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Abstract

Generative models inspired by dynamical trans-

port of measure – such as flows and diffusions

– construct a continuous-time map between two

probability densities. Conventionally, one of these

is the target density, only accessible through sam-

ples, while the other is taken as a simple base

density that is data-agnostic. In this work, using

the framework of stochastic interpolants, we for-

malize how to couple the base and the target densi-

ties, whereby samples from the base are computed

conditionally given samples from the target in a

way that is different from (but does not preclude)

incorporating information about class labels or

continuous embeddings. This enables us to con-

struct dynamical transport maps that serve as con-

ditional generative models. We show that these

transport maps can be learned by solving a simple

square loss regression problem analogous to the

standard independent setting. We demonstrate

the usefulness of constructing dependent cou-

plings in practice through experiments in super-

resolution and in-painting. The code is available

at https://github.com/interpolants/couplings.

1. Introduction

Generative models such as normalizing flows and diffusions

sample from a target density Ä1 by continuously transform-

ing samples from a base density Ä0 into the target. This

transport is accomplished by means of an ordinary differ-

ential equation (ODE) or stochastic differential equation

(SDE), which takes as initial condition a sample from Ä0
and produces at time t = 1 an approximate sample from

Ä1. Typically, the base density is taken to be something

simple, analytically tractable, and easy to sample, such as
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Figure 1: Examples. Super-resolution and in-painting

results computed with our formalism.

a standard Gaussian. In some formulations, such as score-

based diffusion (Sohl-Dickstein et al., 2015; Song & Ermon,

2020; Ho et al., 2020b; Song et al., 2020; Singhal et al.,

2023), a Gaussian base density is intrinsically tied to the

process achieving the transport. In others, including flow

matching (Lipman et al., 2022a; Chen & Lipman, 2023),

rectified flow (Liu et al., 2022b; 2023b), and stochastic in-

terpolants (Albergo & Vanden-Eijnden, 2022; Albergo et al.,

2023), a Gaussian base is not required, but is often chosen

for convenience. In these cases, the choice of Gaussian base

represents an absence of prior knowledge about the problem

structure, and existing works have yet to fully explore the

strength of base densities adapted to the target.

In this work, we introduce a general formulation of stochas-

tic interpolants in which a base density is produced via

a coupling, whereby samples of this base are computed

conditionally given samples from the target. We construct

a continuous-time stochastic process that interpolates be-

tween the coupled base and target, and we characterize the

resulting transport by identification of a continuity equation

obeyed by the time-dependent density. We show that the

velocity field defining this transport can be estimated by so-

lution of an efficient, simulation-free square loss regression

problem analogous to standard, data-agnostic interpolant
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and flow matching algorithms.

In our formulation, we also allow for dependence on an

external, conditional source of information independent of

Ä1, which we call À. This extra source of conditioning

is standard, and can be used in the velocity field bt(x, À)
to accomplish class-conditional generation, or generation

conditioned on a continuous embedding such as a textual

representation or problem-specific geometric information.

As illustrated in Fig. 2, it is however different from the data-

dependent coupling that we propose. Below, we suggest

some generic ways to construct coupled, conditional base

and target densities, and we consider practical applications

to image super-resolution and in-painting, where we find im-

proved performance by incorporating both a data-dependent

coupling and the conditioning variable. Together, our main

contributions can be summarized as:

1. We define a broader way of constructing base and target

pairs in generative models based on dynamical trans-

port that adapts the base to the target. In addition, we

formalize the use of conditional information – both dis-

crete and continuous – in concert with this new form

of data coupling in the stochastic interpolant frame-

work. As special cases of our general formulation, we

obtain several recent variants of conditional generative

models that have appeared in the literature.

2. We provide a characterization of the transport that re-

sults from conditional, data-dependent generation, and

analyze theoretically how these factors influence the

resulting time-dependent density

3. We provide an empirical study on the effect of coupling

for stochastic interpolants, which have recently been

shown to be a promising, flexible class of generative

models. We demonstrate the utility of data-dependent

base densities and the use of conditional information in

two canonical applications, image inpainting and super-

resolution, which highlight the performance gains that

can be obtained through the application of the tools

developed here .

The rest of the paper is organized as follows. In Section 2,

we describe some related work in conditional generative

modeling. In Section 3, we introduce our theoretical frame-

work. We characterize the transport that results from the

use of data-dependent couplings, and discuss the difference

between this approach and conditional generative model-

ing. In Section 4, we apply the framework to numerical

experiments on ImageNet, focusing on image inpainting

and image super-resolution. We conclude with some re-

marks and discussion in Section 5.

2. Related Work

Couplings. Several works have studied the question of

how to build couplings, primarily from the viewpoint of

optimal transport theory. An initial perspective in this re-

gard comes from (Pooladian et al., 2023; Tong et al., 2023;

Klein et al., 2023), who state an unbiased means for build-

ing entropically-regularized optimal couplings from mini-

batches of training samples. This perspective is appealing

in that it may give probability flows that are straighter and

hence more easily computed using simple ODE solvers.

However, it relies on estimating an optimal coupling over

minibatches of the entire dataset, which, for large datasets,

may become uninformative as to the true coupling. In an

orthogonal perspective, (Lee et al., 2023) presented an algo-

rithm to learn a coupling between the base and the target by

building dependence on the target into the base. They argue

that this can reduce curvature of the underlying transport.

