) = 0 with i → I. By the solution-set continuity given as assumption, we have

≃φ↑t ↘ φ
↑≃ = O(t). Thus, by the same argument as deriving (22), we have ≃↽↑

t ↘ ↽
↑≃ = O(t) as well for

su"ciently small t. Thus, active constraints remain the same with perturbation of amount O(t) as long as
t ∝ mini→I ↽↑

i .
Now by the Lipschitzness of the solution map S(φ) and Lemma A.2, we have

↓l
↑(w) = ↓wf(w, φ), ⇔φ → S(w).

To begin with, for any unit vector v and arbitrarily small t > 0, we consider

↓l
↑(w + tv)↘↓l

↑(w)

t
,

which approximates ↓2
l
↑(w)v. Furthermore, due to Lemma A.2 and the local continuity of ↓2

f , it holds that

↓l
↑(w + tv)↘↓l

↑(w)

t
=

↓wf(w + tv, φ
↑
t )↘↓wf(w, φ↑)

t

=
t↓2

wwf(w, φ
↑)v +↓2

wςf(w, φ
↑)(φ↑t ↘ φ

↑)

t
+ o(1).

If ↓2L↑
I := ↓2LI((↽↑)I , φ↑|w,!) is invertible, then by the implicit function theorem,

[
(↽↑

t )I ↘ (↽↑)|I
φ
↑
t ↘ φ

↑

]
= (↓2L↑

I)
↓1

[
0

↓2
ςwf(w, φ

↑)(tv)

]
+ o(t).

In general, let the eigen-decomposition ↓2L↑
I = Q&Q≃ and let r be the rank of ↓2L↑

I . Without loss of
generality, assume that the first r columns of Q correspond to non-zero eigenvalues. Let µmin > 0 be the
smallest absolute value of non-zero eigenvalue, and let U := Qr be the first r columns of Q, and let U⇑ be
the orthogonal complement of U , i.e., U⇑ is the kernel basis of ↓2L↑

I . We fix U henceforth.
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Our goal is to show that

U
≃
[
(↽↑

t )I ↘ (↽↑)I
φ
↑
t ↘ φ

↑

]
= ↘tU

≃↓2(L↑
I)

†
[

0
↓2

ςwf(w, φ
↑)

]
v + o(t). (24)

If this holds, then we can plug this into the original di!erentiation formula, yielding

↓l
↑(w + tv)↘↓l

↑(w)

t
=

t ·↓2
wwf(w, φ

↑)v +↓2
wςf(w, φ

↑)(φ↑t ↘ φ
↑)

t
+ o(1)

=

t ·↓2
wwf(w, φ

↑)v +
[
0 ↓2

wςf(w, φ
↑)
] [(↽↑

t ↘ ↽
↑)I

φ
↑
t ↘ φ

↑

]

t
+ o(1)

= ↓2
wwf(w, φ

↑)v ↘
([
0 ↓2

wςf(w, φ
↑)
]
U
)
(U≃↓2L↑

IU)↓1

(
U

≃
[

0
↓2

ςwf(w, φ
↑)

])
v + o(1).

Since Im(
[
0 ↓2

wςf(w, φ
↑)
]≃

) ↑ span(U), sending t ⇑ 0, the limit is given by

↓2
l
↑(w)v = ↓2

wwf(w, φ
↑)v ↘

[
0 ↓2

wςf(w, φ
↑)
]
(↓2L↑

I)
†
[

0
↓2

ςwf(w, φ
↑)

]
v.

The above holds for any unit vector v, and we conclude (23). Note that this holds for any φ
↑ → S(w) where

L(↽↑
, φ

↑|w,!) is locally Hessian-Lipschitz (jointly in w, ↽ and φ), concluding the proof.

We are left with showing (24). For simplicity, let y =

[
↽I
φ

]
, and we simply denote L(w, y) :=

L|I(↽I , φ|w,!). Consider LU (w, z) := L(w,Uz + y0) where y0 is a projected point of y↑ onto the kernel
of ↓2L|↑I . Note that since kernel and image are orthogonal complements of each other, y↑ = Uz

↑+ y0 where
z
↑ = U

≃
y
↑. We list a few properties of LU (w, z):

↓zLU (w, z) = U
≃↓ςL(w,Uz + y0),

↓2
zzLU (w, z) = U

≃↓2
yyL(w,Uz + y0)U,

↓2
wzLU (w, z) = ↓2

wyL(w,Uz + y0)U,

and ↓2LU is locally uniformly Lipschitz continuous at (w, z↑) jointly in (w, z).
A crucial observation is that z↑ is a critical point of LU (w, z), i.e., ↓zLU (w, z↑) = U

≃↓yL(w, y↑) = 0,
and at (w, z↑),

↓2
zzLU (w, z

↑) = U
≃↓2

ςςL(w,Uz
↑ + φ0)U = U

≃↓2
ςςL(w, φ↑)U,

and minu:⇐u⇐=1 ≃↓2
zzLU (w, z↑)u≃ ⇐ µmin. Tracking the movement from z

↑ to z
↑
t with respect to (tv)

perturbations in w, by implicit function theorem, we have

z
↑
t ↘ z

↑ = ↘t(↓2
zzLU (w, z

↑))↓1(↓2
zwLU (w, z

↑))v + o(t).

where z
↑
t is the only O(t)-neighborhood of z↑ that satisfies ↓zLU (w + tv, z

↑
t ) = 0. Note that for any z in

the neighborhood of z↑t ,

≃↓zLU (w + tv, z)↘↓zLU (w + tv, z
↑
t )≃ = ≃↓2

zzLU (w + tv, z
↑
t )(z ↘ z

↑
t )≃+O(≃z ↘ z

↑
t ≃2)

⇐ (µmin ↘O(t)↘O(≃z↑ ↘ z
↑
t ≃))≃z ↘ z

↑
t ≃ ↘O(≃z ↘ z

↑
t ≃2).
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Now let yt0 be the projection of y↑t onto the kernel of ↓2L(w, φ↑). Since y↑t = (↽↑
t , φ

↑
t ) → S(w + tv) is a

global solution for w + tv (without active constraints changed thanks to φ
↑ satisfying Definition 6), we have

0 = ≃↓yL(w + tv, y
↑
t )≃ ⇐ 1∋

2
≃U≃↓yL(w + tv, y

↑
t )≃+

1∋
2
≃U≃

⇑↓yL(w + tv, y
↑
t )≃

=
1∋
2
≃U≃↓2

yyL(w + tv, Uz
↑
t + y0)(U(z↑t ↘ U

≃
y
↑
t ) + (y0 ↘ y

t
0))≃  

(i)

+
1∋
2
≃U≃

⇑↓yL(w + tv, y
↑
t )≃  

(ii)

+o(t),

where we usedU≃↓yL(w+tv, Uz
↑
t +y0) = ↓zL(w+tv, y

↑
t ) = 0, continuity of↓2L, and ≃y↑t ↘y

↑≃ = O(t)
in the last equality. To bound (i), we observe that

(i) ⇐ ≃U≃↓2
yyL(w + tv, Uz

↑
t + y0)U(z↑t ↘ U

≃
y
↑
t )≃ ↘ ≃U≃↓2

yyL(w + tv, Uz
↑
t + y0)(y0 ↘ y

t
0)≃

= ≃↓2
zzLU (w + tv, z

↑
t )(z

↑
t ↘ U

≃
y
↑
t )≃ ↘ ≃U≃(↓2

yyL(w + tv, Uz
↑
t + y0)↘↓2

yyL(w, y↑))(yt0 ↘ y0)≃

⇐

(µmin ↘O(t)↘O(≃z↑t ↘ z

↑≃))O(≃z↑t ↘ U
≃
y
↑
t ≃)↘ o(t)


↘ o (t)

= O(µmin)≃z↑t ↘ U
≃
φ
↑
t ≃ ↘ o(t).

where we used ≃yt0 ↘ y0≃ ↗ ≃y↑t ↘ y
↑≃ = O(t), and assuming t ∝ µmin. On the other hand,

(ii) = ≃U≃
⇑ (↓yL(w + tv, y

↑
t )↘↓yL(w, y↑))≃

↗ ≃U≃
⇑
(
t↓2

ywL(w, y↑)v +↓2
yyL(w, y↑)(y↑t ↘ y

↑)
)
≃+ o(t) = o(t),

where the first equality follows from the optimality condition of φ↑, and the last equality is due to necessity
condition (Proposition 3.4) for the Lipscthiz-continuity of solution maps. Therefore, we conclude that

0 = ≃↓yL(w + tv, y
↑
t )≃ ⇐ O(µmin)≃z↑t ↘ U

≃
y
↑
t ≃ ↘ o(t),

which can only be true if ≃z↑t ↘ U
≃
y
↑
t ≃ = o(t). This means

U
≃(y↑t ↘ y

↑) = (U≃
y
↑
t ↘ z

↑
t ) + (z↑t ↘ z

↑)

= ↘t(↓2
zzLU (w, z

↑)↓1↓2
zwLU (w, z

↑))v + o(t),

and thus we get

U
≃(y↑t ↘ y

↑) = ↘t


(U≃↓2

yyL(w, y↑)U)↓1(U≃↓2
ywL(w, y↑))


v + o(t). (25)

Note that the constraint does not depend on w, and thus

↓2
ywL(w, y↑) =

[
0

↓2
ywf(w, y

↑)

]
.

On the other hand, the necessity condition given in Proposition B.1 implies

Im(↓2
ywL(w, y↑)) ↑ Im(↓2

yyL(w, y↑)) = span(U).

From the above inclusion and (25), we conclude (24).
↭
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B.5 Proof of Theorem 3.8

Proof. For simplicity, y↑ϑ → T (x,ω), let z↑p be a projected point of y↑ϑ onto S(x) := T (x, 0). To bound
|ϱϑ(x)↘ ϱ(x)|, we first see that

ϱϑ(x) = min
y→Y

(f(x, y) + g(x, y)/ω)↘min
z→Y

g(x, z)/ω

↗ min
y→S(x)

(f(x, y) + g(x, y)/ω)↘min
z→Y

g(x, z)/ω = min
z→S(x)

f(x, z) = ϱ(x).

We first show that g(x, y↑ϑ)↘ g(x, z↑p) ↗ ↼. To see this, note that

ωf(x, y↑ϑ) + g(x, y↑ϑ) ↗ ωf(x, z↑p) + g(x, z↑p),

and thus g(x, y↑ϑ)↘ g(x, z↑p) ↗ ω(f(x, z↑p)↘ f(x, y↑ϑ)) ↗ 2ωCf . As long as ω ↗ ↼
2Cf

, we have g(x, y↑ϑ)↘
g(x, z↑p) ↗ ↼. Then, since we have Assumption 1, we get

ϱϑ(x) = f(x, y↑ϑ) +
g(x, y↑ϑ)↘ g(x, z↑p)

ω
⇐ f(x, y↑ϑ) +

µ≃y↑ϑ ↘ z
↑
p≃2

2ω
.

We can further observe that

f(x, y↑ϑ) + µg
≃y↑ϑ ↘ z

↑
p≃2

2ω
⇐ f(x, z↑p) + µg

≃y↑ϑ ↘ z
↑
p≃2

2ω
↘ lf,0≃y↑ϑ ↘ z

↑
p≃

⇐ f(x, z↑p)↘
l
2
f,0

2µ
ω ⇐ ϱ(x)↘

l
2
f,0

2µ
ω.

Thus, we conclude that

0 ↗ ϱ(x)↘ ϱϑ(x) ↗
l
2
f,0

2µ
ω.

