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Abstract

Graph Convolution Networks (GCNs) are widely considered state-

of-the-art for recommendation systems. Several studies in the �eld

of recommendation systems have attempted to apply collaborative

�ltering (CF) within the Neural ODE framework. These studies fol-

low the same idea as LightGCN, which either removes the weight

matrix or employs a discrete weight matrix. However, we argue that

weight control is critical for neural ODE-based methods. Weight

plays a crucial role in creating tailored graph convolution for each

node, and employing a �xed or discrete weight prevents adjust-

ment over time within the ODE function. This rigidity in the graph

convolution reduces its adaptability, consequently hindering the

performance of recommendations. In this study, to create an opti-

mal control for Neural ODE-based recommendation, we introduce a

new method called Graph Neural Controlled Di�erential Equations

for Collaborative Filtering (CDE-CF). Our method improves the

performance of the Graph ODE-based method by incorporating

weight control in a continuous manner. To evaluate our approach,

we conducted experiments on various datasets. The results show

that our method surpasses competing baselines, including GCNs-

based models and state-of-the-art Graph ODE-based methods.

CCS Concepts

• Information systems → Collaborative �ltering; Recom-

mender.
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1 Introduction

In recent years, there has been a surge in the popularity of Graph

Convolutional Networks (GCNs) [16] for machine learning tasks

involving graph data. GCNs have gained popularity in recent years

for their e�ectiveness in learning node embeddings by exploiting

the structure of graphs. Collaborative Filtering (CF) [7, 13] is a pop-

ular approach in recommender systems. Since GCNs can e�ectively

capture relationships between users and items in a graph, they

have shown promising results in improving the performance of

collaborative �ltering, particularly in scenarios with complex and

sparse user-item interaction data.

Several studies [6, 14, 15] have shown that linear GCN archi-

tectures outperform non-linear ones for collaborative �ltering [7].

Moreover, linear GCNs can be easily interpreted as an ordinary dif-

ferential equation. This concept [1, 3] has led to the development of

LT-OCF, a Neural Ordinary Di�erential Equations (NODEs)-based

CF method [2]. LT-OCF demonstrates the suitability of NODEs-

based approaches for collaborative �ltering. The main idea behind

LT-OCF is to create a continuous version of the GCN layer, resem-

bling LightGCN [6] but with a customizable number of layers.

GODE-CF [12] is another NODE-based method for collabora-

tive �ltering. Inspired by of Graph Neural Ordinary Di�erential

Equations (GODEs)[10], instead of creating a continuous message-

passing layer, GODE-CF parametrizes the ODE using one or two

GCN layers. It tries to utilize the information captured by these

GCN layers to estimate the �nal state of the embedding by solv-

ing an ODE problem. Unlike LT-OCF [2], GODE-CF incorporates

a discrete weight for each node embedding. However, it remains

unclear whether the weight is helpful or not. The experimental re-

sults in GODE-CF indicate that the weight does not always improve

performance across all cases. We argue that a discrete weight may

also limit the performance of GODE-CF. ODE is a continuous form,

and incorporating a weight matrix in a continuous manner should

further enhance the performance of GODE-CF.

Motivated by this idea and based on the framework of GODE-

CF, we propose a new method called Graph Neural Controlled

Di�erential Equations for Collaborative Filtering (CDE-CF). Our

method is based on the framework of GODE-CF. However, unlike

GODE-CF, we incorporateMLPs to control the ODE instead of using

a discrete weight for each node. Such MLP weight generator can be

regarded as part of the ODE function producing continuous weight

values for the continuous time slots. To evaluate the performance
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of our method, we use four public review datasets and compare

them with state-of-the-art methods. The results indicate that our

method consistently outperforms the mentioned methods in all

datasets. Moreover, we showcase the e�ciency of our method by

demonstrating its faster training compared to most GCN-based

methods. Furthermore, we explore the in�uence of di�erent ODE

solvers on various datasets. To encourage future exploration of

CDE-CF, we have made our work open-source on https://github.

com/DavidZWZ/CDE-CF. In summary, our contributions can be

outlined as follows:

• We identify the limitations of non-weight and discrete weight in

graph-based collaborative �ltering and demonstrate the impor-

tance of the control matrix in ODE-based methods.

• We have developed CDE-CF, a novel method that can adaptively

control the weight along the time and for di�erent nodes in the

Graph Neural ODE function for collaborative �ltering.

