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Implementation of 1
2-Approximation Path Cover

Algorithm and Its Empirical Analysis

Junyuan Lin∗ Guangpeng Ren†

Abstract - In this paper, we demonstrate a deterministic algorithm that approximates
the optimal path cover on various graphs and networks derived from a wide range of real-
world problems. Based on the 1

2 -Approximation Path Cover Algorithm by Moran et al., we
first organize the original algorithm into two versions - one with redundant edge removal
and one without. To compare the two versions of algorithms, we prove the number of
redundant edges for any general graphs to analyze the effects of edge removal. We also
analyze theoretical guarantees of the two algorithms. To test the time complexity and
performance, we conduct numerical tests on graphs with various structures and random
weights, from structured ring graphs to random graphs, such as Erdős-Rényi graphs. The
tests demonstrate the advantage in memory saving of the algorithm that does not remove
any redundant edges and time saving of the other one, especially on large and high density
graphs. We also perform tests on various graphs and networks derived from a wide range of
real-world problems to suggest the effectiveness and applicability of both algorithms.

Keywords : path cover; graph algorithms; Watts-Strogatz graph; Erdős-Rényi graph;
greedy algorithm; social network

Mathematics Subject Classification (2020) : 65K05

1 Introduction

In graph theory, a path cover of a graph refers to a set of paths that cover all vertices
in the graph, where every vertex belongs to only one path. The optimal path cover on
a weighted graph is a path cover that includes edges that have maximum (or minimum)
weight sum. For any weighted graphs with unique weight on each edge, the optimal path
cover is unique according to [1]. However, finding the optimal path cover in a graph is
an NP-complete problem as shown in [15]. Therefore, we hope to apply approximation
algorithms to estimate an optimal path cover. In [1], Moran et al. introduce three fun-
damental approximation algorithms for the maximum weighted path cover of a graph.
1
2
-Approximation Covering Algorithm is the most straight-forward one in the paper; it

is a greedy algorithm that obtains an approximated maximum path cover with at least
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†Institute of Mathematical Sciences, Claremont Graduate University, Claremount, CA, USA. Email:
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1
2
of the optimal path cover’s weight. There are two other path cover approximation

algorithms introduced in [1] that are linear in programming. They both guarantee 2
3

weight in undirected graphs and directed graphs. These two algorithms use the same
method of finding a degree-constrained subgraph of the primary graph that has maxi-
mum weight. The degree of nodes in the subgraph is constrained to be less or equal to
2, and there are only paths and cycles left in the subgraph. Each cycle has at least three
edges, and there is at least one edge in this cycle whose weight is less than 1

3
of the total

weight in this cycle. Therefore, these results give the 2
3
theoretical bound of the algorithm.

In recent years, there have been works done on approximation algorithms that take
different approaches. In [11], Tu and Zhou use primal-dual method and design a 1

2
-

approximation algorithm called V CP3 (Vertex Cover P3) where P3 is a path with 3 ver-
tices. The main idea of V CP3 is to remove redundant vertices as the algorithm goes. Its
time complexity takes O(M · N) time, where M is the number of edges and N is the
number of vertices in the graph covered by V CP3. In [12], Zhang et al. provide an algo-
rithm specifically for MWV CCk (Minimum Weight Connected k-Subgraph Cover). This
algorithm is an optimization of the algorithm in [11], where it only considers when k = 2,
yet the algorithm in [12] provides a 1

k−1
-approximation for the MWV CCk problem. Its

time complexity is O(N2 ·M).

Finding approximated optimal path cover arises in many application problems. Re-
searchers have been investigating path cover applications on various types of graphs,
such as cocomparability graphs, cographs, interval graphs, block graphs, and permuta-
tion graphs in [5, 4, 6, 7]. For instance, finding the shortest distance or the route that
costs the minimum time on a map originates from Dijkstra in [8] can be related to find-
ing the mininal path cover. Based on the 1

2
-Approximation Covering Algorithm, Hu et

al. approximate the level sets of the smooth error and further build adaptive multilevel
structures that increase the accuracy and robustness of solving linear systems in weighted
graph Laplacians. In [2], Ehikioya and Lu provide a path analysis of site visiting to help
understand the website traffic and improve marketing strategies. In [9], Bertolino and
Marre show a generalized algorithm specifically working towards the flow graph, which is
a presentation of all possible paths in a program. In [3], Dwarakanath and Jankiti show
that the path cover can provide the minimum number of test paths to cover different
structural coverage criteria.

