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Abstract

Tensor train (TT) decomposition represents an order-N tensor using O(N) order-3 tensors (i.e.,
factors of small dimension), achieved through products among these factors. Due to its compact
representation, TT decomposition has been widely used in the fields of signal processing, machine
learning, and quantum physics. It offers benefits such as reduced memory requirements, enhanced
computational efficiency, and decreased sampling complexity. Nevertheless, existing optimization
algorithms with guaranteed performance concentrate exclusively on using the TT format for re-
ducing the optimization space in recovery problems, while still operating on the entire tensor in
each iteration. There is a lack of comprehensive theoretical analysis for optimization involving the
factors directly, despite the proven efficacy of such factorization methods in practice. In this paper,
we provide the first convergence guarantee for the factorization approach in a TT-based recovery
problem. Specifically, to avoid the scaling ambiguity and to facilitate theoretical analysis, we op-
timize over the so-called left-orthogonal TT format which enforces orthonormality among most
of the factors. To ensure the orthonormal structure, we utilize the Riemannian gradient descent
(RGD) for optimizing those factors over the Stiefel manifold. We first delve into the TT factoriza-
tion/decomposition problem and establish the local linear convergence of RGD. Notably, the rate
of convergence only experiences a linear decline as the tensor order increases. We then study the
sensing problem that aims to recover a TT format tensor from linear measurements. Assuming
the sensing operator satisfies the restricted isometry property (RIP), we show that with a proper
initialization, which could be obtained through spectral initialization, RGD also converges to the
ground-truth tensor at a linear rate. Furthermore, we expand our analysis to encompass scenarios
involving Gaussian noise in the measurements. We prove that RGD can reliably recover the ground
truth at a linear rate, with the recovery error exhibiting only polynomial growth in relation to the
tensor order N . We conduct various experiments to validate our theoretical findings.
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1. Introduction

Tensor estimation is a crucial task in various scientific and engineering fields, including signal pro-
cessing and machine learning (Cichocki et al., 2015; Sidiropoulos et al., 2017), communication
(Sidiropoulos et al., 2000), chemometrics (Smilde et al., 2005; Acar and Yener, 2008), genetic en-
gineering (Hore et al., 2016), and so on. When dealing with an order-N tensor X ∈ Rd1×···×dN ,
its exponentially increasing size with respect to N poses significant challenges in both memory and
computation. To address this issue, tensor decomposition, which provides a compact representation
of a tensor, has gained popularity in practical applications. The widely used tensor decomposi-
tions include the canonical polyadic (CP) (Bro, 1997), Tucker (Tucker, 1966), and tensor train (TT)
(Oseledets, 2011) decompositions. These three formats have their pros and cons. The CP decom-
position offers a storage advantage as it requires the least amount of storage, scaling linearly with
N . However, determining the CP rank of a tensor is generally an NP-hard problem, as are tasks
such as CP decomposition (Håstad, 1989; De Silva and Lim, 2008; Kolda and Bader, 2009; Cai
et al., 2019). On the contrary, the Tucker decomposition can be approximately computed using the
higher-order singular value decomposition. However, when representing a tensor using the Tucker
decomposition, the size of the core tensor still grows exponentially in terms of N . This leads to
significant memory consumption, making the Tucker decomposition more suitable for low-order
tensors than for high-order ones.

In comparison, the TT format provides a balanced representation: in many cases it requires
O(N) parameters, while its quasi-optimal decomposition can be obtained through a sequential sin-
gular value decomposition (SVD) algorithm, commonly referred to as the tensor train SVD (TT-
SVD) (Oseledets, 2011). Specifically, the (s1, . . . , sN )-th element of X in the TT format can be
expressed as the following matrix product form (Oseledets, 2011)

X (s1, . . . , sN ) = X1(:, s1, :)X2(:, s2, :) · · ·XN (:, sN , :), (1)

where the tensor factorsXi ∈ Rri−1×di×ri , i = 1, . . . , N with r0 = rN = 1. See Figure 1 for an il-
lustration. Thus, the TT format can be represented byN order-3 tensor factors {Xi}i≥1, with a total
ofO(Ndr2) parameters, where d = maxi di and r = maxi ri. The dimensions r = (r1, . . . , rN−1)
of such a decomposition are called the TT ranks of X . Any tensor can be decomposed in the TT
format (1) with sufficiently large TT ranks (Oseledets, 2011, Theorem 2.1). Indeed, there always
exists a TT decomposition with ri ≤ min{Πi

j=1dj ,Π
N
j=i+1dj} for any i ≥ 1. We say a TT format

tensor is low-rank if ri is much smaller compared to min{Πi
j=1dj ,Π

N
j=i+1dj} for most indices1 i

so that the total number of parameters in the tensor factors {Xi} is much smaller than the number
of entries in X . We refer to any tensor for which such a low-rank TT decomposition exists as a
low-TT-rank tensor.

Due to its compact representation, the TT decomposition with small TT ranks has found ex-
tensive applications in various fields. For instance, it has been widely used for image compression
(Latorre, 2005; Bengua et al., 2017), analyzing theoretical properties of deep networks (Khrulkov
et al., 2017), network compression or tensor networks (Stoudenmire and Schwab, 2016; Novikov
et al., 2015; Yang et al., 2017; Tjandra et al., 2017; Yu et al., 2017; Ma et al., 2019), recommendation
systems (Frolov and Oseledets, 2017), probabilistic model estimation (Novikov et al., 2021), learn-
ing of Hidden Markov Models (Kuznetsov and Oseledets, 2019), and more. Notably, as equivalents

1. When i = 1 or N − 1, r1 or rN−1 may not be much smaller than d1 or dN .
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Figure 1: Illustration of the TT format (1).

to the TT decomposition, the matrix product state (MPS) and matrix product operator (MPO) de-
compositions have been introduced in the quantum physics community for efficiently and concisely
representing quantum states. In this context, the parameter N represents the number of qubits in
the many-body system (Verstraete and Cirac, 2006; Verstraete et al., 2008; Schollwöck, 2011). The
concise representation provided by MPS and MPO is particularly valuable in quantum state tomog-
raphy, as it allows us to observe a quantum state using computational and experimental resources
that grow polynomially rather than exponentially with the number of qubitsN (Ohliger et al., 2013).

A fundamental challenge in many of the aforementioned applications is to construct a low-TT-
rank tensor from highly incomplete measurements of that tensor. The work (Bengua et al., 2017;
Wang et al., 2019a) extends a nuclear-norm based convex relaxation approach from the matrix case
to the TT case, but its high computational complexity makes it impractical for higher-order tensors.
Alternating minimization (Wang et al., 2016) and gradient descent (Yuan et al., 2019b) have been
employed to efficiently estimate the factors in the TT format, but theoretical guarantees regarding
recovery error or convergence properties are not provided. Besides these heuristic algorithms, it-
erative hard thresholding (IHT) (Rauhut et al., 2017, 2015) and Riemannian gradient descent on
the TT manifold (Budzinskiy and Zamarashkin, 2021; Wang et al., 2019b; Cai et al., 2022) have
been proposed with local convergence guarantees. However, both methods necessitate the estima-
tion of the entire tensor X in each iteration, which poses a challenge due to its exponential size
in terms of N . As a result, both methods demand an exponential amount of storage or memory.
In addition, theoretical results of IHT hinge on an unverified perturbation bound for TT-SVD. The
Riemannian gradient descent method relies on the curvature information at the target tensor, which
is often unknown a priori.

Instead of optimizing over the tensor X directly, in this paper, we focus on optimizing over the
factors {Xi}i≥1 in the TT format. This factorization approach can significantly reduce the memory
cost and has found widespread applications. For instance, gradient descent-based optimization on
the TT factors has been successfully applied in various areas, including the TT deep computation
model (Zhang et al., 2018), TT deep neural networks (Qi et al., 2022), TT completion (Yuan et al.,
2019a), channel estimation (Zhang et al., 2021b) and quantum tomography (Lidiak et al., 2022).
However, to the best of our knowledge, there is a lack of rigorous convergence analysis for the TT
factorization approaches.
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Challenges: One of the main challenges in studying the convergence analysis of iterative algo-
rithms for the factorization approach lies in the form of products among multiple matrices in (1).
For instance, the TT factorization is not unique, and there exist infinitely many equivalent factor-
izations. In particular, for any factorization {X1, . . . ,XN}, {X1P1,P

−1
1 X2P2, . . . ,P

−1
N−1XN}

is also a TT factorization of X for any invertible matrices Pi ∈ Rri×ri , i ∈ [N − 1], where
[N − 1] = {1, . . . , N − 1} and P−1

i−1XiPi refers to P−1
i−1Xi(:, si, :)Pi for all si ∈ [di]. This

implies that the factors could be unbalanced (e.g., Pi = tI with either very large or small t), which
makes the convergence analysis difficult. In matrix factorization, a regularizer is often used to ad-
dress this scaling ambiguity (i.e., to reduce the search space of factors) and balance the energy of the
two factors (Tu et al., 2016; Park et al., 2017; Zhu et al., 2018). Motivated by these results, one may
adopt the same trick by adding regularizers to balance any pair of consecutive factors (Xi,Xi+1).
However, this strategy could be intricate, given that modifyingXi to achieve a balance between the
pair (Xi,Xi+1) will similarly impact another pair, namely, (Xi−1,Xi).

