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Abstract

Reversing a diffusion process by learning its
score forms the heart of diffusion-based gen-
erative modeling and for estimating properties
of scientific systems. The diffusion processes
that are tractable center on linear processes with
a Gaussian stationary distribution, limiting the
kinds of models that can be built to those that tar-
get a Gaussian prior or more generally limits the
kinds of problems that can be generically solved
to those that have conditionally linear score func-
tions. In this work, we introduce a family of
tractable denoising score matching objectives,
called local-DSM, built using local increments
of the diffusion process. We show how local-
DSM melded with Taylor expansions enables au-
tomated training and score estimation with non-
linear diffusion processes. To demonstrate these
ideas, we use automated-DSM to train genera-
tive models using non-Gaussian priors on chal-
lenging low dimensional distributions and the CI-
FAR10 image dataset. Additionally, we use the
automated-DSM to learn the scores for nonlinear
processes studied in statistical physics.

1. Introduction

Modeling with diffusion processes has led to advances in
generative models (Dhariwal & Nichol, 2021; Nichol &
Dhariwal, 2021; Nichol et al., 2021; Sasaki et al., 2021)
and in the computation of properties of scientific systems
through the estimation of the score of a diffusion (Boffi &
Vanden-Eijnden, 2023a;b; Huang & Wang, 2024).

Score models can be trained for a generic diffusion process,
that may be nonlinear, using the the implicit score match-
ing (ISM) objective (Huang et al., 2021; Song & Ermon,
2020; Boffi & Vanden-Eijnden, 2023b). However, estimat-
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ing the ISM objective requires computing the divergence
of the score model. Computing the divergence directly
is memory intensive, therefore, the stochastic Hutchinson
trace estimator (Hutchinson, 1989; Grathwohl et al., 2018)
is used for computational efficiency. However, the use of
the stochastic trace estimator leads to noisy gradients and
requires differentiation during the forward pass.

An alternative to the ISM objective is the denoising score
matching (DSM) objective (Vincent, 2011; Song et al.,
2020a;b). The DSM objective has powered many of the im-
provements in diffusion-based generative models (DBGMs)
(Song et al., 2020b; Dockhorn et al., 2021; Singhal et al.,
2023). However, training with DSM requires the score of
the transition kernel ¢(y; | yo), which is typically not avail-
able for nonlinear processes. Neither ISM or DSM provide
a good option for training score models with generic, non-
linear noise or inference processes.

A natural question one can ask is why study nonlinear infer-
ence processes? At a high level more generic, easy-to-use
computation has a history of unlocking other techniques
(Baydin et al., 2018; Ranganath et al., 2014; 2016; Ku-
cukelbir et al., 2017). Recent work introduces new choices
of inference processes for generative modeling, but the pro-
cesses introduced are limited to linear ones with Gaus-
sian stationary distributions (Dockhorn et al., 2021; Singhal
et al., 2023; Pandey & Mandt, 2023; Du et al., 2023). Au-
tomated training for nonlinear inference processes would
allow for rapid prototyping of non-Gaussian priors using
nonlinear Langevin processes (Pavliotis, 2016) and, more
generally, nonlinear drifts in the inference process.

Next, in several applications the inference process is given
to us. For many systems of interest in statistical physics
(Chandler, 1987; Spohn, 2012; Otsubo et al., 2022), fi-
nance (Kusuoka & Ninomiya, 2004), biology (Fleming,
1975), the evolution of the system is governed by high-
dimensional nonlinear diffusion processes. Several prop-
erties of these systems, such as the entropy production
rate (Otsubo et al., 2022), require access to the density
and are challenging to estimate from samples alone. Typ-
ical approaches for estimating the density, such as solving
the Fokker-Planck equation (Pavliotis, 2016) are infeasible
in high dimensions. Therefore, Boffi & Vanden-Eijnden
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(2023a;b) use techniques for learning the score developed
in DBGMs to study quantities such as the density, the prob-
ability current, and the entropy production of physical sys-
tems. Given the utility of nonlinear inference processes and
the lack of efficient estimation with them, we need new ob-
jectives for training with nonlinear inference processes.

In this work, we introduce a training algorithm, automated
DSM, that expands the applicability of DSM to a broad class
of nonlinear inference processes. Automated DSM relies on
a few methodological innovations:

1. Derive a local-DSM objective built from local incre-
ments of the transition kernel. For image-generation
experiments, we also develop a perceptually weighted
local-DSM objective.

2. Create tractable approximations to the score of the
transition kernel ¢(y; | y5) using local linearization

3. Design time pairs s, ¢ to control the error in approxi-
mating the local transition kernel g(y: | ys)-

To test these automations, we train DBGMs with inference
processes with non-Gaussian stationary distribution and
score models for nonlinear inference processes studied in
the physical sciences. In our experiments:

1. We show that training DBGMs with the local-DSM
objective is faster than the ISM objective, on low-
dimensional synthetic datasets, physical systems, and
CIFAR1O0.

2. We demonstrate the flexibility of automated DSM
by training DBGMs with non-Gaussian priors, such
as a mixture of Gaussians and the Logistic distribu-
tion, and estimating scores for nonlinear inference
processes in the sciences without requiring manual
derivations.

These findings highlights that local DSM objectives and the
automations provided in this work enable fast and deriva-
tion free training for nonlinear inference processes.

1.1. Related Work

Huang et al. (2022); Boffi & Vanden-Eijnden (2023a;b)
train diffusion models using nonlinear inference processes
with the ISM objective. In section 4, we show that even for
2d problems, using the local-DSM objective leads to faster
convergence and better sample quality compared to using
the 1SM objective.

Doucet et al. (2022) apply techniques from score-based
generative modeling to annealed importance sampling
(Neal, 2001). For a given unnormalized target density
m, they specify discrete-time Markov transition kernels
q(Yk+1 | ¥&) using the Euler-Maruyama (Sérkkéd & Solin,
2019) updates of a Langevin process with 7 as the station-

ary distribution, and then learn the reverse transition ker-
nels pg(zx | Zrx+1). They derive a discrete-time denois-
ing score matching objective based on Kullback-Leibler
(KL) divergence, similar to Sohl-Dickstein et al. (2015);
Ho et al. (2020). In this work, we derive a continuous-time
variational lower bound (ELBO) on the model likelihood
log pg(x) as well as considering arbitrary nonlinear infer-
ence processes. Training in continuous-time is known to
lead to tighter likelihood bounds (Kingma et al., 2021).

Implicit nonlinear Diffusions. Kim et al. (2022) intro-
duce a variational lower bound for implicit nonlinear infer-
ence processes by using a normalizing flow to map the data
to a latent space and then learning a DBGM in the latent
space with linear inference proceesses. Similarly, Vahdat
et al. (2021); Rombach et al. (2022) train DBGMs in the la-
tent space of variational autoencoders. However, the set of
processes considered in the latent space are still linear. In
this work, we consider a complementary approach: diffu-
sion processes that are explicitly nonlinear, without the use
of a latent space.

Stochastic Interpolants. Albergo & Vanden-Eijnden
(2022); Albergo et al. (2023) introduce an interpolant pro-
cess that is defined via independent samples Yo ~ Qqaa and
y1 ~ mg. The interpolant is defined as y; = I(¢,yo,y1)s
and the idea is to define noisy states as an interpolation
between samples from two endpoint distributions, as op-
posed to the approach of picking a stationary distribution
in DBGMs. However, when the interest is not generative
modeling, but to study physical, biological, or financial
systems that are explicitly known to follow a certain non-
linear stochastic differential equation (SDE), it may be chal-
lenging to find the endpoint distribution y; and interpolant
I such that y, is distributed according to solutions of the
given SDE under the given initial conditions yy.

Bartosh et al. (2024) introduce neural flow diffusion mod-
els. They define an inference process y; using a learnable
transformation y; = Fy(e,t, x), where ¢ ~ N(0, 1) and
the transformation F}, is invertible with respect to ; these
transformations are shown to improve likelihoods on im-
age modeling tasks. However, if the object of interest is the
score of a given SDE, finding the corresponding invertible
transformation F, is challenging in general.

2. Background and Setup

Training generative models with diffusions or score estima-
tion starts with defining an inference process y, which is
of the form:

dy: = f(ys, t)dt + g(t)dwy,

where yo ~ qaaa and f, g are chosen such that ¢(yr) ~ g
where 7y is the model prior. We then define a generative

tel0,7] (1)
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process z; with the model drift and diffusion co-efficient
tied to the inference process:

dz, = [ggT59 — f] (24, T — t)dt + g(T — t)dwy, (2)

where sy : R? — RY is the score network and integra-
tion is in the forward direction (Huang et al., 2021; Singhal
et al., 2023).