While this perspective empirically reduces the curvature

of the flow lines, it introduces a potential bias in that they

still sample from an independent base, possibly not equal

to the marginal of the learned conditional base. Learning a

coupling can also be achieved by solving the Schrödinger

bridge problem, as investigated e.g. in (De Bortoli et al.,

2021; Shi et al., 2023). This leads to iterative algorithms

that require solving pairs of SDEs until convergence, which

is costly in practice. More closely connected to our work are

the approaches proposed in (Liu et al., 2023a; Somnath et al.,

2023): by considering generative modeling through the lens

of diffusion bridges with known coupling, they arrive to a

formulation that is operationally similar to, but less general

than, ours. Our approach is simpler, and more flexible, as

it differentiates between the bridging of the densities and

the construction of the generative models. Table 1 summa-

rizes these couplings along with the standard independent

pairing.

Generative Modeling and Dynamical Transport. Gen-

erative models built upon dynamical transport of measure

go back at least to (Tabak & Vanden-Eijnden, 2010; Tabak

& Turner, 2013), and were further developed in (Rezende

& Mohamed, 2015; Dinh et al., 2017; Huang et al.,

2016; Durkan et al., 2019) using compositions of discrete

maps, while modern models are typically formulated via

a continuous-time transformation. In this context, a major

advance was the introduction of score-based diffusion (Song

et al., 2021b;a), which relates to denoising diffusion proba-

bilistic models (Ho et al., 2020a), and allows one to generate

samples by learning to reverse a stochastic differential equa-

tion that maps the data into samples from a Gaussian base

density. Methods such as flow matching (Lipman et al.,

2022b), rectified flow (Liu, 2022; Liu et al., 2022a), and

stochastic interpolants (Albergo & Vanden-Eijnden, 2022;

Albergo et al., 2023) expand on the idea of building stochas-
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Figure 2: Data-dependent couplings are different than conditioning. Delineating between constructing couplings versus

conditioning the velocity field, and their implications for the corresponding probability flow Xt. The transport problem is

flowing from a Gaussian Mixture Model (GMM) with 3 modes to another GMM with 3 modes. Left: The probability flow

Xt arising from the data-dependent coupling Ä(x0, x1) = Ä1(x1)Ä0(x0|x1). All samples follow simple trajectories. No

formation of auxiliary modes form in the intermediate density Ä(t), in juxtaposition to the independent case. Center: When

the velocity field is conditioned bt(x, À) on each class (mode), it factorizes, resulting in three separate probability flows

X
ξ
t with À = 1, 2, 3. Right: The probability flow Xt when taking an unconditional velocity field bt(x) and an independent

coupling Ä(x0, x1) = Ä0(x0)Ä1(x1). Note the complexity of the underlying transport, which motivates us to consider

finding correlated base variables directly in the data.

Table 1: Couplings. Standard formulations of flows and diffusions construct generative models built upon an independent

coupling (Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023; Lipman et al., 2022a; Liu et al., 2022b). (Lee et al.,

2023) learn qφ(x0|x1) jointly with the velocity to define the coupling during training, but instead sample from Ä0 = N(0, Id)
for generation. (Tong et al., 2023) and (Pooladian et al., 2023) build couplings by running mini-batch optimal transport

algorithms (Cuturi, 2013). Here we focus on couplings enabled by our generic formalism, which bears similarities with (Liu

et al., 2023a; Somnath et al., 2023), and can be individualized to each generative task.

Coupling PDF Ä(x0, x1) Base PDF Description

Ä1(x1)Ä0(x0) x0 ∼ N(0, Id) Independent

Ä(x0|x1)Ä1(x1) x0 ∼ qφ(x0|x1) Learned conditional

mb-OT(x1, x0) x0 ∼ N(0, Id) Minibatch OT

Ä1(x1)Ä0(x0|x1) x0 ∼ Ä0(x0|x1) Dependent-coupling (this work)

tic processes that connect a base density to the target, but

allow for bases that are more general than a Gaussian den-

sity. Typically, these constructions assume that the samples

from the base and the target are uncorrelated.

Conditional Diffusions and Flows for Images. (Saharia

et al., 2022; Ho et al., 2022a) build diffusions for super-

resolution, where low-resolution images are given as inputs

to a score model, which formally learns a conditional score

(Ho & Salimans, 2022). In-painting can be seen as a form

of conditioning where the conditioning set determines some

coordinates in the target space. In-painting diffusions have

been applied to video generation (Ho et al., 2022b) and

protein backbone generation (Trippe et al., 2022). In the

replacement method one directly inputs the clean values

of the known coordinates at each step of integration (Ho

et al., 2022b); (Schneuing et al., 2022) replace with draws

of the diffused state of the known coordinates. (Trippe

et al., 2022; Wu et al., 2023) discuss approximation error

in this approach and correct with sequential Monte-Carlo.

We revisit this problem framing from the velocity modeling

perspective in Section 4.1. Recent work has applied flows

to high-dimensional conditional modeling (Dao et al., 2023;

Hu et al., 2023). A Schrödinger bridge perspective on the

conditional generation problem was presented in (Shi et al.,

2022).

3. Stochastic interpolants with couplings

Suppose that we are given a dataset {xi
1}ni=1. The aim of a

generative model is to draw new samples assuming that the

data set comes from a probability density function (PDF)

Ä1(x1). Following the stochastic interpolant framework (Al-

bergo & Vanden-Eijnden, 2022; Albergo et al., 2023), we
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introduce a time-dependent stochastic process that interpo-

lates between samples from a simple base density Ä0(x0)
at time t = 0 and samples from the target Ä1(x1) at time

t = 1:

Definition 3.1 (Stochastic interpolant with coupling). The

stochastic interpolant It is the process defined as1

It = ³tx0 + ´tx1 + µtz t ∈ [0, 1], (1)

where

• ³t, ´t, and µ2
t are differentiable functions of time such

that ³0 = ´1 = 1, ³1 = ´0 = µ0 = µ1 = 0, and

³2
t + ´2

t + µ2
t > 0 for all t ∈ [0, 1].

