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Abstract
We consider the problem of identifying, from statistics, a distribution of discrete random variables
X1, . . . , Xn that is a mixture of k product distributions. The best previous sample complexity for n ∈ O(k)

was (1/ζ)O(k2 log k) (under a mild separation assumption parameterized by ζ). The best known lower bound
was exp(Ω(k)).

It is known that n ≥ 2k− 1 is necessary and sufficient for identification. We show, for any n ≥ 2k− 1,
how to achieve sample complexity and run-time complexity (1/ζ)O(k). We also extend the known lower
bound of eΩ(k) to match our upper bound across a broad range of ζ.

Our results are obtained by combining (a) a classic method for robust tensor decomposition, (b) a novel
way of bounding the condition number of key matrices called Hadamard extensions, by studying their
action only on flattened rank-1 tensors.

1. Introduction

1.1. The problem and our results.

This paper resolves the sample and runtime complexity of identification of mixtures of product distributions,
a problem introduced thirty years ago in Kearns et al. (1994), and further studied in Cryan et al. (2001);
Freund and Mansour (1999); Hall and Zhou (2003); Feldman et al. (2008); Chaudhuri and Rao (2008);
Tahmasebi et al. (2018); Chen and Moitra (2019); Gordon et al. (2021). In this problem, an observer collects
samples from a distribution over n binary (or otherwise drawn from a small finite set) random variables
X1, X2, . . . , Xn. The samples are collected from a mixture of k distinct sub-populations. For each sample
of (X1, . . . , Xn), a sub-population U ∈ {1, . . . , k} is chosen independently from previous samples and
according to the frequencies of the sub-populations in the entire population. Then, the random variables Xi

are drawn independently conditional on the sub-population U . The observer does not know the frequencies
of the sub-populations, and does not get an indication of the sub-population from which a sample was
drawn; the observer only sees the values of the n observable random bits. The goal is to reconstruct the
probabilistic model that generated the collected samples, namely, the frequencies of the sub-populations
and the conditional product distributions on (X1, X2, . . . , Xn) ∈ {0, 1}n.
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Most of the above literature discusses the problem of learning the model. That is, the goal is to produce
some model with similar statistics (as measured, for instance, by KL-divergence) on the observables as the
model that generated the samples. This does not necessarily guarantee similarity in the parameter space
of the models. In this paper, we focus on the stricter goal of identifying the model. That is, our goal is
to produce a model whose parameters are sufficiently close to the true underlying model to generate also
similar statistics on the observables. It is known that identification is not always possible, as there exist some
distributions on the observables that can be generated by more than one model. However, a mild condition
of separability, namely that the distribution on each observable is different among the sub-populations,
guarantees identifiability information theoretically (Tahmasebi et al., 2018). We shall use ζ to denote the
minimum difference between sub-population distributions on an observable. This will be defined precisely
later. Note that identification also implies learning.

As pointed out in Feldman et al. (2008) and elsewhere, the identification problem in the case of
observables taking values in a finite set reduces to the case of binary observables. Moreover, it is known
from Fan and Li (2022) that with polynomial overhead in the size of the range of the observables, the
problem reduces to the case of identifying the conditional expectations of real-valued observables that
are independent conditional on the sub-population. Thus, we shall focus in this paper on this real-valued
version of the problem.

Our main result is an algorithm that identifies the parameters of any ζ-separated mixture of product
distributions using (1/ζ)O(k)(1/πmin)

O(1)(1/ε)2 samples and runtime, up to additive error ε. Here πmin

is the minimum frequency of a sub-population. The result holds if there are at least 2k − 1 ζ-separated
observables, which is known to be a necessary condition (Teicher, 1961; Blischke, 1964). This result
greatly improves upon Gordon et al. (2021), the best previously known complexity for identification
(and learning), which required (1/ζ)O(k2 log k)(1/πmin)

O(log k)(1/ε)2 samples from 3k − 3 ζ-separated
observables. Furthermore, we show that the sample complexity of identification (for constant ε) is at
least (1/(kζ))Ω(k) (note that ζ ≤ 1

k−1 always). This generalizes the previously known lower bound of
exp(−Ω(k)) that held only for ζ = Θ(1/k) (Rabani et al., 2014). Hence, our results are essentially
optimal, both in terms of the number of ζ-separated observables needed and in terms of sample and runtime
complexity (excluding the case of ζ = 1

k1+o(1) , where a small gap remains).
For large n = ω(k), if a subset of 2k − 1 ζ-separated observables is known, then the runtime bounds

pick up an additional factor of n (to identify all the remaining observables). Otherwise, if the required
subset exists but is not known, then the runtime picks up an additional factor of nO(k) (to enumerate over
all possibilities). In both cases, the sample complexity only increases by a factor of log n.

1.2. Related work and motivation.

The seminal work of Feldman et al. (2008) solves the learning problem for general k in sample and runtime
complexity nO(k3). This was improved in Chen and Moitra (2019) to kO(k3)nO(k2).1 Gordon et al. (2021)
gave the first algorithm for the identification problem, identifying a k-component mixture on 3k − 3 ζ-
separated variables with sample and runtime complexity of (1/ζ)O(k2 log k). This was achieved by reducing
the problem to a special case of identifying a mixture of k distributions on independent and identically
distributed bits. The latter problem is solved using an elegant two-century-old method of Prony (de Prony,
1795) coupled with a robustness analysis given in Gordon et al. (2020).

The study of discrete mixture models is motivated by wide-ranging applications in fields such as
population genetics, text classification and image recognition, see e.g. Pritchard et al. (2000); Juan and

1. Chen and Moitra (2019) also studied the problem of learning a “mixture of subcubes” of the hypercube, which is the special
case where each random bit Xi is either fixed or uniformly distributed; for this case, they showed sample and runtime
complexity of nO(log k).
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Vidal (2002, 2004); Li et al. (2016). Identification is often essential for these applications, particularly
in the context of causal inference. Here, when data is drawn from multiple sources or sub-populations
it is said to contain a latent class E. S. Allman (2009), which mirrors an unidentified mixture source.
Standard procedures for identifying causal effects require considering the distributions within each latent
class separately to control for potential confounding effects Pearl (2009). Such an approach is generally
impossible unless these within-source probability distributions can be identified.

More broadly, the theory of causal inference relies at its core upon Bayesian networks of random
variables (Pearl, 1985; Spirtes et al., 2000; Pearl, 2009); such a network imposes conditional independencies
among random variables of the system. An important scenario is that several latent classes are subject to the
same “system mechanics” (i.e., Bayesian network), but have different statistics. In this case, the problem of
identifying the model is a far-reaching generalization of the problem of identifying mixtures of product
distributions. Gordon et al. (2023) recently proposed an algorithm for this more general problem that uses
the identification of mixtures of product distributions as an essential complexity-bottle-necking sub-routine.
Thus the improvements of the present paper carry over directly to that application.

Note that in the context of Bayesian networks, the identification problem is already interesting for
mixtures with just a few latent classes. This implies that the present algorithm can be useful in practice,
despite the exponential dependence of its sample complexity on k (and furthermore, this dependence might
not be exponential “in general”, see the discussion in section 6).