Gradient Convergence. As long as the active constraint set does not change, we can only consider ↽↑
I . By

(lf,0/µ)-Lipschitz continuity of solution sets, for all ω1,ω2 → [0,ω], we can find y
↑(ω1) → T (x,ω1), y↑(ω2) →

T (x,ω2) such that

≃y↑(ω1)↘ y
↑(ω2)≃ = O(lf,0/µ) · |ω1 ↘ ω2|.

On the other hand, we check that

↓L(↽↑(ω2), ⇀
↑(ω2), y

↑(ω1)|x,ω1)↘↓L(↽↑(ω1), ⇀
↑(ω1), y

↑(ω1)|x,ω1)

=


i→I
(↽↑(ω2)↘ ↽

↑(ω1))↓gi(y
↑(ω1)) +



i→[m2]

(⇀↑(ω2)↘ ⇀
↑(ω1))↓hi(y

↑(ω1))

= ↓2L(↽↑(ω1), ⇀
↑(ω1), y

↑(ω1)|x,ω1)




↽
↑(ω2)↘ ↽

↑(ω1)
⇀
↑(ω2)↘ ⇀

↑(ω1)
0



 .

At the same time, we also know that

↓L(↽↑(ω2), ⇀
↑(ω2), y

↑(ω2)|x,ω)↘↓L(↽↑(ω2), ⇀↑(ω2), y
↑(ω1)|x,ω1)

↗ lf,0|ω2 ↘ ω1|+O(lg,1)(≃↽↑(ω2)≃+ ≃⇀↑(ω2)≃)≃y↑(ω2)↘ y
↑(ω1)≃.
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Since the two must sum up to 0, we have

↓2L(↽↑
, ⇀

↑
, y

↑|x,ω1)




↽
↑(ω2)↘ ↽

↑(ω1)
⇀
↑(ω2)↘ ⇀

↑(ω1)
0



 = O(lg,1lf,0/µ)|ω2 ↘ ω1|.

Thus, with Assumption 8, we have

≃↽↑
I(ω2)↘ ↽

↑
I(ω1)≃, ≃⇀↑I(ω2)↘ ⇀

↑
I(ω1)≃ = O(lf,0lg,1/(µsmin))|ω2 ↘ ω1|.

Thus, we can conclude that

≃↓2L↑
I(ω2))↘↓2L↑

I(ω1)≃ ↫
(
lf,0l

2
g,1

µsmin
+

lh,2lf,0

µ


|ω2 ↘ ω1|.

where (↓2L↑
I(ω)) is a short-hand for ↓2L(↽↑

I(ω), ⇀
↑(ω), y↑(ω)|x,ω,Y).

To check whether ↓ϱϑ(x) well-approximates ↓ϱ(x) = φ2

φxφϑ l(x,ω)|ϑ=0+ , we first check that for any
ω1,ω2 → [0,ω],

∥∥∥∥
⇁
2

⇁x⇁ω
l(x,ω2)↘

⇁
2

⇁x⇁ω
l(x,ω1)

∥∥∥∥ ↗ ≃↓xf(x, y
↑(ω2))↘↓xf(x, y

↑(ω1))≃

+
∥∥↓2

xyhϑ2(x, y
↑(ω2))↘↓2

xyhϑ1(x, y
↑(ω1))

∥∥ ·
∥∥∥∥↓

2L↑
I(ω1)

†
[

0
↓yf(x, y↑(ω1)

]∥∥∥∥
  

(i)

+

∥∥∥∥
[
0 ↓2

xyhϑ2(x, y
↑(ω2))

] 
↓2L↑

I(ω2))
† ↘ (↓2L↑

I(ω1)
†
[

0
↓yf(x, y↑(ω1)

]∥∥∥∥
  

(ii)

+
∥∥∥
[
0 ↓2

xyhϑ2(x, y
↑(ω2))

]
↓2L↑

I(ω2))
†
∥∥∥ ≃↓yf(x, y

↑(ω2))↘↓yf(x, y
↑(ω1))≃

  
(iii)

.

Here, we use the explicit formula of φ2

φxφϑ l(x,ω) given in Theorem 3.1. To bound (i), note the meaning of
the latter term:

[
d↽/dω

dy/dω

]
= ↓2L↑

I(ω1)
†
[

0
↓yf(x, y↑(ω1))

]
,

where
[
d↽/dω

dy/dω

]
is the movement of y↑(ω1) to the nearest solution by perturbing ω projected to the image of

↓2L↑
I(ω1). By Lemma 3.7, ≃dy/dω≃ must not exceed O(lf,0/µ). Consequently,

[
↓gi(y↑(ω)), ⇔i → I | ↓hi(y↑(ω)), ⇔i → [m2]

] d↽
dω

+↓2
yyL↑

I(ω1)
dy

dω
= ↓yf(x, y

↑(ω1)),

which enforces that ≃d↽/dω≃ ↗ lg,1lf,0
µsmin

by Assumption 8. Thus,

(i) ↫ lh,2lf,0

µ

lg,1lf,0

µsmin
|ω1 ↘ ω2| =

lh,2lg,1l
2
f,0

µ2smin
|ω1 ↘ ω2|.
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Similarly, we can show that

(iii) ↫ lf,1lg,1lf,0

µ2smin
|ω1 ↘ ω2|.

For (ii), note that
∥∥∥∥
[
0 ↓2

xyhϑ2(x, y
↑(ω2))

] 
↓2L↑

I(ω2))
† ↘ (↓2L↑

I(ω1)
†
[

0
↓yf(x, y↑(ω1))

]∥∥∥∥

=

∥∥∥∥
[
0 ↓2

xyhϑ2(x, y
↑(ω2))

]
↓2L↑

I(ω2)
† (↓2L↑

I(ω2)↘↓2L↑
I(ω1)

)
↓2L↑

I(ω1)
†
[

0
↓yf(x, y↑(ω1)

]∥∥∥∥

↗
l
2
g,1l

2
f,0

µ2s2min

≃↓2L↑
I(ω2)↘↓2L↑

I(ω1)≃

↫
l
2
g,1l

2
f,0

µ2s2min

(
lf,0l

2
g,1

µsmin
+

lh,2lf,0

µ


|ω2 ↘ ω1|,

where the first equality comes from the fact that

Im
([

0
↓2

yxhϑ2(x, y
↑(ω2))

])
↑ Im↓2L↑

I(ω2),

and similarly,
[

0
↓yf(x, y↑(ω1))

]
→ Im↓2L↑

I(ω1),

by Proposition 3.4. Therefore, φ2

φxφϑ l(x,ω) is Lipschitz-continuous in ω, and by Mean-Value Theorem, we
can conclude that

≃↓ϱϑ(x)↘↓ϱ(x)≃ ↗ O(ω/µ3) ·
(
l
4
g,1l

3
f,0

s3min

+
lh,2l

2
g,1l

3
f,0

s2min


,

counting the dominating term. ↭

B.6 ε-Stationary Point and ε-KKT Solution

To simplify the argument, we assume that X = Rdx . Then, define an ε-KKT condition of (Pcon) as:

≃↓xf(x, y) + ↽x(↓xg(x, y)↘↓g
↑(x))≃ ↗ ε,

≃↓yf(x, y) + ↽x↓yg(x, y) +
∑

i→[m1]
↽
↑
i↓gi(y) +

∑
i→[m2]

⇀
↑
i ↓hi(y)≃ ↗ ε,

g(x, y)↘ g
↑(x) ↗ ε

2
.

for some Lagrangian multipliers ↽x ⇐ 0 and ↽
↑ ⇐ 0, ⇀↑ with some (x, y) → X ⇓ Y .

Theorem B.3 Suppose Assumptions 1-3 hold, X = Rdx . Then ↓ϱϑ(x) is well-defined with ω ↗ ω0. If x is
an ε-stationary point of ϱϑ(x) with ω ↗ 1, that is,

≃↓ϱϑ(x)≃ ↗ ε,

then x is an O(ε+ ω)-KKT solution of (Pcon).
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Proof. This comes almost immediately from Lemma A.2. Let y and z as minimizers:

y → argmin
w→Y

ωf(x,w) + g(x,w),

z → argmin
w→Y

g(x,w).

Then, by the optimality condition of y, the ε-optimality condition with respect to ↓y is automatically satisfied
with ↽x = 1/ω. Furthermore, since T (x,ω) is Lipshictz-continuous due to Assumption 1 with LT = lf,0/µ,
we have ↓g

↑(x) = ↓xg(x, z) and ↓h
↑
ϑ(x) = ↓xωf(x, y)+↓xg(x, y). Finally, by the optimality condition,

we know that y is the optimal solution of a proximal operation proxϖhω(x,·)(y):

ωf(x, y) + g(x, y) ↗ ωf(x, z) + g(x, z) +
1

2ς
≃z ↘ y≃2.

Using |f(x, y)↘ f(x, z)| ↗ lf,0≃y ↘ z≃ and ≃y ↘ z≃ ↗ ωLT , we have

g(x, y)↘ g(x, z) = g(x, y)↘ g
↑(x) ↗ ω

2
lf,0LT +

ω
2
L
2
T

2ς
= O(ω2),

as claimed. ↭

Appendix C Analysis for Algorithm 1

For simplicity, let w↑
y,k = proxϖhωk (xk,·)(yk) and w

↑
z,k = proxϖg(xk,·)(zk).

C.1 Descent Lemma for wy,k, wz,k

We first analyze ≃wy,k ↘ proxϖhωk (xk,·)(yk)≃
2. We start by observing that

≃wy,k+1 ↘ w
↑
y,k+1≃2 = ≃wy,k+1 ↘ w

↑
y,k≃2 + ≃w↑

y,k+1 ↘ w
↑
y,k≃2 ↘ 2′wy,k+1 ↘ w

↑
y,k, w

↑
y,k+1 ↘ w

↑
y,k∞

↗
(
1 +

↽k

4

)
≃wy,k+1 ↘ w

↑
y,k≃2  

(i)

+

(
1 +

4

↽k

)
≃w↑

y,k+1 ↘ w
↑
y,k≃2  

(ii)

, (26)

where we used ′a, b∞ ↗ c≃a≃2+ 1
4c≃b≃

2, and ↽k = Tkγk/(4ς) as defined. They are bounded in two following
lemmas.

Lemma C.1 At every kth iteration, the following holds:

E[≃wy,k+1 ↘ w
↑
y,k≃2|Fk] ↗

(
1↘ γk

4ς

)Tk

E[≃wy,k ↘ w
↑
y,k≃2|Fk] + 2

(
Tkγ

2
k

)
(ω2

k · ω2
f + ω

2
g). (27)

Similarly, we also have that

E[≃wz,k+1 ↘ w
↑
z,k≃2|Fk] ↗

(
1↘ γk

4ς

)Tk

E[≃wz,k ↘ w
↑
z,k≃2|Fk] + 2(Tkγ

2
k)(ω

2
k · ω2

f + ω
2
g). (28)
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Proof. We use the linear convergence of projected gradient steps. To simplify the notation, let

Gt = ↓y(ωkf(xk, ut; ϑ
k,t
wy) + g(xk, ut; ϖ

k,t
wy)) + ς

↓1(ut ↘ yk),

and Gt = E[ Gt]. Also let G↑ = ↓hϑk(x,w
↑
y,k) + ς

↓1(w↑
y,k ↘ yk). We first check that

≃ut+1 ↘ w
↑
y,k≃2 =

∥∥∥”Y


ut ↘ γk

Gt


↘”Y

{
w

↑
y,k ↘ γkG

↑}
∥∥∥
2

↗
∥∥∥ut ↘ γk

Gt ↘ (w↑
y,k ↘ γkG

↑)
∥∥∥
2

=
∥∥ut ↘ w

↑
y,k

∥∥2 + γ
2
k

∥∥∥ Gt ↘G
↑
∥∥∥
2
↘ 2γk′ut ↘ w

↑
y,k,

Gt ↘G
↑∞.