Our contributions: In this paper, we study the factorization approach for the TT sensing prob-
lem, where the goal is to recover the underlying low-TT-rank tensor X ? through its linear mea-
surements y = A(X ?), where the linear mapping A : Rd1×···×dN → Rm denotes the sensing
operator. To address the ambiguity issue in the factorization approach, we consider the so-called
left-canonical TT format that restricts all of the factors except the last one to be orthonormal, i.e.,∑di

si=1X
>
i (:, si, :)Xi(:, si, :) = Iri , i ∈ [N − 1]. Further details on the left-canonical form are

described in Section 3. For a collection of factors {Xi}, to simplify the notation, we will denote by
[X1, . . . ,XN ] the corresponding TT format tensorX with entries expressed in (1). We then attempt
to recover the underlying low-TT-rank tensor by solving the following TT factorized optimization
problem

min
Xi ∈ Rri−1×di×ri ,

i ∈ [N ]

1

2m
‖A([X1, . . . ,XN ])− y‖22,

s. t.

di∑
si=1

X>i (:, si, :)Xi(:, si, :) = Iri , i ∈ [N − 1].

(2)

Noting that each constraint defines a Stiefel manifold, to guarantee the exact preservation of the
orthonormal structure in each iteration, we propose a (hybrid) Riemannian gradient descent (RGD)
algorithm to solve the above TT factorization problem. Our main contribution focuses on the con-
vergence analysis of RGD for solving this problem.

• We first study the TT factorization problem whereA is an identity operator. With an appropri-
ate distance metric on the factors, we establish the local linear convergence of RGD. Notably,
the accuracy requirement on the initialization only depends polynomially on the tensor order
N and the rate of convergence only experiences a linear decline as N increases. This demon-
strates potential advantages over introducing additional regularizers to enforce orthogonality
for each factor, as used in (Han et al., 2022) for the Tucker factorization, which only ensures
approximate orthogonality in each iteration of gradient descent and thus is likely to suffer
from exponential dependence on the tensor order N .

• We then extend the convergence analysis to the more general TT sensing problem. Under
the assumption that the sensing operator satisfies the restricted isometry property (RIP)—a

4



GUARANTEED NONCONVEX FACTORIZATION APPROACH FOR TENSOR TRAIN RECOVERY

condition that can be satisfied with m & Ndr2 log(Nr) generic subgaussian measurements
(Rauhut et al., 2017; Qin et al., 2024) (where, again, r = maxi ri and d = maxi di)—we
show that RGD, given an appropriate initialization, converges to the ground-truth tensor at a
linear rate. Additionally, spectral initialization provides a valid starting point for ensuring the
convergence of RGD. Furthermore, we expand our analysis to noisy measurements and prove
that RGD can reliably recover the ground truth at a linear rate up to an error proportional to
the noise level and exhibiting only polynomial growth in the tensor order N .

Paper organization The rest of this paper is organized as follows. In Section 2, we introduce
the basic definitions of the TT format. Section 3 and Section 4 analyze the local convergence of
RGD for the TT factorization and sensing problems, respectively. Section 5 presents numerical
experiments. Lastly, we conclude the paper in Section 6.

Notations We use calligraphic letters (e.g., Y) to denote tensors, bold capital letters (e.g., Y )
to denote matrices, except for Xi which denotes the i-th order-3 tensor factor in the TT format,
bold lowercase letters (e.g., y) to denote vectors, and italic letters (e.g., y) to denote scalar quan-
tities. ‖X‖ and ‖X‖F respectively represent the spectral norm and Frobenius norm of the matrix
X , while σi(X) is the i-th singular value of X . ‖x‖2 denotes the l2 norm of the vector x. El-
ements of matrices and tensors are denoted in parentheses, as in Matlab notation. For example,
X (s1, s2, s3) denotes the element in position (s1, s2, s3) of the order-3 tensor X . The inner product
ofA,B ∈ Rd1×···×dN can be denoted as 〈A,B〉 =

∑d1
s1=1 · · ·

∑dN
sN=1A(s1, . . . , sN )B(s1, . . . , sN ).

The vectorization of X ∈ Rd1×···×dN , denoted as vec(X ), transforms the tensor X into a vector.
The (s1, . . . , sN )-th element of X can be found in the vector vec(X ) at the position s1 + d1(s2 −
1) + · · ·+ d1d2 · · · dN−1(sN − 1). ‖X‖F =

√
〈X ,X〉 is the Frobenius norm of X . ⊗ denotes the

Kronecker product between submatrices in two block matrices. Its detailed definition and proper-
ties are shown in Appendix A. For a positive integer K, [K] denotes the set {1, . . . ,K}. For two
positive quantities a, b ∈ R, the inequality b . a or b = O(a) means b ≤ ca for some universal
constant c; likewise, b & a or b = Ω(a) indicates that b ≥ ca for some universal constant c.

2. Preliminaries of Tensor Train Decomposition and Stiefel Manifold

2.1 Tensor Train Decomposition

Recall the TT format of X in (1). Since Xi(:, si, :) will be extensively used, we will denote it by
Xi(si) ∈ Rri−1×ri ; this matrix comprises one “slice” ofXi with the second index being fixed at si.
The (s1, . . . , sN )-th element in X can then be written as X (s1, . . . , sN ) =

∏N
i=1Xi(si).

In addition, for any two TT format tensors X̃ , X̂ ∈ Rd1×···×dN with factors {X̃i(si) ∈ Rr̃i−1×r̃i}
and {X̂i(si) ∈ Rr̂i−1×r̂i}, each element of the summation X = X̃ + X̂ can be represented by

X (s1, . . . , sN ) =
[
X̃1(s1) X̂1(s1)

] [X̃2(s2) 0

0 X̂2(s2)

]
· · ·

[
X̃N−1(sN−1) 0

0 X̂N−1(sN−1)

][
X̃N (sN )

X̂N (sN )

]
,

(3)

which implies that X can also be represented in the TT format with ranks ri ≤ r̃i + r̂i for i =
1, . . . , N − 1.

Canonical form The decomposition of a tensor X into the form (1) is generally not unique: not
only are the factors Xi(si) not unique, but also the dimensions of these factors can vary. To intro-
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duce the factorization with the smallest possible dimensions r = (r1, . . . , rN−1), for convenience,
for each i, we put {Xi(si)}disi=1 together into the following two forms

L(Xi) =

Xi(1)
...

Xi(di)

 ∈ R(ri−1di)×ri ,

R(Xi) =
[
Xi(1) · · · Xi(di)

]
∈ Rri−1×(diri),

where L(Xi) and R(Xi) are often called the left and right unfoldings of Xi, respectively, if we
view Xi as a tensor. We say the decomposition (1) is minimal if the rank of the left unfolding
matrixL(Xi) is ri and the rank of the right unfolding matrixR(Xi) is ri−1 for all i. The dimensions
r = (r1, . . . , rN−1) of such a minimal decomposition are called the TT ranks of X . To simplify the
notation and presentation, we may also refer to r = maxi ri as the TT rank. According to (Holtz
et al., 2012), there is exactly one set of ranks r that X admits a minimal TT decomposition.

Under the minimal decomposition, there always exists a factorization such that L(Xi) are or-
thonormal matrices for all i ∈ [N − 1]:

L>(Xi)L(Xi) = Iri , ∀i = 1, . . . , N − 1. (4)

Such a decomposition is unique up to the insertion of orthonormal matrices between adjacent factors
(Holtz et al., 2012, Theorem 1). That is, ΠN

i=1Xi(si) = ΠN
i=1R

>
i−1Xi(si)Ri for any orthonormal

matrixRi ∈ Ori×ri (withR0 = RN = 1). The resulting TT factors {Xi} or the TT decomposition
is called the left-orthogonal form, or left-canonical form. Similarly, the decomposition is said to be
right-orthogonal if R(Xi) satisfies R(Xi)R

>(Xi) = Iri−1 , ∀i = 2, . . . , N. Since the two forms
are equivalent (Holtz et al., 2012), in this paper, we always focus on the left-orthogonal form. Unless
otherwise specified, we will always assume that the factors are in left-orthogonal form.