1.3. Our methods.

We study the so-called Hadamard extensions that were also used to derive sample complexity in Gordon
et al. (2021). We give a new and much more powerful bound on the condition number of the Hadamard
extensions. This bound alone would improve the sample complexity of the algorithm in Gordon et al. (2021)
to (1/ζ)O(k log k). We gain further improvement as follows: Instead of reducing the problem to identifying
mixtures of iid (synthetic) bits, we reduce the problem to a tensor decomposition problem, where the
tensor components are guaranteed to be well-conditioned (which makes the decomposition unique). An
algorithm for tensor decomposition in this setting was given thirty years ago in Leurgans et al. (1993) and
later analyzed for robustness in Goyal et al. (2014); Bhaskara et al. (2014). This algorithm can also be
seen as a generalization of the matrix pencil method Hua and Sarkar (1990), applied to the iid case in Kim
et al. (2019). Adapting the tensor decomposition algorithm to our setting and analyzing it using our new
condition number bound, then yields the sample complexity of (1/ζ)O(k).

1.4. Comparison with the parametric case.

The literature on mixture models for parametric families (exponential distributions, Gaussians in R or
Rd, etc.) is even more extensive and older than for discrete mixture models. It is essential to realize a
fundamental difference between the types of problems. In general, data is generated by (unseen) selection
of a sub–population j (1 ≤ j ≤ k), followed by (seen) sampling of n independent samples from the j-th
distribution. In almost every parametric scenario (think e.g., of a mixture of k Gaussians or exponential
distributions on the line), n = 1 is sufficient in order to (in the limit of many repetitions) identify the model.
This is fundamentally untrue in the non-parametric case; we have already mentioned that a lower bound
of n ≥ 2k − 1 was shown in Rabani et al. (2014); this threshold for n is called there the “aperture” of
the problem. To see, for starters, why the aperture must be larger than n = 1, consider a single binary
variable with k = 2 equiprobable sources (i.e., Pr(U = 0) = Pr(U = 1) = 1/2), one of which has
Pr(X = 1 | U = 0) = 3

4 and the other Pr(X = 1 | U = 1) = 1
4 . If we see after each selection of a source

only a single sample of X , it is impossible to distinguish between the above mixture and a mixture in which
Pr(X = 1 | U = 0) = 1 and Pr(X = 1 | U = 1) = 0. With access to multiple independent samples from
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the same source, however, we get empirical estimates of higher moments of the distribution, and at the
critical aperture can identify the model.

1.5. Organization.

Section 2 formally states the identification problem for mixtures of product distributions and sets up the
mathematical objects needed for our work. Section 3 describes our algorithm and states our upper bounds
on its sample complexity. These bounds mainly rely on our key result about the condition number of
Hadamard extensions, which we prove in Section 4, with a full end-to-end analysis of our algorithm in
Appendix A. Section 5 introduces the idea for our lower bounds on the complexity of the identification
problem, with full proofs given in Appendix B. Finally, in section 6 we discuss potential further directions
of research on our topic.

2. Results and preliminaries

2.1. The k-MixProd problem

Consider n real random variables X1, . . . , Xn that are supported on [0, 1] and are independent conditional
on a latent random variable U with range [k] = {1, . . . , k}. Given iid samples of the joint distribution of
(X1, . . . , Xn), we want to identify the distribution of U , given by πj := Pr(U = j) (j ∈ [k]), and the
conditional expectations mij = E(Xi | U = j) (i ∈ [n], j ∈ [k]). Hence, the model parameters for our
problem are given by a vector (π,m) ∈ ∆k−1 × [0, 1]n×k, where ∆k−1 denotes the (k − 1)-simplex.

Set XS =
∏

i∈S Xi, so E(XS | U = j) =
∏

i∈S mij . The mapping of the model to the statistics is
then given by:

γn : ∆k−1 × [0, 1]n×k → R2[n]

γn(π,m)(S) = E(XS) =
k∑

j=1

πj E(XS | U = j) =
k∑

j=1

πj
∏
i∈S

mij

We drop the subscript n and write γ when n is implied. The k-MixProd identification problem is to invert
γn, i.e., to recover (πj)j∈[k] and (mij)i∈[n],j∈[k] (up to permuting the set [k]). This task is interesting in
two versions, exact identification of (π,m) from γn(π,m) (i.e., from perfect statistics), and approximate
identification of (π,m) from noise-perturbed statistics g̃, i.e., from g̃ ∈ R{0,1}n that is close to γn(π,m).
To make the latter goal precise we need to specify metrics on the domain and range of γn. These are L∞
metrics, up to relabelings of the latent variable. (Sk denotes the symmetric group on k letters.)

dmodel((π,m), (π′,m′)) := min
ρ∈Sk

max{max
j
|πj − π′

ρ(j)|,max
i,j
|mi,j −m′

i,ρ(j)|}

dstat(g, g
′) := max

S⊆[n]
| g(S)− g′(S)|.

The mapping γn is not everywhere injective, so the k-MixProd model identification problem is not
always feasible. To guarantee identifiability we need to make the following assumptions:

(a) (ζ-separation) each variable Xi is ζ-separated, i.e. |mij −mij′ | ≥ ζ for all j ̸= j′ ∈ [k];

(b) (non-degenerate prior) for each j ∈ [k], we have πj ≥ πmin > 0;

(c) (sufficiently many observables) there are at least n ≥ 2k − 1 variables Xi.
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Let Dn,ζ,πmin
denote the space of the k-MixProd models with n variables satisfying assumptions (a)

and (b). Formally:

Dn,ζ,πmin
= {(π,m) ∈ ∆k−1 × [0, 1]n×k | min

j
πj ≥ πmin, ∀i min

j ̸=j′
|mij −mij′ | ≥ ζ},

Theorem 10 shows (quite apart from its algorithmic content) that for n ≥ 2k − 1, if (π,m) is a model¡
in Dn,ζ,πmin

, then any model whose statistics are close (in dstat) to those of (π,m), must also be close to
(π,m) in dmodel.

We now introduce some mathematical concepts that will be needed for our work.

2.2. Hadamard extensions and multilinear moments

First, we define some of our notation for working with matrices throughout the paper.

Definition 1 Given a matrix A of any dimensions, let Ai∗ denote the i’th row of A, and A∗j the j’th
column of A. Where clear from context we write Ai instead of Ai∗. For S a set of rows, A[S] denotes the
submatrix of A consisting of the rows in S.

Definition 2 The singular values of a real matrix A are denoted σ1(A) ≥ σ2(A) ≥ · · · . The L2 → L2

operator norm is denoted ∥A∥. The condition number of A is denoted κ(A) = ∥A∥ ·
∥∥A−1

∥∥.

The key mathematical objects we are studying are given by the following definitions:

Definition 3 (Hadamard product) The Hadamard product is the mapping ⊙ : R[k] × R[k] → R[k] which,
for row vectors u = (u1, . . . , uk) and v = (v1, . . . , vk), is given by u⊙v := (u1v1, . . . , ukvk). Equivalently,
using the notation v⊙ = diag(v), the Hadamard product is u⊙ v = u · v⊙. The identity element for the
Hadamard product is the all-ones row vector 1.

Definition 4 (Hadamard extension) For n ∈ Rn×p, the Hadamard extension of n, written H(n), is the
2n × p matrix with rows H(n)S for all S ⊆ [n], where, for S = {i1, . . . , iℓ}, H(n)S = ni1 ⊙ · · · ⊙ niℓ;
equivalently H(n)S,j =

∏
i∈S nij . In particular H(n)∅ = 1, and for all i ∈ [n], H(n){i} = ni.