Nowadays, graphs and networks have become larger and more complex, calling for more ro-
bust path cover approximating algorithms. In this paper, we realize the 1

2
-Approximation

Covering Algorithm in Python and derive a memory saving modification. The algorithm
has several advantages: 1) It is a greedy algorithm and straightforward to implement.
2) Every step of the algorithm is deterministic, and there is no randomness involved.
3) There is a theoretical guarantee of time complexity. On top of these advantages, we
compare the memory storage of the original algorithm to one that does not remove any
redundant edges as it progresses. The motivation is that we observe that checking and
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marking the redundant edges can acquire large memory storage especially as the graph
gets larger and denser. Without removing redundant edges, one can significantly reduce
the memory storage while still guaranteeing the 1

2
weight lower bound. In Section 2, we

review the 1
2
-Approximation Covering Algorithm by introducing necessary preliminaries,

reorganizing the pseudocode and revisiting the theoretical analysis of the algorithm. In
Section 3, we focus on the memory efficient modification of the algorithm and derive the
theoretical guarantees of the modified version. In Section 4, we provide the numerical re-
sults and visualizations of both algorithms on Watts-Strogatz graph, a deterministic graph
in the setting of this paper, and Erdős-Rényi graph, a random graph, as well as graphs
from real-world situations to show the effectiveness and advantages of both algorithms.

2 1
2-Approximation Covering Algorithm

We first review the preliminaries that help explain the 1
2
-Approximation Covering Algo-

rithm, denoted as Algorithm 1, and the complexity of the algorithm. Then we rewrite the
pseudocode and review the theoretical results of the 1

2
-Approximation Covering Algorithm

introduced in [1].

2.1 Preliminaries

Consider an undirected weighted graph G, which contains vertex set V , edge set E, and
associating weights W . We denote N to be the number of vertices in V and M to be the
number of edges in E. An edge e = {u, v} in E contains two end points u and v.w(e) is
the weight of e from W . We denote OPT as the optimal (maximal) path cover of G and
cover as the approximated path cover that estimates OPT . In addition, we denote H to
be the number of edges in the path cover and K to be the number of paths in the path
cover.

2.2 Pseudocode

We rewrite 1
2
-approximation path cover algorithm in [1] in Algorithm 1. Each step is

deterministic and easy to follow. While the advantages are obvious, Algorithm 1 can take
considerable memory space as the graph gets larger.

3
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Algorithm 1 1
2
Approximation Path Cover

1: procedure [ cover ] = PathCover((A))
Require: A——an undirected positive weighted graphG=(V,E,W)
Ensure: cover——a path cover of graph G
2: sorted edges ← Sort the edges in descending order based on W
3: for e={u, v} ∈ sorted edges do
4: if neither u nor v is in any paths in cover then
5: Add {u, v} as a new path in cover

6: else if u is the end point of a path in cover and v is not in any paths then
7: Append {v} to cover {path that contains u}
8: Remove {adj(u), u} from sorted edges

9: else if v is the end point of a path in cover and u is not in any paths then
10: Append {u} to cover {path that contains v}
11: Remove {adj(v), v} from sorted edges

12: else if u and v are the end points of different paths in cover then
13: Merge two paths
14: Remove {adj(v), v} and {adj(u), u} from sorted edges

15: end if
16: end for
17: end procedure

Here, we denote adj(u) as the adjacent nodes of u in G but not in cover. We can observe
that Algorithm 1 is essentially a greedy algorithm by checking each edge based on the
weight in descending order to build the path cover. A review of the theoretical guarantees
for this algorithm in [1] is included in Section 2.3 for completeness.