Taking expectation conditioned on Fk,t yields:

E[≃ut+1 ↘ w
↑
y,k≃2|Fk,t] ↗ E[≃ut ↘ w

↑
y,k≃2|Fk,t] + γ

2
kE[≃ Gt ↘G

↑≃2|Fk,t]

↘ 2γk′ut ↘ w
↑
y,k, Gt ↘G

↑∞.

Note that

E[≃ Gt ↘G
↑≃2|Fk] ↗ 2≃Gt ↘G

↑≃2 + 2E[≃ Gt ↘Gt≃2|Fk,t].

By co-coercivity of strongly convex function, since the inner minimization is (1/(3ς))-strongly convex and
(1/ς)-smooth, we have

≃Gt ↘G
↑≃2 ↗ (1/ς) · ′ut ↘ w

↑
y,k, Gt ↘G

↑∞,
1

3ς
· ≃ut ↘ w

↑
y,k≃2 ↗ ′ut ↘ w

↑
y,k, Gt ↘G

↑∞.

Given γk ∝ ς, we have

E[≃ut+1 ↘ w
↑
y,k≃2|Fk,t] ↗

(
1↘ γk

4ς

)
E[≃ut ↘ w

↑
y,k≃2|Fk,t] + 2γ2k(ω

2
k · ω2

f + ω
2
g).

Applying this for Tk steps, we get the lemma. ↭

Lemma C.2 At every kth iteration, the following holds:

E[≃wy,k+1 ↘ w
↑
y,k+1≃2|Fk] ↗

(
1 +

↽k

4

)
E[≃wy,k+1 ↘ w

↑
y,k≃2|Fk] +O

(
ς
2
l
2
f,0

↽k


|ωk ↘ ωk+1|2

+O

(
ςlg,1

↽k

)
≃xk+1 ↘ xk≃2 +

8

↽k
≃yk+1 ↘ yk≃2. (29)

Similarly, we have

E[≃wz,k+1 ↘ w
↑
z,k+1≃2|Fk] ↗

(
1 +

↽k

4

)
E[≃wz,k+1 ↘ w

↑
z,k≃2|Fk] +O

(
ς
2
l
2
f,0

↽k


|ωk ↘ ωk+1|2

+O

(
ςlg,1

↽k

)
≃xk+1 ↘ xk≃2 +

8

↽k
≃zk+1 ↘ zk≃2. (30)
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Proof. By Lemmas A.3 and A.4, we have

≃w↑
y,k+1 ↘ w

↑
y,k≃ ↗ O(ςlg,1)≃xk+1 ↘ xk≃+ ≃yk+1 ↘ yk≃+O(ςlf,0)|ωk ↘ ωk+1|.

Take square and conditional expectation, and plug this to the bound for (i), (ii) in (26), we get the lemma. ↭

C.2 Descent Lemma for !ϑ,ϖ

Proposition C.3 At every kth iteration, we have

ωk

(
$ϑk+1,ϖ(xk+1, yk+1, zk+1)↘ $ϑk,ϖ(xk, yk, zk)

)

↗ C1ς
↓1


≃yk ↘ yk+1≃2 +

l
2
f,0

µ2
|ωk ↘ ωk+1|2 + dist2(zk, T (xk, 0)) + dist2(yk, T (xk,ωk))



+

(
C1l

2
g,1

ςµ2
↘ 1

4αk


≃xk ↘ xk+1≃2 +

(
C1

ς
+O(ς↓2)αk

)(
≃zk ↘ zk+1≃2 + dist2(zk, T (xk, 0))

)

↘ ▷k

4ς
(≃yk ↘ w

↑
y,k≃2 + ≃yk ↘ wy,k+1≃2)↘

▷k

ς
(≃zk ↘ w

↑
z,k≃2 + ≃zk ↘ wz,k+1≃2)

+O
(
l
2
g,1αk + ς

↓1
▷k

) (
≃w↑

y,k ↘ wy,k+1≃2 + ≃w↑
z,k ↘ wz,k+1≃2

)
+ αk≃ G↘G≃2 + ωk+1C1Cf (31)

where C1 = O


ϑk↓ϑk+1

ϑk+1


.

Proof. To start with, note that

$ϑk+1,ϖ(xk+1, yk+1, zk+1)↘ $ϑk,ϖ(xk, yk, zk) = $ϑk,ϖ(xk+1, yk+1, zk+1)↘ $ϑk,ϖ(xk, yk, zk)  
(i)

+ $ϑk+1,ϖ(xk+1, yk+1, zk+1)↘ $ϑk,ϖ(xk+1, yk+1, zk+1)  
(ii)

.

Note that by Lemma 3.7, we have dist(T (x1,ω1), T (x2,ω2)) ↗ lg,1
µ ≃x1 ↘ x2≃ +

lf,0
µ |ω1 ↘ ω2| for all

x1, x2 → X , ω1,ω2 → [0, ↼/Cf ]. Applying this to (32) in the subsequent subsection, we obtain that

(ii) ↗ O

(
ωk ↘ ωk+1

ωkωk+1

)
ς
↓1


≃yk ↘ yk+1≃2 + ≃zk ↘ zk+1≃2 +

l
2
g,1

µ2
≃xk ↘ xk+1≃2 +

l
2
f,0

µ2
|ωk ↘ ωk+1|2

dist2(zk, T (xk, 0)) + dist2(yk, T (xk,ωk))


+O

(
ωk ↘ ωk+1

ωk

)
Cf .

Combining this with the estimation of (i) given in (36), we conclude. ↭

C.2.1 Bounding (ii)

For (ii), we realize that for any x, y, z with ωk+1 < ωk,

$ϑk+1,ϖ(x, y, z)↘ $ϑk,ϖ(x, y, z) =
h
↑
ϑk+1,ϖ(x, y)↘ g

↑(x, z)

ωk+1
↘

h
↑
ϑk,ϖ(x, y)↘ g

↑(x, z)

ωk

+

(
C

ωk+1
↘ C

ωk

)(
g
↑
ϖ(x, z)↘ g

↑(x)
)
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↗
h
↑
ϑk+1,ϖ(x, y)↘ g

↑
ϖ(x, y)

ωk+1
↘

h
↑
ϑk,ϖ(x, y)↘ g

↑
ϖ(x, y)

ωk  
(iii)

+

(
ωk ↘ ωk+1

ωkωk+1

)(
g
↑
ϖ(x, y)↘ g

↑(x)
)

  
(iv)

+

(
C(ωk ↘ ωk+1)

ωk+1ωk

)(
g
↑
ϖ(x, z)↘ g

↑(x)
)

  
(v)

.

To bound (iii), for any ω1 > ω2, note that

h
↑
ϑ1,ϖ(x, y) ↗ ω1f(x,w

↑
2)↘ g(x,w↑

2) +
≃w↑

2 ↘ y≃2

2ς
= h

↑
ϑ2,ϖ(x, y) + (ω1 ↘ ω2)f(x,w

↑
2),

where w↑
2 = argminw→Y ω2f(x,w) + g(x,w) + ⇐w↓y⇐2

2ϖ . Thus,

(iii) ↗
(

1

ωk+1
↘ 1

ωk

)
(h↑ϑk+1,ϖ(x, y)↘ h

↑
0,ϖ(x, y))↘

1

ωk
(h↑ϑk,ϖ(x, y)↘ h

↑
ϑk+1,ϖ(x, y))

↗ 2
ωk ↘ ωk+1

ωk
·max
w→Y

|f(x,w)| ↗ ωk ↘ ωk+1

ωk
·O(Cf ).

In order to bound (iv), note that for any y
↑
ϑ → T (x,ω),

g
↑
ϖ(x, y)↘ g

↑(x) = (g↑ϖ(x, y)↘ h
↑
ϑ(x)) + (h↑ϑ(x)↘ g

↑(x))

↗ (h↑ϑ,ϖ(x, y)↘ h
↑
ϑ,ϖ(x, y

↑
ϑ)) +O(ωCf )

↗ ′↓yh
↑
ϑ,ϖ(x, y

↑
ϑ)  

=0

, y ↘ y
↑
ϑ∞+O(ς↓1)≃y ↘ y

↑
ϑ≃2 +O(ωCf ).

where ↓yh
↑
ϑ,ϖ(x, y

↑
ϑ) = ς

↓1(y↑ϑ ↘ proxϖhω(x,·)(y
↑
ϑ)) = 0 since y

↑
ϑ is a fixed point of proxϖhω(x,·) operation.

Taking y
↑
ϑ the closest element to y, we get

(iv) ↗ ωk ↘ ωk+1

ωkωk+1

(
ς
↓1dist2(yk+1, T (xk+1,ωk+1)) +O(ωk+1Cf )

)
.

Similarly, we can also show that

(v) ↗ C(ωk ↘ ωk+1)

ωkωk+1
· ς↓1dist2(zk+1, T (xk+1, 0)).

Thus, we can conclude that

(ii) ↗ O

(
ωk ↘ ωk+1

ωkωk+1

)(
ωk+1Cf + ς

↓1dist2(yk+1, T (xk+1,ωk+1)) + ς
↓1dist2(zk+1, T (xk+1, 0))

)

↗ O

(
ωk ↘ ωk+1

ωkωk+1

)
ς
↓1

(
≃zk+1 ↘ zk≃2 + dist2(zk, T (xk, 0)) + dist2(T (xk+1, 0), T (xk, 0))

)

+O

(
ωk ↘ ωk+1

ωkωk+1

)
ς
↓1

(
≃yk+1 ↘ yk≃2 + dist2(yk, T (xk,ωk)) + dist2(T (xk+1,ωk+1), T (xk,ωk))

)

+O

(
ωk ↘ ωk+1

ωk

)
Cf . (32)
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C.2.2 Bounding (i)

Henceforth, to simplify the notation, we simply denote ω = ωk.

(i) =
1

ω

(
h
↑
ϑ,ϖ(xk+1, yk+1)↘ g

↑
ϖ(xk+1, zk+1)↘ (h↑ϑ,ϖ(xk, yk)↘ g

↑
ϖ(xk, zk))

)
  

(a)=ϑ·(◁ω,ε(xk+1,yk+1,zk+1)↓◁ω,ε(xk,yk,zk))

+
C

ω

(
(g↑ϖ(xk+1, zk+1)↘ g

↑(xk+1))↘ (g↑ϖ(xk, zk)↘ g
↑(xk))

)
  

(b)

.

Bounding (a). It is easy to check using Lemma A.2 that

↓yh
↑
ϑ,ϖ(xk, yk) = ς

↓1(yk ↘ w
↑
y,k),

↓zg
↑
ϖ(xk, zk) = ς

↓1(zk ↘ w
↑
z,k),

Note that yk+1 ↘ yk = ↘▷k(yk ↘ wy,k+1), and thus,

′↓yh
↑
ϑ,ϖ(xk, yk), yk+1 ↘ yk∞ =

↘▷k

ς
′yk ↘ w

↑
y,k, yk ↘ wy,k+1∞

=
↘▷k

2ς

(
≃yk ↘ w

↑
y,k≃2 + ≃yk ↘ wy,k+1≃2 ↘ ≃w↑

y,k ↘ wy,k+1≃2
)
.

Similarly, zk+1 ↘ zk = ↘▷k(zk ↘ wz,k+1), and thus

′↓zg
↑
ϖ(xk, zk), zk+1 ↘ zk∞ =

↘▷k

ς
′zk ↘ w

↑
z,k, zk ↘ wz,k+1∞

=
↘▷k

2ς

(
≃zk ↘ w

↑
z,k≃2 + ≃zk ↘ wz,k+1≃2 ↘ ≃w↑

z,k ↘ wz,k+1≃2
)
.

