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Abstract
Reversing a diffusion process by learning its

score forms the heart of diffusion-based gen-

erative modeling and for estimating properties

of scientific systems. The diffusion processes

that are tractable center on linear processes with

a Gaussian stationary distribution, limiting the

kinds of models that can be built to those that tar-

get a Gaussian prior or more generally limits the

kinds of problems that can be generically solved

to those that have conditionally linear score func-

tions. In this work, we introduce a family of

tractable denoising score matching objectives,

called local-DSM, built using local increments

of the diffusion process. We show how local-

DSM melded with Taylor expansions enables au-

tomated training and score estimation with non-

linear diffusion processes. To demonstrate these

ideas, we use automated-DSM to train genera-

tive models using non-Gaussian priors on chal-

lenging low dimensional distributions and the CI-

FAR10 image dataset. Additionally, we use the

automated-DSM to learn the scores for nonlinear

processes studied in statistical physics.

1. Introduction
Modeling with diffusion processes has led to advances in

generative models (Dhariwal & Nichol, 2021; Nichol &

Dhariwal, 2021; Nichol et al., 2021; Sasaki et al., 2021)

and in the computation of properties of scientific systems

through the estimation of the score of a diffusion (Boffi &

Vanden-Eijnden, 2023a;b; Huang & Wang, 2024).

Score models can be trained for a generic diffusion process,

that may be nonlinear, using the the implicit score match-

ing (ISM) objective (Huang et al., 2021; Song & Ermon,

2020; Boffi & Vanden-Eijnden, 2023b). However, estimat-
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ing the ISM objective requires computing the divergence

of the score model. Computing the divergence directly

is memory intensive, therefore, the stochastic Hutchinson

trace estimator (Hutchinson, 1989; Grathwohl et al., 2018)

is used for computational efficiency. However, the use of

the stochastic trace estimator leads to noisy gradients and

requires differentiation during the forward pass.

An alternative to the ISM objective is the denoising score

matching (DSM) objective (Vincent, 2011; Song et al.,

2020a;b). The DSM objective has powered many of the im-

provements in diffusion-based generative models (DBGMs)

(Song et al., 2020b; Dockhorn et al., 2021; Singhal et al.,

2023). However, training with DSM requires the score of

the transition kernel q(yt | y0), which is typically not avail-

able for nonlinear processes. Neither ISM or DSM provide

a good option for training score models with generic, non-

linear noise or inference processes.

A natural question one can ask is why study nonlinear infer-

ence processes? At a high level more generic, easy-to-use

computation has a history of unlocking other techniques

(Baydin et al., 2018; Ranganath et al., 2014; 2016; Ku-

cukelbir et al., 2017). Recent work introduces new choices

of inference processes for generative modeling, but the pro-

cesses introduced are limited to linear ones with Gaus-

sian stationary distributions (Dockhorn et al., 2021; Singhal

et al., 2023; Pandey & Mandt, 2023; Du et al., 2023). Au-

tomated training for nonlinear inference processes would

allow for rapid prototyping of non-Gaussian priors using

nonlinear Langevin processes (Pavliotis, 2016) and, more

generally, nonlinear drifts in the inference process.

Next, in several applications the inference process is given

to us. For many systems of interest in statistical physics

(Chandler, 1987; Spohn, 2012; Otsubo et al., 2022), fi-

nance (Kusuoka & Ninomiya, 2004), biology (Fleming,

1975), the evolution of the system is governed by high-

dimensional nonlinear diffusion processes. Several prop-

erties of these systems, such as the entropy production

rate (Otsubo et al., 2022), require access to the density

and are challenging to estimate from samples alone. Typ-

ical approaches for estimating the density, such as solving

the Fokker-Planck equation (Pavliotis, 2016) are infeasible

in high dimensions. Therefore, Boffi & Vanden-Eijnden
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(2023a;b) use techniques for learning the score developed

in DBGMs to study quantities such as the density, the prob-

ability current, and the entropy production of physical sys-

tems. Given the utility of nonlinear inference processes and

the lack of efficient estimation with them, we need new ob-

jectives for training with nonlinear inference processes.

In this work, we introduce a training algorithm, automated

DSM, that expands the applicability of DSM to a broad class

of nonlinear inference processes. Automated DSM relies on

a few methodological innovations:

1. Derive a local-DSM objective built from local incre-

ments of the transition kernel. For image-generation

experiments, we also develop a perceptually weighted

local-DSM objective.

2. Create tractable approximations to the score of the

transition kernel q(yt | ys) using local linearization

3. Design time pairs s, t to control the error in approxi-

mating the local transition kernel q(yt | ys).

To test these automations, we train DBGMs with inference

processes with non-Gaussian stationary distribution and

score models for nonlinear inference processes studied in

the physical sciences. In our experiments:

1. We show that training DBGMs with the local-DSM

objective is faster than the ISM objective, on low-

dimensional synthetic datasets, physical systems, and

CIFAR10.

2. We demonstrate the flexibility of automated DSM

by training DBGMs with non-Gaussian priors, such

as a mixture of Gaussians and the Logistic distribu-

tion, and estimating scores for nonlinear inference

processes in the sciences without requiring manual

derivations.

These findings highlights that local DSM objectives and the

automations provided in this work enable fast and deriva-

tion free training for nonlinear inference processes.

1.1. Related Work

Huang et al. (2022); Boffi & Vanden-Eijnden (2023a;b)

train diffusion models using nonlinear inference processes

with the ISM objective. In section 4, we show that even for

2d problems, using the local-DSM objective leads to faster

convergence and better sample quality compared to using

the ISM objective.

Doucet et al. (2022) apply techniques from score-based

generative modeling to annealed importance sampling

(Neal, 2001). For a given unnormalized target density

Ã, they specify discrete-time Markov transition kernels

q(yk+1 | yk) using the Euler-Maruyama (Särkkä & Solin,

2019) updates of a Langevin process with Ã as the station-

ary distribution, and then learn the reverse transition ker-

nels p¹(zk | zk+1). They derive a discrete-time denois-

ing score matching objective based on Kullback-Leibler

(KL) divergence, similar to Sohl-Dickstein et al. (2015);

Ho et al. (2020). In this work, we derive a continuous-time

variational lower bound (ELBO) on the model likelihood

log p¹(x) as well as considering arbitrary nonlinear infer-

ence processes. Training in continuous-time is known to

lead to tighter likelihood bounds (Kingma et al., 2021).

Implicit nonlinear Diffusions. Kim et al. (2022) intro-

duce a variational lower bound for implicit nonlinear infer-

ence processes by using a normalizing flow to map the data

to a latent space and then learning a DBGM in the latent

space with linear inference proceesses. Similarly, Vahdat

et al. (2021); Rombach et al. (2022) train DBGMs in the la-

tent space of variational autoencoders. However, the set of

processes considered in the latent space are still linear. In

this work, we consider a complementary approach: diffu-

sion processes that are explicitly nonlinear, without the use

of a latent space.

Stochastic Interpolants. Albergo & Vanden-Eijnden

(2022); Albergo et al. (2023) introduce an interpolant pro-

cess that is defined via independent samples y0 ∼ qdata and

y1 ∼ Ã¹. The interpolant is defined as yt = I(t,y0,y1),
and the idea is to define noisy states as an interpolation

between samples from two endpoint distributions, as op-

posed to the approach of picking a stationary distribution

in DBGMs. However, when the interest is not generative

modeling, but to study physical, biological, or financial

systems that are explicitly known to follow a certain non-

linear stochastic differential equation (SDE), it may be chal-

lenging to find the endpoint distribution y1 and interpolant

I such that yt is distributed according to solutions of the

given SDE under the given initial conditions y0.

Bartosh et al. (2024) introduce neural flow diffusion mod-

els. They define an inference process yt using a learnable

transformation yt = Fϕ(ε, t, x), where ε ∼ N (0, Id) and

the transformation Fϕ is invertible with respect to ε; these

transformations are shown to improve likelihoods on im-

age modeling tasks. However, if the object of interest is the

score of a given SDE, finding the corresponding invertible

transformation Fϕ is challenging in general.

2. Background and Setup
Training generative models with diffusions or score estima-

tion starts with defining an inference process yt, which is

of the form:

dyt = f(yt, t)dt+ g(t)dwt, t ∈ [0, T ] (1)

where y0 ∼ qdata and f, g are chosen such that q(yT ) ≈ Ã¹

where Ã¹ is the model prior. We then define a generative
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process zt with the model drift and diffusion co-efficient

tied to the inference process:

dzt =
[
gg¦s¹ − f

]
(zt, T − t)dt+ g(T − t)dwt, (2)

where s¹ : Rd → Rd is the score network and integra-

tion is in the forward direction (Huang et al., 2021; Singhal

et al., 2023).

Training the score network s¹ with maximum likelihood

estimation is computationally expensive as it requires es-

timating the model likelihood log p¹(zT = x), which

would require solving a high-dimensional partial differen-

tial equation. Song & Ermon (2020); Huang et al. (2021);

Kingma et al. (2021) instead derive a variational lower

bound, called the ISM ELBO:

log p¹(x) g E
q(yT | x)

[log Ã¹(yT )] + (3)

∫ T

0
E

q(yt | x)

[
−

1

2
∥s¹∥

2
gg¦ −∇yt

· (gg¦s¹ − f)
]
dt

where ∥x∥A = x¦Ax for a positive semi-definite ma-

trix A. Estimating the ISM ELBO requires computing the

divergence of the score network s¹, an memory intensive

computation. For computational feasibility, the Hutchin-

son trace estimator Hutchinson (1989) is used to estimate

the divergence ∇·s¹, leading to noisy gradients and expen-

sive forward and backward passes.