• The pair (x0, x1) is jointly drawn from a probability den-

sity Ä(x0, x1) with finite second moments and such that

∫

Rd

Ä(x0, x1)dx1 = Ä0(x0), (2)

∫

Rd

Ä(x0, x1)dx0 = Ä1(x1). (3)

• z ∼ N(0, Id), independent of (x0, x1).

A simple instance of (1) uses ³t = 1 − t, ´t = t, and

µt =
√

2t(1− t).

The stochastic interpolant framework uses information

about the process It to derive either an ODE or an SDE

whose solutions Xt push the law of x0 onto the law of It
for all times t ∈ [0, 1].

As shown in Section 3.1, the drift coefficients in these

ODEs/SDEs can be estimated by quadratic regression. They

can then be used as generative models, owing to the prop-

erty that the process xt specified in Definition 3.1 satis-

fies It=0 = x0 ∼ Ä0(x0) and It=1 = x1 ∼ Ä1(x1),
and hence samples the desired target density. By draw-

ing samples x0 ∼ Ä0(x0) and using them as initial data

Xt=0 = x0 in the ODEs/SDEs, we can then generate sam-

ples Xt=1 ∼ Ä1(x1) via numerical integration.

In the original stochastic interpolant papers, this construc-

tion was made using the choice Ä(x0, x1) = Ä0(x0)Ä1(x1),
so that x0 and x1 were drawn independently from the base

and the target.

Our aim here is to build generative models that are more

powerful and versatile by exploring and exploiting depen-

dent couplings between x0 and x1 via suitable definition of

Ä(x0, x1).

1More generally, we may set It = I(t, x0, x1) in (1), where
I satisfies some regularity properties in addition to the boundary
conditions I(t = 0, x0, x1) = x0 and I(t = 1, x0, x1) = x1 (Al-
bergo & Vanden-Eijnden, 2022; Albergo et al., 2023). For simplic-
ity, we will stick to the linear choice I(t, x0, x1) = αtx0 + βtx1.

Remark 3.1 (Incorporating conditioning). Our formalism

allows (but does not require) that each data point xi
1 ∈ R

d

comes with a label Ài ∈ D, such as a discrete class or a

continuous embedding like that of a text caption. In this

setup, our results can be straightforwardly generalized by

making all the quantities (PDF, velocities, etc.) conditional

on À. This is discussed in Appendix A and used in various

forms in our numerical examples.

3.1. Transport equations and conditional generative

models

In this section, we show that the probability distribution of

the process It defined in (1) has a time-dependent density

Ät(x) that interpolates between Ä0(x) and Ä1(x). We char-

acterize this density as the solution of a transport equation,

and we show that both the corresponding velocity field and

the score ∇ log Ät(x) are minimizers of simple quadratic

objective functions.

This result enables us to construct conditional generative

models by approximating the velocity (and possibly the

score) via minimization over a rich parametric class such as

neural networks. We first define the functions:

bt(x) = E(İt|It = x), gt(x) = E(z|It = x), (4)

where the dot denotes time-derivative and E(·|It = x) de-

notes the expectation over Ä(x0, x1) conditional on It = x.

We then have,

Theorem 3.1 (Transport equation with coupling). The prob-

ability distribution of the stochastic interpolant It defined

in (1) has a density Ät(x) that satisfies Ät=0(x) = Ä0(x)
and Ät=1(x) = Ä1(x), and solves the transport equation

∂tÄt(x) +∇ · (bt(x)Ät(x)) = 0, (5)

where the velocity field bt(x) is defined in (4). Moreover,

for every t such that µt ̸= 0, the following identity for the

score holds

∇ log Ät(x) = −µ−1
t gt(x). (6)

Finally, the functions b and g are the unique minimizers of

the objectives

Lb(b̂) =

∫ 1

0

E

[

|b̂t(It)|2 − 2İt · b̂t(It)
]

dt,

Lg(ĝ) =

∫ 1

0

E
[

|ĝt(It)|2 − 2z · ĝt(It)
]

dt

(7)

where E denotes an expectation over (x0, x1) ∼ Ä(x0, x1)
and z ∼ N(0, Id) with (x0, x1) § z.

A more general version of this result with a conditioning

variable is proven in Appendix A. The objectives (7) can

4



Stochastic Interpolants with Data-Dependent Couplings

readily be estimated in practice from samples (x0, x1) ∼
Ä(x0, x1) and z ∼ N(0, 1), which will enable us to learn

approximations for use in a generative model.

The transport equation (5) can be used to derive generative

models, as we now show.

Corollary 3.1 (Probability flow and diffusions with cou-

pling). The solutions to the probability flow equation

Ẋt = bt(Xt) (8)

enjoy the property that

Xt=1 ∼ Ä1(x1) if Xt=0 ∼ Ä0(x0) (9)

Xt=0 ∼ Ä0(x0) if Xt=1 ∼ Ä1(x1) (10)

In addition, for any ϵt g 0, solutions to the forward SDE

dXF
t = bt(X

F
t )dt− ϵtµ

−1
t gt(X

F
t )dt+

√
2ϵtdWt, (11)

enjoy the property that

XF
t=1 ∼ Ä1(x1) if XF

t=0 ∼ Ä0(x0), (12)

and solutions to the backward SDE

dXR
t = bt(X

R
t )dt+ ϵtµ

−1
t gt(X

R
t )dt+

√
2ϵtdWt, (13)

enjoy the property that

XR
t=0 ∼ Ä0(x0) if XR

t=1 ∼ Ä1(x1). (14)

A more general version of this result with conditioning is

also proven in Appendix A.