2.3 Algorithm 1 Analysis

When using Algorithm 1 to find an approximated path cover, the following theorem stated
in [1] gives the theoretical bounds on accuracy and complexity:

Theorem 2.1 On a weighted graph G, assume that OPT is its optimal path cover and
cover is an approximation of OPT obtained by Algorithm 1, the weight of cover is at
least 1

2
of the weight of OPT

w(cover) ≥ 1

2
· w(OPT ).

The time complexity for finding is cover O(M ·LogM), where M is the number of edges
in graph G.

Algorithm 1 produces cover whose weight is greater or equal to 1
2
of w(OPT ) which is

the weight sum of OPT , hence its name. Its time complexity is O(M · LogM), which
follows from the fact that initialization, the execution time of the loop, the removal of

4
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redundant edges, and the output are in O(M), but the sorting time is in O(M · LogM).
Thus, the entire test is eventually finished in O(M · LogM).

3 Memory Efficient Algorithm

To make Algorithm 1 more memory efficient, we derive an approach that takes less memory
space while preserving the theoretical results by maintaining the redundant edges.

3.1 Motivations

Figure 1: Redundancy

We use the following example to illustrate a big picture of the memory efficient algorithm.
In Figure 1, edges in red are in path cover, and the edges in black are incident to the
path. Algorithm 1 ranks the edge weights in descending order and picks edges {a, b} and
{b, c}. However, by the definition of path, only edges incident to end points (i.e. a and c)
can be added to the path. Thus, checking and marking the redundant edges incident to b
(the middle node of the path) takes extra memory space as it requires a variable to store.
Since the program is going in descending order based on the edge weights, the primary
algorithm keeps the redundant edges that are not necessary to process and achieves the
goal of time saving. In the modified version, we maintain these redundant edges in the
original set instead of creating extra storage space. The advantage of the memory saved
becomes more significant, as the average degree of the graph and the number of nodes get
higher. Meanwhile, the time complexity and 1

2
weight bound are still guaranteed (Proof

in Section 3.3).

3.2 Pseudocode

Here, we lay out the procedure of the memory efficient algorithm in Algorithm 2. In
Algorithm 1, we need to store redundant edges with extra space to skip and save time

5
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as the program goes through edges based on descending order of weight. Corresponding
steps 8, 11, and 14 from Algorithm 1 are removed, thus, we can save memory space
of storing redundant edges as the algorithm progresses. More numerical details on the
efficiency increase will be discussed later in Section 4.

Algorithm 2 Memory Efficient Path Cover Approximating Algorithm

1: procedure [ cover ] = PathCover(A)
Require: A——an undirected positive weighted graph G=(V,E,W)
Ensure: cover——a path cover of graph G
2: sorted edges ← Sort the edges in descending order based on W
3: for e={u, v} ∈ sorted edges do
4: if neither u nor v is in any paths in cover then
5: Add {u, v} as a new path in cover

6: else if u is the end point of a path in cover and v is not in any paths then
7: Append {v} to cover {path that contains u}
8: else if v is the end point of a path in cover and u is not in any paths then
9: Append {u} to cover {path that contains v}
10: else if u and v are the end points of different paths in cover then
11: Merge two paths
12: end if
13: end for
14: end procedure

Notice that the algorithm still picks the same set of edges for cover, since the redundant
edges do not make into the approximated cover and it does not matter whether we remove
them or not.

3.3 Algorithm 2 Analysis

For the derived Algorithm 2, we claim the following theorem:

Theorem 3.1 On a weighted graph G, assuming that OPT is the optimal path cover,
and cover is the approximation of OPT obtained by Algorithm 2, we have

w(cover) ≥ 1

2
· w(OPT ).

The time complexity of finding cover by Algorithm 2 is O(M · logM) where M is the
number of edges in G.

Proof.
As mentioned in Sections 3.1 and 3.2, the removed steps do not change the resulting

approximated path cover. So according to Theorem 2.1, we have

w(cover) ≥ 1

2
· w(OPT ),

6



1

2

3
4

5

6
7

8

9

10

11

12

13
14

15

16
17

18

19

20

21

22

23
24

25

26
27

28

29

30

31

32

33
34

35

36
37

38

39
40

41

42

43

44

45

46

47

48

49

50

where cover is generated by Algorithm 2.