Denoising Score Matching. In practice, the ISM ELBO

is not used for training, instead the DSM ELBO (Vincent,

2011; Song & Ermon, 2020; Huang et al., 2021) is used:

log p¹(x) g E
q(yT | x)

[log Ã¹(yT )] + (4)

∫ T

0
E

q(yt | x)

[
∇yt

· f −
1

2
∥s¹ − sq∥

2
gg¦ +

1

2
∥sq∥

2
gg¦

]
dt

where sq is the score of the transition kernel of the infer-

ence process, sq(t,yt) = ∇yt
log q(yt | x). To train a

diffusion model with the DSM objective requires the fol-

lowing:

(D1) Samples from the transition kernel q(yt | x)

(D2) The score of the transition kernel, ∇yt
log q(yt | x)

In Singhal et al. (2023), the authors automate derivations

for both D1 and D2 for linear processes, including for pro-

cesses with auxiliary variables, such that the user is only

required to specify the linear functions f(y, t), g(t).

However, no such automations exist for DSM training with

nonlinear inference processes, as estimating the transi-

tion score for nonlinear processes requires solving high-

dimensional partial differential equation (a version of the

Fokker-Planck equation, see Lai et al. (2023)) for every for-

ward pass, infeasible in high-dimensions.

Assumptions. We assume that the diffusion coefficient

g is a function of t only, which can be either integrated

on intervals [s, t] analytically or numerically. We also as-

sume that the drift f , the diffusion coefficient g and the

initial condition qdata satisfy smoothness and integrability

assumptions in appendix D, these assumptions guarantee

that q(yt), q(yt | ys) exist and are smooth and unique.

3. Automated DSM training for nonlinear

diffusions
The approach we will take to make DSM tractable for non-

linear processes is to first derive a version of DSM that

makes use of transitions q(yt | ys), with s close to t, in-

stead of transitions q(yt | y0), and then showing how these

transitions can be approximated fairly generally.

Local DSM. Suppose we are given a nonlinear diffusion

process of the form eq. (1)

dyt = f(yt, t)dt+ g(t)dwt

where the drift f is a function of yt and t. Both the ISM

and the DSM ELBOs are integrals of score matching terms:

LISM(x, t) = E
q(yt | x)

[
1

2
∥s¹∥

2
gg¦ +∇yt

· gg¦s¹(yt, t)

]

LDSM(x, t) = E
q(yt | x)

[1
2
∥s¹ −∇yt

log q(yt | x)∥
2
gg¦

−
1

2
∥∇yt

log q(yt | x)∥
2
gg¦

]

where LDSM(x, t) = LISM(x, t) (Huang et al., 2021; Song &

Ermon, 2020). Now, as computing q(yt | x) is compution-

ally infeasible for arbitrary nonlinear inference processes,

we show that we can use local transition kernels q(yt | ys),
where 0 < s < t instead of q(yt | y0 = x), to define the

local-DSM objective,

LL-DSM(x, t) = E
q(yt,ys | x)

[1
2
∥s¹ −∇yt

log q(yt | ys)∥
2
gg¦

−
1

2
∥∇yt

log q(yt | ys)∥
2
gg¦

]
.

In lemma 1, we show that LL-DSM(x, t) = LISM(x, t).

Lemma 1. Let q(ys | x), q(yt | ys) be the transition ker-

nels of the process defined in eq. (1). For any 0 f s < t <
T , we have:

E
q(yt | x)

[
1

2
∥s¹∥

2
gg¦ +∇yt

· gg¦s¹(yt, t)

]

= E
q(yt,ys | x)

[
1

2
∥s¹∥

2
gg¦ +∇yt

· gg¦s¹(yt, t)

]

= E
q(yt,ys | x)

[1
2
∥s¹ −∇yt

log q(yt | ys)∥
2
gg¦
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−
1

2
∥∇yt

log q(yt | ys)∥
2
gg¦

]
. (5)

where q(yt,ys | x) = q(yt | ys)q(ys | x).

For a proof, see appendix A. Note that in eq. (5), while we

still require samples ys ∼ q(yt | x), we only require the

score of the transition kernel q(yt | ys), where the choice

of s is up to the user.

For a given time t, we define a schedule s(t) as a function

which satisfies 0 f s(t) < t for all t ∈ (0, T ]. Using

the schedule s(t) and lemma 1 allows us to write the ELBO

using local increments q(yt | ys), instead of using the score

of the transition kernel q(yt | y0).

Theorem 1. Let q(yt | ys) be the transition kernel of the

process in eq. (1) and s(t) be a schedule, which satisfies

0 f s(t) < t for all t ∈ (0, T ]. Then for a model process

zt defined in eq. (2), we can lower bound the model log-

likelihood as follows:

log p¹(x) g E
q(yT | x)

[log Ã¹(yT )]

+

∫ T

0
E

q(yt,ys | x)

[
∇yt

· f(yt, t)

−
1

2
∥s¹ −∇yt

log q(yt | ys)∥
2
gg¦

+
1

2
∥∇yt

log q(yt | ys)∥
2
gg¦ dt

]
(6)

where s = s(t) and q(yt,ys | x) = q(yt | ys)q(ys | x) due

to the Markov property.

For a proof, see appendix A. Although, the local-DSM

ELBO holds for arbitrary pairs t, s, estimating the score of

the transition kernel q(yt | ys) where s > 0 is still not

feasible for nonlinear drifts.

In the next section, we show how the transition kernel

q(yt | ys) is well approximated using local linearization

techniques.

Local Linearization. The idea is to define a locally lin-

ear diffusion process on the interval (s, T ] with a linearized

drift f , using an operator Ts such that the function Tsf
is a linear in yt, t. Since the process is linear, the tran-

sition kernel q̂(ŷt | ys) is Gaussian with mean and co-

variance characterized by solutions to ordinary differential

equations (ODEs) (Särkkä & Solin, 2019).

Suppose we are given a sample ys at time s, then for t > s
we define a locally linear diffusion process

dyt = (Tsf) (yt, t)dt+ g(t)dwt, t ∈ (s, T ]. (7)

We have several choices for the operator Ts (Ozaki, 1993;

1992), see section 9.3 in Särkkä & Solin (2019) for exam-

ples. In this work, we study two examples of the opera-

tor Ts, first Tys,s which is a first-order Taylor expansion

of the drift drift f(yt, t) around (ys, s) and second Tys,t

a first-order Taylor expansion around (ys, t). For ease of

exposition, we discuss the first operator:

(Tys,sf) (yt, t) = f(ys, s) +∇sf(ys, s)(t− s)

+∇ys
f(ys, s) (yt − ys)

(8)

=
(
f(ys, s) +∇sf(ys, s)(t− s) +∇ys

f(ys, s)ys

)

+∇ys
f(ys, s)yt

:= ct +Atyt (9)

The main idea is that the drift of the locally linear pro-

cess in eq. (7) can be expressed as an affine function

(Tsf)(yt, t) = ct+Atyt, where ct ∈ Rd and At ∈ Rd×d.

For processes with affine drifts and spatially invariant dif-

fusion coefficient (g(t,y) = g(t)), the transition kernel

q(yt | ys) is Gaussian (see section 6.1 in Särkkä & Solin

(2019)), therefore we only need to compute the mean and

covariance of the locally linear process.

Next, we present how to compute the mean and covariance

and then show how we can apply these ideas to the locally-

linear approximations of nonlinear drifts. We provide all

derivations in appendix C including those for the second

Taylor expansion around (ys, t). In this expansion, the ma-

trix A is a function of time t.

Mean and Covariance Equations. For linear processes

with drift f(yt, t) = ct + Atyt and diffusion co-efficient

g(t), the mean and covariance are solutions to the following

ODEs:

d

dt
mt|s = ct +Atmt|s (10)

d

dt
Pt|s = AtPt|s +Pt|sA

¦
t + gg¦(t) (11)

where ms|s = ys and Ps|s = 0. The solutions to eqs. (10)

and (11) can be expressed as integrals:

mt|s = exp

[∫ t

s

AÄdÄ

]
ys +

∫ t

s

exp[At−Ä ]cÄdÄ (12)

Pt|s =

∫ t

s

exp[At−Ä ]gg
¦(Ä) exp[A¦

t−Ä ]dÄ (13)

See appendix C for derivations. Both the mean and covari-

ance ODE solutions require integrating matrix exponentials,

which are not amenable to easy manipulation and require

specific derivations for each inference process, for instance

see pages 50-54 in Dockhorn et al. (2021).

In the next section, for any choice of the drift f and dif-

fusion coefficient g, we derive a solution to the mean ODE

in eq. (10) and the covariance ODE, using matrix exponen-

tials, for the Taylor expansion operator around (ys, s) that

only involves integrating the diffusion co-efficient g.
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Algorithm 1 Sampling and score estimation

Input: Inference process q, time t, scheduler s(t), and

data x
Output: Samples q(yt,ys | x) and score estimate

∇yt
log q(yt | ys)

Sample ys by numerically integrating eq. (1)

Compute mt|s, Ãt|s, solutions to eqs. (10) and (11) re-

spectively.

Sample ε ∼ N (0, Id) and then let:

yt = mt | s + Ã(t|s)ε

∇yt
log q̂(yt | ys) = −Ã−1

t|s ε

Return: yt,ys and score estimate ∇yt
log q̂(yt | ys)

Mean and Covariance Estimation. Singhal et al. (2023)

use a matrix factorization technique (see section 6.2 in

Särkkä & Solin (2019)) to automate solving differential

equations like in eqs. (10) and (11) using matrix exponen-

tials.

The idea is that equations of the form eq. (11) can be solved

using the matrix factorization Pt|s = CtH
−1
t , where

Ct,Ht evolve as follows:
(

d
dtCt
d
dtHt

)
=

(
At gg¦(t)
0 −A¦(t)

)(
Ct

Ht

)
(14)

which can be solved by matrix factorization and scalar in-

tegration of AÄ and gg¦Ä on the interval [s, t]:
(
Ct

Ht

)
= exp

(
[AÄ ]

t
s [gg¦(Ä)]ts

0 −[A¦
Ä ]

t
s

)(
0

I

)
(15)

where [AÄ ]
t
s :=

∫ t

s
AÄdÄ . Since At is defined to be ho-

mogeneous, we do not have to integrate A, while g can be

time in-homogeneous.