Training the score network sy with maximum likelihood
estimation is computationally expensive as it requires es-
timating the model likelihood logpg(zr = x), which
would require solving a high-dimensional partial differen-
tial equation. Song & Ermon (2020); Huang et al. (2021);
Kingma et al. (2021) instead derive a variational lower
bound, called the ISM ELBO:

logpe(z) > E [logme(yr)] + 3)

q(yr | =)
T 1 9 T
E [—f Sg — Vy, - (99 se—f}dt
/0 LE [ gl =V )

where ||x||, = x"Ax for a positive semi-definite ma-
trix A. Estimating the ISM ELBO requires computing the
divergence of the score network sg, an memory intensive
computation. For computational feasibility, the Hutchin-
son trace estimator Hutchinson (1989) is used to estimate
the divergence V - sg, leading to noisy gradients and expen-
sive forward and backward passes.

Denoising Score Matching. In practice, the ISM ELBO
is not used for training, instead the DSM ELBO (Vincent,
2011; Song & Ermon, 2020; Huang et al., 2021) is used:

log po(z) > (E logmo(yr)] + “4)

q(yr | =)

[ B [Tt =l sy + S lsdl
“f—=|se —s =|Is
0 a(yt|=) vt 2 ? “eg™ T g 174 legT

where s, is the score of the transition kernel of the infer-
ence process, sq(t,y:) = Vy,logq(y; | ). To train a
diffusion model with the DSM objective requires the fol-
lowing:

(D1) Samples from the transition kernel ¢(y; | x)
(D2) The score of the transition kernel, Vy, log ¢(y: | )

In Singhal et al. (2023), the authors automate derivations
for both D1 and D2 for linear processes, including for pro-
cesses with auxiliary variables, such that the user is only
required to specify the linear functions f(y,t), g(t).

However, no such automations exist for DSM training with
nonlinear inference processes, as estimating the transi-
tion score for nonlinear processes requires solving high-
dimensional partial differential equation (a version of the
Fokker-Planck equation, see Lai et al. (2023)) for every for-
ward pass, infeasible in high-dimensions.

Assumptions. We assume that the diffusion coefficient
g is a function of ¢ only, which can be either integrated
on intervals [s, t] analytically or numerically. We also as-
sume that the drift f, the diffusion coefficient g and the
initial condition qqu, Satisfy smoothness and integrability
assumptions in appendix D, these assumptions guarantee
that q(y+), q(y+ | ys) exist and are smooth and unique.

3. Automated DSM training for nonlinear
diffusions

The approach we will take to make DSM tractable for non-

linear processes is to first derive a version of DSM that

makes use of transitions ¢(y; | ys), with s close to ¢, in-

stead of transitions ¢(y: | yo), and then showing how these

transitions can be approximated fairly generally.

Local DSM. Suppose we are given a nonlinear diffusion
process of the form eq. (1)

dy: = f(ys, t)dt + g(t)dwy

where the drift f is a function of y; and ¢. Both the 1SM
and the DSM ELBOSs are integrals of score matching terms:

‘CISM (33, t) = E
a(ys | )

1 2
E |5 ls0— Vy.loga(y: | )
aye | o) 12 Y " e

1 2
5 IsolEy + Vs, a7 s0 (31,1

Losm (xv t) =

1
~ 5 IV, logatyt | )], |

where Lpsy(x,t) = Ligu(x,t) (Huang et al., 2021; Song &
Ermon, 2020). Now, as computing ¢(y; | ) is compution-
ally infeasible for arbitrary nonlinear inference processes,
we show that we can use local transition kernels ¢(y: | ys),
where 0 < s < t instead of ¢(y: | yo = ), to define the
local-DSM objective,

1
Lipsu(z,t) = 5 llso — Vy, log q(yt | YS)Hng

q(ye,ys | x)
1 2
— 5 Iy loga(y: [y, |-

In lemma 1, we show that L1 _psu(x,t) = Ligu(z, ).

Lemma 1. Let q(ys | ), q(y: | ys) be the transition ker-
nels of the process defined in eq. (1). Forany 0 < s <t <
T, we have:

1
E { Isoll2g + Vy, 'QQTSH(Ytat):|
aly | z) [2

1 2
= B bl + Va0 ()
ayeys | ) [2

1 2
E |5 ls0 = Vy. logaly: | v.)l
a(yrys | z) L2 Y 9’
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1
— 5 ¥y, loga(ye | .)II3,~ |- 5)

where q(y¢,ys | ) = q(ye | ys)a(ys | ).

For a proof, see appendix A. Note that in eq. (5), while we
still require samples ys ~ ¢(y: | «), we only require the
score of the transition kernel ¢(y; | ys), where the choice
of s is up to the user.

For a given time ¢, we define a schedule s(t) as a function
which satisfies 0 < s(t) < t for all ¢ € (0,7]. Using
the schedule s(¢) and lemma 1 allows us to write the ELBO
using local increments ¢(y; | ys), instead of using the score
of the transition kernel q(y: | yo)-

Theorem 1. Let q(y: | ys) be the transition kernel of the
process in eq. (1) and s(t) be a schedule, which satisfies
0 < s(t) < tforallt € (0,T). Then for a model process
z defined in eq. (2), we can lower bound the model log-

likelihood as follows:
logpg(z) > E

ayr | =)

T
+/ E [v}’t'f(ytat)
0 q(yeys | @)

1 2
=5 lIso = Vy, loga(ye | ys)ll gy

[log mo (yr)]

1 2
+ 5 HVYt lOg Q(yt ‘ YS)||ggT dt (6)

where s = s(t) and q(y+,¥s | ) = q(y: | ys)a(ys | ) due
to the Markov property.

For a proof, see appendix A. Although, the local-DSM
ELBO holds for arbitrary pairs ¢, s, estimating the score of
the transition kernel ¢(y: | ys) where s > 0 is still not
feasible for nonlinear drifts.

In the next section, we show how the transition kernel
q(y: | ys) is well approximated using local linearization
techniques.

Local Linearization. The idea is to define a locally lin-
ear diffusion process on the interval (s, T] with a linearized
drift f, using an operator 7, such that the function 7 f
is a linear in y;,t. Since the process is linear, the tran-
sition kernel g(y: | ys) is Gaussian with mean and co-
variance characterized by solutions to ordinary differential
equations (ODEs) (Siarkkd & Solin, 2019).

Suppose we are given a sample y at time s, then for ¢ > s
we define a locally linear diffusion process

dy: = (Tof) (ye, t)dt + g(t)dwy, t € (s, T].  (7)

We have several choices for the operator T, (Ozaki, 1993;
1992), see section 9.3 in Sérkki & Solin (2019) for exam-
ples. In this work, we study two examples of the opera-
tor 7Ty, first Ty, s which is a first-order Taylor expansion

of the drift drift f(y,t) around (ys, s) and second Ty, ¢
a first-order Taylor expansion around (ys,t). For ease of
exposition, we discuss the first operator:

(7;’5:5«]0) (ytat> = f<YSa 5) + v8f<YSa 5)(t - 5)
+Vy. f(ys,8) (ye — ¥s)
= (fe) + Vel (v 8)(t = ) + Vy. (yer 5y )

+ Vy, f(¥s, 8)yt
=c + Avy &)

®)

The main idea is that the drift of the locally linear pro-
cess in eq. (7) can be expressed as an affine function
(Tsf)(ys,t) = c+Asys, where c; € R%and A; € R4¥9,
For processes with affine drifts and spatially invariant dif-
fusion coefficient (g(¢t,y) = ¢g(t)), the transition kernel
q(yt | ys) is Gaussian (see section 6.1 in Sirkkd & Solin
(2019)), therefore we only need to compute the mean and
covariance of the locally linear process.

Next, we present how to compute the mean and covariance
and then show how we can apply these ideas to the locally-
linear approximations of nonlinear drifts. We provide all
derivations in appendix C including those for the second
Taylor expansion around (y, ¢). In this expansion, the ma-
trix A is a function of time ¢.

Mean and Covariance Equations. For linear processes
with drift f(y¢,t) = ¢; + Ay, and diffusion co-efficient
g(t), the mean and covariance are solutions to the following
ODES:

d

i Mtls = Ct + Aymy, (10)
d

ZiPts = APy + Py Al 997 (1) (D)

where mg|; =y and P, = 0. The solutions to egs. (10)
and (11) can be expressed as integrals:

t t
my|, = exp {/ ATdT:| Vs +/ exp[A;_;]c dr (12)

¢
Pt‘sz/ exp|As_;]gg " (1) exp[A,_ ]dT (13)

See appendix C for derivations. Both the mean and covari-
ance ODE solutions require integrating matrix exponentials,
which are not amenable to easy manipulation and require
specific derivations for each inference process, for instance
see pages 50-54 in Dockhorn et al. (2021).