The initialization, the execution time of the loop, and the output, are in O(M). The
sorting time is in O(M · LogM). Thus, the entire test has computational complexity
O(M · LogM). □
Since now we understand that the advantage of Algorithm 2 comes from the memory
saved of redundant edges, we claim the following theorem:

Theorem 3.2 Let H̃ be the set of redundant edges and M be the edges in path cover, the
memory ratio of Algorithm 1 and 2 can be written as the following:

H

H + H̃

The ratio is bounded by the following best and worst case:

H

2H
<

H

H + H̃
≤ H

H

The memory complexity is therefore represented as O( H
H+H̃

)

3.4 Removed Edges

We further theoretically analyze the gain in computation by removing redundant edges.
First, let us visualize the process of removing redundant edges in Algorithm 1. Here,
we take the Watts-Strogatz graph in the setting of structured ring graphs as an example
shown in Figure 2.

Figure 2: Watts-Strogatz Graph

Algorithm 1 sorts the edges in descending order of weights, i.e. {0, 1}, {1, 4}, {3, 4}, {2,
3}, {0, 2}, {0, 4}, {0, 3}, {1, 2}, {2, 4}, and {1, 3} based on Figure 2. Processing to
Figure 3 on the left, first, it takes {0, 1}; there are no redundant edges yet since every

7
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Figure 3: Results from Algorithm 1 (left) and Algorithm 2 (right)

other edge can be potentially chosen. Then, it takes {1, 4}. All edges incident to node
1 cannot be taken because the selected edges must make a path. It takes {3, 4} next,
then {0, 4} and {2, 4} are eliminated for the same reason. Lastly, it removes {0, 3} after
taking {2, 3}. {0, 2} is now the only remaining edge, and it cannot be taken. Therefore,
Algorithm 1 terminates, and the green edges are selected into the path cover.

Figure 3 on the right suggests the end results of Algorithm 2. It takes {0, 1} as the
first edge and adds {1, 4}, {3, 4}, and {2, 3} to the path cover consecutively. When
checking other edges, we find that adding any one of them would make the selected edges
no longer a path. Therefore, Algorithm 2 terminates. The edges marked in blue in Figure
3 on the right are the selected as the approximated path cover.

We can observe that two algorithms select the exact same set of edges into the approxi-
mated path cover as mentioned in our previous theoretical analysis. Algorithm 2 checks
all ten edges before it terminates, where Algorithm 1 only checks five edges since redun-
dant edges are removed along the way. We generalize our findings on the number of edges
removed in the following claims:

Lemma 3.3 In a connected weighted graph G, let H be the number of edges in the path
cover and N be the number of vertices in the graph. If G is covered by one single path,
we have:

H = N − 1

Proof.
By induction:

Base Case: Suppose we have a connected weighted graph G which is an edge connected
by 2 vertices, G itself would be the one single path. In this case, H = 1 and N = 2. Then
we have:

H = N − 1

8
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Induction Step: Let k ∈ Z+ be given, and suppose that it is true for the case N = k:

H = k − 1 = N − 1

We add one more point to G, which makes number of node N = k + 1. There has to be
one edge that connects the new node to the rest to cover the full node set of G. So we
have:

H = k − 1 + 1

= (k + 1)− 1

= N − 1

It holds for N = k + 1, and the proof of induction is complete. □
The following Corollary 3.2 can be derived from Lemma 3.3:

Corollary 3.4 In a fully connected weighted graph G, denote H as the number of edges
in the path cover and N as the number of vertices in the graph, we know that

H = N − 1

Proof.
Since fully connected graphs are guaranteed to be covered by a single path, it can be

easily proved by Lemma 3.3. □
However, this is not guaranteed for any connected but not fully connected graphs.

Figure 4: Original Graph (left) and Algorithm 2 (No edges removed) (right)

For example, Figure 4 on the left is a connected graph but not a fully connected graph.
We can see by launching Algorithm 2, that there are two paths in the path cover (see
Figure 4 on the right). In this case, H does not equal N − 1. For general cases where
graphs are less connected, we claim the following theorem to conclude the number of
removed edges.