Using smoothness of h↑ϑ,ϖ and g
↑
ϖ, and noting that

↓x(h
↑
ϑ,ϖ(xk, yk)↘ g

↑
ϖ(xk, zk)) = ↓xϱϑ,ϖ(xk, yk, zk) = ↓x(hϑ(xk, w

↑
y,k)↘ g(xk, w

↑
z,k)),

we get (caution on the sign of g↑ϖ(xk, zk) terms):

(a) ↗ ′ω ·↓xϱϑ,ϖ(xk, yk, zk), xk+1 ↘ xk∞+
O(1)

ς
≃xk+1 ↘ xk≃2

↘ ▷k

2ς

(
≃yk ↘ w

↑
y,k≃2 +

1

2
≃yk ↘ wy,k+1≃2

)
+

▷k

2ς
≃w↑

y,k ↘ wy,k+1≃2

+
▷k

2ς

(
≃zk ↘ w

↑
z,k≃2 + 2≃zk ↘ wz,k+1≃2

)
↘ ▷k

2ς
≃w↑

z,k ↘ wz,k+1≃2. (33)

where we assume ▷k ∝ 1. For terms regarding x, let

G :=
1

Mk

Mk

m=1

↓x


ωkf(xk, wy,k+1; ϑ

k,m
x ) + g(xk, wy,k+1; ϖ

k,m
xy )↘ g(xk, wz,k+1; ϖ

k,m
xz )


,

and G = E[ G]. By projection lemma, we have

′(xk ↘ αk
G)↘ xk+1, x↘ xk+1∞ ↗ 0, ⇔x → X ,
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and therefore ′ G, xk+1 ↘ x∞ ↗ ↘ 1
↽k

′xk ↘ xk+1, x↘ xk+1∞ for all x → X . Plugging x = xk here, we have

′G↑
, xk+1 ↘ xk∞ ↗ ↘ 1

αk
≃xk ↘ xk+1≃2 + ′G↑ ↘ G, xk+1 ↘ xk∞

↗ ↘ 1

2αk
≃xk ↘ xk+1≃2 + αk


≃G↑ ↘G≃2 + ≃ G↘G≃2


.

Note that

≃G↑ ↘G≃ ↗ lg,1(≃w↑
y,k ↘ wy,k+1≃+ ≃w↑

z,k ↘ wz,k+1≃).

In conclusion, omitting expectations on both sides, we have

(a) ↗ ↘ 1

2αk
≃xk+1 ↘ xk≃2 ↘

▷k

4ς
(≃yk ↘ w

↑
y,k≃2 + ≃yk ↘ wy,k+1≃2)

+
O(1)

ς
≃xk+1 ↘ xk≃2 +

▷k

ς
(≃zk ↘ w

↑
z,k≃2 + ≃zk ↘ wz,k+1≃2)

+

(
O(l2g,1)αk +

▷k

2ς

)
(≃w↑

y,k ↘ wy,k+1≃2 + ≃w↑
z,k ↘ wz,k+1≃2) + αk≃ G↘G≃2. (34)

Bounding (b). We realize that in (34), coe"cients of proximal error terms on z, i.e., ≃zk ↘ w
↑
z,k≃2 are

positive, unlike terms regarding yk. We show that these terms will be canceled out with (b) when Assumption
1 holds. Using Lemma 3.7,

(b) = (g↑ϖ(xk+1, zk+1)↘ g
↑(xk+1))↘ (g↑ϖ(xk, zk+1)↘ g

↑(xk)) + (g↑ϖ(xk, zk+1)↘ g
↑
ϖ(xk, zk))

↗ ′↓xg
↑
ϖ(xk, zk+1)↘↓xg

↑(xk), xk+1 ↘ xk∞+O

(
lg,1

µ

)
≃xk+1 ↘ xk≃2

+ ′↓zg
↑
ϖ(xk, zk), zk+1 ↘ zk∞+O(ς↓1)≃zk+1 ↘ zk≃2. (35)

Taking conditional expectation on both sides and using zk+1 ↘ zk = ↘▷k(zk ↘wz,k+1) and ↓zg
↑
ϖ(xk, zk) =

ς
↓1(zk ↘ w

↑
z,k),

E[(b)|F ↔
k] ↗ ↘′↓xg

↑
ϖ(xk, zk+1)↘↓xg

↑(xk), xk+1 ↘ xk∞+O

(
lg,1

µ

)
E[≃xk+1 ↘ xk≃2|F ↔

k]

↘ ▷k′↓zg
↑
ϖ(xk, zk), zk ↘ wz,k+1∞+O(▷2

kς
↓1)≃zk ↘ wz,k+1≃2

↗
(
O(ς↓2)αkC · dist2(zk+1, T (xk, 0)) +

≃xk ↘ xk+1≃2

16Cαk

)
+O

(
lg,1

µ

)
E[≃xk+1 ↘ xk≃2|F ↔

k]

↘ ▷k

2ς

(
≃zk ↘ w

↑
z,k≃2 + ≃zk ↘ wz,k+1≃2 ↘ ≃w↑

z,k ↘ wz,k+1≃2
)
+O

(
▷
2
k

ς

)
≃zk ↘ wz,k+1≃2.

Combining (a) and (b). We take C ⇐ 4. Given that α↓1
k ∝ max(ς↓1

, lg,1/µ), we can conclude that

ωk · (i) ↗ ↘ 1

4αk
≃xk+1 ↘ xk≃2 ↘

▷k

4ς
(≃yk ↘ w

↑
y,k≃2 + ≃yk ↘ wy,k+1≃2)↘

▷k

ς
(≃zk ↘ w

↑
z,k≃2 + ≃zk ↘ wz,k+1≃2)

+O
(
l
2
g,1αk + ς

↓1
▷k

) (
≃w↑

y,k ↘ wy,k+1≃2 + ≃w↑
z,k ↘ wz,k+1≃2

)

+O(ς↓2)αk

(
dist2(zk, T (xk, 0)) + ≃zk ↘ zk+1≃2

)
+ αk≃ G↘G≃2. (36)
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C.3 Proof of Theorem 5.1

Note that

≃xk+1 ↘ x̂k≃2 = ≃”X


xk ↘ αk

G

↘”X {xk ↘ αkG

↑} ≃2 ↗ α
2
k≃ G↘G

↑≃2

↗ O(l2g,1)α
2
k(≃w↑

y,k ↘ wy,k+1≃2 + ≃w↑
z,k ↘ wz,k+1≃2) + 2α2

kE[≃ G↘G≃2],

and also note that

≃xk ↘ xk+1≃2 ⇐
1

2
≃xk ↘ x̂k≃2 ↘ 2≃x̂k ↘ xk+1≃2,

E[≃ G↘G≃2] ↗ 1

Mk
(ω2

kω
2
f + ω

2
g).

The following lemma is also useful:

Lemma C.4 Under Assumption 1, for all x → X , y → Y and ω → [0, ↼/Cf ], we have

dist(y, T (x,ω)) ↗
(
1

µ
+

DY
↼

)
ς
↓1

∥∥∥y ↘ proxϖhω(x,·)(y)
∥∥∥ .

Proof. This can be shown with a simple algebra:

dist(y, T (x,ω)) ↗ 1

µ
· ς↓1≃y ↘ proxϖhω(x,·)(y)≃ · 1


ς
↓1≃y ↘ proxϖhω(x,·)(y)≃ ↗ ↼



+DY · 1

ς
↓1≃y ↘ proxϖhω(x,·)(y)≃ > ↼


,

and noting that 1

ς
↓1≃y ↘ proxϖhω(x,·)(y)≃ > ↼


<

1
↼


ς
↓1≃y ↘ proxϖhω(x,·)(y)≃


. ↭

We now combine results in Proposition C.3, Lemma C.2 and Lemma 3.7, we have (omitting expectations):

Vk+1 ↘ Vk ↗ ↘ 1

16ωkαk
≃xk ↘ x̂k≃2 ↘

1

8ωkαk
≃xk ↘ xk+1≃2 ↘

▷k

4ωkς

(
≃yk ↘ w

↑
y,k≃2 + ≃zk ↘ w

↑
z,k≃2

)

+O

(
ωk ↘ ωk+1

ωkωk+1

)
ς
↓1(dist2(yk, T (xk,ωk)) + dist2(zk, T (xk, 0)))

+O

(
αk

ς2ωk

)
dist2(zk, T (xk, 0)) +O

(
ωk ↘ ωk+1

ωk

)
Cf

+O

(
ωk ↘ ωk+1

ωkωk+1

)
ς
↓1

(
≃yk ↘ yk+1≃2 + ≃zk ↘ zk+1≃2 +

l
2
g,1

µ2
≃xk ↘ xk+1≃2 +

l
2
f,0

µ2
|ωk ↘ ωk+1|2



+
O(1 + lg,1/µ+ Cwςlg,1)

ωkς
≃xk+1 ↘ xk≃2 +

O(Cwςl
2
f,0)

ωk
|ωk ↘ ωk+1|2

↘ 1

ωkς

(
1

4▷k
↘ 16Cw ↘ ς

↓1
αk

)
(≃yk ↘ yk+1≃2 + ≃zk ↘ zk+1≃2)

+
Cw↽k

ωkς

(
1 +

ωk ↘ ωk+1

ωk+1
+

↽k

4
+

O(l2g,1)ςαk + 2▷k
Cw↽k


(
≃w↑

y,k ↘ wy,k+1≃2 + ≃w↑
z,k ↘ wz,k+1≃2

)

↘ Cw↽k

ωkς

(
≃w↑

y,k ↘ wy,k≃2 + ≃w↑
z,k ↘ wz,k≃2

)
+

2αk

ωk
≃ G↘G≃2.
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Note that w↑
y,k = proxϖhωk (xk,·)(yk) and w

↑
z,k = proxϖg(xk,·)(zk). Using Lemma C.4 and rearranging the

terms in the above inequality, we obtain that

Vk+1 ↘ Vk ↗ ↘ 1

16ωkαk
≃xk ↘ x̂k≃2 +

(
O(1 + lg,1/µ+ Cwςlg,1)

ωkς
↘ 1

8ωkαk
+

dkl
2
g,1

ωkςµ
2


≃xk ↘ xk+1≃2

+

(
↘ ▷k

4ωkς
+

dkC↼

ςωk

)
≃yk ↘ w

↑
y,k≃2 +

(
l
2
f,0

µ2
+

O(Cwςl
2
f,0)

ωk


|ωk ↘ ωk+1|2

+

(
↘ ▷k

4ωkς
+

dkC↼

ςωk
+ C↼O

(
αk

ς2ωk

))
≃zk ↘ w

↑
z,k≃2 + dkCf

+

(
dk

ωkς
↘ 1

ωkς

(
1

4▷k
↘ 16Cw ↘ ς

↓1
αk

))(
≃yk ↘ yk+1≃2 + ≃zk ↘ zk+1≃2

)

+
Cw↽k

ωkς

(
1 +

ωk ↘ ωk+1

ωk+1
+

↽k

4
+

O(l2g,1)ςαk + 2▷k
Cw↽k


(
≃w↑

y,k ↘ wy,k+1≃2 + ≃w↑
z,k ↘ wz,k+1≃2

)

↘ Cw↽k

ωkς

(
≃w↑

y,k ↘ wy,k≃2 + ≃w↑
z,k ↘ wz,k≃2

)
+

2αk

ωk
≃ G↘G≃2.

where dk = O


ϑk↓ϑk+1

ϑk+1


, and C↼ =


1
µ + DY

↼

2
ς
↓2.