• We conduct extensive experiments on four real-world datasets to

test the e�ectiveness of CDE-CF. It achieves the highest perfor-

mance with the same training time, demonstrating the remark-

able e�cacy of CDE-CF.

2 Preliminaries

Neural Ordinary Di�erential Equations (NODEs) refers to a

method that is used to model the continuous dynamics of hidden

states within neural networks [1]. This is achieved by characteriz-

ing the dynamics through an ordinary di�erential equation (ODE)

that is parameterized by a neural network. The main objective of

this method is to learn implicit di�erential equations from data. By

employing neural networks to parameterize the ODEs, it becomes

possible to capture intricate patterns in the data that would be

di�cult to capture using discrete methods. NODEs o�er a frame-

work for modeling complex systems by leveraging ODEs to capture

continuous behavior. The formula for NODEs is written as follows:

ℎ(C1) = ℎ(C0) +

+ Ī1

Ī0

5 (ℎ(C), \ )3C (1)

where 5 is a neural network parameterized by \ that approximates
Ěℎ (Ī )
ĚĪ

. This approximation allows us to derive ℎ(C1) from ℎ(C0). The

parameter \ is trained using data. The variables C0 and C1 represent

the starting and ending times, with C0 often set to 0. In Neural ODEs,

C1 can be considered as the number of layers in a neural network.

3 Proposed Method

Graph Neural Ordinary Di�erential Equations-based method for

Collaborative Filtering (GODE-CF) [12] is a method that draws

inspiration from the concept of Graph-based NODEs [10]. Instead

of creating a continuous message-passing layer, GODE-CF directly

parameterizes the derivative function using one or two layers of

GCNs. In other words, GODE-CF utilizes the information captured

by two LightGCN layers to estimate the �nal state of the embedding

by solving an ODE problem.

Di�erent from LightGCN [6], GODE-CF does not involve layer

combinations, as the integration can be viewed as the summation

of all layers from time 0 to C1. The initial embeddings serve as the

input for the ODE, and the output of the ODE becomes the �nal

LightGCN
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Figure 1: The graph convolution process for CDE-CF to gen-

erate an item �nal embedding �ğ∗ and the user embedding

�ī∗ can be produced in a similar process. (a) The data input

contains the bipartite adjacency matrix and initial embed-

ding. (b) The architecture of the proposed CDE-CF includes

the ODE function to model the graph convolution and the

weight generator to produce continuous weight. The plot

below compares the weight value of CDE-CF, GODE-CF, and

LightGCN with the change of time C and the node index 8.

embedding. The overall formula can be expressed as:

�ī∗ = �ī (0) +

+ Ī1

0

, (�Ĥ − � )�ğ (C)3C

�ğ∗ = �ğ (0) +

+ Ī1

0

, (�Ĥ − � )�ī (C)3C

(2)

where the normalized adjacency matrix is denoted by �, and the

initial user and item embeddings are represented by �ī
0
and �ğ

0
,

respectively. The discrete weight matrix is denoted by, , and =

represents the number of layers. The �nal user embeddings and

item embeddings are denoted as �ī∗ and �ğ∗, respectively.

Unlike typical GCN-based models [6, 7], which combine the em-

beddings from all layers, GODE-CF estimates the �nal embeddings

by leveraging information from multiple GCN layers through an

ODE function. Similar to other methods, the embeddings will be

trained using the BPR [11] loss and ODE solvers like explicit Euler

and RK4(Runge-Kutta 4th order method) will be used to solve the

ODE problem.

Distinct from LightGCN, which removes the weight matrix, ODE-

based methods rely on a weight matrix to regulate the progression

of each node toward its optimal state. Without weights, all node em-

beddings would converge in the same state at the same timestep, re-

sulting in suboptimal embeddings for some nodes. Since nodes may

require di�erent timesteps to reach their optimal states, weights

play a crucial role in ODE-based methods. GODE-CF introduces

a discrete weight that improves performance in speci�c scenarios.

However, this method has limitations due to the continuous nature

of the overall framework. We argue that incorporating weights in

a continuous manner would further enhance the performance of

GODE-CF.