To our knowledge, this construction first appeared (not under this name) in Chen and Moitra (2019).
Recall that the data we obtain from our samples will be estimates of E[XS ] = E[

∏
i∈S Xi] for all subsets

S ⊆ [n]. We call these the multilinear moments of the distribution, since they are multilinear in the rows mi.
Observe that E[XS ] =

∑
j πj

∏
i∈S mij = (H(m))S ·π, or equivalently, E[XS ] = (mi1⊙mi2⊙· · ·⊙mis)π

where S = {i1, i2, . . . , is}. Hence, the vector of statistics for a model (π,m) is given by γ(π,m) =
H(m)π, motivating the study of Hadamard extensions for this problem. We can see immediately that source
identification is not possible if H(m) has less than full column rank, i.e., if rank(H(m)) < k, as then the
mixing weights cannot be unique. We will organize our observed statistics into the following objects, which
we will use for identification:

Definition 5 Given disjoint sets S, T ⊆ {2, . . . , n}, define

CST = H(m[S]) · π⊙ · H(m[T ])T,

CST,1 = H(m[S]) · π⊙ ·m1⊙ · H(m[T ])T

Note, for A ⊆ S,B ⊆ T ,

(CST )A,B = γn(π,m)(A ∪B),

(CST,1)A,B = γn(π,m)(A ∪B ∪ {1})

Consequently CST and CST,1 are observable, that is, every one of their entries is a statistic which the
algorithm receives (a noisy version of) as input.
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2.3. Tensor decomposition

A matrix A is rank 1 if and only if it can be written as A = uvT for some vectors u,v. This concept can
be generalized for tensors:

Definition 6 A 3-way tensor T ∈ Rd1×d2×d3 is said to be of rank 1 if there exist vectors u ∈ Rd1 , v ∈
Rd2 , z ∈ Rd3 such that for all i, j, k:

Tijk = ui · vj · zk.

Now, the rank of any tensor T can be defined as the minimum number of rank-1-tensors that sum up to
T . Equivalently, a tensor of rank r has the following decomposition:

Definition 7 A 3-way tensor T ∈ Rd1×d2×d3 has a rank-r-decomposition if there exist matrices U ∈
Rd1×r,V ∈ Rd2×r,Z ∈ Rd3×r such that for all i, j, k:

Tijk =
r∑

ℓ=1

UiℓVjℓZkℓ.

We write T = [U,V,Z] and call U,V,Z the factor matrices or tensor components of T .

In general, the rank-r-decomposition of a tensor T need not be unique, but a classical result in Kruskal
(1977) gives sufficient conditions for uniqueness.

Definition 8 The Kruskal rank of a matrix A is the largest number r such that any r columns of A are
linearly independent.

Theorem 9 (Kruskal (1977)) The rank-r-decomposition of a three-way tensor T = [U,V,Z] is unique
up to scaling and permuting the columns of the factor matrices if

kU + kV + kZ ≥ 2r + 2,

where kU, kV, kZ denote the Kruskal rank of the matrices U,V,Z respectively.

3. The algorithm

3.1. Reducing k-MixProd to tensor decomposition

To motivate our algorithm, we first discuss a way of solving the k-MixProd identification problem for
n ≥ 2k − 1 given perfect statistics. Consider three disjoint sets S, T, U ⊆ [n] of ζ-separated observables,
such that |S| = |T | = k − 1 and |U | = 1. For convenience, we index rows so that U = {1}. Consider the
vector of perfect statistics g = γ2k−1(m[S∪T∪{1}]) that corresponds to the observables in S∪T∪{1}. We
can naturally view g as a three-way tensor T ∈ R2S×2T×2{1} whose entries are given by TA,B,C = gA∪B∪C
for A ⊆ S,B ⊆ T,C ⊆ {1}. Since we have

TA,B,C =
k∑

j=1

πj
∏

i∈A∪B∪C
mij =

k∑
j=1

H(m[S])A,j · H(m[T ])B,j · (H(m1) · π⊙)C,j ,

the tensor T can be decomposed as T = [H(m[S]),H(m[T ]),H(m1)π⊙]. It will follow as a “qualitative”
corollary of Theorem 13 that H(m[S]) and H(m[T ]) have full column rank, which implies both matrices
have Kruskal rank k. Moreover, ζ-separation of X1 implies that the matrix H(m1) · π⊙ has Kruskal
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rank 2. Hence, by Theorem 9, the decomposition of T is unique. We deduce that identifying the model
parameters m and π from perfect statistics (provided in T ) is equivalent to computing the unique tensor
decomposition of T . An efficient algorithm for computing tensor decomposition in this setting has first
been given by Leurgans et al. (1993) and later analyzed for stability by Goyal et al. (2014) and Bhaskara
et al. (2014). The idea is to first project the components of T down to their image, i.e. find matrices
U,V ∈ R2k−1×k such that UTH(m[S]) and VTH(m[T ]) are invertible. Then, compute ĈST = UTCSTV
and ĈST,1 = UTCST,1V (see Definition 5) from the given statistics. Now, the key observation is that
the tensor components UTH(m[S]) and VTH(m[T ]) can be found as the eigenvectors of ĈST,1Ĉ

−1
ST and

ĈT
ST,1(Ĉ

T
ST )

−1 respectively. This is because

ĈST,1Ĉ
−1
ST = UTH(m[S]) · π⊙ ·m1⊙ · H(m[T ])TV ·

(
UTH(m[S]) · π⊙ · H(m[T ])TV

)−1

= UTH(m[S]) · π⊙ ·m1⊙ · H(m[T ])TV ·
(
H(m[T ])TV

)−1
· π−1

⊙ ·
(
UTH(m[S])

)−1

= UTH(m[S]) ·m1⊙ ·
(
UTH(m[S])

)−1
, (1)

and

ĈT
ST,1(Ĉ

T
ST )

−1 =
(
UTH(m[S]) · π⊙ ·m1⊙ · H(m[T ])TV

)T
·
((

UTH(m[S]) · π⊙ · H(m[T ])TV
)T)−1

= VTH(m[T ]) · π⊙ ·m1⊙ · H(m[S])TU ·
(
H(m[S])TU

)−1
· π−1

⊙ ·
(
VTH(m[T ])

)−1

= VTH(m[T ]) ·m1⊙ ·
(
VTH(m[T ])

)−1
. (2)

In both cases, the eigenvalues of the matrices above are given by the entries of m1. Crucially, ζ-separation
of m1 allows us to match up the columns of UTH(m[S]) and VTH(m[T ]) (and guarantees numerical
stability). The original entries of H(m) and π can then be found from linear systems. In fact, notice that

UTH(m[S])π = UT g[2S ], (3)

and for any row mi with i /∈ S, we have

UTH(m[S])π⊙m
T
i = UT g(R ∪ {i})R⊆S . (4)

At this point, π and mi are the only unknowns in the equations above, so we have solved the identification
problem. Our main result essentially states that this identification method is robust to noise, i.e. it still
works when only presented with approximate statistics. We formally state the identification algorithm as
Algorithm 1.

Some comments on the algorithm: first, it is not necessary that the sets S, T are of size k − 1; typically,
⌈lg k⌉ will suffice. It is not even necessary that observables are ζ-separated. These assumptions guarantee
that σk(CST ) is large, but the latter, along with the argument that this is w.h.p. reproduced for σk(C̃ST ), is
sufficient for the success of the algorithm.