We can solve the mean ODE in eq. (10) for the Tay-

lor expansion around (ys, s). The matrix A is time-

homogeneous and the function c can be separated into a

time-varying and time-homogeneous part, ct = c1 + c2t.
We can solve this affine ODE exactly:

mt|s = exp

[∫ t

s

AÄdÄ

]
ys +

∫ t

s

exp[At−Ä ]cÄdÄ

mt | s = exp((t− s)A) + (exp((t− s)A)− I)A−1c1

+ exp((t− s)A)
[
sA−1 +A−2

]
c2

−
[
tA−1 +A−2

]
c2

For complete derivations, see appendix C.1.

Now, given a sample ys at time s, we can sample from the

locally linear process q(yt | ys) as follows:

yt = mt | s + Ãt | sε (16)

y0 ys yt

yt = µ(t | ys, s) + σ(t | s)ε

ryt
log bq(yt | ys) = �σ

−1(t|s)ε

dyt = f(yt, t)dt+ g(t)dwt dyt = Tsf(yt, t)dt+ g(t)dwt

yTData Noise

Score:

Sample:

Inference Process Local Linear Process

Sampling and score estimation using Local DSM

Figure 1: Training with Automated DSM: Given a nonlin-

ear inference process q and a time t with sample y0 = x,

we use a numerical sampler till time s(t) and then use the

locally linear process for sampling yt | ys and estimating

the transition score.

where ε ∼ N (0, Id) and Ãt|s is the matrix square root of

Pt|s and Ã−1
t|s is the inverse of the matrix square root, sim-

ilar to the transition score computation defined for multi-

variate diffusion model (MDM) processes in Singhal et al.

(2023). We can estimate the score of the transition kernel

q(yt | ys) at a sample from Equation (16) as

∇yt
log q̂(yt | ys) = −Ã−1

t|s ε. (17)

Algorithms. Making use of the local linearization and

the automated mean and covariance derivations, we pro-

vide algorithms for automated training with nonlinear in-

ference processes called automated DSM. In Algorithm 1

we show how to sample from q̂(yt | ys) and computing its

transition score. Finally, in algorithm 2, we present the au-

tomated DSM algorithm, where for a given score network

s¹ and sample x, we return an estimate of the local-DSM

ELBO. See fig. 1 for an overview of the local DSM training

pipeline.

Now, despite having access to a tractable score approxima-

tion, we note that a first-order Taylor approximation intro-

duces errors in the estimate of the score, specifically when

the gap between s, t is large. In the next section, we discuss

methods to control the approximation error, particularly by

tailoring a schedule to control the Taylor approximation er-

ror.

Controlling the Taylor Error with Scheduled Pairs.

Suppose yt is the variance-preserving stochastic differen-

tial equation (VPSDE) process (Song et al., 2020b):

dyt = −
1

2
´tyt +

√
´tdwt (18)

Then the mean and covariance are:

mt|s = exp

(
−
1

2
[´Ä ]

t
s

)
ys, Pt|s = 1− exp

(
−[´Ä ]

t
s

)
,
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Algorithm 2 Automated DSM: estimating local-DSM ELBO

Input: Inference process q, model prior Ã¹, score net-

work architecture s¹(yt, t), scheduler s(t), and data x
Return: Differentiable Local DSM ELBO estimate

Sample t ∼ Uniform[0, T ]
Use algorithm 1 to get samples q(yt,ys | x) and score

estimate ∇y log q̂(yt | ys)
Compute

L(x, ¹) =
1

2
∥s¹ −∇y log q̂(yt | ys)∥2gg¦

− 1

2
∥∇yt

log q̂(yt | ys)∥2gg¦ −∇ · f(yt, t)

Sample yT by numerical integration.

Output: −TL+ log Ã¹(yT )

where [´Ä ]
t
s =

∫ t

s
´ÄdÄ . The difference between the distri-

butions q(yt), q(ys) is therefore controlled by the integral

[´Ä ]
t
s. The gap can be made large or small depending on the

values taken by ´t in [s, t] not on the length, of the inter-

val. For instance, if ´t = 0.1 + 10t, then the gap between

q(yt) and q(yt−ℓ) is larger for larger t values. Therefore,

to control the change between q(yt) and q(ys), we pro-

pose the following heuristic: choose pairs (s, t) based on

the integrals of the form
∫ t

s
gg¦(Ä)dÄ rather than a fixed

gap s(t) = t− ℓ in time for a constant value ℓ.

To control the error introduced by local linearization, we

define scheduled pairs (s, t) so that for all ∀t > tmin > 0,

for a given g(t) we define s¼(t) such that the integral∫ t

s
g2(Ä)dÄ is equal to a constant ¼ and for 0 < t f tmin,

we set s¼(t) = 0. We provide a derivation for s¼(t) for

commonly used g functions in appendix F. In case, g can-

not be expressed as gg¦t = g2(t)Id where g2(t) is a scalar,

we can select s¼ such that maxi,j
∫ t

s
[gg¦]i,j(Ä)dÄ = ¼.

In fig. 2, we estimate the mean of the local transition kernel

for the diffusion process:

dyt = ´t∇y log Ã¹(yt)dt+
√

2´tdwt,

with ´t = 0.1 + 9.9t and model prior Ã¹ = 1
2N (−1, 1

2 ) +
1
2N (1, 1

2 ). We observe that the error in estimating

mt|s, Ã
2
t|s is constant for the scheduler s¼(t) with ¼ = 0.05

versus exploding for s(t) = t − 0.05. Here we use x sam-

pled from the two-dimensional checkerboard distribution,

see fig. 3.

Bounds on the error from Taylor expansion. As noted

in the previous section, Taylor expansions of the drift can

introduce error. In lemma 2 in appendix E, we show that
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t
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Figure 2: Local mean mt|s Estimation Error: we com-

pare the estimation error when using the schedule s¼(t)
with versus s(t) = t−0.05. We note that using s(t) instead

of s¼(t) leads to higher error.

the approximation error between the true marginal den-

sity q(yt) and the locally linear approximation q̂(yt) =

Eq(ys)[q̂(yt | ys)] can be controlled by the difference of

the drifts f and the Taylor approximation Tsf on the in-

terval [s(t), t] by upper bounding the KL-divergence. This

lemma controls the error between distributions of the ex-

act and approximate process in terms of the error from the

Taylor approximation.

3.1. Extensions

In this section, we present extensions of the local DSM

ELBO. First, we present a perceptually weighted version

of the local DSM ELBO, typically used for image-modeling.

Next, we present a version of the local DSM ELBO for use

in score modeling (Boffi & Vanden-Eijnden, 2023b;a; Lu

et al., 2023) in the sciences, where the object of interest is

the score of a nonlinear diffusion process and not maximiz-

ing the likelihood of a data distribution. The score of the

diffusion process is used to study properties of the process

such as the entropy, entropy production rate and the den-

sity itself (Otsubo et al., 2022; Boffi & Vanden-Eijnden,

2023b).

Perceptual Weighting. In practice, the DSM loss is of-

ten re-weighted to give uniform weight to each t (Song &

Ermon, 2020; Ho et al., 2020). To apply this idea in our

case, we can observe that ∇ log q(yt | ys) = −Ã−1
t|s ϵ, pa-

rameterize the model as s¹(yt, t) = µ−1(t, s)ϵ¹(yt, t) and

multiply the integrand in eq. (6) by Ã2
t|s:

Ã2
t|s ∥s¹ −∇ log q̂(yt | ys)∥2gg¦ =

∥∥∥∥
Ãt|s

µ(t, s)
ϵ¹(yt, t)− ϵ

∥∥∥∥
2

gg¦

(19)

where we choose µ so that Ãt|s/µ(t, s) ≈ 1. In our

generative modeling experiments, we choose µ2(t, s) =

6
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Data Local DSM ISM

Figure 3: ISM v local-DSM: Samples from a local-DSM

trained model in the middle panel, and samples from an

ISM trained model on the right panel. Both models were

trained for 20k gradient steps, however the local-DSM

trained model has better sample quality.

1 − exp(−2
∫ t

s
´ÄdÄ) for inference processes where the

drift takes the form f(y, t) = ´th(y).

Score Modeling. For processes studied in statistical

physics, biology, etc, learning the score model is of primary

interest. In such instances, we can optimize the denoising

score matching term in local-DSM:

∫ T

0
E

q̂(yt,ys | x)
∥s¹ −∇yt

log q(yt | ys)∥2gg¦ dt (20)

using the automated derivations in this work.

4. Experiments
We test the local-DSM objective for training DBGMs on a

challenging low-dimensional example, CIFAR10 and learn-

ing the score for coupled equilibrium and non-equilibrium

diffusion processes studied in (Boffi & Vanden-Eijnden,

2023b).

For all experiments, we chose the scheduler s¼(t) with ¼ =
10−2, unless otherwise stated.

The integrand in the ELBO defined in eq. (6) is unbounded

at t = 0 and is numerically unstable for small values of

t. Therefore, we estimate the integral on an interval (¶, T ]
where ¶ = 10−3. Truncating the ELBO biases the estimate.

Sohl-Dickstein et al. (2015); Song & Ermon (2019) use a

variational lower bound to derive a valid ELBO. We derive

a valid ELBO with truncation in appendix B and report bits-

per-dims (BPDs) using the valid ELBO.

For sampling from the forward process, we use an adaptive

solver (Lamba, 2003) in all experiments. For the genera-

tive modeling experiments we use the Taylor operator that

expands around (ys, t), while for the score modeling for

non-equilibrium stochastic dynamics we use the Taylor ex-

pansion around (ys, s).