Moreover, ri also relates to the rank of the i-th unfolding matrix2 X 〈i〉 ∈ R(d1···di)×(di+1···dN ) of
the tensor X , where the (s1 · · · si, si+1 · · · sN )-th element3 of X 〈i〉 is given by

X 〈i〉(s1 · · · si, si+1 · · · sN ) = X (s1, . . . , sN ).

This can also serve as an alternative way to define the TT ranks. With the i-th unfolding matrix X 〈i〉
and the TT ranks, we can obtain its smallest singular value σ(X ) = minN−1

i=1 σri(X 〈i〉), its largest
singular value σ(X ) = maxN−1

i=1 σ1(X 〈i〉) and its condition number κ(X ) = σ(X )
σ(X ) .

2. We can also define the i-th unfolding matrix as X 〈i〉 = X≤iX≥i+1, where each row of the left part X≤i and each
column of the right part X≥i+1 can be represented as

X≤i(s1 · · · si, :) = X1(s1) · · ·Xi(si),

X≥i+1(:, si+1 · · · sN ) = Xi+1(si+1) · · ·XN (sN ).

Note that when the factors are in the left-orthogonal form, we have (X≤i)>X≤i = Iri . Similarly, for the right-
orthogonal form, X≥i+1(X≥i+1)> = Iri .

3. Specifically, s1 · · · si and si+1 · · · sN respectively represent the (s1 + d1(s2 − 1) + · · · + d1 · · · di−1(si − 1))-th
row and (si+1 + di+1(si+2 − 1) + · · ·+ di+1 · · · dN−1(sN − 1))-th column.
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Distance between factors We now introduce an appropriate metric to quantify the distinctions be-
tween the left-orthogonal form factors {Xi} and {X?

i } of two TT format tensorsX = [X1, . . . ,XN ]
and X ? = [X?

1 , . . . ,X
?
N ].

To capture this rotation ambiguity, by defining the rotated factors LR(X?
i ) as

LR(X?
i ) =

R
>
i−1X

?
i (1)Ri
...

R>i−1X
?
i (di)Ri

 , (5)

we then define the distance between the two sets of factors as

dist2({Xi}, {X?
i }) = min

Ri∈O
ri×ri ,

i∈[N−1]

N−1∑
i=1

σ2(X ?)‖L(Xi)− LR(X?
i )‖2F + ‖L(XN )− LR(X?

N )‖22, (6)

where we note that L(XN ), LR(X?
N ) ∈ R(rN−1dN )×1 are vectors. Here, the coefficients σ2(X ?)

and 1 are incorporated to harmonize the energy between {LR(X?
i )}i≤N−1 and LR(X?

N ) since
‖LR(X?

i )‖2 = 1, i ∈ [N − 1] and ‖L(XN ) − LR(X?
N )‖22 = ‖R(XN ) − R>N−1R(X?

N )‖2F ,
‖R>N−1R(X?

N )‖2 = ‖R(X?
N )‖2 = σ2

1(X ?〈N−1〉) ≤ σ2(X ?). The following result establishes a
connection between dist2({Xi}, {X?

i }) and ‖X − X ?‖2F .

Lemma 1 For any two TT format tensors X and X ? with ranks r = (r1, . . . , rN−1), let {Xi}
and {X?

i } be the corresponding left-orthogonal form factors. Assume σ2(X ) ≤ 9σ2(X ?)
4 . Then

‖X − X ?‖2F and dist2({Xi}, {X?
i }) defined in (6) satisfy

‖X − X ?‖2F ≥
1

8(N + 1 +
∑N−1

i=2 ri)κ2(X ?)
dist2({Xi}, {X?

i }), (7)

‖X − X ?‖2F ≤
9N

4
dist2({Xi}, {X?

i }). (8)

The proof is given in Appendix A. Lemma 1 ensures that X is close to X ? once the corresponding
factors are close with respect to the proposed distance measure, and the convergence behavior of
‖X − X ?‖2F is reflected by the convergence in terms of the factors. In the next sections, we will
study the convergence with respect to the factors.

2.2 Stiefel Manifold

Since we will focus on the left-canonical form where the left unfolding matrices of a TT factor-
ization are orthonormal, i.e., reside on the Stiefel manifold, we will introduce several essential
definitions concerning the Stiefel manifold and its tangent space to clarify our discussion of opti-
mization on the Stiefel manifold. The Stiefel manifold St(m,n) = {Y ∈ Rm×n : Y >Y = In}
is a Riemannian manifold that is composed of all m × n orthonormal matrices. We can regard
St(m,n) as an embedded submanifold of a Euclidean space and further define TY St := {A ∈
Rm×n : A>Y + Y >A = 0} as the tangent space to the Stiefel manifold St(m,n) at the point
Y ∈ St(m,n). For any B ∈ Rm×n, the projection ofB onto TY St is given by (Absil et al., 2008)

PTY St(B) = B − 1

2
Y

(
B>Y + Y >B

)
, (9)
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and the projection ofB onto the orthogonal complement of TY St is given by

P⊥TY St(B) = B − PTY St(B) =
1

2
Y

(
B>Y + Y >B

)
. (10)

Note that when we have a gradient B, we can use the projection operator (9) to compute the Rie-
mannian gradient PTY St(B) on the tangent space of the Stiefel manifold. Riemannian gradient
descent involves the update Ŷ = Y − µPTY St(B) with a step size µ > 0, which is then projected
back to the Stiefel manifold, such as via the polar decomposition-based retraction, i.e.,

RetrY (Ŷ ) = Ŷ (Ŷ >Ŷ )−
1
2 . (11)

3. Warm-up: Low-rank Tensor-train Factorization

To provide a baseline for the convergence of iterative algorithms for the TT recovery problem with
the factorization approach in (2), we first study the following TT factorization problem

min
Xi ∈ Rri−1×di×ri

i ∈ [N ]

f(X1, . . . ,XN ) =
1

2
‖[X1, . . . ,XN ]−X ?‖2F ,

s. t. L>(Xi)L(Xi) = Iri , i ∈ [N − 1],

(12)

Except for the scaling difference in the object function, the above problem is a special case of (2),
where the operatorA is the identity operator, and thus the convergence analysis for (12) will provide
useful insight for the problem (2). We will analyze the local convergence of Riemannian gradient
descent (RGD) to solve the factorization problem (12) and explore how the convergence speed and
requirements depend on the properties of X ?, such as the tensor order. We will then extend the
analysis to the sensing problem (2) in the next section.

Specifically, we utilize the following (hybrid) RGD

L(X
(t+1)
i ) = RetrL(Xi)

(
L(X

(t)
i )− µ

σ2(X ?)
PTL(Xi)

St
(
∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )
))
, i ∈ [N − 1], (13)

L(X
(t+1)
N ) = L(X

(t)
N )− µ∇L(XN )f(X

(t)
1 , . . . ,X

(t)
N ), (14)

where PTL(Xi)
St denotes the projection onto the tangent space of the Stiefel manifold at the point

L(Xi), as defined in (9), such thatPTL(Xi)
St
(
∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )
)

is the Riemannian gradient
of the objective function f with respect to the i-th factors L(Xi). The detailed expression of the
gradients ∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N ) is presented in Appendix B (see (73)). We update the factor

XN using gradient descent in (14) since there is no constraint on this factor. For simplicity, we still
refer to the updates in (13) and (14) as RGD. Note that we use discrepant step sizes between L(Xi)
and L(XN ) in the proposed RGD algorithm in order to balance the convergence of those factors as
they have different energies; ‖L(Xi)‖2 = 1, i ∈ [N − 1] and ‖R(XN )‖2 = σ2

1(X 〈N−1〉) ≤ σ2(X )
in each iteration. To simplify the analysis, we employ a discrepant learning rate ratio, i.e., σ2(X ?),
to balance the two sets of factors. We note that other choices of discrepant learning rate ratio are
also effective in practice, such as ‖X (t)‖2F , which can be efficiently computed for TT-format tensors
(Oseledets, 2011). In addition, when the ground-truth tensor X ? is unknown a prior in practice, we
can instead use the information of either X (0) or X (t) to balance the learning rate, given that the
iterates will remain close to the target tensor as guaranteed by the following analysis.
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Local convergence of RGD algorithm According to Section 2, each TT format tensor has an
equivalent left-orthogonal form. Let {X?

i } be the left-orthogonal form factors for a minimal TT
decomposition of X ?. These factors are utilized exclusively for the analysis and are not required for
the algorithm. Recall the distance between the two set of factors {Xi} and {X?

i } as given in (6).

We now establish a local linear convergence guarantee for the RGD algorithm in (13) and (14).