9
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Theorem 3.5 In a weighted undirected graph, let H be the number of edges in path cover,
N be the number of vertices in the graph, K be the number of paths in path cover. H can
be expressed as the following:

H = N −K

Proof. To show H = N −K

By Lemma 3.3,

H =
K∑
i=1

Hi =
K∑
i=1

(Ni − 1) =
K∑
i=1

(Ni)−K = N −K

where Hi is the number of edges and Ni is the number of nodes in the i− th path in the
path cover. Since all i paths cover the entire vertex set,

∑K
i=1(Ni) = N , Theorem 3.5 is

therefore proved. □

Figure 5: Theorem 3.5 Visualization 1 (left) and Theorem 3.5 Visualization 2 (right)

As an example, Figure 5 on the left displays a graph containing three paths without
removing the redundant edges, and Figure 5 on the right visualizes the graph that removes
the redundant edges. We observe that N = 14 and K = 3. Thus H = 11, and it verifies
the formula given by Theorem 3.5.

4 Numerical Tests

The numerical tests are conducted with a 3.30 GHz Intel Core i7-11370H CPU, a quad-
core processor, and 32 GB of RAM. The test program is written in Python, importing the
packages NetworkX and NumPy. The dictionary is the principle data structure throughout
the program, since it is implemented as hash tables, and its average time complexity is
O(1). In the end, packages of line-profiler and sys are imported to record the com-
putational time.

10
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Tables 1-7 and Figures 6-8 provide the numerical results from the tests and visualiza-
tions on both Watts-Strogatz graphs and Erdős-Rényi graphs. We set 4, 6 and 8 as the
degree of nodes in Watts-Strogatz and 2·ln(M)

M
, 2.5·ln(M)

M
and 3·ln(M)

M
as the probability of

generating edges in Erdős-Rényi, where M is the number of edges, to see how it would
affect the results as the density gets higher. We denote the average degree of nodes as
Davg.

Figure 6: Watts-Strogatz Graph Node=4 (left), Node=6 (middle), Node=8 (right)

Figure 7: Watts-Strogatz Total Comparison

11
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Table 1: Watts-Strogatz Graph (Degree of nodes = 4)

N M Davg Algo 1 Algo 2 Time Ratio
131,072 262,144 4 0.27s 0.19s 1.42
262,144 524,288 4 0.38s 0.38s 1.00
524,288 1,048,576 4 0.83s 0.69s 1.20
1,048,576 2,097,152 4 1.61s 1.70s 0.95
2,097,152 4,194,304 4 3.09s 3.14s 0.98
4,194,304 8,388,608 4 6.46s 6.43s 1.00

Table 2: Watts-Strogatz Graph (Degree of nodes = 6)

N M Davg Algo 1 Algo 2 Time Ratio
131,072 393,216 6 0.20s 0.27s 0.74
262,144 786,432 6 0.40s 0.48s 0.83
524,288 1,572,864 6 0.78s 1.03s 0.76
1,048,576 3,145,728 6 1.74s 1.98s 0.88
2,097,152 6,291,456 6 3.46s 3.88s 0.89
4,194,304 12,582,912 6 7.02s 8.40s 0.83

Table 3: Watts-Strogatz Graph (Degree of nodes = 8)

N M Davg Algo 1 Algo 2 Time Ratio
131,072 524,288 8 0.22s 0.28s 0.78
262,144 1,048,576 8 0.42s 0.58s 0.72
524,288 2,097,152 8 0.88s 1.19s 0.74
1,048,576 4,194,304 8 1.80s 2.34s 0.77
2,097,152 8,388,608 8 3.59s 4.49s 0.80
4,194,304 16,777,216 8 7.31s 10.29s 0.71

Tables 1-3 and Figures 6-7 are the numerical results and visualizations of the Watts-
Strogatz graph. The setting of Watts-Strogatz in this paper is a deterministic structure
graph, as we let the degree of nodes be fixed number 4, 6, and 8, and only the weights
on edges are assigned randomly from 1 to 10. The starting point of O(M · LogM) is
rescaled to the starting point of Algorithm 2, to observe if Algorithm 2 meets the time
complexity bound. Algorithm 1 and Algorithm 2 are plotted based on the values from
the tables to compare the computational time. We can observe that Algorithms 1 and 2
are slightly above the theoretical bound of O(M · LogM), when the degree of nodes is 4.
This is due to the overhead of algorithms, but they have better performance as the degree
of nodes increases. When the degree of nodes is 4, the graph is relatively sparse, and it
is difficult to claim that Algorithm 1 performs better than Algorithm 2. However, as the
degree of nodes increases, Algorithm 1 saves more time. When the degree of nodes is 6,