Corollary 3.1 shows that the coupling can be incorporated

both in deterministic and stochastic generative models de-

rived within the stochastic interpolant framework. In what

follows, for simplicity we will focus on the deterministic

probability flow ODE (8).

An important observation is that the transport cost of the

generative model based on the probability flow ODE (8),

which impacts the numerical stability of solving this ODE,

is controlled by the time dynamics of the interpolant, as

shown by our next result:

Proposition 3.1 (Control of transport cost). Let Xt(x0) be

the solution to the probability flow ODE (8) for the initial

condition Xt=0(x0) = x0 ∼ Ä0. Then

Ex0∼ρ0

[

|Xt=1(x0)− x0|2
]

f
∫ 1

0

E[|İt|2]dt < ∞ (15)

The proof of this proposition is given in Appendix A. Min-

imizing the left hand-side of (15) would achieve optimal

transport in the sense of Benamou-Brenier (Benamou & Bre-

nier, 2000), and the minimum would give the Wasserstein-2

distance between Ä0 and Ä1. Various works seek to minimize

this distance procedurally either by adapting the coupling

(Pooladian et al., 2023; Tong et al., 2023) or by optimizing

Ät(x) (Albergo & Vanden-Eijnden, 2022), at additional cost.

Here we introduce designed couplings at no extra cost that

can lower the upper bound in (15). This will allow us to

show how different couplings enable stricter control of the

transport cost in various applications. Let us now discuss a

generic instantiation of our formalism involving a specific

choice of Ä(x0, x1).

3.2. Designing data-dependent couplings

One natural way to allow for a data-dependent coupling

between the base and the target is to set

Ä(x0, x1) = Ä1(x1)Ä0(x0|x1) with (16)
∫

Rd

Ä0(x0|x1)Ä1(x1)dx1 = Ä0(x0). (17)

There are many ways to construct the conditional Ä0(x0|x1).
In the numerical experiments in Section 4.1 & Section 4.2,

we consider base densities of a variable x0 of the generic

form

x0 = m(x1) + Ã·, (18)

where m(x1) ∈ R
d is some function of x1, possibly random

even if conditioned on x1, Ã ∈ R
d×d, and · ∼ N(0, Id) with

· § m(x1). In this set-up, the corrupted observation m(x1)
(a noisy, partial, or low-resolution image) is determined

by the task at hand and available to us, but we are free

to choose the design of the term Ã· in (18) in ways that

can be exploited differently in various applications (and

is allowed to depend on any conditional info À). Note in

particular that, given m(x1), (18) is easy to generate at

sampling time. Note also that, if the corrupted observation

m(x1) is deterministic given x1, the conditional probability

density of (18) is the Gaussian density with mean m(x1)
and covariance C = ÃÃ¦:

Ä0(x0|x1) = N(x0;m(x1), C), (19)

We stress that, even in this case, Ä(x0, x1) =
Ä1(x1)Ä0(x0|x1) and Ä0(x0) = Ä0(x0|x1) are non-

Gaussian densities in general. In this context, we can use

the interpolant from (1) with µt = 0, which reduces to:

It = ³t(m(x1) + Ã·) + ´tx1 (20)

Note that the score associated to (20) is still available be-

cause of the factor of Ã·, so long as Ã is invertible.

3.3. Reducing transport costs via coupling

In the numerical experiments, we will highlight how the

construction of a data-dependent coupling enables us to
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Algorithm 1 Training

Input: Interpolant coefficients ³t, ´t; velocity model b̂;

batch size nb;

repeat

for i = 1, . . . , nb do

Draw xi
1 ∼ Ä1(x1), ·i ∼ N (0, Id), ti ∼ U(0, 1).

Compute xi
0 = m(xi

1) + Ã·i.

Compute Iti = ³tix
i
0 + ´tix

i
1.

end for

Compute empirical loss

L̂b(b̂) = n−1
b

∑nb

i=1[|b̂ti(Iti)|2 − 2İti · b̂ti(Iti)].
Take gradient step on L̂b(b̂) to update b̂.

until converged

Return: Velocity b̂.

Algorithm 2 Sampling (via forward Euler method)

Input: model b̂, corrupted sample m(x1), N ∈ N.

Draw noise · ∼ N (0, Id)
Initialize X̂0 = m(x1) + Ã·

for n = 0, . . . , N − 1 do

X̂i+1 = X̂i +N−1b̂i/N (X̂i)
end for

Return: clean sample X̂N .

perform various downstream tasks. An additional appeal is

that data-dependent couplings facilitate the design of more

efficient transport than standard generation from a Gaussian,

as we now show.

The bound on the transportation cost in (15) may be more

tightly controlled by the construction of data-dependent

couplings and their associated interpolants. In this case, we

seek couplings such that E[|İt|2] is smaller with coupling

than without, i.e. such that

∫

R3d

|İt|2Ä(x0, x1)Äz(z)dx0dx1dz

f
∫

R3d

|İt|2Ä0(x0)Ä1(x1)Äz(z)dx0dx1dz,

(21)

where İt = ³̇tx0+ ˙́
tx1+ µ̇tz is a function of x0, x1 and z.

A simple way to design such a coupling is to consider (19)

with m(x1) = x1 and C = Ã2Id for some Ã > 0, which

sets the base distribution to be a noisy version of the target.