We state several step-size conditions to keep target quantities to be bounded via telescope sum.

1. To keep the ≃xk ↘ xk+1≃2 term negative, we need αk ∝ ς(1 + lg,1/µ+ Cwςlg,1)↓1.

2. To keep ≃yk ↘ w
↑
y,k≃2 term negative, along with Lemma C.4, we require

▷k △
(
ωk ↘ ωk+1

ωk+1

)
ς
↓2

(
µ
↓2 +D

2
Y/↼

2
)
.

3. To keep ≃zk ↘ w
↑
z,k≃2 term negative, we additionally require

▷k △ ς
↓3

(
µ
↓2 +D

2
Y/↼

2
)
αk.

4. To keep terms on ≃yk ↘ yk+1≃2 and ≃zk ↘ zk+1≃2 negative, we first require

▷k ∝ Cw, ςα
↓1
k ,

and then
1

▷k
△ ωk ↘ ωk+1

ωk+1
,

which trivially holds as ▷k = o(1) and (ωk ↘ ωk+1/ωk) = O(1/k).

Once the above are satisfied, we get

Vk+1 ↘ Vk ↗ ↘ αk

16ωk
≃#x

k≃2 ↘
▷k

16ωkς

(
≃yk ↘ w

↑
y,k≃2 + ≃zk ↘ w

↑
z,k≃2

)

↘ 1

16ωk▷kς
(≃yk ↘ yk+1≃2 + ≃zk ↘ zk+1≃2)

+O

(
1 + lg,1/µ+ Cwςlg,1

ωkς

)
(α2

k + αkς)

Mk
· (ω2

kω
2
f + ω

2
g) +

(ωk ↘ ωk+1)

ωk
·O(Cf )
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+
Cw↽k

ωkς

(
1 +

ωk ↘ ωk+1

ωk+1
+

↽k

4
+

O(l2g,1)ςαk + 2▷k
Cw↽k


(
≃w↑

y,k ↘ wy,k+1≃2 + ≃w↑
z,k ↘ wz,k+1≃2

)

↘ Cw↽k

ωkς

(
≃w↑

y,k ↘ wy,k≃2 + ≃w↑
z,k ↘ wz,k≃2

)
+ o(1/k), (37)

where o(1/k)-term collectively represents the terms asymptotically smaller than ϑk↓ϑk+1

ϑk
= O(1/k) since

we use polynomially decaying penalty parameters {ωk}. Now we can apply Lemma C.1, and plug ↽k = Tk⇁k
4ϖ ,

and using the step-size condition:
ωk ↘ ωk+1

ωk+1
∝ ↽k, max

(
ςl

2
g,1αk,▷k

)
∝ Cw↽

2
k,

we get

Vk+1 ↘ Vk ↗ ↘ αk

16ωk
≃#x

k≃2 ↘
▷k

16ωkς

(
≃yk ↘ w

↑
y,k≃2 + ≃zk ↘ w

↑
z,k≃2

)

+O

(
1 + lg,1/µ+ Cwςlg,1

ς

)
αk

ωkMk
(ω2

kω
2
f + ω

2
g) +O

(
Cw

ς2

)
T
2
k γ

3
k

ωk
(ω2

kω
2
f + ω

2
g). (38)

Arranging terms and sum over k = 0 to K ↘ 1, we have

E

K↓1

k=0

αk

16ωk
≃#x

k≃2 +
ς▷k

16ωk
(≃#y

k≃
2 + ≃#z

k≃2)


↗ (V0 ↘ VK) +O(Cf ) ·
K↓1

k=0

(
ωk ↘ ωk+1

ωk+1

)

+
O(lg,1/µ+ Cw)

ς

(
K↓1

k=0

ω
↓1
k

(
αk

Mk
+ ς

↓1
T
2
k γ

3
k

)
(ω2

kω
2
f + ω

2
g)


.

C.4 Proof of Corollary 5.2

The remaining part is to show that VK is lower-bounded by O(1), and to check the rates. To see this, recall
our definition in (14), and note that

VK ⇐
h
↑
ϑ,ϖ(x, y)↘ g

↑(x)

ω
,

as long as C ⇐ 1. Then,

h
↑
ϑ,ϖ(x, y) ⇐ ωf(x,w↑

y,k) + g(x,w↑
y,k) ⇐ ωf(x,w↑

y,k) + g
↑(x),

and therefore VK ⇐ f(x,w↑
y,k) > ↘Cf by Assumption 3 on the lower bounded value of f .

Now, since ωk = k
↓s for some s > 0, we know that

ωk ↘ ωk+1

ωk+1
= O(1/k),

and thus,

E

K↓1

k=0

αk

16ωk
≃#x

k≃2 +
ς▷k

16ωk
(≃#y

k≃
2 + ≃#z

k≃2)


↗ O(logK) +O

(
K↓1

k=0

ω
↓1
k

(
αk

Mk
+ ς

↓1
T
2
k γ

3
k

)
(ω2

kω
2
f + ω

2
g)


.

Plugging the step-size rates, the right-hand side is bounded by O(logK), and thus we get the corollary.
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Appendix D Analysis for Algorithm 2

In addition to descent lemmas for wy,k and wz,k, we also need descent lemmas for noise variances in
momentum-assisted gradient estimators. We define the outer-variable gradient estimators as the following:

fk
x := ↓xf(xk, wy,k+1; ϑ

k
x) + (1↘ ◁k)


fk↓1
x ↘↓xf(xk↓1, wy,k; ϑ

k
x)

,

gkxy := ↓xg(xk, wy,k+1; ϖ
k
xy) + (1↘ ◁k)


gk↓1
xy ↘↓xg(xk↓1, wy,k; ϖ

k
xy)


,

gkxz := ↓xg(xk, wy,k+1; ϖ
k
xz) + (1↘ ◁k)


gk↓1
xz ↘↓xg(xk↓1, wz,k; ϖ

k
xz)


,

D.1 Descent Lemma for Noise-Variances

We first show that noise-variances for ekwy and e
k
wz decay.

Lemma D.1 At every kth iteration, the following holds:

E[≃ek+1
wz ≃2] ↗ (1↘ ◁k+1)

2E[≃ekwz≃2] + 2◁2k+1ω
2
g

+O(l2g,1)
(
≃xk+1 ↘ xk≃2 + ≃wz,k+1 ↘ wz,k≃2

)
,

and similarly,

E[≃ek+1
wy ≃2] ↗ (1↘ ◁k+1)

2E[≃ekwy≃2] + 4◁2k+1(ω
2
kω

2
f + ω

2
g) + 2(ωk ↘ ωk+1)

2
ω
2
f

+O(l2g,1)
(
≃xk+1 ↘ xk≃2 + ≃wy,k+1 ↘ wy,k≃2

)
.

Proof. We start with

E

≃ek+1

wz ≃2
]
= E


≃gk+1

wz ↘G
k+1
wz ≃2

]

= E

≃(↓yg(xk+1, wz,k+1; ϖ

k+1
wz )↘G

k+1
wz ) + (1↘ ◁k+1)(gkwz ↘↓yg(xk, wz,k; ϖ

k+1
wz ))≃2

]

= (1↘ ◁k+1)
2E[≃ekwz≃2]

+ E

≃(↓yg(xk+1, wz,k+1; ϖ

k+1
wz )↘G

k+1
wz ) + (1↘ ◁k+1)(G

k
wz ↘↓yg(xk, wz,k; ϖ

k+1
wz ))≃2

]
,

where the inequality holds since gradient-oracles are unbiased:

E[′ekwz,↓yg(xk+1, wz,k+1; ϖ
k+1
wz )↘G

k+1
wz ∞|Fk+1] = 0,

E[′ekwz,↓yg(xk, wz,k; ϖ
k+1
wz )↘G

k
wz∞|Fk+1] = 0.

The remaining part is to bound

E

≃(↓yg(xk+1, wz,k+1; ϖ

k+1
wz )↘G

k+1
wz ) + (1↘ ◁k+1)(G

k
wz ↘↓yg(xk, wz,k; ϖ

k+1
wz ))≃2

]

↗ 2◁2k+1E[≃↓yg(xk+1, wz,k+1; ϖ
k+1
wz )↘G

k+1
wz ≃2]

+ 2(1↘ ◁k+1)
2E


≃(↓yg(xk+1, wz,k+1; ϖ

k+1
wz )↘↓yg(xk, wz,k; ϖ

k+1
wz )) + (Gk

wz ↘G
k+1
wz )≃2

]

↗ 2◁2k+1ω
2
g +O(l2g,1)

(
≃xk+1 ↘ xk≃2 + ≃wz,k+1 ↘ wz,k≃2

)
.

Similarly, we can show the similar result for ekwy. Let Ḡk
wy = ωk+1↓yf(xk, wy,k) +↓yg(xk, wy,k), and we

have that

E

≃ek+1

wy ≃2
]
= E


≃ωk+1

fk+1
wy + gk+1

wy ↘G
k+1
wy ≃2

]
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= (1↘ ◁k+1)
2E[≃ekwy≃2] + 2(ωk ↘ ωk+1)

2E[≃↓yf(xk, wy,k; ϖ
k+1
wy )↘↓yf(xk, wy,k)≃2]

+ 2E

≃(↓yhϑk+1(xk+1, wy,k+1; ϖ

k+1
wy )↘↓yhϑk+1(xk, wy,k; ϖ

k+1
wy )) + (1↘ ◁k+1)(G

k+1
wy ↘ Ḡ

k
wy)≃2

]

↗ (1↘ ◁k+1)
2E[≃ekwy≃2] + 2(ωk ↘ ωk+1)

2
ω
2
f + 4◁2k+1(ω

2
kω

2
f + ω

2
g)

+O(l2g,1)
(
≃xk+1 ↘ xk≃2 + ≃wy,k+1 ↘ wy,k≃2

)
,

where we used Assumption 11 to bound

E[≃(↓yhϑk+1(xk+1, wy,k+1; ϖ
k+1
wy )↘↓yhϑk+1(xk, wy,k; ϖ

k+1
wy ))≃2]

↗ O(l2g,1)(≃xk+1 ↘ xk≃2 + ≃wy,k+1 ↘ wy,k≃2).

↭
We can state a similar descent lemma for ekx:

Lemma D.2 At every kth iteration, the following holds:

E[≃ek+1
x ≃2] ↗ (1↘ ◁k+1)

2E[≃ekx≃2] +O(◁2k+1)(ω
2
kω

2
f + ω

2
g) +O(ωk+1 ↘ ωk)

2
ω
2
f +O(l2g,1)≃xk+1 ↘ xk≃2

+O(l2g,1)
(
≃wy,k+2 ↘ wy,k+1≃2 + ≃wz,k+2 ↘ wz,k+1≃2

)
.

The proof follows exactly the same procedure for bounding e
k+1
wy , and thus we omit the proof.

D.2 Descent Lemma for wy,k, wz,k

The strategy is again to start with (26):

≃wy,k+1 ↘ w
↑
y,k+1≃2 = ≃wy,k+1 ↘ w

↑
y,k≃2 + ≃w↑

y,k+1 ↘ w
↑
y,k≃2 ↘ 2′wy,k+1 ↘ w

↑
y,k, w

↑
y,k+1 ↘ w

↑
y,k∞

↗
(
1 +

↽k

4

)
≃wy,k+1 ↘ w

↑
y,k≃2  

(i)

+

(
1 +

4

↽k

)
≃w↑

y,k+1 ↘ w
↑
y,k≃2  

(ii)

,

For bounding (ii), we can recall Lemma C.2. For bounding (i), we can slightly modify Lemma C.1.