For the generative modeling experiments, we use a

Langevin diffusion process with the model prior as its sta-

Figure 4: CIFAR10 samples from DBGMs trained using

nonlinear inference processes. Sample from the MOG

(top) and Logistic prior (bottom) DBGMs.

tionary distribution:

dyt = ´(t)∇y log Ã¹(yt)dt+
√

2´(t)dwt, (21)

with ´(t) = ´0 + t(´1 − ´0) and ´0 = 0.1 and ´1 = 10
and the approximation Tys,t. We parameterize the score

model as s¹(t,yt) = −µt|sε(t,yt), where µ2
t|s = 1 −

exp(−2
∫ t

s
´(Ä)dÄ). For the science experiments, we pa-

rameterize s¹ as feedforward neural networks, see the ex-

periments for a description.

Local DSM vs ISM. In this experiment, we show that

using the local-DSM objective leads to faster convergence

compared to using the ISM objective on synthetic 2d.

As a low-dimensional example, we train the models on

the two-dimensional checkerboard density. We use a three

layer feed-forward network with width 256 and with the

ReLU activation (Nair & Hinton, 2010) as the ε¹ model.

We train two models using the local-DSM and ISM ELBOs

with a Logistic distribution as Ã¹ in eq. (21).

We train both models with a batch size of 1024 for 20, 000
gradient steps using the AdamW optimizer (Loshchilov &

Hutter, 2017). Figure 3 shows that using the local-DSM

ELBO leads to significantly faster convergence even on a

low-dimensional synthetic dataset.

Image Modeling with Non-Gaussian Priors. Next, we

train diffusion models on the CIFAR10 dataset, with a

7
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Langevin inference process using a non-Gaussian prior as

defined in eq. (21).

Prior Ã¹ Objective ISM BPD

Logistic local-DSM ELBO f 3.568 ± 0.07

Logistic local-DSM (PW) f 3.561 ± 0.09

Logistic ISM ELBO f 3.741 ± 0.09

MOG local-DSM ELBO f 3.496 ± 0.11

MOG local-DSM (PW) f 3.503 ± 0.151

MOG ISM ELBO f 3.637 ± 0.14

Table 1: BPDs on CIFAR-10: We compare models trained

using nonlinear inference processes via the ISM and the

local-DSM objectives, both the ELBO and the perceptually-

weighted (PW) versions. For the same amount of compute,

the local-DSM trained models achieve significantly better

BPDs. A lower BPD is better.

For the model prior, we choose (a) a mixture of Gaussians

(MOG) Ã¹(y) = 1
2N (− 1

2 ,
1
2 ) +

1
2N ( 12 ,

1
2 ) and (b) a Lo-

gisitic distribution Ã¹ = exp(−x)
(1+exp(−x))2 . Similar to the pre-

vious experiment, the score network is a U-Net from Ho

et al. (2020). We train using the perceptual weighted objec-

tive defined in eq. (19), the local-DSM and the ISM ELBOs.

For all models we use the noise parameterization for the

score model.

In table 1 we compare the bits-per-dim (BPDs, Van

Den Oord et al. (2016); Song et al. (2020b); Huang et al.

(2021)) of models trained using the local-DSM ELBO, per-

ceptual loss and the ISM ELBO. Table 1 shows that given the

same amount of compute, the local-DSM trained models get

better BPD upper-bounds. In fig. 4, we show samples gen-

erated using models trained with the perceptually-weighted

loss introduced in eq. (19) for the tailored scheduler s¼(t).

Prior Ã¹ ISM BPD ¼ local-DSM BPD

Logistic 0.01 f 3.566 ±0.097
Logistic f 3.568 ±0.07 0.02 f 3.530 ±0.084
Logistic 0.05 f 3.422 ±0.096

MOG 0.01 f 3.465 ±0.1242
MOG f 3.496 ±0.11 0.02 f 3.434 ±0.1419
MOG 0.05 f 3.354 ±0.1879

Table 2: Increasing ¼ in the scheduled pair s¼(t). Us-

ing the scheduler s¼(t) with varying values of ¼, we see

increasing the gap between yt and ys leads to a growing

gap between the unbiased ISM objective and the local-DSM

objective.

Do the ISM and Local DSM ELBOs match? The local-

DSM objective makes use of two approximations, the local

transition score and numerical sampling, while the ISM ob-

jective only requires numerical sampling. In table 2, we

show that using the constant scheduler s¼ for training and

parameterization leads to models where the unbiased ISM

and local-DSM BPDs have similar estimates for smaller val-

ues of ¼, and the approximation error increases as ¼ in-

creases.

Figure 5: Samples at t ∈ {1, 3, 5}. Here we compare sam-

ples from the process defined in eq. (22) on the left panel,

and local-DSM and ISM trained model samples in the mid-

dle and right panels. The inference process and local-DSM

trained model samples are near identical. ⋆ We note that

ISM trained model samples quality did not match the in-

ference process’ samples and diverged, see fig. 7 for ISM

model samples.

Score Modeling for Non-Equilibrium Stochastic Dy-

namics. In this experiment, we study a nonlinear system

y = (x, v)¦, described in Tailleur & Cates (2008); Boffi &

Vanden-Eijnden (2023b) as

dx = (−x3 + v)dt, dv = −µvdt+
√
2µDdwt (22)

for t ∈ [0, T ] and where µ = 0.1, D = 1.0 and T = 5.0
with initial conditions x0, v0 ∼ N (0, 1). The system of

equations described in eq. (22) does not have a stationary

distribution but does exhibit a non-equilibrium statistical

steady state (Boffi & Vanden-Eijnden, 2023b).

Figure 5 shows samples from the probability flow ODE

(ODE) (Song et al., 2020b):

d

dt
yt = f(yt, t)−

1

2
gg¦(t)s¹(yt, t), (23)

8
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at different times t ∈ {1, 3, 5}. The PF-ODE defined

in eq. (23) simulates the inference process in forward

time, such that qode(yt) = qSDE(yt) when the score

model s¹ matches the actual score of the inference SDE:

∇y log qSDE(yt).

We parameterize the score model s¹ as 3 layer feed-forward

network with width 256. Following Boffi & Vanden-

Eijnden (2023b), we enforce that the score model is anti-

symmetric s¹(t, x, v) = s¹(t,−x,−v) since the drift f is

anti-symmetric. We train both the local-DSM and ISM mod-

els for 200,000 gradient steps with a batch size of 1024.

Figure 5 compares samples from a local-DSM trained

model versus samples from the ISM trained model against

samples from the inference process defined in eq. (22).

The samples produced by the local-DSM trained model and

the inference process distribution are near identical, the

ISM trained model samples diverge, see fig. 7 for the ISM

samples. For a quantitative comparison, in fig. 9 in ap-

pendix G.1, we compare the maximum mean discrepancy

(MMD) distance (Smola et al., 2006) between the model

generated samples and the inference process’ samples. We

observe that the ISM model’s sample quality deteriorates

very rapidly compared to the sample quality of local DSM

trained models.

Score Modeling for Interacting Particle Systems.

In this experiment, following Boffi & Vanden-Eijnden

(2023b), we consider a system of N = 5 particles y
(i)
t ∈

R2 for t ∈ [0, 10], which evolve as :

dy
(i)
t = 4B(´t − y

(i)
t )
∥∥∥y(i)

t − ´t

∥∥∥
2

2
dt (24)

+
A

Nr2

N∑

j=1

(y
(i)
t − y

(j)
t ) exp

(
− 2

2r2

∥∥∥y(i)
t − y

(j)
t

∥∥∥
2

2

)
dt

+
√
2Ddw

(i)
t

where A = 10, r = 0.5, a = 2, É = 1, D = 0.25, B =
D/R2, µ = 5, R =

√
µNr, ´(t) = a(cosÃÉt, sinÃÉt)

and y
(i)
0 ∼ N (0, Ã2

0Id) with Ã0 = 0.5. We train with the

local DSM and ISM objectives. We train both models with a

batch size of 1024 for 10, 000 gradient steps using AdamW.

We use a three-layer feedforward network with a hidden

size of 256.

In fig. 6, we plot the variance of the components of the first

particle y
(1)
t for t ∈ [0, 10]. We plot the variance of the

samples generated using the process in eq. (24) as well as

samples from the PF-ODE for local DSM and ISM trained

models. In fig. 8 in appendix G.2, we plot the MMD (Smola

et al., 2006) of the local DSM and ISM samples compared to

the diffusion process samples. Both comparison show that

the local DSM trained model samples are more faithful to

the diffusion process compared to the ISM trained model.

0 5 10
t

0

2

4

1,
1

Local DSM SDE ISM

0 5 10
t

1

2

2,
2

Figure 6: Sample variance at t ∈ [0, 10]. Here we plot

the variance of the individual components of the first par-

ticle y
(1)
t simulated using the diffusion process defined in

eq. (24) (SDE) and the local DSM and ISM PF-ODE. We ob-

serve that the local DSM trained model is more faithful to

the ground truth compared to the ISM trained model.

5. Discussion
This work presents algorithms for training diffusion-based

generative modeling with nonlinear inference processes.

First, we introduce the local-DSM variational lower bound

that is amenable to approximations where computation can

be automated. We show how to build approximations using

locally linear processes and derive automated approaches

to compute the transition score function needed in the local-

DSM objective. To control the error introduced in the lo-

cally linear approximation, we design pairs (s(t), t) such

that the estimation error remains well-behaved for larger

values of t. The experiments show that using the local-

DSM objective leads to faster training and has better sam-

ple quality compared to ISM, for generative modeling as

well as score estimation for physical systems. This work

advances the computational frontier for working with non-

linear inference processes.