Second, we do not need to start with knowledge of S, T . Given n variables of which an unknown subset
of 2k − 1 variables are ζ-separated, we can simply perform the algorithm for all possible choices of subsets
S, T of size k− 1 (and an additional single row). Then, we choose the computed model whose statistics are
closest to the observed statistics as the final output. This exhaustive search can increase the runtime by a
factor of about n2k; but actually all these complexities are only exponential in the actual needed size of
S ∪ T . As noted, for generic m will be as small as ⌈lg k⌉, which makes the algorithm far more attractive in
practice.
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Algorithm 1 (adapted from Leurgans et al. (1993), Bhaskara et al. (2014)) Identifies a mixture of product
distributions on 2k − 1 binary variables given the joint distribution.

1 Input: Two disjoint sets S, T of ζ−separated, binary observables Xi, each of cardinality k − 1; a
single ζ−separated, binary observable that is not part of S, T , wlog X1; vector g̃ ∈ R2S∪T∪{1}

,
with g̃(R) the empirical approximation to E(XR) = γ(π,m)(R)).

2 Construct C̃ST and C̃ST,1 by (C̃ST )AB = g̃(A ∪B) and (C̃ST,1)AB = g̃(A ∪B ∪ {1}) for
A ⊆ S,B ⊆ T .

3 Set Û ∈ R2|T |×k to be the top k left singular vectors of C̃ST and V̂ ∈ R2|S|×k to be the top k right
singular vectors of C̃ST .

4 ĈST ← ÛTC̃ST V̂, ĈST,1 ← ÛTC̃ST,1V̂

5 Set Ŝ to be the eigenvectors of ĈST,1(ĈST )
−1 (sorted from highest eigenvalue to lowest).

6 Set T̂ to be the eigenvectors of ĈT
ST,1(Ĉ

T
ST )

−1 (sorted from highest eigenvalue to lowest).
7 π̃ ← Ŝ−1 · ÛT (g̃(R)R⊆S)

8 for every i ∈ T ∪ {1}, m̃i ← ((g̃(R ∪ {i}))R⊆S)
T · Û ·

(
ŜT
)−1
· π̃−1

⊙ .

9 for every i ∈ S, m̃i ← ((g̃(R ∪ {i}))R⊆T )
T · V̂ ·

(
T̂T
)−1
· π̃−1

⊙ .

Theorem 10 Let n = 2k − 1 and fix any ε ∈ (0, ζ/2). Let (π,m) ∈ Dn,ζ,πmin
. If Algorithm 1 is given

approximate statistics g̃ on (X1, . . . , Xn) as input, satisfying dstat(γ(π,m), g̃) < πmin
O(1)ζO(k)ε, then in

runtime exp(O(k)) the algorithm outputs (π̃, m̃) s.t.

dmodel((π,m), (π̃, m̃)) < ε. (5)

Moreover, this output is essentially unique, in the sense that: any (not necessarily ζ-separated) model
(π′,m′) with dstat(γ(π,m), γ(π′,m′)) < πmin

O(1)ζO(k)ε also satisfies (5).

Corollary 11 For n = 2k − 1 random variables Xi and δ ∈ (0, 1), sample complexity

(1/ζ)O(k)(1/πmin)
O(1)(1/ε)2 log(1/δ)

suffices to compute a model that satisfies (5) with probability at least 1− δ.

Corollary 12 Let the number of observables be n ≥ 2k − 1, and of these let some 2k − 1 be ζ-separated.
If this subset is known, then sample complexity

log n · (1/ζ)O(k)(1/πmin)
O(1)(1/ε)2 log(1/δ)

and post-sampling runtime n · exp(O(k)) suffices to compute a model that satisfies (5) with probability
at least 1 − δ. If the subset is not known, then the same sample complexity and post-sampling runtime
n2k · exp(O(k)) suffices to compute a model that w.h.p. satisfies (5).

Corollary 11 follows from Theorem 10 by standard Chernoff bounds and a union bound. In the following,
we give an overview of the steps necessary to analyze Algorithm 1 and therefore prove Theorem 10. Full
proofs of Theorem 10 and Corollary 12 can be found in Appendix A.
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3.2. Analyzing robustness

This section describes what each non-trivial line of Algorithm 1 accomplishes, and in each case points to
the part of the analysis necessary to justify it. We first set some definitions for the analysis. Let n = 2k − 1,
let {2, . . . , n} be the disjoint union of sets S, T each of size k − 1. Let g = γn(π,m) and let g̃ ∈ R{0,1}n

be the empirical statistics. The analysis relies on assuming that (π,m) ∈ Dn,ζ,πmin
. In what follows let

d := dstat(g̃, g). (6)

Now for the line-by-line:

• Line 3: The SVD of C̃ST can be computed with high numerical accuracy in time exp(O(k)) using,
for instance, the Golub-Kahan-Reinsch algorithm (see Lemma 20 in the appendix and Golub and
Loan (2013), Chapter 8). The span of the top k left and right singular vectors of C̃ST approximate
the images of H(m[S]) and H(m[T ]) respectively.

• Line 4: We project on the top k singular vectors of C̃ST to get an invertible matrix ĈST . Lemma
21 bounds the condition number of ĈST , given that d is small enough. Note that the two ma-
trices ĈST and ĈST,1 can be arranged to a k × k × 2-tensor T̂ that is close to the tensor T =[
ÛTH(m[S]), V̂TH(m[T ]),H(m1)π⊙

]
by Lemma 22.

• Lines 5,6: These two lines implement the core of the tensor decomposition algorithm from Leurgans
et al. (1993), as explained in the previous section. Hence, the matrices Ŝ and T̂ approximate the
tensor components ÛTH(m[S]) and V̂TH(m[T ]) of T . The diagonalization steps can be performed
with high numerical accuracy in time exp(O(k)) using, for instance, the algorithm from Banks et al.
(2020). For the error bounds, we rely on Theorem 23 from Bhaskara et al. (2014).

• Lines 7-9: Here, we solve for the model parameters π and m, using the equations (3) and (4). For
error control, we apply Lemma 24.

Essentially, all the analysis steps above go through given that the distance d between the empirical
and the true statistics is bounded by poly(2−k, σk(CST ))

−1) (the first argument comes from the inverse of
the dimension of CST and will be dominated by the second argument). Hence, the sample complexity is
basically a polynomial function in the k’th singular value of CST , which we will analyze in the next section.

4. The condition number bound

The key to the sample-complexity and runtime bounds for our algorithm lies in the following condition
number bound for the Hadamard Extension.

Theorem 13

1. Let m consist of k− 1 ζ-separated rows in Rk, and observe that the singular values of H(m) satisfy
σ1(H(m)) ≥ . . . ≥ σk(H(m)) ≥ 0 = σk+1(H(m)) = . . . = σ2k−1(H(m)). Then

σk(H(m)) >
1√
k

(
ζ

2
√
5

)k−1

=: σ. (7)

2. Let (π,m) ∈ D2k−1,ζ,πmin
and let CST be as in Defn. 5. Then

σk(CST ) > πminσ
2 =

πmin

k

(
ζ

2
√
5

)2k−2

.
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Definition 14 Hp = {H(n) : n ∈ R[k−1]×[p]}. (So H1 consists of rank-1 tensors of order k − 1.)

The proof of Theorem 13 relies on the following insight. Since H(m) has dimensions 2k−1 × k,
σk(H(m)) characterizes the least norm of H(m) · v ranging over any unit vector v (all norms in L2), but
it does not characterize the least norm of vectors of the form hT · H(m), which is 0 as the left-kernel of
H(m) is of course very large. The insight is that it does become possible to bound σk(H(m)) in terms of
such vectors h, provided h is restricted to rank 1 tensors. With this in mind we define:

τ(m) = min
0̸=h∈H1

∥∥∥hT · H(m)
∥∥∥ / ∥h∥ .