Lemma D.3 At every kth iteration, the following holds:

E[≃wy,k+1 ↘ w
↑
y,k≃2|Fk] ↗

(
1↘ γk

4ς

)
E[≃wy,k ↘ w

↑
y,k≃2|Fk] +O(γkς)E[≃ekwy≃2|Fk]. (39)

Similarly, we also have that

E[≃wz,k+1 ↘ w
↑
z,k≃2|Fk] ↗

(
1↘ γk

4ς

)
E[≃wz,k ↘ w

↑
z,k≃2|Fk] +O(γkς)E[≃ekwz≃2|Fk], (40)

Proof. We use the linear convergence of projected gradient steps. To simplify the notation, let G =
ωk

fk
wy+gkwy+ς

↓1(wy,k↘yk) and G = ↓yhϑk(xk, wy,k)+ς
↓1(wy,k↘yk). Also let G↑ = ↓hϑk(x,w

↑
y,k)+

ς
↓1(w↑

y,k ↘ yk). We first check that

≃wy,k+1 ↘ w
↑
y,k≃2 =

∥∥∥”Y


wy,k ↘ γk

G

↘”Y

{
w

↑
y,k ↘ γkG

↑}
∥∥∥
2

↗
∥∥∥wy,k ↘ γk

G↘ (w↑
y,k ↘ γkG

↑)
∥∥∥
2
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=
∥∥wy,k ↘ w

↑
y,k

∥∥2 + γ
2
k

∥∥∥ G↘G
↑
∥∥∥
2
↘ 2γk′wy,k ↘ w

↑
y,k,

G↘G
↑∞.

Taking expectation conditioned on Fk yields:

E[≃wy,k+1 ↘ w
↑
y,k≃2|Fk] ↗ E[≃wy,k ↘ w

↑
y,k≃2|Fk] + γ

2
kE[≃ G↘G

↑≃2|Fk]

↘ 2γk′wy,k ↘ w
↑
y,k, G↘G

↑∞ ↘ 2γkE[′wy,k ↘ w
↑
y,k, G↘ G∞|Fk].

Note that we have

E[≃ G↘G
↑≃2|Fk] ↗ 2≃G↘G

↑≃2 + 2E[≃ G↘G≃2|Fk],

γkE[|′wy,k ↘ w
↑
y,k, G↘ G∞||Fk] ↗

γk

8ς
≃wy,k ↘ w

↑
y,k≃2 + (2γkς)E[≃ G↘G≃2|Fk],

Now again using the co-coercivity of strongly convex function, since the inner minimization is (1/(3ς))-
strongly convex and (1/ς)-smooth, we have

≃G↘G
↑≃2 ↗ (1/ς) · ′wy,k ↘ w

↑
y,k, G↘G

↑∞,
1

3ς
· ≃wy,k ↘ w

↑
y,k≃2 ↗ ′wy,k ↘ w

↑
y,k, G↘G

↑∞.

Given γk ∝ ς, and noting that G↘G = e
k
wy, we have

E[≃wy,k+1 ↘ w
↑
y,k≃2] ↗

(
1↘ γk

4ς

)
E[≃wy,k ↘ w

↑
y,k≃2] +O(γkς)E[≃ekwy≃2].

Similar arguments can show the bound on ≃wz,k+1 ↘ w
↑
z,k≃. ↭

In addition to the contraction of wy,k toward the proximal operators, we will also use the following on the
bounds on expected movements:

Lemma D.4 At every kth iteration, the following holds:

1

2γk
E[≃wy,k+1 ↘ wy,k≃2] ↗ E[hϑk(xk, yk, wy,k)↘ hϑk(xk, yk, wy,k+1) + 4γk≃ekwy≃2]. (41)

Similarly for wz,k, we have

1

2γk
E[≃wz,k+1 ↘ wz,k≃2] ↗ E[g(xk, zk, wz,k)↘ g(xk, zk, wz,k+1) + 4γk≃ekwz≃2]. (42)

Proof. By 2ς↓1-smoothness of hϑk(x, y, w), we have

hϑk(xk, yk, wy,k+1) ↗ hϑk(xk, yk, wy,k) + ′↓whϑk(xk, yk, wy,k), wy,k+1 ↘ wy,k∞+
1

ς
≃wy,k+1 ↘ wy,k≃2.

Let w̄k = wy,k ↘ γk(↓whϑk(xk, yk, wy,k) + e
k
wy), and thus ↓whϑk(xk, yk, wy,k) =

1
⇁k
(wy,k ↘ w̄k)↘ e

k
wy.

Plugging this back, we have

hϑk(xk, yk, wy,k+1) ↗ hϑk(xk, yk, wy,k) + γ
↓1
k ′wy,k ↘ w̄k, wy,k+1 ↘ wy,k∞

↘ ′ekwy, wy,k+1 ↘ wy,k∞+
1

ς
≃wy,k+1 ↘ wy,k≃2

↗ hϑk(xk, yk, wy,k)↘ γ
↓1
k ≃wy,k ↘ wy,k+1≃2 + γ

↓1
k ′wy,k+1 ↘ w̄k, wy,k+1 ↘ wy,k∞
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+ 4γk≃ekwy≃2 +
1

16γk
≃wy,k+1 ↘ wy,k≃2 +

1

ς
≃wy,k+1 ↘ wy,k≃2.

By projection lemma, ′wy,k+1 ↘ w̄k, wy,k+1 ↘ wy,k∞ ↗ 0, and since γk ∝ ς, we have

hϑk(xk, yk, wy,k+1) ↗ hϑk(xk, yk, wy,k)↘
1

2γk
≃wy,k+1 ↘ wy,k≃2 + 4γk≃ekwy≃2.

Arranging this, we get (41). (42) can be obtained similarly, and hence we omit the details. ↭

D.3 Descent Lemma for !ϑ,ϖ

For simplicity, let G = G
k
x = ↓x(ωkf(xk, wy,k+1) + g(xk, wy,k+1) ↘ g(xk, wz,k+1)) and G = e

k
x + G

k
x.

This part follows exactly the same as Appendix C.2, yielding the similar result to (36):

ωk · (i) ↗ ↘ 1

4αk
≃xk+1 ↘ xk≃2 ↘

▷k

4ς
(≃yk ↘ w

↑
y,k≃2 + ≃yk ↘ wy,k+1≃2)↘

▷k

ς
(≃zk ↘ w

↑
z,k≃2 + ≃zk ↘ wz,k+1≃2)

+O
(
l
2
g,1αk + ς

↓1
▷k

) (
≃w↑

y,k ↘ wy,k+1≃2 + ≃w↑
z,k ↘ wz,k+1≃2

)

+O(ς↓2)αk

(
dist2(zk, T (xk, 0)) + ≃zk ↘ zk+1≃2

)
+ αk≃ G↘G≃2.

D.4 Descent in Potentials

Note again that

E[≃xk+1 ↘ x̂k≃2] = E

≃”X


xk ↘ αk

G

↘”X {xk ↘ αkG

↑} ≃2
]
↗ α

2
k≃ G↘G

↑≃2

↗ O(l2g,1)α
2
k(≃w↑

y,k ↘ wy,k+1≃2 + ≃w↑
z,k ↘ wz,k+1≃2) + 2α2

kE[≃ G↘G≃2],

and also note that

≃xk ↘ xk+1≃2 ⇐
1

2
≃xk ↘ x̂k≃2 ↘ 2≃x̂k ↘ xk+1≃2,

E[≃ G↘G≃2] = E[≃ekx≃2].

Similarly to the proof of Appendix C.3, using Lemma C.2, (32), (36), and Lemma C.4, and using the step-size
conditions, we obtain a similar inequality to (37), with extra terms on noise-variances:

Vk+1 ↘ Vk ↗ ↘ αk

16ωk
≃#x

k≃2 ↘
▷k

16ωkς

(
≃yk ↘ w

↑
y,k≃2 + ≃zk ↘ w

↑
z,k≃2

)

↘ 1

16ωk▷kς
(≃yk ↘ yk+1≃2 + ≃zk ↘ zk+1≃2) +

(ωk ↘ ωk+1)

ωk
·O(Cf )

+
Cw

ωkς

(
1 +

ωk ↘ ωk+1

ωk+1
+

↽k

4
+

O(l2g,1)ςαk + 2▷k
Cw


(
≃w↑

y,k ↘ wy,k+1≃2 + ≃w↑
z,k ↘ wz,k+1≃2

)

↘ Cw

ωkς

(
≃w↑

y,k ↘ wy,k≃2 + ≃w↑
z,k ↘ wz,k≃2

)
↘ 1

16ωkαk
≃xk ↘ xk+1≃2 + o(1/k)

+ (Cης
2)

(
1

ωk+1γk
≃ekx≃2 ↘

1

ωkγk↓1
≃ek↓1

x ≃2
)
+O

(
1 + lg,1/µ+ Cwςlg,1

ωk

)
(αk + ς

↓1
α
2
k) · ≃ekx≃2

  
(i)

+ (Cης
2)

(
1

ωk+1γk
≃ek+1

wy ≃2 ↘ 1

ωkγk↓1
≃ekwy≃2

)

  
(ii)
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+ (Cης
2)

(
1

ωk+1γk
≃ek+1

wz ≃2 ↘ 1

ωkγk↓1
≃ekwz≃2

)

  
(iii)

.

In order to bound e
k
x term, given that

◁k+1 △
(
ωkγk↓1

ωk+1γk
↘ 1 +

lg,1/µ+ Cw

Cης
2

αkγk↓1

)
,

using Lemma D.2, we have

(i) ↗ ↘Cης
2
◁k

ωkγk↓1
≃ek↓1

x ≃2 + Cης
2 ·

O(◁2k)(ω
2
k↓1ω

2
f + ω

2
g) +O(l2g,1)≃xk ↘ xk↓1≃2

ωkγk↓1

+ Cης
2 ·

O(l2g,1)(≃wy,k+1 ↘ wy,k≃2 + ≃wz,k+1 ↘ wz,k≃2)
ωkγk↓1

.

Similarly, by Lemma D.1,

(ii) ↗ ↘Cης
2
◁k+1

ωkγk↓1
≃ekwy≃2 + Cης

2 ·
O(◁2k+1)(ω

2
kω

2
f + ω

2
g) +O(l2g,1)≃xk+1 ↘ xk≃2

ωkγk↓1

+ Cης
2 ·

O(l2g,1)≃wy,k+1 ↘ wy,k≃2

ωkγk↓1
,

(iii) ↗ ↘Cης
2
◁k+1

ωkγk↓1
≃ekwz≃2 + Cης

2 ·
O(◁2k+1)ω

2
g +O(l2g,1)≃xk+1 ↘ xk≃2

ωkγk↓1

+ Cης
2 ·

O(l2g,1)≃wz,k+1 ↘ wz,k≃2

ωkγk↓1
.

Now setting Cη > 0 and ς ∝ 1/lg,1 properly, with αk ∝ γk, we can keep ≃xk+1 ↘ xk≃2 terms negative, and
have

Vk+1 ↘ Vk ↗ ↘ αk

16ωk
≃#x

k≃2 ↘
▷k

16ωkς

(
≃yk ↘ w

↑
y,k≃2 + ≃zk ↘ w

↑
z,k≃2

)

↘ 1

16ωk▷kς
(≃yk ↘ yk+1≃2 + ≃zk ↘ zk+1≃2) +

(ωk ↘ ωk+1)

ωk
·O(Cf )

+
Cw

ωkς

(
1 +

ωk ↘ ωk+1

ωk+1
+

↽k

4
+

O(l2g,1)ςαk + 2▷k
Cw


(
≃w↑

y,k ↘ wy,k+1≃2 + ≃w↑
z,k ↘ wz,k+1≃2

)

↘ Cw

ωkς

(
≃w↑

y,k ↘ wy,k≃2 + ≃w↑
z,k ↘ wz,k≃2

)
↘ 1

32ωkαk
≃xk ↘ xk+1≃2 +

O(ς2l2g,1)

ωkγk↓1
≃xk ↘ xk↓1≃2

↘ Cης
2
◁k+1

ωkγk↓1
(≃ekwy≃2 + ≃ekwz≃2) + CηO(ς2l2g,1)

≃wy,k+1 ↘ wy,k≃2 + ≃wz,k+1 ↘ wz,k≃2

ωkγk↓1

+ Cης
2O(◁2k+1)

ωkγk
(ω2

kω
2
f + ω

2
g) + o(1/k).