Theorem 2 Consider a low-TT-rank tensor X ? with ranks r = (r1, . . . , rN−1). Suppose that the
RGD in (13) and (14) is initialized with {X(0)

i } satisfying

dist2({X(0)
i }, {X

?
i }) ≤

σ2(X ?)
72(N2 − 1)(N + 1 +

∑N−1
i=2 ri)

, (15)

and the step size µ ≤ 1
9N−5 . Then, the iterates {X(t)

i }t≥0 generated by RGD will converge linearly
to {X?

i } (up to rotation):

dist2({X(t+1)
i }, {X?

i }) ≤
(

1− 1

64(N + 1 +
∑N−1

i=2 ri)κ2(X ?)
µ

)
dist2({X(t)

i }, {X
?
i }). (16)

Note that Theorem 2 only establishes local convergence. Since our primary objective is to gain
insight into local convergence, and initialization is not our focus, we will omit discussions related
to obtaining a valid initialization for this factorization problem. When we address the TT sensing
problem in the next section, we will present approaches for finding a suitable initialization. Due to
the presence of non-global critical points, linear convergence for first-order methods is likely to be
attainable only within a certain region. Moreover, products of multiple (more than two) matrices
often lead to the emergence of high-order saddle points or even spurious local minima that are
distant from the global minima (Vidal et al., 2022). Relying only on the gradient information is not
sufficient to circumvent these high-order saddle points. Therefore, this paper primarily focuses on
local convergence.

Remarkably, both terms O(σ
2(X ?)
N3r

) and O( 1
N2rκ2(X ?)

) in the initialization requirement (15) and
convergence rate (16) only decay polynomially rather than exponentially in terms of the tensor order
N . The detailed proof of Theorem 2 is provided in Appendix B. Below, we provide a high-level
overview of the proof.

Proof sketch We focus on establishing an error contraction inequality that characterizes the error
dist2({X(t+1)

i }, {X?
i }) based on the previous iterate. Utilizing the error metric defined in (6), we

define the best rotation matrices to align {X(t)
i } and {X?

i } as

(R
(t)
1 , . . . ,R

(t)
N−1)= arg min

Ri∈O
ri×ri ,

i∈[N−1]

N−1∑
i=1

σ2(X ?)‖L(X
(t)
i )−LR(X?

i )‖2F + ‖L(X
(t)
N )−LR(X?

N )‖22, (17)

9
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where LR(X?
i ) is defined in (5). We now expand dist2({X(t+1)

i }, {X?
i }) as

dist2({X(t+1)
i }, {X?

i })

=
N∑
i=1

γi

∥∥∥∥L(X
(t+1)
i )− LR(t+1)(X?

i )

∥∥∥∥2

F

≤
N∑
i=1

γi

∥∥∥∥L(X
(t+1)
i )− LR(t)(X?

i )

∥∥∥∥2

F

≤
N∑
i=1

γi

∥∥∥∥L(X
(t)
i )− LR(t)(X?

i )− µ

γi
PTL(Xi)

St

(
∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

)∥∥∥∥2

F

= dist2({X(t)
i }, {X

?
i }) +

N∑
i=1

µ2

γi

∥∥∥∥PTL(Xi)
St

(
∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

)∥∥∥∥2

F

−2µ

N∑
i=1

〈
L(X

(t)
i )− LR(t)(X?

i ),PTL(Xi)
St

(
∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

)〉
, (18)

where to simplify the expression, we define γi =

{
σ2(X ?), i ∈ [N − 1]

1, i = N
and a projection op-

erator for the last factor as PTL(XN )St = I such that PTL(XN )St(∇L(XN )f(X
(t)
1 , . . . ,X

(t)
N )) =

∇L(XN )f(X
(t)
1 , . . . ,X

(t)
N ). We note that the second inequality follows from the nonexpansiveness

property described in Lemma 17 of Appendix A.
The remainder of the proof is to quantify the last two terms in (18) to ensure the decay of the

distance. On the one hand, we can obtain an upper bound of the second term in (18) as

N∑
i=1

1

γi

∥∥∥∥PTL(Xi)
St

(
∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

)∥∥∥∥2

F

≤ 9N − 5

4
‖X (t) −X ?‖2F , (19)

which ensures a bounded Riemannian gradient when the iterates converge to the target solution. On
the other hand, under the assumption that dist2({X(t)

i }, {X?
i }) ≤

σ2(X ?)

72(N2−1)(N+1+
∑N−1
i=2 ri)

, we can

lower bound the third term in (18) as

N∑
i=1

〈
L(X

(t)
i )− LR(t)(X?

i ),PTL(Xi)
St

(
∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

)〉
≥ 1

128(N + 1 +
∑N−1

i=2 ri)κ2(X ?)
dist2({X(t)

i }, {X
?
i }) +

1

8
‖X (t) −X ?‖2F , (20)

which implies that the negative direction of the Riemannian gradient points toward the optimal
factors.

Plugging (20) and (19) into (18) yields the convergence of the factors

dist2({X(t+1)
i }, {X?

i }) ≤
(

1− 1

64(N + 1 +
∑N−1

i=2 ri)κ2(X ?)
µ

)
dist2({X(t)

i }, {X
?
i })

+

(
9N − 5

4
µ2 − µ

4

)
‖X (t) −X ?‖2F

≤
(

1− 1

64(N + 1 +
∑N−1

i=2 ri)κ2(X ?)
µ

)
dist2({X(t)

i }, {X
?
i }), (21)

10
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where the last line uses the fact that the step size µ ≤ 1
9N−5 .

Connection to matrix and Tucker tensor factorization approaches There have been numerous
studies on nonconvex matrix estimation (Tu et al., 2016; Wang et al., 2017; Jin et al., 2017; Zhu et al.,
2018; Li et al., 2020b; Ma et al., 2021; Tong et al., 2021a) and Tucker tensor estimation (Tong et al.,
2021b; Xia and Yuan, 2019; Han et al., 2022). However, we note that most of the theoretical analyses
developed for the matrix case cannot be directly extended to the TT factorization approach since the
orthonormal constraint is not applied there. On the other hand, the highly unbalanced nature of
orthonormal matrices and a core tensor in the Tucker tensor make it more likely that the theoretical
analysis in the Tucker factorization estimation can be applied to the TT factorization estimation. In
the Tucker tensor estimation, the introduction of an approximately orthonormal structure has led
to the development of a regularized gradient descent algorithm (Han et al., 2022), which has been
demonstrated effectively to achieve a linear convergence rate. However, the results presented in
(Han et al., 2022) primarily pertain to order-3 Tucker tensors. When extended to high-order tensors,
both the theoretical convergence rate and the initial conditions are likely to deteriorate exponentially
with respect to the order N . One reason for this deterioration is that the factor matrices are only
guaranteed to be approximately rather than exactly orthogonal in each iteration, which may lead
to a high condition number of the product of multiple approximately orthogonal matrices in the
theoretical analysis. This issue is addressed in our approach by strictly enforcing orthonormality of
the factors.

4. Low-rank Tensor-train Sensing

In this section, we consider the problem of recovering a low-TT-rank tensor X ? from its linear
measurements

y = A(X ?) =

 y1
...
ym

 =

 〈A1,X ?〉
...

〈Am,X ?〉

 ∈ Rm, (22)

whereA(X ?) : Rd1×···×dN → Rm is a linear map modeling the measurement process. This problem
appears in many applications such as quantum state tomography (Lidiak et al., 2022; Qin et al.,
2024), neuroimaging analysis (Zhou et al., 2013; Li and Zhang, 2017), 3D imaging (Guo et al.,
2011), high-order interaction pursuit (Hao et al., 2020), and more.

To enable the recovery of the low-TT-rank tensor X ? from its linear measurements, the sensing
operator is required to satisfy certain properties. One desirable property is the following Restricted
Isometry Property (RIP), which has been widely studied and popularized in the compressive sensing
literature (Donoho, 2006; Candès et al., 2006; Candès and Wakin, 2008; Recht et al., 2010), and has
been extended for structured tensors (Grotheer et al., 2021; Rauhut et al., 2017; Qin et al., 2024).

Definition 3 (Restricted Isometry Property (Rauhut et al., 2017)) A linear operatorA : Rd1×···×dN
→ Rm is said to satisfy the r-restricted isometry property (r-RIP) with constant δr if

(1− δr)‖X‖2F ≤
1

m
‖A(X )‖22 ≤ (1 + δr)‖X‖2F , (23)

holds for any TT format tensors X ∈ Rd1×···×dN with TT ranks r = (r1, . . . , rN−1), ri ≤ r.

11
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In words, the RIP ensures a stable embedding for TT format tensors and guarantees that the energy
‖A(X )‖22 is proportional to ‖X‖2F . The RIP can often be attained by randomly selecting measure-
ment operators from a specific distribution, with subgaussian measurement ensembles serving as a
common example.