Proof of Theorem 13 To show Part 2 from Part 1: The SVD implies there is a k-dimensional space V s.t.
∀v ∈ V , ∥vT · H(m[S])∥ ≥ σ∥v∥. Further, for all w ∈ Rk, ∥wT · π⊙∥ ≥ πmin∥w∥. And for all w ∈ Rk,
∥wT · H(m[T ])T∥ ≥ σ∥w∥. So ∀v ∈ V , ∥v ·CTS∥ ≥ πminσ

2∥v∥.
In order to establish Part 1 we prove the following two lemmas.

Lemma 15 σk(H(m)) ≥ τ(m)/
√
k.

Lemma 16 τ(m) > (ζ/2
√
5)k−1.

Proof of Lemma 15 Consider v ∈ Rk, ∥v∥ = 1, achieving σk(H(m)), i.e., r := H(m) · v satisfies
∥r∥ = σk(H(m)). W.l.o.g. the order of coordinates is such that |vk| ≥ 1/

√
k. The last column of H(m) is

then:

H(m)∗k =
1

vk

r −
k−1∑
j=1

vjH(m)∗j

 . (8)

Now we carefully choose h ∈ H1 based on m. Define the column vector n ∈ R[k−1] by ni := −1/mii

(1 ≤ i ≤ k − 1); and let

h :=

(
k−1∏
1

mii

)
H(n). (9)

For j ̸= k we have:

hT · H(m)∗j =
∑
S

(−1)|S|
(∏

i/∈S

mii

)(∏
i∈S

mij

)
=

k−1∏
i=1

(mii −mij) = 0.

So, hT · H(m)∗j = 0 for j = 1, . . . , k − 1. For j = k, we apply (8) to evaluate hT · H(m)∗k:

(
hT · H(m)

)
k
=

1

vk
hT ·

r −
k−1∑
j=1

vjH(m)∗j

 =
1

vk

hT · r −
k−1∑
j=1

vjh
T · H(m)∗j

 =
1

vk
hT · r.

The norm of hT · H(m) is then upper bounded by∥∥∥hT · H(m)
∥∥∥ =

∣∣∣(hT · H(m))k

∣∣∣
=

1

vk
hT · r

≤
√
k ∥h∥ ∥r∥

=
√
k ∥h∥σk(H(m)).

10
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Proof of Lemma 16 Consider any G ∈ H1, say G = H(g), g ∈ R[k−1]. Then (GT · H(m))j =∑
S GSH(m)S,j =

∏k−1
1 (1 + gimi,j). We also note that ∥G∥ =

√∏k−1
1 (1 + g2

i ).

We now show that there is some j such that
∏k−1

i=1

∣∣∣∣1+gimij√
1+g2

i

∣∣∣∣ is large. First, for any i for which gi ≥ 1
2 ,

there is at most one j s.t. mij ≤ ζ; exclude these j’s. Next, for each i for which gi <
1
2 , there is at most

one j s.t.
∣∣∣ 1gi

+mij

∣∣∣ ≤ ζ/2; exclude these j’s. For the remainder of the argument fix any j which has not

been excluded. Since m has k columns while g ∈ Rk−1, such a j exists. We now lower bound
∣∣∣∣1+gimij√

1+g2
i

∣∣∣∣
for each i; there are three cases.

1. gi ≥ 1/2,mij > ζ. Then
∣∣∣∣1+gimij√

1+g2
i

∣∣∣∣ ≥mij > ζ.

2. −1/2 < gi < 1/2. Then
∣∣∣∣1+gimij√

1+g2
i

∣∣∣∣ >√ (mij−2)2

5 ≥ 1/
√
5.

3. gi ≤ −1/2, | 1gi
+mij | > ζ/2. Then

∣∣∣∣1+gimij√
1+g2

i

∣∣∣∣ = ∣∣∣∣gi(
1
gi

+mij)

gi

√
1+1/g2

i

∣∣∣∣ > ζ

2
√
5
.

We therefore have τ(m) > (ζ/2
√
5)k−1.

Part 1 is an immediate consequence of the two lemmas.

5. Lower bounds

The following theorem shows that our algorithmic results are optimal when ζ is small enough.

Theorem 17 Let n = 2k − 1, ζ ≤ 1
8k , πmin ≤ 1

4k , ε > 0 and ε < min{πmin

4
√
k
, ζ}. Then, there exist models

(π,m), (π′,m′) ∈ Dn,ζ,πmin
such that dstat(γ(π,m), γ(π′,m′)) ≤ (kζ)Ω(k)ε, but dmodel((π,m), (π′,m′)) >

ε.

Corollary 18 For n = 2k − 1 random variables Xi, sample complexity

(1/(kζ))Ω(k)(1/ε)

is necessary to compute a model that w.h.p. satisfies (5).

Note that (assuming πmin is not smaller than ζO(k)), the upper and lower sample complexity bounds in
Corollary 11 and Corollary 18 match in the case that ζ ≤ k−1−δ for some arbitrary small δ > 0. Only when
ζ comes closer to its maximal possible value of 1

k−1 , there is a gap between upper and lower bound. In the
edge case, when ζ = Θ( 1k ), the upper bound evaluates to exp (O(k log k)) and the lower bound evaluates
to exp (Ω(k)). We remark that the lower bound can be shown to be tight for k-MixIID over the entire range
of the parameter ζ.

The approach towards proving Theorem 17 is motivated by the following simple observation: Given
a model (π,m) with rank(H(m)) < k, we can take a vector α in the kernel of H(m), and the models
(π + λα,m) for any small enough choice of λ will produce the same statistics as (π,m). Now, if m has
at least k − 1 ζ-separated rows, then H(m) will be of rank k by Theorem 13, but it might still be close to
being rank-deficient, as characterized by its k’th singular value. This intuition gives rise to the following
result, which we prove in Appendix B:

11
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Lemma 19 Let n ≥ 1, ε > 0 and ε < min{πmin

4
√
k
, ζ}. Suppose (π,m) ∈ Dn,ζ,πmin

and σk(H(m)) =

σ < 1
2 . Then, there exists π̂ with minj π̂j ≥ 1

4πmin and such that dmodel((π,m), (π̂,m)) > ε but
dstat(γ(π,m), γ(π̂,m)) ≤ 4kσ · ε.

Lemma 19 reduces the challenge of finding models with large model distance but small statistical
distance to finding a model with a Hadamard extension H(m) that has a small k’th singular value. In
Appendix B, we will show that the model of iid variables characterized by mi = (0, ζ, 2ζ, . . . , (k − 1) · ζ)
for all i, has a Hadamard extension H(m) with singular value σk(H(m)) = (kζ)Ω(k) (see Lemma 27).
Combining this result with Lemma 19, we obtain Theorem 17. Corollary 18 then follows immediately after
observing that the statistical distance dstat between two models provides an upper bound for their total
variation distance. The details of this statement can be found in Lemma 28 in Appendix B.

6. Discussion

Two larger questions remain to be addressed in this area. First, it would be of great interest to achieve
a similar sample complexity as in Theorem 10 for the more general “learning” task. Second, it is open
to characterize the set of models, for which identification (even with perfect statistics) is possible. There
exist identifiable models (π,m) where none of the rows of m has fully-separated entries. Recent work
by Gordon and Schulman (2022) gives a sufficient condition for identification that is less restrictive (though
more complicated) than ζ-separation. However, there is no known way of obtaining quantitative bounds on
noise-stability (which are needed for our sample complexity analysis) in that less restrictive framework.2

Note that some kind of separation assumption is unavoidable if we insist on L∞-reconstruction of the model
parameters: as one example, if there are j, j′ s.t. mij = mij′ for all i, then it is impossible to determine
πj and πj′ . However, it might be possible to completely eliminate the separation assumption in favor of
settling for reconstruction in transportation (Wasserstein) distance. This was achieved for k-MixIID (the
k-MixProd problem where all observables are conditionally identically distributed) in Li et al. (2015), and
improved in Fan and Li (2022). It is an open question whether these ideas can be extended to k-MixProd,
with the goal being transportation-cost reconstruction of each of the rows of m.