In the next section, for any choice of the drift f and dif-
fusion coefficient g, we derive a solution to the mean ODE
in eq. (10) and the covariance ODE, using matrix exponen-
tials, for the Taylor expansion operator around (y, s) that
only involves integrating the diffusion co-efficient g.
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Algorithm 1 Sampling and score estimation

Input: Inference process ¢, time ¢, scheduler s(¢), and
data x

Output: Samples ¢(y:,ys | =) and score estimate
Vy. loga(y: | ys)

Sample y, by numerically integrating eq. (1)

Compute my s, 0y|5, solutions to eqs. (10) and (11) re-
spectively.

Sample ¢ ~ N(0, I;) and then let:

yi=my |+ o(t]s)e
Vy, logqly: | ys) = =0y ¢

Return: y,,y, and score estimate Vy, log g(y: | ys)

Mean and Covariance Estimation. Singhal et al. (2023)
use a matrix factorization technique (see section 6.2 in
Sarkkd & Solin (2019)) to automate solving differential
equations like in eqs. (10) and (11) using matrix exponen-
tials.

The idea is that equations of the form eq. (11) can be solved
using the matrix factorization Py, = C/H, L where

C,;, H,; evolve as follows:
T
99 () | (Ct

()= (6
4iH, 0

which can be solved by matrix factorization and scalar in-
tegration of A, and gg,| on the interval [s, t]:

() oo (50 20 0) o

where [A, ]! = f: A dr. Since A, is defined to be ho-
mogeneous, we do not have to integrate A, while g can be
time in-homogeneous.

We can solve the mean ODE in eq. (10) for the Tay-
lor expansion around (y,,s). The matrix A is time-
homogeneous and the function c can be separated into a
time-varying and time-homogeneous part, ¢; = ¢1 + cat.
We can solve this affine ODE exactly:

t t
my |, = exp {/ ATd’T':| Vs +/ exp[A;_;]c dr
m, |, = exp((t — 5)A) + (exp((t — 5)A) — )A ey
+exp((t —s)A) [sA™ + A7%] ¢
—[tAT + A7
For complete derivations, see appendix C.1.

Now, given a sample y at time s, we can sample from the
locally linear process q(y: | ys) as follows:

yt:mt|s+gt\55 (16)

Sampling and score estimation using Local DSM

Inference Process Local Linear Process
dy, = f(ye. t)dt + g(t)dw, dy, = Tof(ye, t)dt + g(t)dw,

V ‘: .
® L ®

Data Yo Ys Yyt YT Noise

i\

Sample: y; = p(t | ys,s) +o(t|s)e

Score: Vy, logq(y: | ys) = —0 " (t]s)e

Figure 1: Training with Automated DSM: Given a nonlin-
ear inference process ¢ and a time ¢ with sample yo = =,
we use a numerical sampler till time s(¢) and then use the
locally linear process for sampling y; | ys and estimating
the transition score.

where ¢ ~ N(0,I;) and 0|5 1s the matrix square root of
Py, and Ut_‘sl is the inverse of the matrix square root, sim-
ilar to the transition score computation defined for multi-
variate diffusion model (MDM) processes in Singhal et al.
(2023). We can estimate the score of the transition kernel

q(y: | ys) at a sample from Equation (16) as

Vy, logqly: | ys) = —0;‘515. (17)
Algorithms. Making use of the local linearization and
the automated mean and covariance derivations, we pro-
vide algorithms for automated training with nonlinear in-
ference processes called automated DSM. In Algorithm 1
we show how to sample from ¢(y; | ys) and computing its
transition score. Finally, in algorithm 2, we present the au-
tomated DSM algorithm, where for a given score network
sp and sample x, we return an estimate of the local-DSM
ELBO. See fig. 1 for an overview of the local DSM training
pipeline.

Now, despite having access to a tractable score approxima-
tion, we note that a first-order Taylor approximation intro-
duces errors in the estimate of the score, specifically when
the gap between s, ¢ is large. In the next section, we discuss
methods to control the approximation error, particularly by
tailoring a schedule to control the Taylor approximation er-
rOor.

Controlling the Taylor Error with Scheduled Pairs.

Suppose y; is the variance-preserving stochastic differen-
tial equation (VPSDE) process (Song et al., 2020b):

1
dy; = _§ﬂtyt + / Brdw, (18)

Then the mean and covariance are:

g, =exp (<3150 ) v P =1 (<[31).
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Algorithm 2 Automated DSM: estimating local-DSM ELBO

Input: Inference process ¢, model prior 7y, score net-
work architecture sy (y¢, t), scheduler s(t), and data
Return: Differentiable Local DSM ELBO estimate
Sample ¢ ~ Uniform|0, 7]

Use algorithm 1 to get samples ¢(y;,ys | ) and score
estimate Vy log g(y+ | ys)

Compute

1 N
£(2,60) = 5 lIso — Ty loglye | v+

1 _
=5 IVy logaly | ylZ,r = V- fyt)

Sample yr by numerical integration.
Output: —T'L + log my(yT)

where [3], = [ : B-dr. The difference between the distri-
butions ¢(y:), q(ys) is therefore controlled by the integral
[3-]%. The gap can be made large or small depending on the
values taken by f; in [s, t] not on the length, of the inter-
val. For instance, if 8; = 0.1 + 10¢, then the gap between
q(y+) and q(y+—) is larger for larger ¢ values. Therefore,
to control the change between ¢(y:) and ¢(ys), we pro-
pose the following heuristic: choose pairs (s,t) based on
the integrals of the form f; gg " (7)dr rather than a fixed
gap s(t) =t — ¢ in time for a constant value /.

To control the error introduced by local linearization, we
define scheduled pairs (s,t) so that for all Vt > ty, > 0,
for a given g(t) we define sy(¢) such that the integral
fst g%(7)dr is equal to a constant A and for 0 < t < tpin,
we set s)(t) = 0. We provide a derivation for sy (t) for
commonly used g functions in appendix F. In case, g can-
not be expressed as gg, = g?(¢)I; where g2(t) is a scalar,
we can select sy such that max; ; f; lgg " ]ij(T)dT = \.

In fig. 2, we estimate the mean of the local transition kernel
for the diffusion process:

dy, = B Vy log me(y.)dt + /20, dwy,

with 8; = 0.1 4 9.9t and model prior mp = 2 N(—1,3) +
iN(1,1).  We observe that the error in estimating
my,, Uf‘s is constant for the scheduler s (¢) with A = 0.05
versus exploding for s(t) =t — 0.05. Here we use = sam-
pled from the two-dimensional checkerboard distribution,
see fig. 3.

Bounds on the error from Taylor expansion. As noted
in the previous section, Taylor expansions of the drift can
introduce error. In lemma 2 in appendix E, we show that

—e— 5(t) —o— 5,(t)

2 0.15-
w
c
ks
® -
E 0.10
k]
w
S 0.05 -
(]
=

0.00 T T r r

0.2 0.4 0.6 0.8

t

Figure 2: Local mean m,, Estimation Error: we com-
pare the estimation error when using the schedule s) (%)
with versus s(t) = t—0.05. We note that using s(t) instead
of s(t) leads to higher error.

the approximation error between the true marginal den-
sity ¢(y:) and the locally linear approximation g(y;) =
Eq(y.)[@(y¢ | ¥s)] can be controlled by the difference of
the drifts f and the Taylor approximation 7 f on the in-
terval [s(t), t] by upper bounding the KL-divergence. This
lemma controls the error between distributions of the ex-
act and approximate process in terms of the error from the
Taylor approximation.

3.1. Extensions

In this section, we present extensions of the local DSM
ELBO. First, we present a perceptually weighted version
of the local DSM ELBO, typically used for image-modeling.
Next, we present a version of the local DSM ELBO for use
in score modeling (Boffi & Vanden-Eijnden, 2023b;a; Lu
et al., 2023) in the sciences, where the object of interest is
the score of a nonlinear diffusion process and not maximiz-
ing the likelihood of a data distribution. The score of the
diffusion process is used to study properties of the process
such as the entropy, entropy production rate and the den-
sity itself (Otsubo et al., 2022; Boffi & Vanden-Eijnden,
2023b).