Given that

◁k+1 △ O(l2g,1)γ
2
k ,
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using Lemma D.4, we can manipulate ≃wy,k+1 ↘ wy,k≃ and ≃wz,k+1 ↘ wz,k≃ terms to be bounded by

Vk+1 ↘ Vk ↗ ↘ αk

16ωk
≃#x

k≃2 ↘
▷k

16ωkς

(
≃yk ↘ w

↑
y,k≃2 + ≃zk ↘ w

↑
z,k≃2

)

↘ 1

16ωk▷kς
(≃yk ↘ yk+1≃2 + ≃zk ↘ zk+1≃2) +

(ωk ↘ ωk+1)

ωk
·O(Cf )

+
Cw

ωkς

(
1 +

ωk ↘ ωk+1

ωk+1
+

↽k

4
+

O(l2g,1)ςαk + 2▷k
Cw


(
≃w↑

y,k ↘ wy,k+1≃2 + ≃w↑
z,k ↘ wz,k+1≃2

)

↘ Cw

ωkς

(
≃w↑

y,k ↘ wy,k≃2 + ≃w↑
z,k ↘ wz,k≃2

)
↘ 1

32ωkαk
≃xk ↘ xk+1≃2 +

O(ς2l2g,1)

ωkγk↓1
≃xk ↘ xk↓1≃2

↘ Cης
2
◁k+1

2ωkγk↓1
(≃ekwy≃2 + ≃ekwz≃2) + Cης

2O(◁2k+1)

ωkγk
(ω2

kω
2
f + ω

2
g) + o(1/k)

+
CηO(ς2l2g,1)

ωk



hϑk(xk, yk, wy,k)↘ hϑk(xk, yk, wy,k+1)  
(iv)

+ g(xk, zk, wz,k)↘ g(xk, zk, wz,k+1)  
(v)



 .

(43)

To proceed, we note that

(iv) = (hϑk(xk, yk, wy,k)↘ h
↑
ϑk,ϖ(xk, yk))↘ (hϑk(xk, yk, wy,k+1)↘ h

↑
ϑk,ϖ(xk, yk))

= (hϑk(xk, yk, wy,k)↘ h
↑
ϑk,ϖ(xk, yk))↘ (hϑk(xk+1, yk+1, wy,k+1)↘ h

↑
ϑk,ϖ(xk+1, yk+1))

+ hϑk(xk+1, yk+1, wy,k+1)↘ h
↑
ϑk,ϖ(xk+1, yk+1))↘ (hϑk(xk, yk, wy,k+1)↘ h

↑
ϑk,ϖ(xk, yk))  

(a)

,

and the term (a) is bounded as

(a) ↗ ′↓x(hϑk(xk, yk, wy,k+1)↘ h
↑
ϑk,ϖ(xk, yk)), xk+1 ↘ xk∞+ lg,1≃xk+1 ↘ xk≃2

+ ′↓y(hϑk(xk, yk, wy,k+1)↘ h
↑
ϑk,ϖ(xk, yk)), yk+1 ↘ yk∞+ ς

↓1≃yk+1 ↘ yk≃2

= ′↓x(hϑk(xk, wy,k+1)↘ hϑk(xk, w
↑
y,k)), xk+1 ↘ xk∞+ lg,1≃xk+1 ↘ xk≃2

+ ς
↓1′(yk ↘ wy,k+1)↘ (yk ↘ w

↑
y,k), yk+1 ↘ yk∞+ ς

↓1≃yk+1 ↘ yk≃2

↗ 32l2g,1αk≃wy,k+1 ↘ w
↑
y,k≃2 +

1

128αk
≃xk+1 ↘ xk≃2 +

16▷k
ς

≃wy,k+1 ↘ w
↑
y,k≃2 +

1

64▷kς
≃yk+1 ↘ yk≃2.

Thus, we can conclude that

(iv) ↗ (hϑk(xk, yk, wy,k)↘ h
↑
ϑk,ϖ(xk, yk))↘ (hϑk(xk+1, yk+1, wy,k+1)↘ h

↑
ϑk,ϖ(xk+1, yk+1))

+ 32l2g,1αk≃wy,k+1 ↘ w
↑
y,k≃2 +

1

128αk
≃xk+1 ↘ xk≃2

+
16▷k
ς

≃wy,k+1 ↘ w
↑
y,k≃2 +

1

64▷kς
≃yk+1 ↘ yk≃2.

Similarly, we have

(v) ↗ (g(xk, zk, wz,k)↘ g
↑
ϖ(xk, zk))↘ (g(xk+1, zk+1, wz,k+1)↘ g

↑
ϖ(xk+1, zk+1))

+ 32l2g,1αk≃wz,k+1 ↘ w
↑
z,k≃2 +

1

128αk
≃xk+1 ↘ xk≃2
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+
16▷k
ς

≃wz,k+1 ↘ w
↑
z,k≃2 +

1

64▷kς
≃zk+1 ↘ zk≃2.

Now plugging this back, we have reduced (43) to

Vk+1 ↘ Vk

↗ ↘ αk

16ωk
≃#x

k≃2 ↘
▷k

16ωkς

(
≃yk ↘ w

↑
y,k≃2 + ≃zk ↘ w

↑
z,k≃2

)

↘ 1

32ωk▷kς
(≃yk ↘ yk+1≃2 + ≃zk ↘ zk+1≃2) +

(ωk ↘ ωk+1)

ωk
·O(Cf )

+
Cw

ωkς

(
1 +

ωk ↘ ωk+1

ωk+1
+

↽k

4
+

O(l2g,1ς)αk +O(1)▷k
Cw


(
≃w↑

y,k ↘ wy,k+1≃2 + ≃w↑
z,k ↘ wz,k+1≃2

)

↘ Cw

ωkς

(
≃w↑

y,k ↘ wy,k≃2 + ≃w↑
z,k ↘ wz,k≃2

)
↘ 1

64ωkαk
≃xk ↘ xk+1≃2 +

O(ς2l2g,1)

ωkγk↓1
≃xk ↘ xk↓1≃2

↘ Cης
2
◁k+1

2ωkγk↓1
(≃ekwy≃2 + ≃ekwz≃2) + Cης

2O(◁2k+1)

ωkγk
(ω2

kω
2
f + ω

2
g) + o(1/k)

+ CηO(ς2l2g,1)

(
hϑk(xk, yk, wy,k)↘ h

↑
ϑk,ϖ(xk, yk)

ωk
↘

hϑk(xk+1, yk+1, wy,k+1)↘ h
↑
ϑk,ϖ(xk+1, yk+1)

ωk

)

+ CηO(ς2l2g,1)

(
g(xk, zk, wz,k)↘ g

↑
ϖ(xk, zk)

ωk
↘

g(xk+1, zk+1, wz,k+1)↘ g
↑
ϖ(xk+1, zk+1)

ωk

)
. (44)

Now applying Lemma D.3, along with

↽k =
γk

4ς
△

O(l2g,1ς)αk +O(▷k)

Cw
,

and

◁k+1 △
Cw

Cη

↽kγk

ς
△

Cwγ
2
k

4Cης
2
,

we can further bound (44) by

Vk+1 ↘ Vk

↗ ↘ αk

16ωk
≃#x

k≃2 ↘
▷k

16ωkς

(
≃yk ↘ w

↑
y,k≃2 + ≃zk ↘ w

↑
z,k≃2

)

↘ 1

32ωk▷kς
(≃yk ↘ yk+1≃2 + ≃zk ↘ zk+1≃2)↘

1

64ωkαk
≃xk ↘ xk+1≃2 +

O(ς2l2g,1)

ωkγk↓1
≃xk ↘ xk↓1≃2

+
(ωk ↘ ωk+1)

ωk
·O(Cf ) + Cης

2O(◁2k+1)

ωkγk
(ω2

kω
2
f + ω

2
g) + o(1/k)

↘ Cw↽k

16ωkς
(≃w↑

y,k ↘ wy,k≃2 + ≃w↑
z,k ↘ wz,k≃2)

+ CηO(ς2l2g,1)

(
hϑk(xk, yk, wy,k)↘ h

↑
ϑk,ϖ(xk, yk)

ωk
↘

hϑk(xk+1, yk+1, wy,k+1)↘ h
↑
ϑk,ϖ(xk+1, yk+1)

ωk

)

+ CηO(ς2l2g,1)

(
g(xk, zk, wz,k)↘ g

↑
ϖ(xk, zk)

ωk
↘

g(xk+1, zk+1, wz,k+1)↘ g
↑
ϖ(xk+1, zk+1)

ωk

)
. (45)
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D.5 Proof of Theorem 5.4

Summing the bound (45) for k = 0 to K ↘ 1, we can cancel out ≃xk ↘ xk+1≃2 terms given that

O(ς2l2g,1)αk ∝ ωk

ωk+1
γk.

Leaving only relevant terms in the final bound, we get

VK ↘ V0

↗
K↓1

k=0

(
↘ αk

16ωk
≃#x

k≃2 ↘
▷k

16ωkς

(
≃yk ↘ w

↑
y,k≃2 + ≃zk ↘ w

↑
z,k≃2

))

+
K↓1

k=0

(
(ωk ↘ ωk+1)

ωk
·O(Cf ) + Cης

2O(◁2k+1)

ωkγk
(ω2

kω
2
f + ω

2
g)



+
K↓1

k=0

(
↘Cw↽k

16ωkς
(≃w↑

y,k ↘ wy,k≃2 + ≃w↑
z,k ↘ wz,k≃2)

)

+
K↓2

k=0

((
1

ωk+1
↘ 1

ωk

)(
hϑk(xk, yk, wy,k)↘ h

↑
ϑk,ϖ(xk, yk) + g(xk, zk, wz,k)↘ g

↑
ϖ(xk, zk)

))

+ CηO(ς2l2g,1)

(
hϑ0(x0, y0, wy,0)↘ h

↑
ϑ0,ϖ(x0, y0)

ω0
↘

hϑK (xK , yK , wy,K)↘ h
↑
ϑK ,ϖ(xK , yK)

ωK↓1

)

+ CηO(ς2l2g,1)

(
g(x0, z0, wz,0)↘ g

↑
ϖ(x0, z0)

ω0
↘

g(xK , zK , wz,K)↘ g
↑
ϖ(xK , zK)

ωK↓1

)
,

where the last two lines come from the telescoping sum. Note that

hϑK (xK , yK , wy,K)↘ h
↑
ϑK ,ϖ(xK , yK) ⇐ 0,

g(xK , zK , wz,K)↘ g
↑
ϖ(xK , zK) ⇐ 0,

by definition, and furthermore,

hϑk(xk, yk, wy,k)↘ h
↑
ϑk,ϖ(xk, yk) ↗ ′↓whϑk(xk, yk, w

↑
y,k), wy,k ↘ w

↑
y,k∞,

g(xk, zk, wz,k)↘ g
↑
ϖ(xk, zk) ↗ ′↓wg(xk, zk, w

↑
z,k), wz,k ↘ w

↑
z,k∞.