We remark that even though Theorem 10 and its corollaries are given for ζ-separated models, our
algorithm itself also works under weaker conditions. In fact, all it needs is just one ζ-separated observable
and two more disjoint sets of observables, each of which have a Hadamard extension (see below) with
good condition number. These requirements can, for models in “general position,” be met with as few as
2 lg k + 1 observables. The sample complexity and runtime of the algorithm scale singly-exponentially in
the number of observables actually used. Hence, it is possible that, except for a small set of “adversarial”
models, model identification can typically be achieved with much lower sample complexity and runtime
than can be guaranteed for the worst case. In fact, this line of thought has already been pursued for the
tensor decomposition problem to which we reduce k-MixProd. It was shown that the time complexity of
the tensor decomposition problem significantly improves when each tensor component of the input tensor
is perturbed by small random noise Bhaskara et al. (2014). Note that one can never solve the k-MixProd
Identification problem with fewer than lg k observables. Below this critical threshold of observables, the
Hadamard extensions cannot be full rank and therefore the mapping from model to statistics cannot be
injective.

2. Quantification in the framework of Gordon and Schulman (2022) would likely be misguided, anyway, given that it is a complex
yet not tight characterization; for example it excludes mixtures of subcubes Chen and Moitra (2019).
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Appendix A. Analysis of Algorithm 1

We first state a result on the numerical accuracy of computing the SVD:

Lemma 20 (Golub and Loan (2013), section 5.4.1) Given a matrix A ∈ Rm×n and precision ε > 0, the
Golub-Kahan-Reinsch algorithm computes an approximate SVD given by U ∈ Rm×m,Σ ∈ Rm×n,V ∈
Rn×n such that

• Σ is a diagonal matrix;

• U = W +∆U and V = Z+∆V, where W,Z are unitary and ||∆U||, ||∆V|| < ε;

• WΣZT = A+∆A with ||∆A|| < ε||A||.

To analyze Algorithm 1, let d = dstat(g̃, g) = max{||C̃ST − CST ||∞, ||C̃ST,1 − CST,1||∞} as in
Definition (6) and let σ be as defined in (7). Furthermore, assume that the SVD in line 3 of the algorithm
is calculated with precision ε = d according to the statement of Lemma 20. Then, we get the following
bounds:

Lemma 21

(a) σk(C̃ST ) ≥ πminσ
2 − 2kd

(b) σk(ĈST ) ≥ πminσ
2 − 2k+2d

Proof (a) By a classical perturbation bound of Weyl Weyl (1912), we have |σk(C̃ST ) − σk(CST )| ≤
||C̃ST −CST ||. Moreover, we know ||C̃ST −CST || ≤ 2k||C̃ST −CST ||∞ ≤ 2kd. Combining this with
Part 2 of Theorem 13, we get the desired result.

(b) Let UΣVT be an approximate SVD for C̃ST satisfying the conditions of Lemma 20 with precision
ε. In particular, U = W + ∆U, V = Z + ∆V and WΣZT = C̃ST + ∆C̃ST . We assume that the
columns of Σ are ordered by magnitude of their diagonal entries. Let Û, V̂,Ŵ, Ẑ,∆Û,∆V̂ denote the
first k columns of the respective matrices. We get

σk(ĈST ) = σk(Û
TC̃ST V̂) = σk((Ŵ +∆Û)TC̃ST (Ẑ+∆V̂))

≥ σk(Ŵ
TC̃ST Ẑ)− ||(∆Û)TC̃ST Ẑ|| − ||ŴTC̃ST∆V̂|| − ||(∆Û)TC̃ST∆V̂||

≥ σk(Ŵ
TC̃ST Ẑ)− 3ε||C̃ST ||

≥ σk(Ŵ
T(C̃ST +∆C̃ST )Ẑ)− ||ŴT∆C̃ST V̂|| − 3ε||C̃ST ||

≥ σk((C̃ST +∆C̃ST ))− 4ε||C̃ST ||
≥ σk(C̃ST )− 5ε||C̃ST ||.

Since the entries of C̃ST are all at most 1, we have ||C̃ST || ≤ 2k−1 and with ε = d, the result follows.

At this point, we can view ĈST and ĈST,1 as the two slices of a k × k × 2-tensor T̂ that is close to
the tensor T = [ÛTH(m[S]), V̂TH(m[T ]),H(m1) · π⊙] (with the two slices T (:, :, 0) = ÛTCST V̂ and
T (:, :, 1) = ÛTCST,1V̂). The following lemma bounds the distance between T̂ and T , and shows that the
first two components of T are full rank and well-conditioned.

Lemma 22 Suppose that d ≤ πminσ
2/(k22k+2), then

(a) ||ĈST − ÛTCST V̂||∞, ||ĈST,1 − ÛTCST,1V̂||∞ < 22kd
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(b) κ(ÛTH(m[S])), κ(V̂TH(m[T ])) ≤ k222k+1/(πminσ
2).

Proof (a) Remember that Û = Ŵ +∆Û, V̂ = Ẑ+∆V̂, where ||∆Û||, ||∆V̂|| < d and the columns
of Ŵ, Ẑ are orthonormal. In particular, this implies that entries of Û and V̂ are bounded by 1 + kd ≤ 2.
Hence, we have

||ĈST − ÛTCST V̂||∞ = ||ÛT(C̃ST −CST )V̂||∞
≤||ÛT||∞ · 2k−1 · ||C̃ST −CST ||∞ · ||V̂||∞ · 2k−1 ≤ 22kd.

The result follows analogously for ĈST,1.
(b) First, since the entries of H(m[S]) are bounded by 1, we have σ1(ÛTH(m[S])) ≤ k·||ÛTH(m[S])||∞ ≤

k2k, and similarly, σ1(H(m[T ])TV̂) ≤ k2k. Using part (a), Lemma 21, and the assumption on d, we get

σk(Û
TCST V̂) ≥ σk(ĈST )− ||ĈST − ÛTCST V̂|| ≥ σk(ĈST )− k22kd

≥ πminσ
2 − 2k+2d− k22kd ≥ πminσ

2/2

Hence, we deduce

πminσ
2/2 ≤ σk(Û

TH(m[S])π⊙H(m[T ])TV̂)

≤ σk(Û
TH(m[S])) · σ1(π⊙) · σ1(H(m[T ])TV̂)

≤ σk(Û
TH(m[S])) ·· k2k.

We conclude that κ(ÛTH(m[S])) = σ1(Û
TH(m[S]))/σk(Û

TH(m[S])) ≤ 2 · (k2k)2/(πminσ
2), and the

result follows analogously for κ(V̂TH(m[T ])).

The following result from Bhaskara et al. (2014) provides us with error bounds for the core step of the
tensor decomposition algorithm we are using.