Perceptual Weighting. In practice, the DSM loss is of-
ten re-weighted to give uniform weight to each ¢ (Song &
Ermon, 2020; Ho et al., 2020). To apply this idea in our
case, we can observe that Vlog q(y; | ys) = —05516, pa-

rameterize the model as sy(y¢,t) = v~ 1(¢, s)ea(y¢, ) and
multiply the integrand in eq. (6) by Jfl o

2
Ot|s

’Y(t, S) 69(yt, t) —€

o3 5o — Vlogd(ys | yo)l%,r = \
(19)

where we choose vy so that oy,/v(t,s) ~ 1. In our
generative modeling experiments, we choose 72 (t,s) =

997"
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Data

Local DSM ISM

Figure 3: 1SM v local-DSM: Samples from a local-DSM
trained model in the middle panel, and samples from an
ISM trained model on the right panel. Both models were
trained for 20k gradient steps, however the local-DSM
trained model has better sample quality.

1 — exp(—2 fst Brdr) for inference processes where the
drift takes the form f(y,t) = B:h(y).

Score Modeling. For processes studied in statistical
physics, biology, etc, learning the score model is of primary
interest. In such instances, we can optimize the denoising
score matching term in local-DSM:

T
[ E sV dogatvi | y)lZ,edt @0
0 Ayeys | z)
using the automated derivations in this work.

4. Experiments

We test the local-DSM objective for training DBGMs on a
challenging low-dimensional example, CIFAR 10 and learn-
ing the score for coupled equilibrium and non-equilibrium
diffusion processes studied in (Boffi & Vanden-Eijnden,
2023b).

For all experiments, we chose the scheduler s (t) with A =
102, unless otherwise stated.

The integrand in the ELBO defined in eq. (6) is unbounded
at t = 0 and is numerically unstable for small values of
t. Therefore, we estimate the integral on an interval (3, T
where § = 1072, Truncating the ELBO biases the estimate.
Sohl-Dickstein et al. (2015); Song & Ermon (2019) use a
variational lower bound to derive a valid ELBO. We derive
a valid ELBO with truncation in appendix B and report bits-
per-dims (BPDs) using the valid ELBO.

For sampling from the forward process, we use an adaptive
solver (Lamba, 2003) in all experiments. For the genera-
tive modeling experiments we use the Taylor operator that
expands around (ys,t), while for the score modeling for
non-equilibrium stochastic dynamics we use the Taylor ex-
pansion around (ys, s).

For the generative modeling experiments, we use a
Langevin diffusion process with the model prior as its sta-

Figure 4: CIFAR10 samples from DBGMs trained using
nonlinear inference processes. Sample from the MOG
(top) and Logistic prior (bottom) DBGMS.

tionary distribution:

dy: = B(t)Vylogmo(ye)dt + \/2B8(t)dw,  (21)

with ,B(t) = Bo + t(ﬂl — ,30) and By = 0.1 and 3, = 10
and the approximation 7y, ;. We parameterize the score
model as sg(t,y:) = —yse(t,y:), where *yt2|s =1-

t . .
exp(—2 [, B(r)dr). For the science experiments, we pa-
rameterize sy as feedforward neural networks, see the ex-
periments for a description.

Local DSM vs ISM. In this experiment, we show that
using the local-DSM objective leads to faster convergence
compared to using the ISM objective on synthetic 2d.

As a low-dimensional example, we train the models on
the two-dimensional checkerboard density. We use a three
layer feed-forward network with width 256 and with the
ReLU activation (Nair & Hinton, 2010) as the £y model.
We train two models using the local-DSM and ISM ELBOs
with a Logistic distribution as 7y in eq. (21).

We train both models with a batch size of 1024 for 20, 000
gradient steps using the AdamW optimizer (Loshchilov &
Hutter, 2017). Figure 3 shows that using the local-DSM
ELBO leads to significantly faster convergence even on a
low-dimensional synthetic dataset.

Image Modeling with Non-Gaussian Priors. Next, we
train diffusion models on the CIFAR10 dataset, with a
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Langevin inference process using a non-Gaussian prior as
defined in eq. (21).

Prior mg  Objective ISM BPD
Logistic local-DSM ELBO < 3.568 + 0.07
Logistic local-DSM (PW) < 3.561 £ 0.09
Logistic 1SM ELBO <3.741 £ 0.09
MoG local-DSM ELBO < 3.496 £+ 0.11
MoG local-DSM (pW) < 3.503 4+ 0.151
MoG ISM ELBO <3.637£0.14

Table 1: BPDs on CIFAR-10: We compare models trained
using nonlinear inference processes via the ISM and the
local-DSM objectives, both the ELBO and the perceptually-
weighted (PW) versions. For the same amount of compute,
the local-DSM trained models achieve significantly better
BPDs. A lower BPD is better.

For the model prior, we choose (a) a mixture of Gaussians
(M0G) 7(y) = sN(—3%,3) + 3N (3, 3) and (b) a Lo-
gisitic distribution 7wy = %. Similar to the pre-
vious experiment, the score network is a U-Net from Ho
et al. (2020). We train using the perceptual weighted objec-
tive defined in eq. (19), the local-DSM and the I1SM ELBOSs.
For all models we use the noise parameterization for the

score model.

In table 1 we compare the bits-per-dim (BPDs, Van
Den Oord et al. (2016); Song et al. (2020b); Huang et al.
(2021)) of models trained using the local-DSM ELBO, per-
ceptual loss and the 1ISM ELBO. Table 1 shows that given the
same amount of compute, the local-DSM trained models get
better BPD upper-bounds. In fig. 4, we show samples gen-
erated using models trained with the perceptually-weighted
loss introduced in eq. (19) for the tailored scheduler s (¢).

Prior 7 ISM BPD | A | local-DSM BPD
Logistic 0.01 | <3.566 £0.097
Logistic | <3.568 £0.07 | 0.02 | <3.530 £0.084
Logistic 0.05 | <3.422 4+0.096
MoG 0.01 | <3.465 £+0.1242
MoG <3.496 +£0.11 | 0.02 | <3.434 £0.1419
MoG 0.05 | <3.354 +0.1879

Table 2: Increasing ) in the scheduled pair s)(¢). Us-
ing the scheduler sy (t) with varying values of A, we see
increasing the gap between y; and y, leads to a growing
gap between the unbiased 1SM objective and the local-DSM
objective.

Do the ISM and Local DSM ELBOs match? The local-
DSM objective makes use of two approximations, the local

transition score and numerical sampling, while the 1SM ob-
jective only requires numerical sampling. In table 2, we
show that using the constant scheduler s, for training and
parameterization leads to models where the unbiased 1SM
and local-DSM BPDs have similar estimates for smaller val-
ues of A, and the approximation error increases as A in-
creases.

Figure 5: Samples at ¢ € {1, 3,5}. Here we compare sam-
ples from the process defined in eq. (22) on the left panel,
and local-DSM and ISM trained model samples in the mid-
dle and right panels. The inference process and local-DSM
trained model samples are near identical. ~ We note that
ISM trained model samples quality did not match the in-
ference process’ samples and diverged, see fig. 7 for ISM
model samples.

Score Modeling for Non-Equilibrium Stochastic Dy-
namics. In this experiment, we study a nonlinear system
y = (x,v) T, described in Tailleur & Cates (2008); Boffi &
Vanden-Eijnden (2023b) as

dr = (—2® +v)dt, dv = —yvdt + \/2yDdw, (22)

fort € [0,T] and where v = 0.1,D = 1.0 and T = 5.0
with initial conditions zg,vg ~ N(0,1). The system of
equations described in eq. (22) does not have a stationary
distribution but does exhibit a non-equilibrium statistical
steady state (Boffi & Vanden-Eijnden, 2023b).

Figure 5 shows samples from the probability flow ODE
(ODE) (Song et al., 2020b):

1
v =Flyet) - 599T(t)80(yt,t), (23)
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at different times ¢ € {1,3,5}. The PF-ODE defined
in eq. (23) simulates the inference process in forward
time, such that goqe(y:) = ¢spe(y:) when the score
model sy matches the actual score of the inference SDE:

Vy log gspe (ye)-

We parameterize the score model sy as 3 layer feed-forward
network with width 256. Following Boffi & Vanden-
Eijnden (2023b), we enforce that the score model is anti-
symmetric sg(t,x,v) = sp(t, —x, —v) since the drift f is
anti-symmetric. We train both the local-DSM and ISM mod-
els for 200,000 gradient steps with a batch size of 1024.