Impact Statement
Diffusion models can be used to generate high-resolution

realistic images, we along with other researchers in the field

take seriously that we should monitor the data used to train

these models along with what they are used for.
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A. Local DSM
Suppose we have an inference diffusion process of the form:

dyt = f(yt)dt+ g(t)dwt (25)

where y0 ∼ qdata and the model process is defined as:

dzt = [gg¦(T − t)s¹(zt, T − t)− f(zt, T − t)]dt+ g(T − t)dwt (26)

where z0 ∼ Ã¹. Huang et al. (2021); Song & Ermon (2020) derive a variational lower bound on the model log-likelihood

log p¹(x):

log p¹(x) g E
q(yT | x)

log Ã¹(yT ) +

∫ T

0
E

q(y | x)

[
− 1

2
∥s¹(yt, t)∥2gg¦(t) −∇yt

· (gg¦(t)s¹(yt, t)− f(yt, t))dt
]

(27)

Next, we prove lemma 1, restated here for convenience. Lemma 1 converts the ISM ELBO into the DSM ELBO using

transition kernels q(yt | ys).

Lemma. Let q(ys | x), q(yt | ys) be the transition kernels of the process defined in eq. (1). For any 0 f s < t < T , we

have:

E
q(yt | x)

1

2

[
∥s¹(yt, t)∥2gg¦ +∇y · gg¦s¹(yt, t)

]

= E
q(yt,ys | x)

[1
2
∥s¹(yt, t)−∇y log q(yt | ys)∥2gg¦ − 1

2
∥∇y log q(yt | ys)∥2gg¦

]
.

where q(yt,ys | x) = q(yt | ys)q(ys | x).

Proof. Let F (x, t) be defined as:

F (x, t) = E
q(yt | x)

[
1

2
∥s¹∥2gg¦ +∇y · gg¦s¹(yt, t)

]
(28)

Then note that we can use the Markov property (q(yt,ys | x) = q(yt | ys)q(ys | x)) as follows:

E
q(yt | x)

[
1

2
∥s¹∥2gg¦ +∇y · gg¦s¹(yt, t)

]
= E

q(yt,ys | x)

[
1

2
∥s¹∥2gg¦ +∇y · gg¦s¹(yt, t)

]
(29)

= E
q(ys | x)

[
E

q(yt | ys)

[
1

2
∥s¹∥2gg¦ +∇y · gg¦s¹(yt, t)

]]
(30)

Next, we convert the ISM objective to the DSM objective as follows:

E
q(yt | ys)

[
∥s¹∥2gg¦

]
(31)

= E
q(yt | ys)

[
∥s¹ −∇y log q(yt | ys)∥2gg¦ − ∥∇y log q(yt | ys)∥2gg¦ + 2

(
gg¦s¹

)¦ ∇y log q(yt | ys)
]

(32)

The last term Eq(yt | ys)[
(
gg¦s¹

)¦ ∇y log q(yt | ys)] is equal to Eq(yt | ys)[−∇y · gg¦s¹] using integration by parts, such

that we get:

E
q(yt | ys)

[
∥s¹∥2gg¦

]
(33)

= E
q(yt | ys)

[
∥s¹ −∇y log q(yt | ys)∥2gg¦ − ∥∇y log q(yt | ys)∥2gg¦ − 2∇y · gg¦s¹

]
(34)

Combining the last equation with eq. (30), the divergence term gets cancelled out:

E
q(yt | ys)

[
1

2
∥s¹∥2gg¦ +∇y · gg¦s¹(yt, t)

]
(35)

12
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= E
q(yt | ys)

[
1

2
∥s¹ −∇y log q(yt | ys)∥2gg¦ − 1

2
∥∇y log q(yt | ys)∥2gg¦ −∇y · gg¦s¹ +∇y · gg¦s¹

]
(36)

= E
q(yt | ys)

[
1

2
∥s¹ −∇y log q(yt | ys)∥2gg¦ − 1

2
∥∇y log q(yt | ys)∥2gg¦

]
(37)

Finally, we get:

= E
q(yt | x)

[
1

2
∥s¹∥2gg¦ +∇y ·

(
gg¦s¹(yt, t)

)]

= E
q(ys | x)

[
E

q(yt | ys)

[
1

2
∥s¹ −∇y log q(yt | ys)∥2gg¦ − ∥∇y log q(yt | ys)∥2gg¦

] ]
(38)

= E
q(yt,ys | x)

[
∥s¹ −∇y log q(yt | ys)∥2gg¦ − 1

2
∥∇y log q(yt | ys)∥2gg¦

]
(39)

Now, using lemma 1, we derive the local DSM ELBO for a schedule s(t) which satisfies 0 f s(t) < t for all t ∈ (0, T ).

Theorem. Let q(yt | ys) be the transition kernel of the process in eq. (1) and s(t) be a schedule, satisfying 0 f s(t) < t
for all t ∈ (0, T ]. Then for a model process zt defined in eq. (2), we can lower bound the model log-likelihood as follows:

log p¹(x) g E
q(yT | x)

[log Ã¹(yT )]

+

∫ T

0
E

q(yt,ys | x)

[
− 1

2
∥s¹ −∇y log q(yt | ys)∥2gg¦ +

1

2
∥∇y log q(yt | ys)∥2gg¦ +∇y · fdt

]
(40)

where s = s(t) and q(yt,ys | x) = q(yt | ys)q(ys | x) due to the Markov property.

Proof. Using the Markov property, the integrand in the ISM ELBO can be written as:

∫ T

0
E

q(yt | x)

[
− 1

2
∥s¹∥2gg¦ −∇y · (gg¦s¹ − f)dt

]
=

∫ T

0
E

q(yt,ys | x)

[
− 1

2
∥s¹∥2gg¦ −∇y · (gg¦s¹ − f)dt

]

=

∫ T

0
E

q(ys | x)

[
E

q(yt | ys)

[
−1

2
∥s¹∥2gg¦ −∇y · (gg¦s¹ − f)

]
dt

]

Using lemma 1, which shows that the ISM integrand is equal to the local DSM integrand in eq. (39), we can convert the ISM

ELBO as follows::

E
q(yT | x)

[log Ã¹(yT )] +

∫ T

0
E

q(yt | x)

[
− 1

2
∥s¹∥2gg¦ −∇y · (gg¦s¹ − f)dt

]
(41)

= E
q(yT | x)

[log Ã¹(yT )] +

∫ T

0
E

q(yt,ys | x)

[1
2
∥s¹ −∇y log q(yt | ys)∥2gg¦ − 1

2
∥∇y log q(yt | ys)∥2gg¦ +∇y · f

]

Therefore, we get:

log p¹(x) g E
q(yT | x)

[log Ã¹(yT )] +

∫ T

0
E

q(yt,ys | x)

[
− 1

2
∥s¹ −∇y log q(yt | ys)∥2gg¦

+
1

2
∥∇y log q(yt | ys)∥2gg¦ +∇y · fdt

]
(42)
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B. Valid ELBO with Truncation
For numerical stability, the integral term in the ELBO is truncated below by tmin = ¶. This leads to a biased estimate.

Sohl-Dickstein et al. (2015); Song & Ermon (2020) provide a valid ELBO by using a variational lower bound:

log p¹(y0) g E
q(yδ | y0)

[
log

p¹(y0 | y¶)

q(y¶ | y0)
+ log p¹(y¶)

]
, (43)

where the choice of the likelihood log q(y¶ | y0) is up to the user. The term Eq(yδ | y0) log p¹(y¶) can be lower bounded

similar to Song & Ermon (2020):

E
q(yδ | y0)

[log p¹(y¶)] g E
q(yT | x)

log Ã¹(yT ) +

∫ T

¶
E

q(y | x)

[
− 1

2
∥s¹∥2gg¦ −∇y · (gg¦s¹ − f)dt

]
(44)

see theorem 6 in Song & Ermon (2020). Then using lemma 1, we note that:

E
q(yT | x)

[log Ã¹(yT )] +

∫ T

¶
E

q(y | x)

[
− 1

2
∥s¹∥2gg¦ −∇y · (gg¦s¹ − f)dt

]

= E
q(yT | x)

[log Ã¹(yT )] (45)

+

∫ T

¶
E

q(yt,ys | x)

[
− 1

2
∥s¹ −∇y log q(yt | ys)∥2gg¦ +

1

2
∥∇y log q(yt | ys)∥2gg¦ +∇y · fdt

]
(46)

Now, we choose q(y¶ | y0) = N (y¶ | Ay0 + c,Σ(¶|0)) and covariance of the locally linear process on the interval [0, ¶].
Next, similar to Song & Ermon (2020) we choose p¹(y0 | y¶) to be Gaussian with mean and covariance derived using

Tweedie’s formula (Efron, 2011). µ¹ = E[y0 | y¶]and Σ¹ = Var[y0 | y¶], which are derived below.

First, we derive the conditional variance:

y¶ = Ay0 + c+Σ−1/2(¶ | 0)z, where z ∼ N (0, Id) (47)

y0 = A−1
(
y¶ − c− Σ−1/2(¶ | 0)z)

)
(48)

Var(y0 | y¶) = A−1P (¶ | 0)A−¦ (49)

then note that the conditional mean can be derived using Tweedie’s formula as follows: let ¸ be the natural parameter of

the Gaussian distribution N (y¶ | Ay0 + c,Σ(¶|0)), then we the fact that (Efron, 2011)

E[¸ | y¶] = s¹(y¶, ¶) + Σ−1(¶ | 0)y¶ (50)

and the definition of the natural parameter ¸, ¸ = P (¶ | 0)−1(Ay0 + c) to get

E[y0 | y¶] = A−1(Σ(¶|0)E[¸ | y¶]− c) (51)

= A−1(P (¶ | 0)s¹(y¶, ¶) + y¶ − c) (52)

= A−1(y¶ − c) +A−1P (¶ | 0)s¹(y¶, ¶) (53)

See page 26-27 in Singhal et al. (2023) for a full derivation.