In the case of data-decorruption (which we explore in the

numerical experiments), this interpolant directly connects

the corrupted conditional density and the uncorrupted den-

sity. If we choose ³t = 1 − t and ´t = t, and set µt = 0,

then İt = x1 − x0, and the left hand-side of (21) reduces

to E[|Ãz|2] = dÃ2, which is less than the right hand-side

given by 2E[|x1|2] + dÃ2.

3.4. Learning and Sampling

To learn in this setup, we can evaluate the objective func-

tions (7) over a minibatch of nb < n data points xi
0, x

i
1

by using an additional nb samples zi ∼ N(0, Id) and

ti ∼ U([0, 1]). This leads to the empirical approximation

L̂b of Lb given by

L̂b(b̂) =
1

nb

nb
∑

i=1

[

|b̂ti(Iti)|2 − 2İti · b̂ti(Iti)
]

, (22)

with a similar empirical variant for Lz . We approximate

the functions bt(x) and gt(x) with neural networks and

minimize these empirical objectives with stochastic gradient

descent. This leads to an approximation of the velocity bt(x)
via (4) and of the score via (6).

Generating data requires sampling an Xt=0 ∼ Ä0(x0) as

an initial condition to be evolved via the probability flow

ODE (8) or the forward SDE (11) to respectively produce a

sample Xt=1 ∼ Ä1(x1) or XF
t=1 ∼ Ä1(x1). Sampling an x0

can be performed by picking data point x1 either from the

data set or from some online data acquisition procedure and

using it in (18), or using the assumption that one directly

observes x0 ∼ Ä0(x0) at inference time (e.g. one receives

a partial image). The generated samples from either the

probability flow ODE or forward SDE will be different from

x1, even with the choices m(x1) = x1 and C = Ã2Id. The

probability flow ODE necessarily produces a single sample

of x1 for each x0, while the SDE produces a collection of

samples whose spread can be controlled by the diffusion

coefficient ϵt. Algorithms 1 and 2 depict these training and

sampling procedures, respectively.

4. Numerical experiments

We now explore the interpolants with data-dependent cou-

plings on conditional image generation tasks; we find that

the framework is straightforward to scale to high resolution

images directly in pixel space.

4.1. In-painting

We consider an in-painting task, whereby x1 ∈ R
C×W×H

denotes an image with C channels, width W , and height H .

Given a pre-specified mask, the goal is to fill the pixels in

the masked region with new values that are consistent with

the entirety of the image. We set the conditioning variable

À ∈ {0, 1}C×W×H and additionally provide the model with

any potential class labels. For simplicity, the mask takes

the same value for all channels in a given spatial location

in the image. We define the base density by the relation

x0 = À ◦ x1 + (1− À) ◦ ·, where ◦ denotes the Hadamard

(elementwise) product and · ∈ R
C×W×H , · ∼ N(0, Id)

denotes random noise used to initialize the pixels within the

masked region (separate noise for each channel). During
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training, the mask is drawn randomly by tiling the image

into 64 tiles; each tile is selected to enter the mask with

probability p = 0.3. In our experiments, we set Ä1(x1)
to correspond to ImageNet (either 256 or 512). This cor-

responds to using Ä(x0, x1|À) = Ä1(x1)Ä0(x0|x1, À). The

model sees the mask; we note that we do not need to addi-

tionally input the partial image as extra conditioning because

it is present, uncorrupted, in xt for each t because the values

are present in x0 and x1. In the interpolant (20), we set

³t = t and ´t = 1 − t. In this setup, the velocity field

bt(x, À) is such that bt(x, À) = 0 except in the masked re-

gions. This follows because À ◦ It = À ◦ x1 for every t, i.e.,

the unmasked pixels in It are always those of x1 for which

İt = 0. To take this structural information into account, we

can build this property into our neural network model, and

mask the output of the approximate velocity field to enforce

that the unmasked pixels remain fixed. We note that this

method does not necessitate any inference time corrections,

such as the replacement method or MCMC.

Results. For implementation, we parameterize bt(x, À)
using the basic U-Net architecture from (Ho et al., 2020b),

where À is given to the model as appended channels of the

image x. Additional specific experimental details may be

found in Appendix B. Samples are shown in Figure 3, as

well as Section 1. FIDs are reported in Table 2. As discussed,

the missing areas of the image are defined at time zero as

independent normal random variables, depicted as colorful

static in the images. In each image triple, the left panel is the

base distribution sample x0, the middle is the model sample

of Xt=1 obtained by integrating the probability flow ODE

(8), and the right panel is the ground truth. The generated

textures, though different from the full sample, correspond

to realistic samples from the conditional densities given

the observed content. This is an advantage of probabilistic

generative models such as ours over models optimized to fit

a mean-square error to a ground truth image.

4.2. Super-resolution on Imagenet

We now consider image super-resolution, in which we would

like to produce an image with the same content as a given

image but at higher resolution. To this end, we let x1 ∈
R

C×W×H correspond to a high-resolution image, as in Sec-

Table 2: FID for Inpainting Task. FID comparison be-

tween under two paradigms: a baseline, where Ä0 is a

Gaussian with independent coupling to Ä1, and our data-

dependent coupling detailed in Section 4.1.

Model FID-50k

Uncoupled Interpolant (Baseline) 1.35
Dependent Coupling (Ours) 1.13

Table 3: FID-50k for Super-resolution, 64x64 to 256x256.

FIDs for baselines taken from (Saharia et al., 2022; Ho et al.,

2022a; Liu et al., 2023a).