Figure 5 compares samples from a local-DSM trained
model versus samples from the ISM trained model against
samples from the inference process defined in eq. (22).
The samples produced by the local-DSM trained model and
the inference process distribution are near identical, the
ISM trained model samples diverge, see fig. 7 for the ISM
samples. For a quantitative comparison, in fig. 9 in ap-
pendix G.1, we compare the maximum mean discrepancy
(MMD) distance (Smola et al., 2006) between the model
generated samples and the inference process’ samples. We
observe that the 1ISM model’s sample quality deteriorates
very rapidly compared to the sample quality of local DSM
trained models.

Score Modeling for Interacting Particle Systems.
In this experiment, following Boffi & Vanden-Eijnden
(2023b), we consider a system of N = 5 particles yﬁ” €
R? for t € [0, 10], which evolve as :

dy® = 4B(8, -y [y - 5| at 24
Yi Be —y:7) ||y Bt ) (24)
N
A G () 2 1.6 0|
+Nr2j:1(yt — i) exp —ﬁ‘yt -V H2 dt
+V2Ddw!”

where A = 10,7 = 0.5,a = 2,w = 1,D = 0.25,B =
D/R% v = 5,R = /yNr,3(t) = a(coswt,sin twt)
and y) ~ N(0,021,) with op = 0.5. We train with the
local DSM and 1SM objectives. We train both models with a
batch size of 1024 for 10, 000 gradient steps using AdamW.
We use a three-layer feedforward network with a hidden
size of 256.

In fig. 6, we plot the variance of the components of the first
particle ygl) for t € [0,10]. We plot the variance of the
samples generated using the process in eq. (24) as well as
samples from the PF-ODE for local DSM and ISM trained
models. In fig. 8 in appendix G.2, we plot the MMD (Smola
et al., 2006) of the local DSM and 1SM samples compared to
the diffusion process samples. Both comparison show that
the local DSM trained model samples are more faithful to
the diffusion process compared to the ISM trained model.

—— Local DSM SDE

Figure 6: Sample variance at ¢ € [0,10]. Here we plot
the variance of the individual components of the first par-
ticle ygl) simulated using the diffusion process defined in
eq. (24) (SDE) and the local DSM and ISM PF-ODE. We ob-
serve that the local DSM trained model is more faithful to

the ground truth compared to the ISM trained model.

S. Discussion

This work presents algorithms for training diffusion-based
generative modeling with nonlinear inference processes.
First, we introduce the local-DSM variational lower bound
that is amenable to approximations where computation can
be automated. We show how to build approximations using
locally linear processes and derive automated approaches
to compute the transition score function needed in the local-
DSM objective. To control the error introduced in the lo-
cally linear approximation, we design pairs (s(t),t) such
that the estimation error remains well-behaved for larger
values of ¢t. The experiments show that using the local-
DSM objective leads to faster training and has better sam-
ple quality compared to ISM, for generative modeling as
well as score estimation for physical systems. This work
advances the computational frontier for working with non-
linear inference processes.

Impact Statement

Diffusion models can be used to generate high-resolution
realistic images, we along with other researchers in the field
take seriously that we should monitor the data used to train
these models along with what they are used for.
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A. Local DSM

Suppose we have an inference diffusion process of the form:
dy: = f(ye)dt + g(t)dw, (25)
where yg ~ ¢qata and the model process is defined as:
dzy = g9 (T — t)sg(zy, T —t) — f(zy, T — t)]dt + g(T — t)dw, (26)

where zg ~ my. Huang et al. (2021); Song & Ermon (2020) derive a variational lower bound on the model log-likelihood
log pe():

T
1
logpe(z) > E logwe(yT)+/ E {—*Hsa(ytat)”?]qT(t)_vyt'(ggT(t)SG(tht)_f(}’tvt))dt} 27)
a(yr | @) 0o aylay b 2 v

Next, we prove lemma 1, restated here for convenience. Lemma 1 converts the ISM ELBO into the DSM ELBO using
transition kernels q(y; | ys)-

Lemma. Let q(ys | x),q(y: | ys) be the transition kernels of the process defined in eq. (1). Forany 0 < s <t < T, we
have:

1
E 5 [lsoetll, +Vy 99" so(ys, )]
a(ye | 2)2

1 2 1 2
= = t) — V1 . - = 1 .
WE |5 lIso(ye,t) = Vy logaly: | ¥o)ll2,7 = 5 ¥y loga(ye | ¥l

where q(yt,ys | ©) = q(y¢ | ys)a(ys | @).

Proof. Let F(z,t) be defined as:

1
Flt)= & [||se||3gT+vy-gg%9<yt,t>} 28)
aly: | ) [2

Then note that we can use the Markov property (¢(y:,ys | ) = q(y: | ¥s)q(ys | x)) as follows:

1 1
o [2 Isoll 2, + Vy 'QQTSB(Ytat)] = .E {2 Isoll5q7 + Vy '99T89(yt7t)] (29)
1
- 5 [ e el en]| oo
a(ys | ©) La(ye | vs
Next, we convert the ISM objective to the DSM objective as follows:
2
E |llsoll,e] (31)
a(ye |ys)
T
= JE [l1s0 = Vylogaly: | )2, = 9y logalye [ v:) 2,0 +2(997s0) ' Vylogaly |y.)]  (32)
qyt | ¥s

The last term Ey(y, | y.) [(ggTs(;)T Vy logq(y: | ys)] is equal to By, | y.)[—Vy - 99" so] using integration by parts, such
that we get:

E [||59||_f,gr] (33)

a(ye | ys)

= E., [||89 — Vyloga(y: | yo)l2,w = IVyloga(ye | o2+ —2Vy - 99" s (34)
qYt | ¥s

Combining the last equation with eq. (30), the divergence term gets cancelled out:

1
K [ lsoll2,7 + Vy - 97 so (v t)] (35)
alye | ys) L2
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1 1
= WE {2 Iso = Vyloga(y: | ys)ll5,r — 5 IVyloga(y: | Y2, = Vy 99 s0+Vy- g9 se|  (36)
QY | Ys ) o

1 9 1 )
= q(y}El o) [2 so — Vyloga(ye | ys)ll,,w — 3 [Vy log q(y: | ys)ggT] 37)

Finally, we get:

1
B[l + ¥y (o so(vi,0) |
q(ye | =)

1 2 2
= — -V, 1 — |V 1 38
B Lmﬂ?m 5 Is0 = Ty logave vy~ 19, ogq(yt|ys>|ggTH (%)
= E |lso - Vylogaly: |yl - : IV log alye | ¥4 2, | (39)
a(ye:ys | @) 2
O

Now, using lemma 1, we derive the local DSM ELBO for a schedule s(t) which satisfies 0 < s(¢) < ¢ forall t € (0,T).

Theorem. Let q(y; | ys) be the transition kernel of the process in eq. (1) and s(t) be a schedule, satisfying 0 < s(t) < t
forallt € (0, T). Then for a model process z; defined in eq. (2), we can lower bound the model log-likelihood as follows:

logpe(z) > E  [logma(yr)]
q(yr | z)

T
1 1
+/ E | =5llse = VylogaWe [y)l5,r + 5 IVyloga(ve | y)l5,r +Vy - fdt]  @0)
0 a(ye,ys | =)

where s = s(t) and q(y+,ys | ©) = q(y+ | ys)q(ys | ©) due to the Markov property.