Definition 4 (Subgaussian measurement ensembles (Biermé and Lacaux, 2015)) A real random
variable X is called L-subgaussian if there exists a constant L > 0 such that E etX ≤ eL

2t2/2

holds for all t ∈ R. Typical examples include the Gaussian random variable and the Bernoulli
random variable. We say thatA : Rd1×···×dN → Rm is an L-subgaussian measurement ensemble if
all the elements of Ak, k = 1, . . . ,m are independent L-subgaussian random variables with mean
zero and variance one.

The following result shows that the RIP holds with high probability for L-subgaussian measure-
ment ensembles.

Theorem 5 ((Rauhut et al., 2017, Theorem 4),(Qin et al., 2024, Theorem 2)) Suppose that the
linear map A : Rd1×···×dN → Rm is an L-subgaussian measurement ensemble. Let δr ∈ (0, 1)
denote a positive constant. Then, with probability at least 1− ε, A satisfies the r-RIP as in (23) for
any TT format tensors X ∈ Rd1×···×dN with TT ranks r = (r1, . . . , rN−1), ri ≤ r, given that

m ≥ C · 1

δ2
r̄

·max
{
Ndr2 log(Nr), log(1/ε)

}
, (24)

where d = maxi di and C is a universal constant depending only on L.

Theorem 5 ensures the RIP for L-subgaussian measurement ensembles with a number of mea-
surements m only scaling linearly, rather than exponentially, with respect to the tensor order N .
When the RIP holds, then for any two distinct TT format tensors X1,X2 with TT ranks smaller than
r, noting that X1 − X2 is also a TT format tensor according to (3), we have distinct measurements
since

1

m
‖A(X1)−A(X2)‖22 =

1

m
‖A(X1 −X2)‖22 ≥ (1− δ2r)‖X1 −X2‖2F ,

which guarantees the possibility of exact recovery. We will now examine the convergence of RGD
for solving the factorized optimization problem given by (2).

4.1 Exact Recovery with Linear Convergence

We start by restating the factorized approach in (2) that minimizes the discrepancy between the
measurements y and the linear mapping of the estimated low-TT-rank tensor X as

min
Xi ∈ Rri−1×di×ri ,

i ∈ [N ]

g(X1, . . . ,XN ) =
1

2m
‖A([X1, . . . ,XN ])− y‖22,

s. t. L>(Xi)L(Xi) = Iri , i ∈ [N − 1].

(25)

As for (25), we solve the above optimization problem over the Stiefel manifold by the following
RGD:

L(X
(t+1)
i )=RetrL(Xi)

(
L(X

(t)
i )− µ

σ2(X ?)
PTL(Xi)

St
(
∇L(Xi)g(X

(t)
1 , . . . ,X

(t)
N )
))
, i ∈ [N − 1], (26)

L(X
(t+1)
N )=L(X

(t)
N )− µ∇L(XN )g(X

(t)
1 , . . . ,X

(t)
N ), (27)

12
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where expressions for the gradients are given in Appendix D (see (93)). As discussed in Section 3,
our primary focus lies in examining the local convergence of the RGD algorithm. Before presenting
the local convergence, we first discuss and analyze a spectral initialization approach, which serves
as an initial value for the optimization algorithm.

Spectral Initialization To provide a good initialization for the RGD algorithm, we apply the
following spectral initialization method:

X (0) = SVDtt
r

(
1

m

m∑
k=1

ykAk
)
, (28)

where SVDtt
r (·) is the TT-SVD algorithm (Oseledets, 2011) that can efficiently find an approx-

imately optimal TT approximation to any tensor. This spectral initialization approach has been
widely employed for various inverse problems (Lu and Li, 2020), such as phase retrieval (Candès
et al., 2015; Luo et al., 2019), low-rank matrix recovery (Ma et al., 2021; Tong et al., 2021a), and
structured tensor recovery (Cai et al., 2019; Tong et al., 2021b; Han et al., 2022). Here, when A
satisfies the RIP condition, we can ensure that the initialization X (0) is close to X ?.

Theorem 6 When A satisfies the 3r-RIP for TT format tensors with a constant δ3r, the spectral
initialization generated by (28) satisfies

‖X (0) −X ?‖F ≤ δ3r(1 +
√
N − 1)‖X ?‖F . (29)

The proof is provided in Appendix C. Referring to Theorem 6, it can be observed that by ensuring
a sufficiently small δ3r, we can always find a suitable initialization within a desired distance to the
ground truth.

Exact recovery with linear convergence of RGD Again, our analysis utilizes the left-orthogonal
form factors {X?

i } of a minimal TT decomposition of X ?, although the factors are not required for
implementing the RGD algorithm in (26) and (27). We now establish a local linear convergence
guarantee for RGD.

Theorem 7 Consider a low-TT-rank tensor X ? with ranks r = (r1, . . . , rN−1). Assume A obeys
the (N+3)r-RIP with a constant δ(N+3)r ≤ 4

15 and r = maxi ri. Given y = A(X ?), let {X(t)
i }t≥0

be the iterates generated by the RGD algorithm in (26) and (27). Suppose the algorithm is initialized
with {X(0)

i } satisfying

dist2({X(0)
i }, {X

?
i }) ≤

(4− 15δ(N+3)r)σ
2(X ?)

8(N + 1 +
∑N−1

i=2 ri)(57N2 + 393N − 450)
(30)

and uses step size µ ≤ 4−15δ(N+3)r

10(9N−5)(1+δ(N+3)r)
2 . Then, the iterates {X(t)

i }t≥0 converge linearly to

{X?
i } (up to rotation):

dist2({X(t+1)
i }, {X?

i }) ≤
(

1−
4− 15δ(N+3)r

320(N + 1 +
∑N−1

i=2 ri)κ2(X ?)
µ

)
dist2({X(t)

i }, {X
?
i }). (31)
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The proof is given in Appendix D. We omit the overview of the proof as it shares a similar structure
to the one in Section 3 for the TT factorization problem, with the key difference being the involve-
ment of the sensing operator and the utilization of the RIP. Our results demonstrate that, similar to
the findings presented in Theorem 2, when the initial condition dist2({X(0)

i }, {X?
i }) ≤ O(σ

2(X ?)
N3r

)
is satisfied during the initial stage, RGD exhibits a linear convergence rate of 1 − O( 1

N2rκ2(X ?)
).

Notably, both the convergence rate and the initial requirement depend on the tensor order N only
polynomially rather than exponentially. Note that the RIP is required to hold for TT format tensors
with rank (N+3)r; this is because the analysis involves a summation ofN+3 TT format tensors of
rank r as in (18) and (20). However, the requirement of (N + 3)r-RIP may perhaps be improved to
2r-RIP (or higher, such as 4r-RIP, but independent of N ) by using an alternative approach to bound
the term (97) in Appendix D. A thorough investigation of this improvement is left for future work.
To utilize the spectral initialization, we can invoke Lemma 1 to rewrite (30) in terms of the tensors,

i.e., ‖X (0) − X ?‖2F ≤
(4−15δ(N+3)r)σ

2(X ?)

64(57N2+393N−450)(N+1+
∑N−1
i=2 ri)2κ2(X ?)

. O( σ2(X ?)
N4r2κ2(X ?)

); see Lemma

16 in Appendix A for the details. Thus, Theorem 6 ensures that spectral initialization satisfies the
requirement (30), provided that δ3r .

σ2(X ?)

N
5
2 r‖X ?‖2F

.

Corollary 8 Consider a low-TT-rank tensor X ? with ranks r = (r1, . . . , rN−1). Assume that A
obeys the (N + 3)r-RIP with constants satisfying δ3r . σ2(X ?)

N
5
2 r‖X ?‖2F

and δ(N+3)r ≤ 4
15 . When

utilizing the spectral initialization and the step size µ ≤ 4−15δ(N+3)r

10(9N−5)(1+δ(N+3)r)
2 , RGD converges

linearly to a global minimum as in (31).

When the linear map A is an L-subgaussian measurement ensemble, using (24), the RIP require-

ment is satisfied when m &
N6dr3‖X ?‖2F κ

2(X ?) log(Nr)

σ2(X ?)
. This requires the number of measurements

m grows only polynomially in N ; however, the order is suboptimal due to the following rea-
sons: (i) TT-SVD, used in the spectral initialization, only provides a quasi-optimal low-rank TT
approximation—since computing the optimal low-rank TT approximation is NP-hard (Hillar and
Lim, 2013), (ii) the requirement of (N + 3)r-RIP in the convergence analysis, and (iii) the rela-
tionship between the distances of the factors and of the entire tensors may not be tight in Lemma 1.