Model Train Valid

Improved DDPM (Nichol & Dhariwal, 2021) 12.26 –
SR3 (Saharia et al., 2022) 11.30 5.20
ADM (Dhariwal & Nichol, 2021) 7.49 3.10
Cascaded Diffusion (Ho et al., 2022a) 4.88 4.63

I2SB (Liu et al., 2023a) – 2.70
Dependent Coupling (Ours) 2.13 2.05

tion 4.1. We denote by D : RC×W×H → R
C×Wlow×Hlow

and U : RC×Wlow×Hlow → R
C×W×H image downsampling

and upsampling operations, where Wlow and Hlow denote

the width and height of a low-resolution image. To define

the base density, we then set x0 = U (D (x1)) + Ã· with

· ∈ R
C×W×H , · ∼ N(0, Id), and Ã > 0. Defining x0 in

this way frames the transport problem such that each starting

pixel is proximal to its intended target. Notice in particular

that, with Ã = 0, each x0 would correspond to a lower-

dimensional sample embedded in a higher-dimensional

space, and the corresponding distribution would be con-

centrated on a lower-dimensional manifold. Working with

Ã > 0 alleviates the associated singularities by adding a

small amount of Gaussian noise to smooth the base density

so it is well-defined over the entire higher-dimensional ambi-

ent space. In addition, we give the model access to the low-

resolution image at all times; this problem setting then cor-

responds to using Ä(x0, x1|À) = Ä1(x1)Ä0(x0|x1, À) with

À = U (D (x1)). In the experiments, we set Ä1 to correspond

to ImageNet (256 or 512), following prior work (Saharia

et al., 2022; Ho et al., 2022a).

Results. Similarly to the previous experiment, we append

the upsampled low-resolution images À to the channel di-

mension of the input x of the velocity model, and likewise

include the ImageNet class labels. Samples are displayed

in Fig. 4, as well as Section 1. Similar in layout to the

previous experiment, the left panel of each triplet is the

low-resolution image, the middle panel is the model sample

Xt=1, and the right panel is the high-resolution image. The

differences are easiest to see when zoomed-in. While the

increased resolution of the model sample is very noticeable

for 64 to 256, the differences even in ground truth images

between 256 and 512 are more subtle. We also display FIDs

for the 64x64 to 256x256 task, which has been studied in

other works, in Table 3.

5. Discussion, challenges, and future work

In this work, we introduced a general framework for con-

structing data-dependent couplings between base and tar-

get densities within the stochastic interpolant formalism.

7
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Figure 3: Image inpainting: ImageNet-256×256 and ImageNet-512×512. Top panels: Six examples of image in-filling

at resolution 256× 256, where the left columns display masked images, the center corresponds to in-filled model samples,

and the right shows full reference images. The aims are not to recover the precise content of the reference image, but instead,

to provide a conditionally valid in-filling. Bottom panels: Four examples at resolution 512× 512.

Figure 4: Super-resolution: Top four rows: Super-resolved images from resolution 64 × 64 7→ 256 × 256, where the

left-most image is the lower resolution version, the middle is the model output, and the right is the ground truth. Examples

for 256× 256 7→ 512× 512 are given in Fig. 6.

We provide some suggestions for specific forms of data-

dependent coupling, such as choosing for Ä0 a Gaussian

distribution with mean and covariance adapted to samples

from the target, and showed how they can be used in prac-

tical problem settings such as image inpainting and super-

resolution. There are many interesting generative modeling

problems that stand to benefit from the incorporation of

data-dependent structure. In the sciences, one potential ap-

plication is in molecule generation, where we can imagine

using data-dependent base distributions to fix a chemical

8
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backbone and vary functional groups. The dependency and

conditioning structure needed to accomplish a task like this

is similar to image inpainting. In machine learning, one

potential application is in correcting autoencoding errors

produced by an architecture such as a variational autoen-

coder (Kingma & Welling, 2013), where we could take the

target density to be inputs to the autoencoder and the base

density to be the output of the autoencoder.
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A. Omitted proofs with conditioning variables incorporated

In this Appendix we give the proofs of Theorem 3.1 and Corollary 3.1 in a more general setup in which we incorporate

conditioning variables in the definition of the stochastic interpolant.

To this end, suppose that each data point xi
1 ∈ R

d in the data set comes with a label Ài ∈ D, such as a discrete class

or a continuous embedding like a text caption, and let us assume that this data set comes from a PDF decomposed as

Ä1(x1|À)¸(À), where Ä1(x1|À) is the density of the data x1 conditioned on their label À, and ¸(À) is the density of the label.

In the following, we will somewhat abuse notation and use ¸(À) even when À is discrete (in which case, ¸(À) is a sum of

Dirac measures); we will however assume that Ä1(x1|À) is a proper density. In this setup we can generalize Definition 3.1 as

Definition A.1 (Stochastic interpolant with coupling and conditioning). The stochastic interpolant It is the stochastic

process defined as

It = ³tx0 + ´tx1 + µtz t ∈ [0, 1], (23)

where

• ³t, ´t, and µ2
t are differentiable functions of time such that ³0 = ´1 = 1, ³1 = ´0 = µ0 = µ1 = 0, and ³2

t +´2
t +µ2

t > 0
for all t ∈ [0, 1].

• The pair (x0, x1) are jointly drawn from a conditional probability density Ä(x0, x1|À) such that

∫

Rd

Ä(x0, x1|À)dx1 = Ä0(x0|À), (24)

∫

Rd

Ä(x0, x1|À)dx0 = Ä1(x1|À). (25)

• z ∼ N(0, Id), independent of (x0, x1, À).