Instead of simply creating a weight matrix like GODE-CF, we pro-

pose CDE-CF which builds MLPs to control the ODE. This ensures

that each node reaches its optimal state. The underlying concept is

straightforward. Fig 1 demonstrates ODE-based modeling for graph
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Table 1: Overall performance of CDE-CF in comparison with di�erent state-of-the-art baselines on four datasets.

Dataset Beauty Health Cell Phone O�ce

Method Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

NGCF 0.07079 0.02995 0.03064 0.01226 0.04387 0.01691 0.05097 0.022137

layerGCN 0.07620 0.03144 0.02453 0.01009 0.03967 0.01508 0.04710 0.02105

UltraGCN 0.05661 0.02618 0.03170 0.01348 0.03604 0.01558 0.04689 0.02336

GTN 0.07146 0.03059 0.03287 0.01351 0.04559 0.01780 0.04363 0.02026

LightGCN 0.07776 0.03299 0.03030 0.01202 0.04429 0.01660 0.05647 0.02635

LT-OCF 0.07879 0.03309 0.03022 0.01197 0.04641 0.01739 0.05626 0.02596

GODE-CF 0.08075 0.03406 0.03387 0.01356 0.05079 0.01909 0.05667 0.02702

CDE-CF 0.08129 0.03426 0.03468 0.01375 0.05082 0.01945 0.05728 0.02713

convolution and a controller to produce the weight varying from

the time C and the node index 8 . We use the initial embedding as the

input for the MLPs, and the output of the MLPs serves as the weight

matrix, which is integrated into the ODE framework. The whole

framework can be treated as two parts: (1) A Neural ODE with the

initial node embeddings as the input to estimate the weight matrix. (2)

A Graph Neural ODE with initial node embeddings and weight matrix

to estimate the �nal embedding. The �rst component is to control

the ODE that ensures each node will reach an optimal embedding.

We combine these two parts into one single ODE function. The

overall formula can be written as follows:

�ī∗ = �ī (0) +

+ Ī1

0

f (5 (�ī (C), \ )) (�Ĥ − � )�ğ (C)3C

�ğ∗ = �ğ (0) +

+ Ī1

0

f (5 (�ğ (C), \ )) (�Ĥ − � )�ī (C)3C

(3)

where �ī∗ is the �nal users embeddings and �ğ∗ is the �nal items

embeddings. 5 (�ī (C), \ ) and 5 (�ğ (C), \ ) represent the MLPs with

the user embedding and item embedding at time step C , respectively.

Here, \ represents the parameters of the MLPs. Additionally, f

denotes the sigmoid function. The output of the MLPs is the weight

matrix at time step C . The �nal user embeddings and item embed-

dings are denoted as �ī∗ and �ğ∗, respectively. Similar to GODE-CF,

we employ the BPR loss for training the embeddings and ODE

solvers, such as Euler or RK4, to solve the ODE. To make predic-

tions, we follow the same settings as GODE-CF. Once we obtain the

�nal embeddings, the prediction is calculated as the inner product

of the user embeddings and item embeddings: ~ī,ğ = �ī
Đ

∗ �ğ∗.

Table 2: The statistics of the datasets

Datasets Training Validation Testing Sparsity

O�ce 43,448 4,905 4,905 0.44867%

Health 269,137 38,609 38,609 0.0484%

Cell Phone 138,681 27,879 27,879 0.0668%

Beauty 153,776 22,363 22,363 0.07335%

4 Experiment

4.0.1 Datasets. We use the public Amazon Reviews dataset [9]

with four benchmark categories, including: Beauty, Health, Cell

Phones, O�ce Product. The details of the datasets are summarized in

Table 2. We follow the 5-core setting as existing works on users and

the same transformation [4–7] of treating the existence of reviews

as positives. We sort each user’s interactions chronologically and

adopt the leave-one-out setting, with the last interacted item for

testing and the second last interaction for validation.

4.0.2 Baselines. In total, we compare CDE-CF with various types

of the state-of-the-art models:

• layerGCN [17] is a GCN-based CF method with layer-re�nement.

• LightGCN [6] is a lightweight linear GCN-based CF method.

• UltraGCN [8] is an ultra-simpli�ed formulation of GCN that di-

rectly approximates the limit of in�nite message-passing layers.

• GTN [4] is a graph trend �ltering network framework to capture

the adaptive reliability of the interactions.

• LT-OCF [2] is a NODE-based method that aims to learn the

optimal architecture of the model for graph-based CF.