Proof. Using the Markov property, the integrand in the ISM ELBO can be written as:

T T
1 1
/ E | =5 lsoll2ye = Vy - (99750 — ] = / E =g lsollyr = Yy (o750 — D]
0 q 2 0 a(ye,ys | ») 2

ye | @)
T
0 q(ys| =)

Using lemma 1, which shows that the 1SM integrand is equal to the local DSM integrand in eq. (39), we can convert the ISM
ELBO as follows::

5 sl =V (aa"s0 - 1) dt]

q(ye | ys)

T
1
B fogmolyr)l+ [ B [= 5l -y (990~ S (1)
q(yr | z) 0 ayelz)l 2
B logmo(yrll+ | (5 l1s6 — Vylogatye [ ¥2)IE,- 5 Iy loga(ye | vo)l2,- + ¥y - /]
= og o YT 5 11Se — 0gq\yt | ¥Ys -3 0gq Yyt |Ys :
ayr | 2) 0 alyeye ) L2 Y ' g7 21T ggT T 1Y

Therefore, we get:

T
1
logpa() > E [logmo(yr)]+ [ — 5 lso = Vylogaly [ y)I2,r
0

q(yr | =) q(ye,ys | @) [

1
+ 5 IVyloga(y: [ ys)llp,r + Vy - ft (42)

13



Automated Denoising Score Matching for Nonlinear Diffusions

B. Valid ELBO with Truncation

For numerical stability, the integral term in the ELBO is truncated below by ¢, = J. This leads to a biased estimate.
Sohl-Dickstein et al. (2015); Song & Ermon (2020) provide a valid ELBO by using a variational lower bound:

logpg(yo) > E

[lo po(yo | vs)
q(ys | yo)

I , 43
ploly) ogm(ya)} 3)

where the choice of the likelihood log q(ys | yo) is up to the user. The term Ey(y, | y,) log po(ys) can be lower bounded
similar to Song & Ermon (2020):

T

1

E [logpy(ys)] > E 1og7re(yT)+/ E [— = lIsollyr = Vy - (99" 56 — f)dt (44)
a(ys | yo) a(yr | 2) 5 aly | =) 2

see theorem 6 in Song & Ermon (2020). Then using lemma 1, we note that:

T
1
B fogmlyn)+ [ B[~ lsolyr V- (oo - it
s aly =) 2

ayr | =) vyl

= E [logm(yr)] (45)

oy | )

T
1 2 1 2
+/5 q(yhli . [— 5 llse = Vyloga(ye | ys)llgyr + 5 IVyloga(ye [ ys)llgy + Vy - fdt} (46)

Now, we choose ¢(ys | yo) = N(ys | Ayo + ¢, 2(4]0)) and covariance of the locally linear process on the interval [0, d].
Next, similar to Song & Ermon (2020) we choose pg(yo | ¥s) to be Gaussian with mean and covariance derived using
Tweedie’s formula (Efron, 2011). py = E[yo | ys]and Xy = Var[yy | ys], which are derived below.

First, we derive the conditional variance:

ys=Ayo+ e+ 5735 | 0)z,  where z ~ N (0. I) @7
yo=A"! (Y5 —c—S72(5 | O)Z)) “%)
Var(yo | ys) = A~ P(3 ] 0)A~T @

then note that the conditional mean can be derived using Tweedie’s formula as follows: let 1 be the natural parameter of
the Gaussian distribution N (ys | Ayo + ¢, X(8|0)), then we the fact that (Efron, 2011)

E[n|ys] = s6(ys,6) + S (0 | 0)ys (50)

and the definition of the natural parameter n, 7 = P(5 | 0)~!(Ayo + c) to get

Elyo | ys] = A"H(Z(S]0) E[n | y5] — ¢) (51)
= AN (P(0]0)s6(ys,0) +ys —c) (52)
= A" (ys —¢) + AT P(5 | 0)sp(ys,9) (53)

See page 26-27 in Singhal et al. (2023) for a full derivation.

C. Local Linearization
Suppose we have diffusions of the form

dy: = f(ye, t)dt + g(t)dw;
where f is a non-linear function of y. For every any s, we linearize f around the sample y such that

14
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where 7y is a operator that produces a linear approximation of f, such that Ty, f = c(t) + A(t)y:. Since the drift is affine,
eq. (82) is a linear diffusion process with a Gaussian transition kernel (see eq 6.5 in Siarkkd & Solin (2019)).

To derive the mean and covariance of the process y; we use Ito’s lemma (see theorem 4.2 in (Sdrkkd & Solin, 2019)): for
a scalar function F'(¢,y:), we have

d
1
dF = 0y Fdt +dy " VyF + > 505,05, Fdy:dy; (55)
i,j=1
N
= O, Fdt + fTVyFdt + g VyFdw, + Y 505.05,F (99" )i 5t (56)
i,j=1

= |0, F + fTVyF + Z 3y1(9ij(gg )i | dt + +g" VyFdw, (57)

1,]= 1

where we use the fact that dt x dt = 0, dt x dw; = 0. Next, we take the expectation

I Y o 90" Wiso 0, F |y, | at+E[o0) 0 Fiw |y 8)

4,J=1
d .
ZEF@) |y =E | OF + [TV, F + Z 99 ( 99 Wiy o Fly, (59)
4,j=1
now, for computing the mean and covariance we use Ito’s lemma on the functions: F(t,y) = [y:); for the mean and

F, ;(t,y) = [ydilytl; —E[yt | ysli E[y: | ys)j forall 1 <4, j < d and therefore we can get the evolution of the mean and
covariance ODES.

The mean m(t|s) = E[y: | ¥s] and covariance P(t|s) = E[(y: — m(t[s))(y: — m(t|s)) T | ¥s] obey the following ODEs
(see eq 5.50-5.51 in Sérkkd & Solin (2019)):

Sm(t]$) = EITS(3,0)] 3.
= c{t) + AW E[: | 3.
=c(t) + A(t)m(t | s) (60)

Now, to derive the covariance, we first note that for F; ; (¢, ¥) = [yi]:[yi]; — El¥: | ¥sli E[¥e | ¥s],, we have:

J

=E[0:F;; +dy. VF,;(t,y:) | ys] + E Zgg é)’Ja Oy, Fij|ys
4,j=1

=E[0,Fij +dy, VF, ;(t,y:) | ys| + 99" (t);
= —m;(t|s)0m;(t|s) —m;(t]s)dem(t|s)

+ E[T flilyd; | vs] + EUT Fjlyedi | vl + 99" (t):s
=—m;(t|s)E[[Tflj | ys] —m;(t|s)E[Tfli|ys]

FE(T flilyds |yl + EUT flilyeli | vl + 997 ()i

E([T fli(ye —m(t]s)); | ys] + E T Fl;(ye — m(tls))i | ys] + 99" ()i

4
dt

U5 | yelilyel; — B5e | yoli Ee | yal;

E [E,j (tv Yt) | }’g] dt

therefore, we get

jt (t]s) =ETfFe.t)(Fe —m(tls) " | 9s] +EFe —m(t|s)Tf(52,1)" | 9] + Elgg" (t) | 3] (61)

15
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Now, using the fact that E[y; — m(¢

s) | ¥s] =0, we get:

E[Tf(e,t) (e —m(t]s) " | §s] = E [(c(t) ye) (Fe —m(tls) " | 3]
= Elc(t )( [Yt |9 "+ AR E [5(5: — m(t]s)) " | 5]
=0+ AME [S’t(S’t —m(t|s))" [¥s], using B[y —m(t]s) | ¥:] =0
= AW E[(F: — m(t]$))(Fe — m(tls)) " | 3s] + A{O)ym(t|s) E[ge —ml(t]s) | 5]
= A( VE[(F: — m(t]s)) (3 — m(t]s)) " | 3]

and similarly, we get E | (§: — m(t|s)) (c(t) + AWMy |ys| = P(t] s)A(t)T. Therefore, eq. (61) becomes:

S P(tls) = 997 (1) + A(t)P(t]s) + P(t]s)A(t) " (62)

To get the mean and the covariance for the process conditioned on ¥, with s = s, we solve:

d
(i) = (t) + Aymit]s) (63)

d
5 (ts) = 99" (t) + A(t)P(t]s) + P(t|s)A(t) " (64)
where m(s|s) =y, and P(s|s) = 0.

In the next section, we derive the solutions to the ODESs:

* In section appendix C.1, we consider the first-order Taylor expansion Ty, s f (¢, y) as the operator 7. Here the matrix
A is not a function of time ¢.

* In section appendix C.2, we consider the first-order Taylor expansion 7y, . f(t, y:), which provides a more accurate
approximation. Here we assume that the drift takes the forms:

fiy,t) = (fiy1,t),-- .. fa(ya, t)) € R (65)

this causes the inference process y,’s coordinates to be independent given yo, that is (y;); L (y:); | ys for all i # j.

C.1. Mean And Covariance for Taylor expansion around f(y, s)
Suppose we have diffusions of the form

dy: = f(ye, t)dt + g(t)dw,

where f is a non-linear function of y. Then note that we can simulate the density for any interval [s, T'], we linearize f
around y, s such that

dyt = Es,sf(ytat)dt + g(t)dwt, t € [S,T] (66)

where 7y, is a operator that produces a linear approximation of f, for instance, we can use the a first-order Taylor approx-
imation as follows:

%S,Sf(ytvt) = f(YS> 3) + vyf(YSvt)(yt - YS) + atf(}’s, 3)@ - S)
= (f(YS7 5) - vyf(YS7 S)YS + atf(YSa 5)(t - 5)) + vyf(YSa S)yt
=: (c1 + cat) + Ay
=:c(t) + Ay,

where

= f(y878) - vyf(yS’s) - atf(y878)s

16



Automated Denoising Score Matching for Nonlinear Diffusions

® C2 = 8tf(y875)
* A = vyf(ysa S)

and since, eq. (67) is an affine process, the transition kernel is Gaussian (see eq 6.5 in Sarkkd & Solin (2019)). To sample
and compute the score of a Gaussian transition kernel requires solving the mean and covariance ODEs.