Similarly, the functions (4) become

bt(x, À) = E(İt|It = x, À), gt(x, À) = E(z|It = x, À) (26)

where E(·|It = x) denotes the expectation over Ä(x0, x1|À) conditional on It = x, and Theorem 3.1 becomes:

Theorem A.1 (Transport equation with coupling and conditioning). The probability distribution of the stochastic inter-

polant It specified by Definition A.1 has a density Ät(x|À) that satisfies Ät=0(x|À) = Ä0(x|À) and Ät=1(x|À) = Ä1(x|À), and

solves the transport equation

∂tÄt(x|À) +∇ · (bt(x, À)Ät(x|À)) = 0, (27)

where the velocity field is given in (26). Moreover, for every t such that µt ̸= 0, the following identity for the score holds

∇ log Ät(x|À) = −µ−1
t gt(x, À). (28)

The functions b and g are the unique minimizers of the objective

Lb(b̂) =

∫ 1

0

E

[

|b̂t(It, À)|2 − 2İt · b̂t(It, À)
]

dt,

Lg(ĝ) =

∫ 1

0

E
[

|ĝt(It, À)|2 − 2z · ĝt(It, À)
]

dt,

(29)

where E denotes an expectation over (x0, x1) ∼ Ä(x0, x1|À), À ∼ ¸(À), and z ∼ N(0, Id).

Note that the objectives (29) can readily be estimated in practice from samples (x0, x1) ∼ Ä(x0, x1|À), z ∼ N(0, 1), and

À ∼ ¸(À), which will enable us to learn approximations for use in a generative model.
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Proof. By definition of the stochastic interpolant given in (23), its characteristic function is given by

E[eik·It ] =

∫

Rd×Rd

eik·(αtx0+βtx1)Ä(x0, x1|À)dx0dx1e
− 1

2
γ2

t
|k|2 , (30)

where we used z § (x0, x1) and z ∼ N(0, Id). The smoothness in k of (30) guarantees that the distribution of It has a

density Ät(x|À) > 0 globally. By definition of It, this density Ät(x|À) satisfies, for any suitable test function ϕ : Rd → R,

∫

Rd

ϕ(x)Ät(x|À)dx =

∫

Rd×Rd×Rd

ϕ (It) Ä(x0, x1|À)(2Ã)−d/2e−
1

2
|z|2dx0dx1dz. (31)

Above, It = ³tx0 + ´tx1 + µtz. Taking the time derivative of both sides

∫

Rd

ϕ(x)∂tÄt(x|À)dx

=

∫

Rd×Rd×Rd

(

³̇tx0 + ˙́
tx1 + µ̇tz

)

· ∇ϕ (It) Ä(x0, x1|À)(2Ã)−d/2e−
1

2
|z|2dx0dx1dz

=

∫

Rd

E
[(

³̇tx0 + ˙́
tx1 + µ̇tz

)

· ∇ϕ(It)
]∣

∣It = x
]

Ät(x|À)dx

=

∫

Rd

E
[

³̇tx0 + ˙́
tx1 + µ̇tz

∣

∣It = x
]

· ∇ϕ(x)Ät(x|À)dx

(32)

where we used the chain rule to get the first equality, the definition of the conditional expectation to get the second, and the

tower property ϕ(It) = ϕ(x) conditioned on It = x to get the third. Since

E
[

³̇tx0 + ˙́
tx1 + µ̇tz

∣

∣It = x
]

= bt(x) (33)

by the definition of b in (26), we can therefore write (32) as

∫

Rd

ϕ(x)∂tÄt(x|À)dx =

∫

Rd

bt(x, À) · ∇ϕ(x)Ät(x|À)dx. (34)

This equation is (27) written in weak form.

To establish (28), note that if µt > 0, we have

E
[

zeiγtk·z
]

= −µ−1
t (i∂k)E

[

eiγtk·z
]

,

= −µ−1
t (i∂k)e

−
1
2γ

2

t
|k|2 ,

= iµtke
−

1
2γ

2

t
|k|2 .

(35)

As a result, using z § (x0, x1), we have

E
[

zeik·It
]

= iµtkE
[

eik·It
]

. (36)

Using the properties of the conditional expectation, the left-hand side of this equation can be written

E
[

zeik·It
]

=

∫

Rd

E
[

zeik·It
∣

∣It = x
]

Ät(x|À)dx,

=

∫

Rd

E[z|It = x]eik·xÄt(x, À)dx,

=

∫

Rd

gt(x, À)e
ik·xÄt(x, À)dx,

(37)

where we used the definition of g in (26) to get the last equality. Since the right-hand side of (36) is the Fourier transform of

−µt∇Ät(x|À), we deduce that

gt(x, À)Ät(x|À) = −µt∇Ät(x|À) = −µt∇ log Ät(x|À) Ät(x|À). (38)
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Since Ät(x|À) > 0, this implies (28) when µt > 0.

Finally, to derive (29), notice that we can write

Lb(b̂) =

∫ 1

0

E

[

|b̂t(It, À)|2 − 2İt · b̂t(It, À)
]

dt,

=

∫ 1

0

∫

Rd

E

[

|b̂t(It, À)|2 − 2İt · b̂t(It, À)|It = x
]

Ät(x|À)dxdt

=

∫ 1

0

∫

Rd

[

|b̂t(x, À)|2 − 2E[İt|It = x] · b̂t(x, À)
]

Ät(x|À)dxdt

=

∫ 1

0

∫

Rd

[

|b̂t(x, À)|2 − 2bt(x, À) · b̂t(x, À)
]

Ät(x|À)dxdt

(39)

where we used the definition of b in (26). The unique minimizer of this objective function is b̂t(x, À) = bt(x, À), and we can

proceed similarly to show that the unique minimizers of Lg(ĝ) is ĝt(x, À) = gt(x, À), respectively.