Special case: Matrix sensing When N = 2, the tensor becomes a matrix and the TT decompo-
sition simplifies to matrix factorization. In this case, the recovery problem reduces to the matrix
sensing problem for the rank-r matrix X?. Our Theorem 7 ensures a local linear convergence for
RGD with rate of convergence 1− (4−15δ5r)σ2

r(X?)
960σ2

1(X?)
µ whenA satisfies the 5r-RIP (Candès and Plan,

2011) with constant δ5r ≤ 4
15 . Note that the result can be improved to only requiring 3r-RIP by

using Lemma 14 in the analysis of cross terms. In comparison, the work (Tu et al., 2016) estab-
lishes local linear convergence for gradient descent (GD) solving a regularized problem with rate
of convergence 1− 4σ2

r(X?)
25σ2

1(X?)
µ, given that the sensing operator A satisfies the 6r-RIP with constant

δ6r ≤ 1
6 . Without relying on any regularizer to balance the two factors, the work (Ma et al., 2021)

also establishes local linear convergence for GD with rate of convergence (1 − σr(X?)
50σ1(X?)µ)2 when

the sensing operator A satisfies the 2r-RIP with constant δ2r ≤ c1 (where c1 is a constant). We can
observe that the convergence guarantee for RGD is similar to that of GD in the context of matrix
sensing.

14



GUARANTEED NONCONVEX FACTORIZATION APPROACH FOR TENSOR TRAIN RECOVERY

0 100 200 300
Number of Iterations

10-30

10-20

10-10

100

||
X̂
−
X

⋆
||
2 F

||
X

⋆
||
2 F

GD (r = 1)
RGD (r = 1)
GD (r = 3)
RGD (r = 3)
GD (r = 5)
RGD (r = 5)

Figure 2: Convergence analysis of GD and RGD with m = 150r.

We conduct a numerical experiment to compare the performance of the RGD algorithm with
GD (Ma et al., 2021) for matrix sensing. A ground truth matrixX? ∈ R30×20 of rank r is generated
by first creating a random Gaussian matrix with i.i.d. entries from a normal distribution, followed
by computing a best rank-r approximation. The step size for both the GD and RGD algorithms is
set to µ = 0.6. For each experimental setting, we set m = 150r, conduct 20 Monte Carlo trials, and
then take the average over the 20 trials to report the results. Figure 2 shows that both GD and RGD
achieve a similar linear convergence rate.

Comparison with IHT (Rauhut et al., 2017) and Riemannian gradient descent on the fixed-
rank manifold (Budzinskiy and Zamarashkin, 2021) To the best of our knowledge, our work
is the first to offer a convergence guarantee for directly solving the factorization approach for
low-TT-rank in recovery problems. Two iterative algorithms, iterative hard thresholding (IHT)
(Rauhut et al., 2017) and RGD on the TT manifold (Budzinskiy and Zamarashkin, 2021), have
been studied with local convergence guarantees. Specifically, the IHT algorithm (GD with TT-SVD
truncation) has been proven to converge linearly with a rate of convergence a

4 (a ∈ (0, 1)), but
relies on an unverified perturbation bound of TT-SVD, expressed as ‖SVDtt

r (X (t)) − X (t)‖F ≤
(1 + a2

17(1+
√

1+δ3r‖A‖)2
)‖X (t) −X ?‖F where X (t) represents the iterate after the gradient update in

the t-th iteration. As mentioned in (Rauhut et al., 2017), ‖A‖may increase exponentially in terms of
N , imposing a very strong requirement on the optimality of TT-SVD. Viewing all the TT format ten-
sors of fixed rank as an embedded manifold in Rd1×···×dN (Holtz et al., 2012), the work (Budzinskiy
and Zamarashkin, 2021) introduces an RGD algorithm on the embedded manifold with TT-SVD re-
traction to approximate the projection of the estimated tensor onto the embedded manifold. It estab-
lishes local linear convergence with the rate (1 +

√
N − 1)( 2δ3r

1−δ3r + 2
1−δ3r

‖X (0)−X ?‖F
σ(X ?) ). This holds

under the conditions ‖X (0) −X ?‖2F . O(σ
2(X ?)
N2 ), 3r-RIP with RIP constant δ3r ≤ 1

3+2
√
N−1

, and
an unverified condition ‖A∗A‖ ≤ C (where C is a constant). Additionly, as mentioned in (Rauhut
et al., 2017), the Riemannian gradient in the RGD depends on the curvature information at X ? of
the embedded manifold, which is often unknown a priori.

Note that both algorithms require the estimation of the entire tensor X in each iteration and rely
on performing the TT-SVD to project the iterates back to the TT format, which demands a substan-
tial amount of storage memory and could be computationally expensive for high-order tensors. In
contrast, the factorization approach avoids the need to compute the entire tensor in each iteration.
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Specifically, we can employ a tensor contraction operation (Cichocki, 2014) to efficiently compute
the gradient without explicitly computing the tensor X , such as for the term4 〈Ak, [X1, . . . ,XN ]〉.
Intuitively, this is the same as in the matrix case where we can efficiently compute 〈A,uv>〉 as
〈A>u,v〉 without the need of computing uv> for anyA ∈ Rd1×d2 ,u ∈ Rd1 ,v ∈ Rd2 .

4.2 Recovery Guarantee for Noisy TT Format Tensor Sensing

In practice, measurements are often noisy, either due to additive noise or the probabilistic nature of
the measurements, as seen in quantum state tomography (Qin et al., 2024), which causes statistical
error in the measurements and can also be modeled as additive noise. In this subsection, we will
extend our analysis to TT sensing with noisy measurements of the form

ŷ = A(X ?) + ε ∈ Rm, (32)

where the noise vector ε is assumed to be a Gaussian random vector with a mean of zero and a
covariance of γ2Im. Similar to (25), we attempt to estimate the target low-TT-rank tensor X ? by
solving the following constrained factorized optimization problem:

min
Xi ∈ Rri−1×di×ri

i ∈ [N ]

G(X1, . . . ,XN ) =
1

2m
‖A([X1, . . . ,XN ])− ŷ‖22,

s. t. L>(Xi)L(Xi) = Iri , i ∈ [N − 1].

(33)

Spectral Initialization In the midst of a noisy environment, we can still employ the spectral
initialization method to obtain an appropriate initialization X (0); that is

X (0) = SVDtt
r

(
1

m

m∑
k=1

ŷkAk
)
, (34)

which is guaranteed to be close to the ground-truth X ? when the operator A satisfies the RIP.

Theorem 9 Assume that the operator A satisfies the 3r-RIP for TT format tensors with constant
δ3r and that the additive noise vector ε is randomly generated from the distribution N (0, γ2Im).
Then with probability at least 1− 2e−c1Ndr

2 logN , the spectral initialization in (34) satisfies

‖X (0) −X ?‖F ≤ (1 +
√
N − 1)

(
δ3r‖X ?‖F +

c2r
√

(1 + δ3r)Nd logN
√
m

γ

)
, (35)

where c1, c2 are positive constants, r = maxN−1
i=1 ri and d = maxNi=1 di.

The proof is provided in Appendix E. Compared to the noiseless case, (35) for the noisy scenario
includes an additional term caused by the additive noise in the measurement, which only scales
polynomially with N thanks to the concise structure of the TT factorization.

4. Specifically, this term 〈Ak, [X1, . . . ,XN ]〉 can be efficiently evaluated asAk×1
1X1×1,2

N,1X2×1,2
N−1,1 · · ·×

1,2
2,1XN ,

where we reshape X1 and XN as matrices of size d1 × r1 and rN−1 × dN , respectively. Here, the tensor contraction
operationAk×1

1 X1 results in a new tensor B of size d2× d3× · · ·× dN × r1, with the (s2, s3, . . . , sN+1)-th entry
being

∑
s1
Ak(s1, . . . , sN )X1(s1, sN+1). Likewise, B ×1,2

N,1 X2 results in a new tensor of size d3 × d4 × · · · ×
dN × r2, with the (s3, . . . , sN , sN+2)-th entry being

∑
s2,sN+1

B(s2, s3, . . . , sN+1)X2(sN+1, s2, sN+2).
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Local convergence of RGD algorithm The following result ensures that, given an appropriate
initialization, RGD will converge to the target low-TT-rank tensor up to a certain distance that is
proportional to the noise level.

Theorem 10 Consider a low-TT-rank tensor X ? with ranks r = (r1, . . . , rN−1). Assume that A
obeys the (N + 3)r-RIP with a constant δ(N+3)r ≤ 7

30 , where r = maxi ri. Suppose that the RGD

algorithm in (26) and (27) is initialized with {X(0)
i } satisfying

dist2({X(0)
i }, {X

?
i }) ≤

(7− 30δ(N+3)r)σ
2(X ?)