12
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the time ratio Algo1
Algo2

stabilizes around 0.82. When the degree of nodes is 8, the time ratio
stabilizes around 0.75. Therefore, in a deterministic graph, we can claim that Algorithm
1 is expected to obtain better results on computational time as the graph and its average
degree of nodes gets larger.

Table 4: Watts-Strogatz Graph GigaByte Memory Storage

N M Davg Algo 1 Algo 2 Memory Ratio
131,072 262,144 4 0.0237 0.0188 1.26
131,072 393,216 6 0.0503 0.0405 1.24
131,072 524,288 8 0.1034 0.0834 1.24
4,194,304 8,388,608 4 0.2106 0.1697 1.24
4,194,304 12,582,912 6 0.4223 0.3453 1.22
4,194,304 16,777,216 8 0.8495 0.6941 1.22

Next, we want to observe how these two algorithms vary on memory storage. Watts-
Strogatz graph has fixed number of edges, so it is a good way to compare the memory
storage difference. In Table 4, as the number of edges and average degree increase, Algo-
rithm 2 has great advantages on memory storage on both GB number and ratio compare
to Algorithm 1. Throughout all 3 tables, Algorithm 1 has around extra 24% memory
stored compared to Algorithm 2.

Figure 8: Erdős-Rényi Graph Probability=2 (left), Probability=2.5 (middle), Probabil-
ity=3 (right)
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Table 5: Erdős-Rényi Graph (Probability = 2·(ln(M))
M

)

N M Davg Algo 1 Algo 2 Time Ratio
25,806 261,786 20.28 0.08s 0.16s 0.50
48,585 524,926 21.60 0.13s 0.25s 0.52
91,763 1,048,862 22.86 0.29s 0.53s 0.54
173,811 2,097,921 24.14 0.59s 1.55s 0.38
330,076 4,195,049 25.42 1.16s 3.05s 0.38

Table 6: Erdős-Rényi Graph (Probability = 2.5·(ln(M))
M

)

N M Davg Algo 1 Algo 2 Time Ratio
25,806 327,924 25.42 0.07s 0.18s 0.39
48,585 655,398 26.98 0.16s 0.30s 0.53
91,763 1,310,775 28.56 0.31s 0.80s 0.39
173,811 2,623,118 30.62 0.61s 1.48s 0.41
330,076 5,242,429 31.76 1.24s 3.54s 0.35
628,322 10,485,256 33.38 32.82s 58.83s 0.56

Table 7: Erdős-Rényi Graph (Probability = 3·(ln(M))
M

)

N M Davg Algo 1 Algo 2 Time Ratio
25,806 393,057 30.46 1.18s 1.97s 0.60
48,585 786,773 32.38 2.35s 4.07s 0.58
91,763 1,572,307 34.26 4.75s 8.39s 0.57
173,811 3,147,013 36.22 10.75s 18.31s 0.59
330,076 6,288,240 38.10 19.54s 34.63s 0.56
628,322 12,580,367 40.04 40.26s 74.24s 0.54

While Algorithm 2 has performed well on a deterministic structure graph, we would also
like to see its performance on a random graph such as Erdős-Rényi graph. Erdős-Rényi
graph generates an edge between a pair of nodes based on the assigned probability. In
our experiments, we use 2 ln(M)

M
, 2.5 ln(M)

M
and 3 ln(M)

M
respectively to ensure that the graphs

are connected, and we assign the weights on edges randomly from 1 to 10. In Figure 8,
Algorithm 2 stays close to the theoretical bound, while Algorithm 1 takes less computa-
tional time on all sizes of graphs and the computational time increases slower compared
to Algorithm 2. In Tables 5-7, the time ratio of Algorithm 1 and 2 is stable around 0.4.
We can claim from the results that as the average degree gets larger, Algorithm 1 shows
better computational performance.
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Table 8: Erdős-Rényi Graph Memory Storage(Probability = 2·(ln(M))
M