Theorem A.1 implies the following generalization of Corollary 3.1:

Corollary A.1 (Probability flow and diffusions with coupling and conditioning). The solutions to the probability flow

equation

Ẋt = bt(Xt, À) (40)

enjoy the property that

Xt=1 ∼ Ä1(x1|À) if Xt=0 ∼ Ä0(x0|À) (41)

Xt=0 ∼ Ä0(x0|À) if Xt=1 ∼ Ä1(x1|À) (42)

In addition, for any ϵt g 0, solutions to the forward SDE

dXF
t = bt(X

F
t , À)dt− ϵtµ

−1
t gt(X

F
t , À)dt+

√
2ϵtdWt, (43)

enjoy the property that

XF
t=1 ∼ Ä1(x1|À) if XF

t=0 ∼ Ä0(x0|À), (44)

and solutions to the backward SDE

dXR
t = bt(X

R
t , À)dt+ ϵtµ

−1
t gt(X

R
t , À)dt+

√
2ϵtdWt, (45)

enjoy the property that

XR
t=0 ∼ Ä0(x0|À) if XR

t=1 ∼ Ä1(x1|À). (46)

Note that if we additionally draw À marginally from ¸(À) when we generate the solution to these equations, we can also

generate samples from the unconditional Ä0(x0) =
∫

D
Ä0(x0|À)¸(À)dÀ and Ä1(x1) =

∫

D
Ä1(x1|À)¸(À)dÀ.

Proof. The probability flow ODE is the characteristic equation of the transport equation (27), which proves the statement

about its solutions Xt. To establish the statement about the solution of the forward SDE (43), use expression (28) for

∇ log Ät(x, À) together with the identity ∆Ät(x, À) = ∇·(∇ log Ät(x, À) Ät(x, À)) to write (27) as the forward Fokker-Planck

equation

∂tÄt(x|À) +∇ ·
(

(bt(x, À)− ϵtµ
−1
t gt(x, À))Ät(x|À)

)

= ϵt∆Ät(x|À) (47)

to be solved forward in time since ϵt > 0. To establish the statement about the solution of the reversed SDE (45), proceed

similarly to write (27) as the backward Fokker-Planck equation

∂tÄt(x|À) +∇ ·
(

(bt(x, À) + ϵtµ
−1
t gt(x, À))Ät(x|À)

)

= −ϵt∆Ät(x|À) (48)

to be solved backward in time since ϵt > 0.
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The generative model arising from Corollary 3.1 has an associated transport cost which is the subject of Corollary 3.1:

Proposition 3.1 (Control of transport cost). Let Xt(x0) be the solution to the probability flow ODE (8) for the initial

condition Xt=0(x0) = x0 ∼ Ä0. Then

Ex0∼ρ0

[

|Xt=1(x0)− x0|2
]

f
∫ 1

0

E[|İt|2]dt < ∞ (15)

Proof. We have

Ex0∼ρ0

[

|Xt=1(x0)− x0|2
]

= Ex0∼ρ0

[
∣

∣

∣

∫ 1

0

bt(Xt(x0))dt
∣

∣

∣

2]

f
∫ 1

0

Ex0∼ρ0

[

|bt(Xt(x0))|2
]

dt

= E
[

|bt(It)|2
]

(49)

where we used the probability flow equation (8) for Xt and the property that the law of Xt(x0) with x0 ∼ Ä0 and It coincide.

Using the definition of bt(x) in (4) and Jensen’s inequality we have that

E
[

|bt(It)|2
]

= E
[
∣

∣E[İt|It]
∣

∣

2] f E
[

E
[

|İt|2
∣

∣It]
]

= E[|İt|2] (50)

where the last line is true by the tower property of the conditional expectation. Combining (49) and (50) establishes the

bound in (15).

B. Further experimental details

Architecture For the velocity model we use the U-net from (Ho et al., 2020b) as implemented in lucidrain’s denoising-

diffusion-pytorch repository; this variant of the architecture includes embeddings to condition on class labels. We use the

following hyperparameters:

• Dim Mults: (1,1,2,3,4)

• Dim (channels): 256

• Resnet block groups: 8

• Leanred Sinusoidal Cond: True

• Learned Sinusoidal Dim: 32

• Attention Dim Head: 64

• Attention Heads: 4

• Random Fourier Features: False

Image-shaped conditioning in the Unet. For image-shaped conditioning, we follow (Ho et al., 2022a) and append

upsampled low-resolution images to the input xt at each time step to the velocity model. We also condition on the

missingness masks for in-painting by appending them to xt.

Optimization. We use Adam optimizer (Kingma & Ba, 2014), starting at learning rate 2e-4 with the StepLR scheduler

which scales the learning rate by µ = .99 every N = 1000 steps. We use no weight decay. We clip gradient norms at 10, 000
(this is the norm of the entire set of parameters taken as a vector, the default type of norm clipping in PyTorch library).

Integration for sampling We use the Dopri solver from the torchdiffeq library (Chen, 2018).

Miscellaneous We use Pytorch library along with Lightning Fabric to handle parallelism.

Below we include additional experimental illustrations in the flavor of the figures in the main text.
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Figure 5: Additional examples of in-filling on the 256× 256 resolution images, with temporal slices of the probability flow.

16



Stochastic Interpolants with Data-Dependent Couplings

Figure 6: Super-resolution: Top four rows: Super-resolved images from resolution 256× 256 7→ 512× 512, where the

left-most image is the lower resolution version, the middle is the model output, and the right is the ground truth.
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