For the mean, we can solve:

d
Zom(tls) = clt) + Am(tls),  m(sls) =y,

which we using the following facts:

t
exp(tA)/ exp(—TA)crdr = exp(tA)[—exp(—TA) A" e (67)
= exp(tA)[exp(—sA) A~ — exp(—tA)A ey (68)
= [exp((t — s)A)A™! —exp((t —t)A) A ]ey (69)
= [exp((t — s)A)A™ — A7 )¢y (70)
= [exp((t — 5)4) = T]A" ey (71)
and using integration by parts and the above integral we get:
/eXp(fTA)TdT = [T/eXp(fTA) — / %T / exp(—7A)] (72)
= |:—T exp(—TA)A™ — / - exp(—TA)A_l} (73)
=[-7 exp(—TA)A™ — exp(—TA)A_Q] (74)

Now, using these identities and the general solution to affine linear ODEs (see eq 2.31 in Séirkkd & Solin (2019)) we get
that m(t|s) evolves as

mitls) = exp((t ~ 415 + [ exp( 7)) er)ir 5)
=exp((t — s)A)ys + exp(tA) / t exp (—TA) ¢(T)dr (76)
= exp((t — s)A)ys + exp(tA) L t exp (—TA) (¢1 + caT)dT (77)
— exp((t — $)A)ys + exp(tA) / exp (1 A) exdr + exp(tA) / " exp (L1 A) cyrdr (78)
= exp((t — 5)A)ys + (exp((t — s)A) — I)A™'¢c; + exp(tA) / t exp (—TA) cordr (79)

Now, to integrate the last term, we note that using integration by parts we get on the integrand exp(—7A)T we get:
t
/ exp (—7A) 7dT = [sexp(—sA)A™" + exp(—sA)A™?] — [texp(—tA)A™" + exp(—tA)A~?]
t
exp(tA) / exp (—7A) 7dr = [sexp((t — s)A)A™" +exp((t — s)A)A?] — tA™' + A77]
=exp((t — s)A) [sA+ A7 - tA™" + 477
Finally, the mean:
m(t|s) = exp((t — 8)A)ys + (exp((t — s)A) — ) A" ey
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+exp((t — s)A) [SA*1 + A’Q] co — [tA*l + A*Q] Cs

Following Sérkkd & Solin (2019); Singhal et al. (2023), we can solve the covariance using the matrix factorization trick.
Let P(t|s) = Ct|SH;‘Sl, then Cy5, Hys evolve as follows:

Cys ft A(r)dr ft gg ' (T)dr (C’())

_ X X 80
(Hts> P < 0 — [P AT (r)dr ) \Ho (80)
where Cy = 0and Hy = 1.

C.2. Mean And Covariance for Taylor expansion around f(ys,t)
Suppose we have a diffusion process of the form

dy: = f(ye, t)dt + g(t)dw,

where f is a non-linear function of y.

Here we also assume that Vy fi(y,t) = 0 for all 4, j where f = (f1,..., fa) € R%, which implies that conditional on y,
for s € [0, t) the inference process obeys

d

q(ye | ys) = [T allydi | ysl) (81)

=1

And since the inference process coordinates [y,]; and [y,]; for all ¢ # j are independent conditional on y,, we treat m, P
as scalar values. We also note that the matrix A is a function of ¢, unlike the previous section.

Then, similar to appendix C.1, to simulate the density for any interval [s, T], we linearize f around ys, s by defining a
linear process:

dyt = %S,Sf(yh t)dt + g(t)dwt7 te [57 T] (82)

where 7y, is a operator that produces a linear approximation of f, for instance, we can use the a first-order Taylor approx-
imation as follows:

7;’5,tf<ytat) = f(YS7t) + vyf(y&t)(yt - ys)
= (f(ys,t) — vyf(YSvt)YS) + vyf(}’s, 8)Yi
=:c(t) + AQt)y:

here both ¢, A are a function of ¢. As shown earlier, the transition kernel is Gaussian (see eq 6.5 in Sirkki & Solin (2019)).
To sample and compute the score of a Gaussian transition kernel requires solving the mean and covariance ODEs.

To solve for P(t|s) € R,m(t|s) € R, we make use of the matrix exponential technique from eq 6.36-39 in Sirkkid &
Solin (2019); Singhal et al. (2023). For solving the covariance matrix ODE, we let P(t | s) = CysH t_‘ 51 where C, H evolve

as follows:
d (Cys\ _ [Alt) gg " Cy
i i) = (0 ) () >

where Cy = 0 and Hy = I. Now, since C, H evolve linearly, we can solve them using matrix exponentials.

()= (0" 2t )

d C't|s _ A(t) ggT Cs
a () = (0 ) (o )
P(t|s) = CysHy (86)
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Mean ODE solution. To solve the mean ODE:
d
Som(ils) = e(t) + A)m(t]s)

and since A(t) is a scalar, A = AT, therefore we can use the same matrix exponential technique as we used for the
covariance matrix. Let m(t|s) = DHSR where D, R evolve as:

tls?
d (D, sA[) et Dy
il — . 7
Here, the factorization m(t|s) = Dt|th_|sl holds as:
d d d
e DuoRy = Ry = Dyje + Dija By (88)
(1 -1d
= Rt|51 <2A(t)Dt|g + C(t)RtS> + Dt‘stls %Rtls (89)
-1 -1
=R, ts ( A(t) Dy + c(t )Rts> + Dt\sRQ 7A(t)Rt|s (90)
t|s
= 1A YD R s tet))+D LlA(t) 91)
—\2 tls ¢ tlth‘s 2
1 1
1 1
= SA(t )Dyjs Ry, +e(t) + §Dt‘th_|81A(t) 93)
= A(t)Dt‘sR + c(t) 94
= A(t)m(t]s) + c(t) (95)

Now, we can solve for R, P; in closed-form as

() = e ( fi _éfjjch(t)> (%) ©6)

where D, =y, and R; = I.

D. Regularity assumptions
In this section, we list a set of assumptions on f, g and g4, Which we assume throughout the paper:

(A1) quaw(y:) is twice differentiable for all ¢, ggu € C?(R?).
(A2) The drift f(¢,y) and diffusion coefficient g(t) satisfy:
- f€C?*R%R,),and f is Lipschitz in the y argument
— f, g are integrable with respect to qga

Both A1-A2 imply that ¢(y:) exists and ¢(y:) is twice differentiable, see Haussmann & Pardoux (1986).

E. Error Estimate
In this section we prove that for any ¢ € (0, T'], the gap between the true marginal ¢(y;) and the locally linear approximation
q(yt) = Eqy)[@(y+ | ys)] is upper bounded by the difference of the drifts between the interval (s(t),1).

Lemma 2. Fort € (0,T), we assume that gg* (t) = g*(t)La, where g*(t) is a scalar, and f, g, Quua satisfy smoothness
assumptions in appendix D. For any t € (0,T), we have:

KL (q(y:) | Glys)) < / oo

t

[2; 1£(rys) = Tof by )I2] ar
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where Ty is the linearization operator and q(y | ys) is the exact transition kernel.
The main idea behind the proof is the following:

* Due to Jensen’s inequality and convexity of f-divergences (see theorem 4.1 in Wu (2017)), we have:

KL (q(yt), q(ye)) < q(IE KL (q(y: | ys),a(ye | ¥s))

* Next, we upper bound KL (¢(y: | ¥s), ¢(y+ | ys)) using proposition 1.
Proposition 1 (Lemma 2.21 in Albergo et al. (2023)). Suppose q, q evolve as follows:

diqg+V - (Fg) =0
&G+ V- (Fg) =0,

where F' = f — % gV log q, then the KL divergence between q, q can be expressed as:

KL Gty |y 1) = [ [ (sa=s0) (F = F)atws v

which implies

KL(q(ytIys)ﬁ(ytlys))ﬁ/quy { Hf ﬂ”

Proof. KL divergence evolves as:

d d
*KL SaA S l Ad
o (a(yelys):@(ye lys)) = dt/og qdy

d
= q10quy+f/q10quy
f/at(qloqu)der/Bt(qlong)dy
= —/(qat log  + log §0q) der/(th log ¢ + log q0:q) dy
- (gam log aatq> ay + [ (@ +1080010) dy
q,~ q
= —/ (qﬁtqﬂog qatQ) dy+/(8tq) dy
q,~ q : _
f/éatqder/log aﬁtqdy, since 3t/qdyf0
q S q
- 49 Fady + [1o52v - (-Foay