)

N M Davg Algo 1 Algo 2 Memory Ratio
25,806 261,786 20.28 0.0032 0.0021 1.52
48,585 524,926 21.60 0.0095 0.0063 1.50
91,763 1,048,862 22.86 0.0176 0.0138 1.28
173,811 2,097,921 24.14 0.0296 0.0243 1.22
330,076 4,195,049 25.42 0.0507 0.0404 1.25

Table 9: Erdős-Rényi Graph Memory Storage (Probability = 2.5·(ln(M))
M

)

N M Davg Algo 1 Algo 2 Memory Ratio
25,806 261,786 20.28 0.0039 0.0019 2.05
48,585 524,926 21.60 0.0104 0.0068 1.52
91,763 1,048,862 22.86 0.0233 0.0167 1.40
173,811 2,097,921 24.14 0.0259 0.0195 1.33
330,076 4,195,049 25.42 0.0516 0.0425 1.21

Table 10: Erdős-Rényi Graph Memory Storage (Probability = 3·(ln(M))
M

)

N M Davg Algo 1 Algo 2 Memory Ratio
25,806 261,786 20.28 0.0054 0.0037 1.46
48,585 524,926 21.60 0.0104 0.0070 1.49
91,763 1,048,862 22.86 0.0190 0.0131 1.45
173,811 2,097,921 24.14 0.0246 0.0200 1.23
330,076 4,195,049 25.42 0.0530 0.0436 1.22

Memory storage advantage of Algorithm 2 is also demonstrated in Erdős-Rényi graph.
The memory ratio of Algo1

Algo2
is around 1.50.
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Figure 9: Real-World Graphs Boxplot

Table 11: gemsec-Facebook

Group N M Davg Algo 1 Algo 2 Time Ratio
Government 7,057 89,429 25.34 0.26s 0.45s 0.58
New Sites 27,917 205,964 14.76 0.66s 1.18s 0.56
Athletes 13,866 86,811 12.52 0.28s 0.44s 0.64

Public Figures 11,565 67,038 11.59 0.21s 0.36s 0.58
TV Shows 3,892 17,239 8.86 0.06s 0.10s 0.60
Politician 5,908 41,706 14.12 0.15s 0.28s 0.54
Artist 50,515 819,090 32.43 2.43s 4.37s 0.56

Company 14,113 52,126 7.39 0.19s 0.28s 0.68

Table 12: gemsec-Deezer

Group N M Davg Algo 1 Algo 2 Time Ratio
HR 54,573 498,202 18.26 1.66s 2.87s 0.58
HU 47,538 222,887 9.38 0.86s 1.26s 0.68
RO 41,773 125,826 6.02 0.53s 0.72s 0.74

Table 13: Road Network

Group N M Davg Algo 1 Algo 2 Time Ratio
TX 1,379,917 1,921,660 2.79 14.97s 15.04s 1.00
CA 1,965,206 2,766,607 2.82 21.49s 21.51s 1.00
PA 1,088,092 1,541,898 2.83 12.19s 11.85s 1.03
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Table 14: Road Network Memory Usage

Group N M Davg Algo 1 Algo 2 Memory Ratio
TX 1,379,917 1,921,660 2.79 0.2205 0.1815 1.21
CA 1,965,206 2,766,607 2.82 0.3669 0.3279 1.12
PA 1,088,092 1,541,898 2.83 0.2058 0.1656 1.24

Next, we test Algorithm 1 and 2 on real-world problems to see if the above advantages
continue. We have selected two social network data sets i.e. gamesec-Facebook and
gamesec-Deezer in [14] and one road network data set from Stanford Large Data Network
Collection in [13].