Theorem 23 (Bhaskara et al. (2014), Theorem 2.3) Let ε > 0 and T , T̂ be two k × k × 2-tensors, such
that

• T = [X,Y,Z] with X,Y ∈ Rk×k,Z ∈ R2×k;

• κ(X), κ(Y) ≤ κ;

• the entries of (Z1kZ
−1
2k )k are ζ-separated;

• ||Xi||2, ||Yi||2, ||Zi||2 are bounded by a constant;

• ||T̂ − T ||∞ < ε · poly(1/κ, 1/k, ζ);

then the eigenvectors of T (:, :, 1)T (:, :, 0)−1 and T (:, :, 1)T(T (:, :, 0)T)−1 approximate the columns Xi

and Yi respectively, up to permutation and additive error ε.

(Comment: This is slightly more specific than the theorem statement in the reference, but it easily follows
from the general statement.)

Finally, we will make use of the following classical result on perturbations of linear systems:

Lemma 24 (Higham (2002), Section 7.1) Let Ax = b and (A + ∆A)y = b + ∆b, where ||∆A|| ≤
γ||A|| and ||∆b|| ≤ γ||b||, and assume that γ · κ(A) < 1. Then,

||x− y||2
||x||2

≤ 2γ · κ(A)

1− γ · κ(A)
.
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Now, we have all the tools to prove Theorem 10.

Proof of Theorem 10 Fix ε ∈ (0, ζ/2) and a model (π,m) ∈ D2k−1,ζ,πmin
with statistics g, and

suppose that Algorithm 1 is given approximate statistics g̃ with || g− g̃ ||∞ = d ≤ ε · (πminζ
k)C for

some large constant C. Consider the k × k × 2-tensor T̂ that consists of the slices ĈST and ĈST,1 and

T =
[
ÛTH(m[S]), V̂TH(m[T ]),H(m1)π⊙

]
. Define κ = max{κ(ÛTH(m[S])), κ(V̂TH(m[T ]))}. By

Lemma 22, we have κ ≤ 1
πmin
·
(
1
ζ

)O(k)
and ||T̂ − T ||∞ ≤ exp(O(k))d. Hence, by Theorem 23, we get

||Ŝ− ÛTH(m[S])||∞, ||T̂− V̂TH(m[T ])||∞ ≤ exp(O(k))d · poly(κ, k, 1/ζ) =
(

1
πmin

)O(1) (
1
ζ

)O(k)
d,

after possibly permuting the columns of Ŝ and T̂. Now, π̃ is defined via a linear system that is a perturbation
of equation (3). If d is small enough, then the conditions of Lemma 24 are satisfied with γ = ε/(4κ),
and we get ||π − π̃||2 ≤ ε. Similarly, we get m̃i from a perturbed version of equation (4) and we can
use Lemma 24 with γ = ε/(4κ · πmin) to deduce ||mi − m̃i||2 ≤ ε. Changing the norms to ||.||∞ incurs
at most another factor of k, by which we can decrease d, so then the output of Algorithm 1 satisfies
dmodel((π,m), (π̃, m̃)) < ε.
To prove the second part of the theorem, suppose the model (π̃, m̃) has statistics g̃, and again || g− g̃ ||∞ ≤
ε · (πminζ

k)C . By Lemma 21, C̃ST has rank k. Hence, by equation (1), m̃1 is the vector of eigenvalues of
ĈST,1Ĉ

−1
ST . At the same time, by the first part of the theorem, these eigenvalues give an ε-approximation

to m (after permuting them), and ε < ζ/2 implies that they must be separated. We essentially proved
in section 3.1 through equations (1) - (4) that C̃ST having rank k and separation of m̃1 are sufficient
conditions for Algorithm 1 to perfectly recover (π̃, m̃) given perfect statistics g̃ = γ(π̃, m̃). But then, the
first part of the theorem implies dmodel((π̃, m̃), (π,m)) ≤ ε, as desired.

Proof of Corollary 12 Suppose we have n ≥ 2k − 1 variables and we know a subset A ⊆ [n] of 2k − 1
ζ-separated variables. Then, Algorithm 1 can be used to identify m[A] and π up to error ε in runtime
exp(O(k)) using (1/ζ)O(k)(1/πmin)

O(1)(1/ε)2 many samples. For each i /∈ A, we can then compute

m̃i = ((g̃(R ∪ {i}))R⊆T )
T · V̂ ·

(
T̂T
)−1
· π̃−1

⊙

as in line 9 of the algorithm (where T ⊆ A is a set of size k−1 and T̂ approximates V̂TH(m[T ])). This takes
runtime at most n·exp(O(k)). Given that ||(g̃(R∪{i}))R⊆T−(g(R∪{i}))R⊆T ||∞ ≤ ε(πminζ

k)C for some
large enough C, the same analysis as for Theorem 10 asserts that m̃i is an ε-approximation to mi (here, g is
the vector of perfect statistics). Hence, computing ε-approximations to mi for all i /∈ A requires obtaining
(ε(πminζ

k)C)-approximations to (n − |A|) · 2k−1 entries of the observable moment vector g. Standard
Chernoff bounds and a union bound show that this is possible with log n · (1/ζ)O(k)(1/πmin)

O(1)(1/ε)2

many samples.
If the subset of 2k − 1 ζ-separated variables is not known (but guaranteed to exist), we can simply run
Algorithm 1 to identify m[A] for all

(
n

2k−1

)
possible guesses A of this subset (stopping the algorithm when

encountering any issues that might occur when ĈST is not invertible). Then, we compute the vector of
statistics γ(π̃, m̃[A]) = H(m̃[A])π̃ for each valid output (π̃, m̃[A]) and choose the model (π̃, m̃[A]) that
minimizes the distance d(A) = ||γ(π̃, m̃[A])− g̃[2A]||∞. All this takes runtime at most n2k exp(O(k)).
Let A∗ be the correct guess and suppose we have || g̃[2A∗

]− g[2A
∗
]||∞ ≤ δ. Then, by Theorem 10, we get

dmodel((π̃, m̃[A∗]), (π,m[A∗])) ≤ δ · (πminζ
k)−C for some large, positive constant C. Hence, we have

(after possibly permuting π̃, m̃[A∗]) that ||π− π̃||∞ ≤ δ · (πminζ
k)−C and ||H(m̃[A∗])−H(m[A∗])||∞ ≤
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22kδ · (πminζ
k)−C . This implies

d(A∗) = ||γ(π̃, m̃[A∗])− g̃[2A
∗
]||∞

≤ ||H(m̃[A∗])π̃ − H(m[A∗])π||∞ + || g[2A∗
]− g̃[2A

∗
]||∞

≤ ||H(m̃[A∗])π̃ − H(m[A∗])π̃||2 + ||H(m[A∗])π̃ − H(m[A∗])π||2 + δ

≤ ||H(m̃[A∗])− H(m[A∗])||2 · ||π̃||2 + ||H(m[A∗])||2 · ||π̃ − π||2 + δ

≤ 2k||H(m̃[A∗])− H(m[A∗])||∞ ·
√
k + 2k ·

√
k||π̃ − π||∞ + δ

≤ 24kδ · (πminζ
k)−C .

If δ < 2−4k(πminζ
k)2Cε, then the minimal distance d(A) is at most ε(πminζ

k)C . Hence, by Theorem 10,
the model (π̃, m̃[A]) is an ε-approximation of (π,m[A]) and we can proceed as in the first part of the proof
to get a full ε-approximation to (π,m). Ensuring that || g̃[2A]−g[2A]||∞ ≤ 2−4k(πminζ

k)2Cε for all subsets
of A ⊆ [n] of size 2k − 1 requires log(n2k) · 28k(πminζ

k)−4Cε−2 = log n · (1/πmin)
O(1)(1/ζ)O(k)(1/ε)2

many samples.