• GODE-CF [12] is a GODE-based method that uses two GCN

layers of information to estimate the �nal embeddings.

4.0.3 Evaluation Metrics. For the evaluation metrics, Recall@K

and NDCG@K are adopted for a fair comparison of all the base-

lines in the top-K recommendation task. K is set as 20 in the main

performance evaluation and is set to 20 by default in the other

experiments. The full-ranking strategy is adopted for all the experi-

mental studies, i.e., all the candidate items not interacted with the

user will be ranked in testing.

4.1 Overall Performance Comparison

In this comprehensive experimental study, we evaluated the per-

formance of several state-of-the-art GCN-based methods and ODE-

based methods on four diverse datasets. We use Recall@20 and

NDCG@20 as evaluation metrics to measure the performance of

the models. Table 1 is the overall performance, and we summarize

the main results:

• Predominantly, CDE-CF achieved the highest NDCG@20 and

Recall@20 scores across all datasets, highlighting its superior

e�cacy in recommendation tasks. Among ODE-based methods,

GODE-CF signi�cantly outperforms the strongest GCN-based

baselines. For other baselines, LightGCN exhibits the best perfor-

mance on Beauty, while GTN demonstrates the best performance

on Health compared to other GCN-based baselines.

• Among all baselines, the ODE-based model GODE-CF shows

state-of-the-art performance for all cases. This indicates the

superiority of the ODE-based methods for modeling the high-

order relationship in the graph convolution.
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Table 3: Impact of Weight and Discrete Weight on Beauty, Health, Cell Phone, and O�ce Datasets.

Dataset Beauty Health Cell Phone O�ce

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

Without weight (W) 0.08076 0.03407 0.03403 0.01353 0.05058 0.01916 0.05586 0.02661

With discrete weight (W) 0.08027 0.03395 0.03362 0.01356 0.05079 0.01909 0.05668 0.02702

CDE-CF 0.08129 0.03426 0.03468 0.01375 0.05082 0.01945 0.05728 0.02713

Table 4: E�ciency comparison with LightGCN, LT-OCF, and

GODE-CF on four datasets, with 1000 total training epochs.

Training Time

Dataset Beauty Health Cell Phone O�ce

LightGCN 2393.25s 4892.29s 2192.09s 382.89s

LT-OCF 5876.53s 15785.80s 5614.14s 771.50s

GODE-CF 2120.92s 4823.32s 2136.18s 406.28s

CDE-CF 2109.52s 4767.27s 2106.83s 421.46s

5 Ablation Study

Impact on weight. Here, we present the comprehensive abla-

tion study of weight components of the CDE-CF model. From the

detailed analysis provided in Table 3, we observe interesting in-

sights. Firstly, when incorporating a discrete weight, GODE-CF

does not consistently outperform the version without weight. This

indicates that a discrete weight alone may not be su�cient to e�ec-

tively control the ODE system. In comparison, our method CDE-CF,

which incorporates continuous weights, surpasses GODE-CF with-

out weight in all cases. This highlights the critical role of continuous

weight control in improving the performance of ODE methods.

E�ciency Comparison.We provide empirical evidence demon-

strating the superiority of CDE-CF in terms of training e�ciency

compared to other baselines. We train all models with a �xed num-

ber of 1000 epochs to eliminate the e�ect of varying epoch numbers.

As in Table 4, though CDE-CF includes an additional component

compared to GODE-CF, and CDE-CF has a faster training time than

GODE-CF in three datasets. The time step C is the main factor that

a�ects the training speed. We have found that the optimal value

for C across all cases is approximately 8.5 for GODE-CF. For our

method, the optimal C value is around 6.5, resulting in a reduced

amount of time required to solve the ODE.

6 Conclusion

In this study, we propose a new method called CDE-CF based on

the GODE-CF. In particular, a novel control weight is devised to

cater to the continuous time in the ODE functions in order to better

model the graph convolution process. The experimental results on

four di�erent real-world datasets demonstrate that CDE-CF outper-

forms various state-of-the-art baselines in terms of performance,

while also having a shorter training time compared to GODE-CF.

Additionally, the ablation study reveals that we have created a

more reasonable weight matrix control compared to GODE-CF. For

further study, we will explore more complex controllers for ODE-

based methods. In conclusion, having a good controller is crucial

to further enhance the performance of the ODE-based method and

contribute to performance improvements.
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