Here we rely on Assumption 12 (along with Y being compact) to bound them:

hϑk(xk, yk, wy,k)↘ h
↑
ϑk,ϖ(xk, yk) ↗ Mw≃wy,k ↘ w

↑
y,k≃,

g(xk, zk, wz,k)↘ g
↑
ϖ(xk, zk) ↗ Mw≃wz,k ↘ w

↑
z,k≃.

Plugging this back, and using ↘ax
2 + bx ↗ b2

4a , we have

VK ↘ V0 ↗
K↓1

k=0

(
↘ αk

16ωk
≃#x

k≃2 ↘
▷k

16ωkς

(
≃yk ↘ w

↑
y,k≃2 + ≃zk ↘ w

↑
z,k≃2

))

+
K↓1

k=0

(
(ωk ↘ ωk+1)

ωk
·O(Cf ) + Cης

2O(◁2k+1)

ωkγk
(ω2

kω
2
f + ω

2
g)


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+
K↓1

k=0

(
O(M2

w)ς
2

Cwωkγk

(
ωk ↘ ωk+1

ωk+1

)2


+ CηO(ς2l2g,1)

(
hϑ0(x0, y0, wy,0)↘ h

↑
ϑ0,ϖ(x0, y0)

ω0
+

g(x0, z0, wz,0)↘ g
↑
ϖ(x0, z0)

ω0

)
.

Note that wy,0 = y0, wz,0 = z0, and thus hϑ0(x0, y0, wy,0) = hϑ0(x0, y0), g(x0, z0, wz,0) = g(x0, z0).
Arranging the terms, we have the theorem.

D.6 Proof of Corollary 5.5

The proof is almost identical to the proof of Corollary 5.2 in Appendix C.4, and thus we omit the proof.

Appendix E Proofs of Auxiliary Lemmas

E.1 Proof of Lemma 3.7

The Lemma essentially follows the proof of Proposition 4 in [52]. It su"ces to show the local Lipschitz-
continuity of solution-sets. For every x1, x2 → X such that ≃x1↘x2≃ ↗ cxµ↼/lg,1 and |ω1↘ω2| ↗ csµ↼/lf,0

with su"ciently small constants cx, cs > 0, let y1 → T (x1,ω1) and ȳ = proxϖhω2 (x2,·)(y1). Note that
y1 = proxϖhω1 (x1,·)(y1). By Lemma A.3 and Lemma A.4,

≃y1 ↘ ȳ≃ = ≃proxϖhω1 (x1,·)(y1)↘ proxϖhω2 (x2,·)(y1)≃

↗ O(ςlg,1)≃x1 ↘ x2≃+O(ςlf,0)|ω1 ↘ ω2| ↗ ς↼.

Thus, ς↓1≃y1 ↘ proxϖhω2 (x2,·)(y1)≃ ↗ ↼, and applying Assumption 1,

dist(y1, T (x2,ω2)) ↗ µ
↓1 · (O(lg,1)≃x1 ↘ x2≃+O(lf,0)|ω1 ↘ ω2|) ,

proving the (local) O(lg,1/µ)-Lipschitz continuity in x and O(lf,0/µ)-Lipscthiz continuity in ω of T (x,ω).

E.2 Proof of Lemma 4.1

Proof. By Danskin’s theorem (Theorem A.1), if ↓h
↑
ϑ(x) and ↓g

↑(x) exist, then they are given by

↓h
↑
ϑ(x) = ↓xhϑ(x,w

↑
ϑ), ↓g

↑(x) = ↓xg(x,w
↑),

for any w
↑
ϑ → T (x,ω), w↑ → T (x, 0). Let w↑

y = proxϖhω(x→,·)(y
↑), w↑

z = proxϖg(x→,·)(z
↑). By Assumption 1,

there exists w↑
ϑ → T (x,ω) that satisfies

ωε ⇐ ς
↓1≃y↑ ↘ w

↑
y≃ ⇐ µ≃y↑ ↘ w

↑
ϑ≃,

and thus ≃y↑ ↘ w
↑
ϑ≃ ↗ ϑϱ

µ . Similarly, ≃z↑ ↘ w
↑≃ ↗ ϑϱ

µ . Therefore, we have

≃↓xϱϑ(x
↑
, y

↑
, z

↑)↘↓ϱϑ(x
↑)≃ ↗ ≃↓xhϑ(x↑, y↑)↘↓xhϑ(x,w↑

ϑ)≃+ ≃↓xg(x↑, z↑)↘↓xg(x↑, w↑)≃
ω

↗ lg,1

ω
(≃y↑ ↘ w

↑
ϑ≃+ ≃z↑ ↘ w

↑≃) ↗ 2lg,1ε

µ
.
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To bound the projection error, note that

1

ς
≃”X {x↑ ↘ ς↓ϱϑ(x

↑)}↘”X {x↑ ↘ ς↓xϱϑ(x
↑
, y

↑
, z

↑)} ≃ ↗ ≃↓xϱϑ(x
↑
, y

↑
, z

↑)↘↓ϱϑ(x
↑)≃ ↗ 2lg,1

µ
ε,

by non-expansiveness of projection operators. Thus,

1

ς
≃x↑ ↘”X {x↑ ↘ ς↓ϱϑ(x

↑)}≃ ↗ (1 + 2lg,1/µ) · ε,

concluding that x↑ is an O(ε)-stationary point of ↓ϱϑ(x).
The second part comes from the mean-value theorem: by the assumption, there exists ω↔ → [0,ω] such that

↓ϱϑ(x) =
⇁xl(x,ω)↘ ⇁xl(x, 0)

ω
=

⇁
2

⇁ω⇁x
l(x,ω↔) =

⇁
2

⇁x⇁ω
l(x,ω↔).

We also assumed Lϑ-Lipschitz continuity of second cross-partial derivatives, and thus
∥∥∥∥

⇁
2

⇁x⇁ω
l(x,ω↔)↘ ⇁

2

⇁x⇁ω
l(x, 0)

∥∥∥∥ ↗ Lϑω
↔ ↗ Lϑω,

which implies ≃↓ϱϑ(x)↘↓ϱ(x)≃ ↗ Lϑω. Using a similar projection non-expansiveness argument, we can
show that

1

ς
≃x↘”X {x↘ ς↓ϱ(x)}≃ ↗ (1 + 2lg,1/µ) · ε+ Lϑω,

concluding the proof. ↭

E.3 Proof of Lemma A.3

Proof. Note that

≃proxϖg(x1,·)(y1)↘ proxϖg(x2,·)(y2)≃ ↗ ≃proxϖg(x1,·)(y1)↘ proxϖg(x2,·)(y1)≃
+ ≃proxϖg(x2,·)(y1)↘ proxϖg(x2,·)(y2)≃.

Due to non-expansiveness of proximal operators, the second term is less than ≃y1 ↘ y2≃. For bounding the
first term, define

w
↑
1 = proxϖg(x1,·)(y1) = argmin

y→Y
g(x1, w) +

1

2ς
≃w ↘ y1≃2,

w
↑
2 = proxϖg(x2,·)(y1) = argmin

y→Y
g(x2, w) +

1

2ς
≃w ↘ y1≃2.

Due to the optimality condition, for any ▷ = ς/4, we can check that

w
↑
1 = ”Y

{
w

↑
1 ↘ ▷(↓yg(x1, w

↑
1) + ς

↓1(w↑
1 ↘ y1))

}
.

On the other hand, definew↔ = ”Y
{
w

↑
1 ↘ ▷(↓yg(x2, w↑

1) + ς
↓1(w↑

1 ↘ y1))
}

. This is one projected gradient-
descent step (PGD) for finding w

↑
2 started from w

↑
1. By the linear convergence of PGD for strongly convex

functions over convex domain [9], since the inner function is 1/(3ς)-strongly convex and 1/ς-smooth by
choosing proper ς, we have

≃w↔ ↘ w
↑
2≃ ↗ 9

10
≃w↑

1 ↘ w
↑
2≃.
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Thus,

≃w↑
1 ↘ w

↑
2≃

↗ ≃w↑
1 ↘ w

↔≃+ ≃w↔ ↘ w
↑
2≃

↗ ≃”Y
{
w

↑
1 ↘ ▷(↓yg(x1, w

↑
1) + ς

↓1(w↑
1 ↘ y1))

}
↘”Y

{
w

↑
1 ↘ ▷(↓yg(x2, w

↑
1) + ς

↓1(w↑
1 ↘ y1))

}
≃

+
9

10
≃w↑

1 ↘ w
↑
2≃

↗ ▷≃↓yg(x1, w
↑
1)↘↓yg(x2, w

↑
1)≃+

9

10
≃w↑

1 ↘ w
↑
2≃

= ▷O(lg,1)≃x1 ↘ x2≃+
9

10
≃w↑

1 ↘ w
↑
2≃.

where in the third inequality we used non-expansive property of projection onto convex sets. Arranging the
term and plug ▷ = ς/4, we get

≃w↑
1 ↘ w

↑
2≃ ↗ O (ςlg,1) ≃x1 ↘ x2≃.

↭

E.4 Proof of Lemma A.4

Proof. Again, let w↑
1 = proxϖhω1 (x,·)(y) and w

↑
2 = proxϖhω2 (x,·)(y). Using similar arguments to the proof

in Appendix E.3, we have

≃w↑
1 ↘ w

↑
2≃ ↗ ▷≃↓yhϑ1(x,w

↑
1)↘↓yhϑ2(x,w

↑
1)≃+

9

10
≃w↑

1 ↘ w
↑
2≃

↗ ▷≃ω1↓yf(x,w
↑
1)↘ ω2↓yf(x,w

↑
1)≃+

9

10
≃w↑

1 ↘ w
↑
2≃.

where ▷ = ς/4. Arranging terms and using ≃↓yf(x,w↑
1)≃ ↗ lf,0, we get the lemma. ↭

E.5 Proof of Lemma A.5

Proof. By Lemma A.3, we know that the solution of minw→Y hϑ(x,w)+
1
2ϖ≃w↘ y≃2 is O(ςlg,1) Lipschitz-

continuous in x and 1 Lipschitz-continuous in y. Therefore by Lemma A.2, since the inner minimization
problem is ς↓1-smooth, h↑ϑ,ϖ(x, y) is 2ς↓1-smooth. ↭

52


	Introduction
	Overview of Main Results
	Related Work

	Preliminaries
	Landscape Analysis and Penalty Method
	Sufficient Conditions for Differentiability
	Asymptotic Landscape
	Special Case: Unique Solution and Invertible Hessian

	Landscape Approximation with >0

	Algorithm
	Stationarity Measures
	First-Order Method with Large Batches
	A Fully Single-Loop First-Order Algorithm

	Analysis
	Analysis of Algorithm 1
	Analysis of Algorithm 2

	Conclusion
	Auxiliary Lemmas
	Deferred Proofs in Section 3
	Proof of Proposition 3.5
	Proof of Theorem 3.6
	Proof of Proposition 3.4
	Proof of Theorem 3.1
	Proof of Theorem 3.8
	-Stationary Point and -KKT Solution

	Analysis for Algorithm 1
	Descent Lemma for wy,k, wz,k
	Descent Lemma for ,
	Bounding (ii)
	Bounding (i)

	Proof of Theorem 5.1
	Proof of Corollary 5.2

	Analysis for Algorithm 2
	Descent Lemma for Noise-Variances
	Descent Lemma for wy,k, wz,k
	Descent Lemma for ,
	Descent in Potentials
	Proof of Theorem 5.4
	Proof of Corollary 5.5

	Proofs of Auxiliary Lemmas
	Proof of Lemma 3.7
	Proof of Lemma 4.1
	Proof of Lemma A.3
	Proof of Lemma A.4
	Proof of Lemma A.5