Table 15: as-skitter

Group N M Davg Algo 1 Algo 2 Time Ratio
as-skitter 1,696,415 11,095,298 6.54 37.14s 63.78s 0.58

Table 16: as-skitter Memory Storage

Group N M Davg Algo 1 Algo 2 Memory Ratio
as-skitter 1,696,415 11,095,298 6.54 0.1822 0.1623 1.12

Since the degree distributions of these four real-world data sets are extremely right skewed,
we showcase only 25% to 75% quantile of degree distribution in Figure 9 with the extreme
values from both sides removed. Thus, it would be easier for us to observe the shape of
the degree distributions. For all the numerical tests, Algorithms 1 and 2 are conducted
on the original data sets, without removing any extreme values. In Tables 11-15, time
ratio for gamesec-Facebook and gamesec-Deezer are relatively stable. While the nodes
and edges vary widely, the average degree is high enough to ensure that Algorithm 1
outperforms Algorithm 2. When the average degree of graphs is low, such as in the road
networks, the advantages of Algorithm 1 are not as pronounced. This can be explained
by the types of these data sets. as-skitter is a large graph with high average degree, and
the test shows the great advantage of Algorithm 1 on computational time. The first two
tables are social networks that have clusters and a high degree of nodes that include more
redundant edges for Algorithm 1 to remove and save time. However, in road network
graphs, Algorithm 1 can only remove edges at cross-intersections and T-intersections.
The property of the road network constrains the effectiveness of Algorithm 1. In Table
16, due to the high nodes and high density property of as-skitter, Algorithm 2 performs
well on memory storage by only taking 85% if memory space comparing to Algorithm 1,
which demonstrates its effectiveness on memory saving. Overall, on larger graphs with a
higher average degree of nodes, we can conclude that Algorithm 1 performs increasingly
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well on saving computational time, whereas Algorithm 2 gains more advantage in saving
memory storage. The trade off between time and memory storage needs to be decided
depending on the needs. The implementation of both algorithms is available on GitHub:
https : //github.com/George− the−Ren/12Optimization/tree/main

5 Conclusion and Future Work

Finding an optimal path cover in any graph is an NP-complete problem as described in
[15], yet there have been many works done to utilize approximation algorithms to estimate
the optimal path cover. In this paper, we first review the 1

2
-Approximation Covering Algo-

rithm. It is a greedy path cover approximating algorithm. It guarantees a path cover that
obtains at least 1

2
weight of the optimal path cover, with time complexity of O(M ·LogM).

We make a derivation of 1
2
-Approximation Covering Algorithm by not removing redun-

dant edges as the algorithm progresses to save memory storage. We review the theoretical
results from [1] in Section 2.3 and show in Section 3.3 that the 1

2
theoretical bound and

time complexity still hold for Algorithm 2. In Section 3.4, we prove the number of edges
remained in the approximated path cover for any weighted graphs, which suggests how
many edges are marked for removal by Algorithm 1. We then discuss our test results
on both of the deterministic ring structured graphs and Erdős-Rényi random graphs in
Section 4. From both the time cost and scaling on graphs with various sizes and densities,
we observe that Algorithm 1 outperforms Algorithm 2 on both types of graphs regarding
to computational time, and Algorithm 2 shows great advantage on acquiring much less
memory storage, especially when the graph is large and its density is high. Then we
show that Algorithm 1 performs effectively on most real-world networks with different
structures, especially on high-degree graphs, such as the social networks, and Algorithm
2 is memory efficient on large and high density graph. Overall, there is a trade off of
computational time and memory storage between two algorithms. Readers can choose
which one to use depending on their needs.

As the modern problems tend to involve large data sets, the derived algorithm shows
competitiveness in applications to the real-world data sets, especially in the form of high
degree networks, such as social activities and e-commerce. In the future, we would like
to apply it to other graph theory problems, such as cocomparability graphs, cographs,
interval graphs, block graphs, and permutation graphs. Each structure may require some
changes to the algorithm, but it is a general approach in many cases.

We also want to explore if there are other potential data structures, functions, and
programming tips of Python that we can implement to optimize our current program.
Additionally, we want to rewrite the current program in other languages, such as MAT-
LAB or JAVA, which are more compatible with the hardware. Furthermore, we plan to
take a step ahead to parallel optimization as we can separate one graph into multiple
graphs by removing the local clustering, and solve all the graphs at once to generate the
path cover which would bring the efficiency to an even higher level.
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