8(N + 1 +
∑N−1

i=2 ri)(129N2 + 7231N − 7360)
(36)

and uses the step size µ ≤ 7−30δ(N+3)r

20(9N−5)(1+δ(N+3)r)
2 . Then, with probability at least 1−2Ne−Ω(Ndr2 logN)

− 2e−Ω(N3dr2 logN), the iterates {X(t)
i }t≥0 generated by RGD satisfy

dist2({X(t+1)
i }, {X?

i }) ≤
(

1−
7− 30δ(N+3)r

1280(N + 1 +
∑N−1

i=2 ri)κ2(X ?)
µ

)t+1

dist2({X(0)
i }, {X

?
i })

+O

(
(N + µ)(N + 1 +

∑N−1
i=2 ri)(1 + δ(N+3)r)N

2dr2(logN)κ2(X ?)γ2

m(7− 30δ(N+3)r)

)
(37)

as long as m ≥ CN5dr3(logN)κ2(X ?)γ2

σ2(X ?)
with a universal constant C and d = maxi di.

The proof is given in Appendix F. Theorem 10 provides a similar guarantee to that in Theorem 7
for noisy measurements and shows that once the initial condition is satisfied, RGD converges at
a linear rate to the target solution, up to a statistical error due to the additive noise. Notably, the
second term in (37) scales linearly in terms of the variance γ2, and polynomially in terms of the
tensor order N . This is due to the presence of a polynomial number of degrees of freedom in
the TT format, denoted as O(Ndr2), which effectively mitigates the impact of noise. Similar to
the discussion following Theorem 7, the requirement on the initialization (36) can be rewritten
as ‖X (0) − X ?‖2F . O( σ2(X ?)

N4r2κ2(X ?)
). Using Theorem 9 and Theorem 5, for an L-subgaussian

measurement ensemble, the requirement for initialization and local convergence can be met by using

the number of measurementsm &
N6dr3κ2(X ?)(‖X ?‖2F log(Nr)+Nr logNγ2)

σ2(X ?)
, which compared with the

noiseless case has an additional factor that scales with noise level γ2. The recovery guarantee (37)
scales optimally with the noise level γ2, but is suboptimal with respect to the tensor order N when
compared to the following minimax lower bound from (Qin and Zhu, 2024, Theorem 3).

Corollary 11 Consider the tensor sensing problem in (32) for TT format tensors X ∈ Xr = {X ∈
Rd1×···×dN : r = (r1, . . . , rN−1)}. Suppose minN−1

i=1 ri ≥ C for some absolute constant C, and
each element of {Ai}i and ε in (32) respectively are drawn independently from the distributions
N (0, 1) and N (0, γ2). Then, it holds that

inf
X̂

sup
X∈Xr

E ‖X̂ − X‖F &

√∑N
j=1 djrj−1rj

m
γ. (38)
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The above minimax lower bound demonstrates the potential for improving the recovery guarantee in

Theorem 10, which together with Lemma 1 states that ‖X (t) −X ?‖F ≤ O
(
N5dr3(logN)κ2(X ?)γ2

m

)
for sufficiently large t. Similar to the discussion right after Corollary 8, the suboptimal dependence
with tensor order N arise from the following factors: (i) the requirement of (N + 3)r-RIP in the
convergence analysis, and (ii) the exchange between the distances of the factors and the entire
tensors. We leave the improvement as the subject of future work.

5. Numerical Experiments

In this section, we conduct numerical experiments to evaluate the performance of the RGD algo-
rithm for tensor train sensing and completion. In all the experiments, we generate an order-N
ground truth tensor X ? ∈ Rd1×···×dN in TT format with ranks r = (r1, . . . , rN−1) by first gener-
ating a random Gaussian tensor with i.i.d. entries from the normal distribution, and then using the
sequential SVD algorithm to obtain a TT format tensor, which is finally normalized to unit Frobe-
nius norm, i.e., ‖X ?‖F = 1. To simplify the selection of parameters, we set d = d1 = · · · = dN
and r = r1 = · · · = rN−1. For the RGD algorithm in (26) and (27), we set µ = 0.5 to compute
factors. To avoid the high computational complexity associated with σ2(X ?), we replace it with
‖X ?‖2F in the RGD. For each experimental setting, we conduct 20 Monte Carlo trials and then take
the average over the 20 trials to report the results.

5.1 TT Format Tensor Sensing

We first consider the tensor sensing problem by generating each measurement operator Ai, i =
1, . . . ,m as a random tensor with i.i.d. entries drawn from the standard normal distribution. We
then obtain noisy measurements ŷi = 〈Ai,X ?〉 + εi, where the noise ε is drawn from a Gaussian
distribution with a mean of zero and a variance of γ2.
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Figure 3: Convergence of RGD for TT format tensor sensing (a) for different N with d = 10,
r = 2, m = 1000, and γ2 = 0.1, (b) for different r with d = 50, N = 3, m = 3000, and
γ2 = 0.1, (c) for different d with N = 3, r = 2, m = 1500, and γ2 = 0.1.
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Convergence of RGD We first display the convergence of RGD in terms of the tensor, denoted
as ‖X (t) − X ?‖2F , for different settings in Figure 3. We observe rapid convergence of RGD across
all cases shown in Figure 3. Furthermore, the plots reveal the following trends when a fixed num-
ber of measurements m is maintained, while the values of N , r, and d increase: (i) the recovery
error at the initialization using spectral methods increases, (ii) RGD converges more slowly, and
(iii) RGD converges to a solution with larger recovery error. These observations align with our
theoretical findings as presented in Theorem 9 for spectral initialization and Theorem 10 for the
convergence guarantee of RGD. Since RGD converges relatively fast, as demonstrated in Figure 3,
in the following experiments we run RGD for T = 500 iterations to obtain the estimated tensor X̂ .
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Figure 4: Performance comparison of RGD for TT format tensor sensing (a) for different N and
m with d = 4, r = 2, and γ2 = 0, (b) for different N and γ2 with d = 4, r = 2, and
m = 500, (c) for overparameterized tensor sensing whereN = 3, d = 30, r = 2, γ2 = 0,
and m = 5000.

Exact recovery with clean measurements In the following two sets of experiments, we fix d = 4
and r = 2, and evaluate the performance for varying tensor order N . In the case of clean measure-
ments, we conduct experiments for different N and number of measurements m, and we say a
recovery is successful if ‖X̂ − X ?‖F ≤ 10−5. We conduct 100 independent trials to evaluate the
success rate for each pair of N and m. The result is displayed in Figure 4(a). We can observe from
Figure 4(a) that the number of measurements m needed to ensure exact recovery only scales lin-
early rather than exponentially in terms of the order N , consistent with the findings in Theorem 5.
This relationship is indeed an improvement over the polynomial dependence of m on N required to
guarantee Theorem 6 and Theorem 7. This also suggests the potential for refining our analysis in
future work.

Stable recovery with noisy measurements In the case of noisy measurements, we fix the number
of measurements m = 500 and vary the tensor order N and noise level γ2. Figure 4(b) shows that
the performance of RGD remains stable asN increases, with recovery error in the curves increasing
polynomially. This behavior aligns with the findings outlined in Theorem 10. In addition, the
recovery error scales roughly linearly with respect to the noise level γ2, consistent with the second
term in (37).
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Recovery with over-parameterization In the fourth experiment, we consider the case where the
true rank r is unknown a priori, and we use an estimated rank r′ in RGD. Figure 4(c) shows the
convergence rates of RGD across various values of r′ for the setting with clean measurements.
While our current theory is only established when the rank is exactly specified (i.e., r′ = r), we
also observe linear convergence when the rank is over-specified (i.e., r′ > r), albeit with a slightly
slower rate of convergence as r′ increases. A theoretical study for this overparameterized case is a
topic for future research.

5.2 TT Format Tensor Completion

We now consider the problem of tensor completion, with the goal of reconstructing the entire tensor
X ? based on a subset of its entries. Specifically, let Ω denote the indices of m observed entries and
let PΩ denote the corresponding measurement operator that produces the observed measurements.
Then, our measurements ŷ are obtained by

ŷ = PΩ(X ?) + ε,

where ε denotes the possible additive noise with each entry being independently drawn from a
Gaussian distribution with a mean of zero and a variance of γ2. Throughout the experiments, we
assume the m observed entries are uniformly sampled. As the measurement operator PΩ can be
viewed as a special instance of the linear map A in (22), tensor completion can be regarded as a
special case of tensor sensing. Thus, as in (33), we attempt to recover the underlying tensor by
solving the following constrained factorized optimization problem

min
Xi ∈ Rri−1×di×ri

i ∈ [N ]

G(X1, . . . ,XN ) =
1

2
‖PΩ([X1, . . . ,XN ])− ŷ‖22,

s. t. L>(Xi)L(Xi) = Iri , i ∈ [N − 1].

We solve this problem using the RGD algorithm in (26) and (27). In addition, we employ a modified
spectral initialization approach proposed in (Cai et al., 2022) with incoherent factors and guaranteed
performance. We note that, in general, the measurement operator PΩ in tensor completion does not
satisfy the RIP condition (Rauhut et al., 2015). Therefore, our theory may not be directly applicable
in this context. Here, we only present numerical results of RGD for tensor completion, deferring
the theoretical analysis to future work.