C. Local Linearization
Suppose we have diffusions of the form

dyt = f(yt, t)dt+ g(t)dwt

where f is a non-linear function of y. For every any s, we linearize f around the sample ys such that

dŷt = Tsf(ŷt, t)dt+ g(t)dwt, t ∈ [s, T ] (54)
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where Ts is a operator that produces a linear approximation of f , such that Tŷs
f = c(t) +A(t)ŷt. Since the drift is affine,

eq. (82) is a linear diffusion process with a Gaussian transition kernel (see eq 6.5 in Särkkä & Solin (2019)).

To derive the mean and covariance of the process ŷt we use Ito’s lemma (see theorem 4.2 in (Särkkä & Solin, 2019)): for

a scalar function F (t,yt), we have

dF = ∂tFdt+ dŷ¦∇ŷF +
d∑

i,j=1

1

2
∂ŷi

∂ŷj
Fdŷidŷj (55)

= ∂tFdt+ f¦∇ŷFdt+ g¦∇ŷFdwt +

d∑

i,j=1

1

2
∂ŷi

∂ŷj
F (gg¦)i,jdt (56)

=


∂tF + f¦∇ŷF +

d∑

i,j=1

1

2
∂ŷi

∂ŷj
F (gg¦)i,j


 dt++g¦∇ŷFdwt (57)

where we use the fact that dt× dt = 0, dt× dwt = 0. Next, we take the expectation

dE[F (ŷt) | ys] = E


∂tF + f¦∇yF +

d∑

i,j=1

gg¦(t)i,j
2

∂yi
∂yj

F | ys


 dt+ E

[
g(t)¦∂yFdwt | ys

]
(58)

d

dt
E[F (ŷt) | ys] = E


∂tF + f¦∇yF +

d∑

i,j=1

gg¦(t)i,j
2

∂yi
∂yj

F | ys


 (59)

now, for computing the mean and covariance we use Ito’s lemma on the functions: F (t, ŷ) = [ŷt]i for the mean and

Fi,j(t, ŷ) = [yt]i[yt]j −E[ŷt | ys]i E[ŷt | ys]j for all 1 f i, j f d and therefore we can get the evolution of the mean and

covariance ODEs.

The mean m(t|s) = E[ŷt | ŷs] and covariance P (t|s) = E[(ŷt −m(t|s))(ŷt −m(t|s))¦ | ŷs] obey the following ODEs

(see eq 5.50-5.51 in Särkkä & Solin (2019)):

d

dt
m(t | s) = E[T f(ŷt, t) | ŷs]

= c(t) +A(t)E[ŷt | ŷs]

= c(t) +A(t)m(t | s) (60)

Now, to derive the covariance, we first note that for Fi,j(t, ŷ) = [yt]i[yt]j − E[ŷt | ys]i E[ŷt | ys]j , we have:

d

dt
E [Fi,j(t,yt) | ys] =

d

dt
E

[
[yt]i[yt]j − E[ŷt | ys]i E[ŷt | ys]j

∣∣∣ys

]

= E

[
∂tFi,j + dy¦

t ∇Fi,j(t,yt) | ys

]
+ E




d∑

i,j=1

gg¦(t)i,j
2

∂yi
∂yj

Fi,j | ys




= E

[
∂tFi,j + dy¦

t ∇Fi,j(t,yt) | ys

]
+ gg¦(t)i,j

= −mi(t | s)∂tmj(t | s)−mj(t | s)∂tmi(t | s)
+ E[[T f ]i[yt]j | ys] + E[[T f ]j [yt]i | ys]] + gg¦(t)i,j

= −mi(t | s)E[[T f ]j | ys]−mj(t | s)E[[T f ]i | ys]

+ E[[T f ]i[yt]j | ys] + E[[T f ]j [yt]i | ys] + gg¦(t)i,j

= E[[T f ]i(yt −m(t|s))j | ys] + E [[T f ]j(yt −m(t|s))i | ys] + gg¦(t)i,j

therefore, we get

d

dt
P (t | s) = E[T f(ŷt, t)(ŷt −m(t|s))¦ | ŷs] + E[(ŷt −m(t|s))T f(ŷt, t)

¦ | ŷs] + E[gg
¦(t) | ŷs] (61)
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Now, using the fact that E[ŷt −m(t|s) | ŷs] = 0, we get:

E[T f(ŷt, t)(ŷt −m(t|s))¦ | ŷs] = E

[
(c(t) +A(t)ŷt) (ŷt −m(t|s))¦ | ŷs

]

= E[c(t)(ŷt − E[ŷt | ŷs])
¦ +A(t)E

[
ŷt(ŷt −m(t|s))¦ | ŷs

]

= 0 +A(t)E
[
ŷt(ŷt −m(t|s))¦ | ŷs

]
, using E[ŷt −m(t|s) | ŷs] = 0

= A(t)E[(ŷt −m(t|s))(ŷt −m(t|s))¦ | ŷs] +A(t)m(t|s)E[ŷt −m(t|s) | ŷs]
¦

= A(t)E[(ŷt −m(t|s))(ŷt −m(t|s))¦ | ŷs]

= A(t)P (t | s),

and similarly, we get E

[
(ŷt −m(t|s)) (c(t) +A(t)ŷt)

¦ | ys

]
= P (t | s)A(t)¦. Therefore, eq. (61) becomes:

d

dt
P (t|s) = gg¦(t) +A(t)P (t|s) + P (t|s)A(t)¦ (62)

To get the mean and the covariance for the process conditioned on ŷs with s = s, we solve:

d

dt
m(t|s) = c(t) +A(t)m(t|s) (63)

d

dt
P (t|s) = gg¦(t) +A(t)P (t|s) + P (t|s)A(t)¦ (64)

where m(s|s) = ŷs and P (s|s) = 0.

In the next section, we derive the solutions to the ODEs:

• In section appendix C.1, we consider the first-order Taylor expansion Tys,sf(t,yt) as the operator T . Here the matrix

A is not a function of time t.

• In section appendix C.2, we consider the first-order Taylor expansion Tys,tf(t,yt), which provides a more accurate

approximation. Here we assume that the drift takes the forms:

f(y, t) = (f1(y1, t), . . . , fd(yd, t)) ∈ Rd (65)

this causes the inference process yt’s coordinates to be independent given y0, that is (yt)i § (yt)j | ys for all i ̸= j.

C.1. Mean And Covariance for Taylor expansion around f(ys, s)

Suppose we have diffusions of the form

dyt = f(yt, t)dt+ g(t)dwt

where f is a non-linear function of y. Then note that we can simulate the density for any interval [s, T ], we linearize f
around ys, s such that

dŷt = Tŷs,sf(ŷt, t)dt+ g(t)dwt, t ∈ [s, T ] (66)

where Tys
is a operator that produces a linear approximation of f , for instance, we can use the a first-order Taylor approx-

imation as follows:

Tys,sf(ŷt, t) = f(ys, s) +∇yf(ys, t)(ŷt − ys) + ∂tf(ys, s)(t− s)

= (f(ys, s)−∇yf(ys, s)ys + ∂tf(ys, s)(t− s)) +∇yf(ys, s)ŷt

=: (c1 + c2t) +Aŷt

=: c(t) +Aŷt

where

• c1 = f(ys, s)−∇yf(ys, s)− ∂tf(ys, s)s
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• c2 = ∂tf(ys, s)

• A = ∇yf(ys, s)

and since, eq. (67) is an affine process, the transition kernel is Gaussian (see eq 6.5 in Särkkä & Solin (2019)). To sample

and compute the score of a Gaussian transition kernel requires solving the mean and covariance ODEs.

For the mean, we can solve:

d

dt
m(t|s) = c(t) +Am(t|s), m(s|s) = ys

which we using the following facts:

exp(tA)

∫ t

s

exp(−ÄA)c1dÄ = exp(tA)[− exp(−ÄA)A−1]tsc1 (67)

= exp(tA)[exp(−sA)A−1 − exp(−tA)A−1]c1 (68)

= [exp((t− s)A)A−1 − exp((t− t)A)A−1]c1 (69)

= [exp((t− s)A)A−1 −A−1]c1 (70)

= [exp((t− s)A)− I]A−1c1 (71)

and using integration by parts and the above integral we get:

∫
exp(−ÄA)ÄdÄ = [Ä

∫
exp(−ÄA)−

∫
d

dÄ
Ä

∫
exp(−ÄA)] (72)

=

[
−Ä exp(−ÄA)A−1 −

∫
− exp(−ÄA)A−1

]
(73)

=
[
−Ä exp(−ÄA)A−1 − exp(−ÄA)A−2

]
(74)

Now, using these identities and the general solution to affine linear ODEs (see eq 2.31 in Särkkä & Solin (2019)) we get

that m(t|s) evolves as

m(t|s) = exp((t− s)A)ys +

∫ t

s

exp ((t− Ä)A) c(Ä)dÄ (75)

= exp((t− s)A)ys + exp(tA)

∫ t

s

exp (−ÄA) c(Ä)dÄ (76)

= exp((t− s)A)ys + exp(tA)

∫ t

s

exp (−ÄA) (c1 + c2Ä)dÄ (77)

= exp((t− s)A)ys + exp(tA)

∫ t

s

exp (−ÄA) c1dÄ + exp(tA)

∫ t

s

exp (−ÄA) c2ÄdÄ (78)

= exp((t− s)A)ys + (exp((t− s)A)− I)A−1c1 + exp(tA)

∫ t

s

exp (−ÄA) c2ÄdÄ (79)

Now, to integrate the last term, we note that using integration by parts we get on the integrand exp(−ÄA)Ä we get:

∫ t

s

exp (−ÄA) ÄdÄ =
[
s exp(−sA)A−1 + exp(−sA)A−2

]
−
[
t exp(−tA)A−1 + exp(−tA)A−2

]

exp(tA)

∫ t

s

exp (−ÄA) ÄdÄ =
[
s exp((t− s)A)A−1 + exp((t− s)A)A−2

]
−
[
tA−1 +A−2

]

= exp((t− s)A)
[
sA−1 +A−2

]
−
[
tA−1 +A−2

]

Finally, the mean:

m(t | s) = exp((t− s)A)ys + (exp((t− s)A)− I)A−1c1
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+ exp((t− s)A)
[
sA−1 +A−2

]
c2 −

[
tA−1 +A−2

]
c2

Following Särkkä & Solin (2019); Singhal et al. (2023), we can solve the covariance using the matrix factorization trick.