Appendix B. Proof of the lower bound

Proof of Lemma 19 Let (π,m) ∈ Dn,ζ,πmin
and σk(H(m)) = σ < 1

2 . Let ˜H(m) be the best rank-
(k − 1)-approximation of H(m). By the Eckart-Young Theorem Eckart and Young (1936), we have
|| ˜H(m)− H(m)|| = σ. Let α ∈ Rk be a vector in the right kernel of ˜H(m) with ||α||2 = 1. Let 1 denote
the all-ones vector in Rk and let e1 denote the vector whose first entry is 1 and all other entries are zero. We
have

|1Tα| = |(H(m)α)1| = |((H(m)− ˜H(m))α)1| ≤ ||H(m)− ˜H(m)|| · ||α||2 ≤ σ.

Now, define π̂ = π + 2
√
kε · (α− (1Tα)e1). First, we check that π̂ is a valid probability vector. By our

assumptions, we have

||2
√
kε · (α− (1Tα)e1)||∞ ≤ 2

√
kε · (||α||∞ + |1Tα|) < πmin

2
· (1 + σ) ≤ 3

4
πmin,

hence, all the entries of π̂ are larger than 1
4πmin. Moreover, we have

k∑
j=1

π̂j = 1Tπ + 2
√
kε · (1Tα− 1Tα) = 0.

Now, recall the definition of dmodel as

dmodel((π,m), (π̂,m)) = min
ρ∈Sk

max{max
j
|πj − π̂ρ(j)|,max

i,j
|mi,j −mi,ρ(j)|}.

For any permutation ρ that is not the identity, we have maxi,j |mi,j −mi,ρ(j)| ≥ ζ > ε by ζ-separation of
m. For the identity permutation, we have

max
j
|πj − π̂j | = ||2

√
kε · (α− (1Tα)e1)||∞ ≥ 2ε · (||α||2 − ||(1Tα)e1||2) ≥ 2ε · (1− σ) > ε,
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so we conclude dmodel((π,m), (π̂,m)) > ε. Moreover, we have

dstat(γ(π,m), γ(π̂,m)) = ||H(m)π − H(m)π̂||∞
= 2
√
kε · ||H(m)(α− (1Tα)e1)||∞

≤ 2
√
kε ·

(
||H(m)α||∞ + |1Tα| · ||H(m)||∞

)
≤ 2
√
kε ·

(√
k · ||(H(m)− ˜H(m))α||2 + σ

)
≤ 2
√
kε ·

(√
kσ + σ

)
≤ 4kσ · ε.

To find a model (π,m) that has a Hadamard extension with small k’th singular value, it will be sufficient
to consider a model with iid variables, i.e. a model, for which all the rows of m are the same. In this case,
the Hadamard extension will resemble a Vandermonde matrix.

Definition 25 (Vandermonde matrix) The Vandermonde matrix Vdm(m) ∈ Rk×k associated with a row
vector m ∈ Rk has entries Vdm(m)ij = (mj)

i for i ∈ {0, 1, . . . , k − 1} and j ∈ {1, 2, . . . , k}. We also
write Vdm(m, r) for the r × k matrix with entries Vdm(m, r)ij = (mj)

i.

The condition number of Vandermonde matrices is well studied, see the following result.

Lemma 26 (Higham (2002), section 22.1) For any row vector m ∈ Rk, we have

||Vdm(m)−1||∞ ≥ max
i

∏
j ̸=i

max{1, |mj |}
|mi −mj |

.

Lemma 27 Let n ≥ k − 1. For any ζ ≤ 1
k , there exists a matrix m ∈ [0, 1]n×k with ζ-separated columns

and σk(H(m)) ≤ n2n · (kζ)k.

Proof Given ζ, define m as the matrix with n identical rows of the form mi = (0, ζ, 2ζ, . . . , (k − 1) · ζ).
According to Lemma 26, we have

σk(Vdm(m1)) = ||Vdm(m1)
−1||−1 ≤ k||Vdm(m1)

−1||−1
∞ ≤ k · (k − 1)!ζk−1 = k!ζk−1.

Now, consider the matrix Vdm(m1, n) =
(Vdm(m1)

R

)
, where R ∈ R(n−k)×k denotes the last n−k columns

of Vdm(m1, n). Note that ||R|| ≤ n · ||R||∞ ≤ n · ((k − 1) · ζ)k. Let q ∈ Rk, ||q||2 = 1 such that
||Vdm(m1)q||2 is minimized. We have

||Vdm(m1, n)q||2 ≤ ||Vdm(m1)q||2 + ||Rq||2 ≤ σk(Vdm(m1)) + ||R|| ≤ n · kk · ζk,

hence, σk(Vdm(m1, n)) ≤ n · kk · ζk. Finally, note that H(m) is a matrix with 2n rows that are all
duplicates of some row in Vdm(m1, n). Hence, we have σk(H(m)) ≤ n2n · (kζ)k.

This gives all we need to prove Theorem 17.

Proof of Theorem 17 Fix n, ζ, πmin, and ε as in the statement of Theorem 17. Let π := (1/k, . . . , 1/k)T.
According to Lemma 27, there exists m such that (π,m) ∈ Dn,ζ,πmin

and σk(H(m)) ≤ n2n·(kζ)k = (2k−
1)22k−1·(kζ)k < 1

2 . Now, by Lemma 19, there exists π̂ such that (π̂,m) ∈ Dn,ζ,πmin
, dmodel((π,m), (π̂,m)) >

ε and dstat(γ(π,m), γ(π̂,m)) ≤ 4kσk(H(m)) · ε ≤ (kζ)Ω(k) · ε.

Corollary 18 then follows with the following Lemma:
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Lemma 28 Let (π,m) and (π′,m′) be two mixture models with n variables and k latent states. Then,

dTV ((π,m), (π′,m′)) ≤ 22n · dstat((π,m), (π′,m′)).

Proof The models (π,m) and (π,m′) define two different probability measures on {0, 1}n, which we
denote by µ and µ′. We calculate

dTV ((π,m), (π′,m′)) =
1

2

∑
v∈{0,1}n

∣∣µ(v)− µ′(v)
∣∣

=
1

2

∑
v∈{0,1}n

∣∣∣∣∣∣
k∑

j=1

πj
∏

i:vi=1

mij

∏
i:vi=0

(1−mij)−
k∑

j=1

π′
j

∏
i:vi=1

m′
ij

∏
i:vi=0

(1−m′
ij)

∣∣∣∣∣∣
=

1

2

∑
v∈{0,1}n

∣∣∣∣∣∣
∑

S⊆{i:vi=0}

(−1)|S|
 k∑

j=1

πj
∏

i:vi=1

mij

∏
i∈S

mij −
k∑

j=1

π′
j

∏
i:vi=1

m′
ij

∏
i∈S

m′
ij

∣∣∣∣∣∣
≤ 1

2

∑
v∈{0,1}n

∑
S⊆{i:vi=0}

∣∣∣∣∣∣
k∑

j=1

πj
∏

i:vi=1

mij

∏
i∈S

mij −
k∑

j=1

π′
j

∏
i:vi=1

m′
ij

∏
i∈S

m′
ij

∣∣∣∣∣∣
≤ 1

2

∑
v∈{0,1}n

∑
S⊆{i:vi=0}

dstat((π,m), (π′,m′)) ≤ 22n · dstat((π,m), (π′,m′)).
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