:/V(%)T(ﬁfi)dy—/(Vlogq—Vlogf?)T(Fq)dy

-/ (ZA)é)v(g)T@a)dy— [ (Vo8- Vioga) (Fajay

q

= [(&)vios(2) Faray - [ (Viosa-Vioga) (Fiay

~ T
=/(Vlogq—ngfi)Tquy—/(Vlogq—Vlogfi) (Fq)dy
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:/(Vlogqubgé\)T (F*ﬁ) qdy
:/(sqfsa)T (F~F)aqdy

Then we bound the KL divergence between g, ¢ using eq. (103) we get:

2 2
KL (a(ye | y2)o 0y | 35) //'%—% (1f = Lsal = 17— Zsal)atye | yo)ayeds

= [ (a5 (7= Patsevalaaar
Rd
T g2
_/ /Rd Sq_sq) 5<3q_5q>q(Yt‘yS)dYtdt
/ / Sq Sa f f) (v¢ | ys)dydt
Rd
—/ / 5||8q—8<7||§¢J(yt|ys)dytdt
s JRA

Now, to upper bound the first integral, we use the fact that for any vectors a, b € R?

la=bll; >0
2 2
nau2+nbu2—2aTbr>o

a’b < _ (Jlal} + b))

which implies that forn > 0 and a = ﬁ(f — f)and b = /5(sq — s5), we get:

/st /Rd (Sq B 8(7>T(f_ f)‘](” | ys)dysdt < /: /Rd (;’ Isq — sqll; + Hf ﬂ‘ ) q(ye | ys)dydt

now, using eq. (105) and setting n = g2 in eq. (104), we get:

KL (q(y¢ | ys),a(ye | ys)) // Hf fH (vt | ys)dydt

N /é q(yt]E\ ¥s) [292 Hf - ﬂu “

We note that due to Jensen’s inequality (see theorem 4.1 in Wu (2017)):

KL (¢(y:),q(y:)) < E KL (q(yt | ys),q(ye | ys))

q(ys)

which combined with eq. (106) gets:

KL (¢(y+), g1 q(ys / /Rd 597 Hf fH (v | ys)dy-dt
1 2
B /@ q(]g )q(yrE\ Vs) [22 Hf - J?HJ ar
- [ & Ll -7
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F. Taylor Series tricks.
F.1. Time-dependent s(t)
Now, we find a function s(t) such that for ¢ > ¢, we get the following:

t
/ B(r)dr (111)
s(t)
We first derive it for a linear 5(t) followed by 3(t) used to derive the linear and cosine noise schedules (Chen, 2023).

Linear 3(¢). For a linear 8(t) function, we let s(t) =t — €(t)

t t2
/ ﬁ(s)ds = [Bmint + Bmam*]i_e(t) (112)
2
t—e(t)
1
= Bnin(e(t)) + ﬁmmi(ﬁ —(t—€®)?) (113)
= Bninelt) + 2222 (1) 2 — e(t) (114)
= Bine(t) + %(Qte(t) —€(t)?) (115)
(116)
Suppose if we choose €(t) such that j;tié( N (s)ds = ), then note that
t
A= B(s)ds (117)
t—e(t)
= Buanel) + 2102 (21¢(t) — (1)) (118)
now, to find €(¢) we define a polynomial:
P(z) = BminT + B”;‘”” (2t —2%) — A (119)
= _%xz + (Bmzn + Bmamt)x - A (120)
then €(¢) is a zero of the polynomial P(z). We can find the zeros of P(x):
_(6mzn + ﬁmazt) =+ \/(ﬂmzn + Bmamt)2 - 4)\%#
Tt = (121)
_5maz
(B, ‘ 2 _
_ (6’m1n + B'rna;ct) + \/_(gmzn + /Bmawt) 2)\/8’maw (122)
, , 2 _
: : 2 _
—t+ ﬂmzn + \/(ﬂmln + Bmamt) 2)\5mam (124)
B’"L(l$ B'NUI$
the constraint 0 < ¢ — €(t) < t, implies that:
Bmin + \/(ﬁmzn + Bmaazt)z - 2)\/Bmaa: <0 (125)
ﬂmin + ﬂ(t)2 - 2)\Bmam < 0 (126)
B(t)Q - 2)\ﬁmam < 67%”71 (127)

Bt) < \//m (128)
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and we require that 8(¢)? — 2X\Bmas > 0 such that €(¢) is not complex-valued:

B(t)? = 2XBrmaz > 0

B(t) > V 2)\ﬁmaa:

which implies that

Bmin - 5@)2 - QAﬂmaz
ﬁmaw

VI Bz < B(8) < B + 2\

Commonly used §(t) functions. Chen (2023) studies the effect of different noise schedules ~y(t):

e(t)y=t+

for t such that

ye = Vr(t)z+ 1 —(t)e

with the following choices for ~y(¢):

. T
cosine : y(t) = cos (gt)

linear : y(¢t) =1—1¢

Now, note that for the VPSDE process, we have y;, = m(t)z + o(t)e, where

i) = exp (- [ 3616105 = \/exp (- [ s0s)
o(t) = \/1 ~exp (- /Otﬁ(s)ds)

which implies that

S logm(t) =~ (3(1) - 5(0))
4 tog /418 =~ (1) ~ 5(0))
5 S5 108(8) = S (5(2) ~ 5(0)

D 1og(1) = ~(8(1) ~ A(O))

3(t) = 5(0) — 5 1og~(1)

For the commonly used noise schedules, we can derive the 3(t) function:

cosine 30 = 00~ = 50) - ni
linear : 5(t) = B(0) — 1;—115 = B(0) + %

Now, note that we can find s(t) such that | f( N (7)dr = X for a user-specified A and linear 5(t), as follows:

t
A= /S(t) B(r)dr
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¢
= [ BO)+ dr (146)
s(t) -7
= [—log(l — T)]i(t) , assuming 3(0) =0 (147)
1-t¢
exp(—A\) = 1= s (148)
1-t¢
1-1¢
Similarly for a cosine 3(t), we note that
t
A= B(r)dr (151)
s(t)
¢ 1
= B(0) + dr, assume 3(0) =0 (152)
s(t) 1—71
9 t
= {— log cos(r)] (153)
s(t)
2 cos(5t)
= o8 sz s (1)) (159
Ty = —GY 155
*P(3N) = s @) (159
T 1 T
COS(§S(t)) = MCOS(Et) (156)
Tolt) = cost [ — 1 cos(®
25:(1f) = cos (exp(—g/\) COS(Qt)) (157)
2 1 1 T
S(t) = ; COS (e}(p(—g)\) COS(2t)) (158)

G. Active Matter Experiments

G.1. Active Swimmer

In this section we plot the samples from the 1SM trained model versus the inference process samples in fig. 7, and in fig. 9
we compare the MMD between the model samples and the inference process samples at various times ¢ € [0,7]. The
inference process is defined as

dr = (—2® +v)dt (159)
dv = —yvdt + /2yDdwy, t € 0,7 (160)

where v = 0.1,D = 1.0 and T = 5.0 with initial conditions xg,vo ~ N (0,1). We generate samples from the score
trained by the local DSM and ISM objectives using the probability-flow ODE:

d 1
il flye,t) — iggTSQ(Yt,t) (161)

where y = (z,v)". Note that when sg = V, log q(y+), then gope = gsp. that is the distribution of the inference process
and the PF-ODE match at any time ¢ € [0, 7.

G.2. Interacting Particle System

In this section we plot the MMD between PF-ODE samples from the local DSM and 1SM trained model and the diffusion
process, defined in eq. (24), samples between ¢ € [0, 10]. We note that for all ¢ € [0, 10], the local DSM trained models has
a lower MMD.

24
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Figure 7: 1SM Samples at ¢ € {1, 3,5}. Here we compare samples from the process defined in eq. (160) on the top panel
and samples from 1SM trained model on the bottom panel. The samples from the PF-ODE start diverging and do not match
the inference process’ distribution.

0.06
Local DSM
— |SM
0.04
0.02
0.00
0 2 4 6 8 10
t

Figure 8: MMD for ¢ € [0, 10]
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Figure 9: Here we compare the MMD metric between model generated samples and the inference process samples at various
time slices. We observe that both models have an increasing trend but the ISM model sample quality deteriorates rapidly
compared to the local DSM trained model.
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