Let P (t|s) = Ct|sH
−1
t|s , then Ct|s, Ht|s evolve as follows:

(
Ct|s
Ht|s

)
= exp

(∫ t

s
A(Ä)dÄ

∫ t

s
gg¦(Ä)dÄ

0 −
∫ t

s
A¦(Ä)dÄ

)(
C0

H0

)
(80)

where C0 = 0 and H0 = I .

C.2. Mean And Covariance for Taylor expansion around f(ys, t)

Suppose we have a diffusion process of the form

dyt = f(yt, t)dt+ g(t)dwt

where f is a non-linear function of y.

Here we also assume that ∇yj
fi(y, t) = 0 for all i, j where f = (f1, . . . , fd) ∈ Rd, which implies that conditional on ys

for s ∈ [0, t) the inference process obeys

q(yt | ys) =
d∏

i=1

q([yt]i | [ys]i) (81)

And since the inference process coordinates [yt]i and [yt]j for all i ̸= j are independent conditional on ys, we treat m,P
as scalar values. We also note that the matrix A is a function of t, unlike the previous section.

Then, similar to appendix C.1, to simulate the density for any interval [s, T ], we linearize f around ys, s by defining a

linear process:

dŷt = Tys,sf(ŷt, t)dt+ g(t)dwt, t ∈ [s, T ] (82)

where Tys
is a operator that produces a linear approximation of f , for instance, we can use the a first-order Taylor approx-

imation as follows:

Tys,tf(ŷt, t) = f(ys, t) +∇yf(ys, t)(ŷt − ys)

= (f(ys, t)−∇yf(ys, t)ys) +∇yf(ys, s)ŷt

=: c(t) +A(t)ŷt

here both c, A are a function of t. As shown earlier, the transition kernel is Gaussian (see eq 6.5 in Särkkä & Solin (2019)).

To sample and compute the score of a Gaussian transition kernel requires solving the mean and covariance ODEs.

To solve for P (t|s) ∈ R,m(t|s) ∈ R, we make use of the matrix exponential technique from eq 6.36-39 in Särkkä &

Solin (2019); Singhal et al. (2023). For solving the covariance matrix ODE, we let P (t | s) = Ct|sH
−1
t|s where C,H evolve

as follows:

d

dt

(
Ct|s
Ht|s

)
=

(
A(t) gg¦

0 −A¦(t)

)(
Cs

Hs

)
(83)

where C0 = 0 and H0 = I . Now, since C,H evolve linearly, we can solve them using matrix exponentials.

(
Ct|s
Ht|s

)
= exp

(∫ t

s
A(t)

∫ t

s
gg¦(t)

0 −
∫ t

s
A¦(t)

)(
C0

H0

)
(84)

d

dt

(
Ct|s
Ht|s

)
=

(
A(t) gg¦

0 −A¦(t)

)(
Cs

Hs

)
(85)

P (t|s) = Ct|sH
−1
t|s (86)
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Mean ODE solution. To solve the mean ODE:

d

dt
m(t|s) = c(t) +A(t)m(t|s)

and since A(t) is a scalar, A = A¦, therefore we can use the same matrix exponential technique as we used for the

covariance matrix. Let m(t|s) = Dt|sR
−1
t|s , where D,R evolve as:

d

dt

(
Dt|s
Rt|s

)
=

(
1
2A(t) c(t)
0 − 1

2A
¦(t)

)(
Dt|s
Rt|s

)
. (87)

Here, the factorization m(t|s) = Dt|sR
−1
t|s holds as:

d

dt
Dt|sR

−1
t|s = R−1

t|s
d

dt
Dt|s +Dt|s

d

dt
R−1

t|s (88)

= R−1
t|s

(
1

2
A(t)Dt|s + c(t)Rt|s

)
+Dt|s

−1

R2
t|s

d

dt
Rt|s (89)

= R−1
t|s

(
1

2
A(t)Dt|s + c(t)Rt|s

)
+Dt|s

−1

R2
t|s

−1

2
A(t)Rt|s (90)

=

(
1

2
A(t)Dt|sR

−1
t|s + c(t)

)
+Dt|s

1

Rt|s

1

2
A(t) (91)

=

(
1

2
A(t)Dt|sR

−1
t|s + c(t)

)
+

1

2
Dt|sR

−1
t|sA(t) (92)

=
1

2
A(t)Dt|sR

−1
t|s + c(t) +

1

2
Dt|sR

−1
t|sA(t) (93)

= A(t)Dt|sR
−1
t|s + c(t) (94)

= A(t)m(t|s) + c(t) (95)

Now, we can solve for Rs, Ps in closed-form as

(
Dt|s
Rt|s

)
= exp

(
1
2

∫ t

s
A(t)

∫ t

s
c(t)

0 − 1
2

∫ t

s
A¦(t)

)(
Ds

Rs

)
(96)

where Ds = ys and Rs = I .

D. Regularity assumptions
In this section, we list a set of assumptions on f, g and qdata which we assume throughout the paper:

(A1) qdata(yt) is twice differentiable for all t, qdata ∈ C2(Rd).

(A2) The drift f(t,y) and diffusion coefficient g(t) satisfy:

– f ∈ C2(Rd,R+), and f is Lipschitz in the y argument

– f, g are integrable with respect to qdata

Both A1-A2 imply that q(yt) exists and q(yt) is twice differentiable, see Haussmann & Pardoux (1986).

E. Error Estimate
In this section we prove that for any t ∈ (0, T ], the gap between the true marginal q(yt) and the locally linear approximation

q̂(yt) = Eq(ys)[q̂(yt | ys)] is upper bounded by the difference of the drifts between the interval (s(t), t).

Lemma 2. For t ∈ (0, T ], we assume that ggT (t) = g2(t)Id, where g2(t) is a scalar, and f, g, qdata satisfy smoothness

assumptions in appendix D. For any t ∈ (0, T ], we have:

KL (q(yt) | q̂(yt)) f
∫ t

s(t)
E

q(yτ )

[
1

2g2
∥f(Ä,yÄ )− Tsf(t,yÄ )∥22

]
dÄ

19



Automated Denoising Score Matching for Nonlinear Diffusions

where Ts is the linearization operator and q(yt | ys) is the exact transition kernel.

The main idea behind the proof is the following:

• Due to Jensen’s inequality and convexity of f -divergences (see theorem 4.1 in Wu (2017)), we have:

KL (q(yt), q̂(yt)) f E
q(ys)

KL (q(yt | ys), q̂(yt | ys)) (97)

• Next, we upper bound KL (q(yt | ys), q̂(yt | ys)) using proposition 1.

Proposition 1 (Lemma 2.21 in Albergo et al. (2023)). Suppose q, q̂ evolve as follows:

∂tq +∇ · (Fq) = 0 (98)

∂tq̂ +∇ · (F̂ q̂) = 0, (99)

(100)

where F = f − 1
2g

2∇ log q, then the KL divergence between q, q̂ can be expressed as:

KL (q(yt | ys), q̂(yt | ys)) =

∫ t

s

∫

Rd

(
sq − sq̂

)¦(
F − F̂

)
q(yt | ys)dytdt (101)

which implies

KL (q(yt | ys), q̂(yt | ys)) f
∫ t

s
E

q(yτ | ys)

[
1

2g2

∥∥∥f − f̂
∥∥∥
2

2

]
dÄ (102)

Proof. KL divergence evolves as:

d

dt
KL (q(yt | ys), q̂(yt | ys)) =

d

dt

∫
log

q

q̂
qdy

= − d

dt

∫
q log q̂dy +

d

dt

∫
q log qdy

= −
∫

∂t(q log q̂)dy +

∫
∂t(q log q)dy

= −
∫

(q∂t log q̂ + log q̂∂tq) dy +

∫
(q∂t log q + log q∂tq) dy

= −
∫ (

q

q̂
∂tq̂ + log q̂∂tq

)
dy +

∫
(∂tq + log q∂tq) dy

= −
∫ (

q

q̂
∂tq̂ + log

q̂

q
∂tq

)
dy +

∫
(∂tq) dy

= −
∫

q

q̂
∂tq̂dy +

∫
log

q

q̂
∂tqdy, since ∂t

∫
qdy = 0

= −
∫

q

q̂
∇ · (−F̂ q̂)dy +

∫
log

q

q̂
∇ · (−Fq)dy

=

∫
∇
(q
q̂

)¦
(F̂ q̂)dy −

∫ (
∇ log q −∇ log q̂

)¦
(Fq)dy

=

∫ (q
q̂

) 1(
q
q̂

)∇
(q
q̂

)¦
(F̂ q̂)dy −

∫ (
∇ log q −∇ log q̂

)¦
(Fq)dy

=

∫ (q
q̂

)
∇ log

(q
q̂

)¦
(F̂ q̂)dy −

∫ (
∇ log q −∇ log q̂

)¦
(F )dy

=

∫
(∇ log q −∇ log q̂)

¦
F̂ qdy −

∫ (
∇ log q −∇ log q̂

)¦
(Fq)dy
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=

∫
(∇ log q −∇ log q̂)

¦
(
F − F̂

)
qdy

=

∫
(sq − sq̂)

¦
(
F − F̂

)
qdy (103)

Then we bound the KL divergence between q, q̂ using eq. (103) we get:

KL (q(yt | ys), q̂(yt | ys)) =

∫ t

s

∫

Rd

(
sq − sq̂

)¦(
[f − g2

2
sq]− [f̂ − g2

2
sq̂]
)
q(yt | ys)dytdt

=

∫ t

s

∫

Rd

(
sq − sq̂

)¦(
f − f̂

)
q(yt | ys)dytdt

−
∫ t

s

∫

Rd

(
sq − sq̂

)¦ g2

2

(
sq − sq̂

)
q(yt | ys)dytdt

=

∫ t

s

∫

Rd

(
sq − sq̂

)¦(
f − f̂

)
q(yt | ys)dytdt (104)

−
∫ t

s

∫

Rd

g2

2
∥sq − sq̂∥22 q(yt | ys)dytdt

Now, to upper bound the first integral, we use the fact that for any vectors a,b ∈ Rd

∥a− b∥22 g 0

∥a∥22 + ∥b∥22 − 2a¦b g 0

a¦b f 1

2

(
∥a∥22 + ∥b∥22

)

which implies that for ¸ > 0 and a = 1√
¸ (f − f̂) and b =

√
¸(sq − sq̂), we get:

∫ t

s

∫

Rd

(
sq − sq̂

)¦(
f − f̂

)
q(yt | ys)dytdt f

∫ t

s

∫

Rd

(
¸

2
∥sq − sq̂∥22 +

1

2¸

∥∥∥f − f̂
∥∥∥
2

2

)
q(yt | ys)dytdt (105)

now, using eq. (105) and setting ¸ = g2 in eq. (104), we get:

KL (q(yt | ys), q̂(yt | ys)) f
∫ t

s

∫

Rd

1

2g2

∥∥∥f − f̂
∥∥∥
2

2
q(yt | ys)dytdt

=

∫ t

s
E

q(yt | ys)

[
1

2g2

∥∥∥f − f̂
∥∥∥
2

2

]
dt (106)

We note that due to Jensen’s inequality (see theorem 4.1 in Wu (2017)):

KL (q(yt), q̂(yt)) f E
q(ys)

KL (q(yt | ys), q̂(yt | ys)) (107)

which combined with eq. (106) gets:

KL (q(yt), q̂(yt)) f E
q(ys)

∫ t

s

∫

Rd

1

2g2

∥∥∥f − f̂
∥∥∥
2

2
q(yÄ | ys)dyÄdt (108)

=

∫ t

s
E

q(ys)
E

q(yτ | ys)

[
1

2g2

∥∥∥f − f̂
∥∥∥
2

2

]
dÄ (109)

=

∫ t

s
E

q(yτ )

[
1

2g2

∥∥∥f − f̂
∥∥∥
2

2

]
dÄ (110)
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F. Taylor Series tricks.
F.1. Time-dependent s(t)

Now, we find a function s(t) such that for t > tmin, we get the following:

∫ t

s(t)

´(Ä)dÄ (111)

We first derive it for a linear ´(t) followed by ´(t) used to derive the linear and cosine noise schedules (Chen, 2023).

Linear ´(t). For a linear ´(t) function, we let s(t) = t− ϵ(t)

∫ t

t−ϵ(t)

´(s)ds = [´mint+ ´max
t2

2
]tt−ϵ(t) (112)

= ´min(ϵ(t)) + ´max
1

2
(t2 − (t− ϵ(t))2) (113)

= ´minϵ(t) +
´max

2
ϵ(t)(2t− ϵ(t)) (114)

= ´minϵ(t) +
´max

2
(2tϵ(t)− ϵ(t)2) (115)

(116)

Suppose if we choose ϵ(t) such that
∫ t

t−ϵ(t)
´(s)ds = ¼, then note that

¼ =

∫ t

t−ϵ(t)

´(s)ds (117)

= ´minϵ(t) +
´max

2
(2tϵ(t)− ϵ(t)2) (118)

now, to find ϵ(t) we define a polynomial:

P (x) = ´minx+
´max

2
(2tx− x2)− ¼ (119)

= −´max

2
x2 + (´min + ´maxt)x− ¼ (120)

then ϵ(t) is a zero of the polynomial P (x). We can find the zeros of P (x):

x∗ =
−(´min + ´maxt)±

√
(´min + ´maxt)2 − 4¼´max

2

−´max
(121)

=
−(´min + ´maxt)±

√
(´min + ´maxt)2 − 2¼´max

−´max
(122)

=
(´min + ´maxt)±

√
(´min + ´maxt)2 − 2¼´max

´max
(123)

= t+
´min

´max
±
√
(´min + ´maxt)2 − 2¼´max

´max
(124)

the constraint 0 < t− ϵ(t) < t, implies that:

´min ±
√
(´min + ´maxt)2 − 2¼´max < 0 (125)

´min ±
√

´(t)2 − 2¼´max < 0 (126)

´(t)2 − 2¼´max < ´2
min (127)

´(t) <
√
´2
min + 2¼´max (128)
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and we require that ´(t)2 − 2¼´max > 0 such that ϵ(t) is not complex-valued:

´(t)2 − 2¼´max > 0 (129)

´(t) >
√

2¼´max (130)

which implies that

ϵ(t) = t+
´min −

√
´(t)2 − 2¼´max

´max
(131)

for t such that

√
2¼´max < ´(t) <

√
´2
min + 2¼´max (132)

Commonly used ´(t) functions. Chen (2023) studies the effect of different noise schedules µ(t):

yt =
√
µ(t)x+

√
1− µ(t)ϵ (133)

with the following choices for µ(t):

cosine : µ(t) = cos
(Ã
2
t
)

(134)

linear : µ(t) = 1− t (135)

Now, note that for the VPSDE process, we have yt = m(t)x+ Ã(t)ϵ, where

m(t) = exp

(
−
∫ t

0

1

2
´(s)ds

)
=

√
exp

(
−
∫ t

0

´(s)ds

)
(136)

Ã(t) =

√
1− exp

(
−
∫ t

0

´(s)ds

)
(137)

which implies that

d

dt
logm(t) = −1

2
(´(t)− ´(0)) (138)

d

dt
log
√
µ(t) = −1

2
(´(t)− ´(0)) (139)

1

2

d

dt
log µ(t) = −1

2
(´(t)− ´(0)) (140)

d

dt
log µ(t) = −(´(t)− ´(0)) (141)

´(t) = ´(0)− d

dt
log µ(t) (142)

For the commonly used noise schedules, we can derive the ´(t) function:

cosine : ´(t) = ´(0)− − sin
(
Ã
2 t
)

cos
(
Ã
2 t
) = ´(0) + tan(

Ã

2
t) (143)

linear : ´(t) = ´(0)− −1

1− t
= ´(0) +

1

1− t
(144)

Now, note that we can find s(t) such that
∫ t

s(t)
´(Ä)dÄ = ¼ for a user-specified ¼ and linear ´(t), as follows:

¼ =

∫ t

s(t)

´(Ä)dÄ (145)
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=

∫ t

s(t)

´(0) +
1

1− Ä
dÄ (146)

= [− log(1− Ä)]
t
s(t) , assuming ´(0) = 0 (147)

exp(−¼) =
1− t

1− s(t)
(148)

1− s(t) =
1− t

exp(−¼)
(149)

s(t) = 1− 1− t

exp(−¼)
(150)

Similarly for a cosine ´(t), we note that

¼ =

∫ t

s(t)

´(Ä)dÄ (151)

=

∫ t

s(t)

´(0) +
1

1− Ä
dÄ, assume ´(0) = 0 (152)

=

[
− 2

Ã
log cos(

Ã

2
Ä)

]t

s(t)

(153)

= − 2

Ã
log

cos(Ã2 t)

cos(Ã2 s(t))
(154)

exp(−Ã

2
¼) =

cos(Ã2 t)

cos(Ã2 s(t))
(155)

cos(
Ã

2
s(t)) =

1

exp(−Ã
2¼)

cos(
Ã

2
t) (156)

Ã

2
s(t) = cos−1

(
1

exp(−Ã
2¼)

cos(
Ã

2
t)

)
(157)

s(t) =
2

Ã
cos−1

(
1

exp(−Ã
2¼)

cos(
Ã

2
t)

)
(158)

G. Active Matter Experiments
G.1. Active Swimmer

In this section we plot the samples from the ISM trained model versus the inference process samples in fig. 7, and in fig. 9

we compare the MMD between the model samples and the inference process samples at various times t ∈ [0, T ]. The

inference process is defined as

dx = (−x3 + v)dt (159)

dv = −µvdt+
√
2µDdwt, t ∈ [0, T ] (160)

where µ = 0.1, D = 1.0 and T = 5.0 with initial conditions x0, v0 ∼ N (0, 1). We generate samples from the score

trained by the local DSM and ISM objectives using the probability-flow ODE:

d

dt
yt = f(yt, t)−

1

2
gg¦s¹(yt, t) (161)

where y = (x, v)¦. Note that when s¹ = ∇y log q(yt), then qODE = qSDE, that is the distribution of the inference process

and the PF-ODE match at any time t ∈ [0, T ].

G.2. Interacting Particle System

In this section we plot the MMD between PF-ODE samples from the local DSM and ISM trained model and the diffusion

process, defined in eq. (24), samples between t ∈ [0, 10]. We note that for all t ∈ [0, 10], the local DSM trained models has

a lower MMD.
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Figure 7: ISM Samples at t ∈ {1, 3, 5}. Here we compare samples from the process defined in eq. (160) on the top panel

and samples from ISM trained model on the bottom panel. The samples from the PF-ODE start diverging and do not match

the inference process’ distribution.

Figure 8: MMD for t ∈ [0, 10]

Figure 9: Here we compare the MMD metric between model generated samples and the inference process samples at various

time slices. We observe that both models have an increasing trend but the ISM model sample quality deteriorates rapidly

compared to the local DSM trained model.
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