Convergence of RGD Continuing with the same experiment conducted in tensor sensing, we
begin by demonstrating the convergence rate of RGD in tensor completion under various settings.
The results presented in Figures 5(a)-5(c) reveal a noticeable trend: as the values of N , r, and
d increase, similar to the observations made in tensor sensing, we witness a degradation in the
convergence rate, recovery error, and the estimated initialization. Additionally, it is important to
emphasize that this consistency in degradation across different parameters reinforces the similarities
between tensor completion and tensor sensing when employing RGD.

Exact recovery with clean measurements In the second experiment, we set d = 4 and r = 2,
and then assess the performance across various tensor orders N . When dealing with clean measure-
ments, we perform experiments using different combinations of N and the number of samples m.
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Figure 5: Convergence of RGD for TT format tensor completion (a) for different N and m with
d = 10, r = 2, and γ2 = 10−6, (b) for different r with d = 50, N = 3, m = 35000, and
γ2 = 10−6, (c) for different d with N = 3, r = 2, m = 20000, and γ2 = 10−6.
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Figure 6: Performance comparison of RGD for TT format tensor completion, (a) for different N
and m with d = 4, r = 2, and γ2 = 0, (note that for N = 4 in (a), m = 256 has
been chosen whenm ≥ 300), (b) for overparameterized tensor completion whereN = 3,
d = 30, r = 2, and m = 20000.

A successful recovery by RGD is defined as ‖X̂ − X ?‖F ≤ 10−5. For each pair of N and m, we
conduct 100 independent trials to evaluate the success rate. Note that random initialization is em-
ployed here because the sequential second-order moment method (Cai et al., 2022) is likely to fail
when the number of measurements m is relatively small compared to the total number of entries of
the tensor. The results are presented in Figure 6(a). It is evident that the number of samples needed
for successful recovery does not exhibit a polynomial relationship with N . This discovery aligns
with the theoretical result in (Cai et al., 2022) that requires the number of samples m to increase
exponentially with N .

Recovery with over-parameterization In the third experiment, we conclude by assessing the
performance of RGD with overparameterized rank. This evaluation involves varying pre-defined
values of r′, as illustrated in Figure 6(b). Notably, the results indicate a clear trend as observed in
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Figure 4(c) for the sensing problem: the convergence rate diminishes as r′ increases, aligning with
the observations from the tensor sensing scenario.

6. Conclusion and Outlook

In this paper, we study the tensor factorization approach for recovering low-TT-rank tensors from
limited numbers of linear measurements. To avoid the ambiguity and to facilitate theoretical anal-
ysis, we optimize over the left-orthogonal TT format which enforces orthonormality among all the
factors except for the last one. To ensure the orthonormal structure, we utilize the Riemannian
gradient descent (RGD) algorithm for optimizing those factors over the Stiefel manifold. When
the sensing operator obeys the RIP, we show that with an appropriate initialization which can be
achieved by spectral initialization, RGD converges to the target solution at a linear rate. In the pres-
ence of measurement noise, RGD produces a stable recovery with error proportional to the noise
level and scaling only polynomially in terms of the tensor order. Our findings support the grow-
ing evidence for using the factorization approach for low-TT-rank tensors and adopting local search
algorithms such as gradient descent for solving the corresponding factorized optimization problems.

Extension to tensor factorization approach without orthonormal constraints In this work, we
use the left-orthogonal form to avoid scaling ambiguity among the tensor factors and to facilitate
theoretical analysis. This approach is in line with other works on matrix and tensor factorization
that use regularizers to balance the factors (Tu et al., 2016; Han et al., 2022; Cai et al., 2019; Tong
et al., 2021b). However, both empirical observations (Zhu et al., 2018) and theoretical results (Ma
et al., 2021; Li et al., 2020a) have shown that such regularizers are not necessary for the convergence
of gradient descent (GD) in matrix factorization problems. Similarly, recent work (Jameson et al.,
2024) has empirically demonstrated that GD can efficiently solve the TT factorization problem with-
out orthogonal constraints or regularizers on the factors, as applied in quantum state tomography.
Extending the analysis to provide a theoretical justification for this approach will be of interest.

Extension to other TT applications An important area for future work is the analysis of the
convergence properties of RGD in TT completion. Due to the random sampling process, the inco-
herence condition (Cai et al., 2022) plays a crucial role in ensuring the even distribution of energy
across the entries of the tensor. Although experimental results have shown a linear convergence
rate for RGD, there is a theoretical challenge in guaranteeing the nonexpansiveness property when
applying both the orthonormal structure and incoherence condition simultaneously. Additionally,
unlike the tensor itself, the TT rank is often unknown beforehand in practical scenarios. Building
upon recent research efforts (Stöger and Soltanolkotabi, 2021; Jiang et al., 2022; Ding et al., 2022;
Xu et al., 2023), a possible extension of our analysis is to consider overparameterized low-rank
tensor recovery. This extension would involve investigating the convergence and error analysis of
RGD in this context.
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Appendix A. Technical tools used in the proofs

In this section, we introduce a new operation related to the multiplication of submatrices within the

left unfolding matrices L(Xi) =

Xi(1)
...

Xi(di)

 ∈ R(ri−1di)×ri , i ∈ [N ]. For simplicity, we will only

consider the case di = 2, but extending to the general case is straightforward.

Let A =

[
A1

A2

]
and B =

[
B1

B2

]
be two block matrices, where Ai ∈ Rr1×r2 and Bi ∈ Rr2×r3

for i = 1, 2. We introduce the notation ⊗ to represent the Kronecker product between submatrices
in the two block matrices, as an alternative to the standard Kronecker product based on element-wise
multiplication. Specifically, we defineA⊗B as

A⊗B =

[
A1

A2

]
⊗
[
B1

B2

]
=


A1B1

A2B1

A1B2

A2B2

 . (39)

Then we establish the following useful result.

Lemma 12 For any matrices A =

[
A1

A2

]
and B =

[
B1

B2

]
, where Ai ∈ Rr1×r2 and Bi ∈ Rr2×r3 ,

the following inequalities hold

‖A⊗B‖F ≤ ‖A‖ · ‖B‖F , (40)

‖A⊗B‖ ≤ ‖A‖ · ‖B‖. (41)

In particular, when r3 = 1, (40) becomes

‖A⊗B‖2 ≤ ‖A‖ · ‖B‖2. (42)

Proof Using the relation ‖A⊗B‖2F = trace((A⊗B)>(A⊗B)) gives

‖A⊗B‖2F = trace((A⊗B)>(A⊗B))

= trace(B>1 A
>AB1 +B>2 A

>AB2)

≤ ‖B1‖2F ‖A‖2 + ‖B2‖2F ‖A‖2

= ‖A‖2‖B‖2F , (43)

where the first inequality utilizes the result that trace(CD) ≤ ‖C‖ trace(D) holds for any two
PSD matrices C,D (see (Zhu et al., 2021, Lemma 7)).
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Likewise, by connecting the spectral norms betweenA and (A⊗B)>(A⊗B), we have

‖A⊗B‖2 = λmax((A⊗B)>(A⊗B))

= λmax(B>1 A
>AB1 +B>2 A

>AB2)

= max
‖u‖2=1

u>B>1 A
>AB1u+ u>B>2 A

>AB2u

≤ max
‖u‖2=1

λmax(A>A)u>B>1 B1u+ λmax(A>A)u>B>2 B2u

= max
‖u‖2=1

λmax(A>A)(u>B>1 B1u+ u>B>2 B2u)

= λmax(A>A)λmax(B>B)

= ‖A‖2‖B‖2. (44)

The inequality (40) can be viewed as a generalization of the result ‖CD‖F ≤ ‖C‖ · ‖D‖F
for any two matrices C,D of appropriate sizes. However, unlike the matrix product case which
also satisfies ‖CD‖F ≤ ‖C‖F · ‖D‖, ‖A⊗B‖F ≤ ‖A‖F ‖B‖ does not always hold. To upper
bound ‖A⊗B‖F with the spectral norm of B, we will instead use ‖A⊗B‖F ≤ ‖A‖F · ‖B‖F ≤
rank(B)‖A‖F · ‖B‖. This discrepancy will account for the term

∑N−1
i=2 ri in the subsequent

Lemma 16.
Applying Lemma 12 to the left-orthogonal TT format tensor X ? = [X?

1 , . . . ,X
?
N ] gives the

following useful results:

‖X ?‖F = ‖vec(X ?)‖2 = ‖L(X?
1 )⊗ · · · ⊗L(X?

N )‖2 = ‖L(X?
N )‖2, (45)

‖L(X?
i )⊗ · · · ⊗L(X?

j )‖ ≤ Πj
l=i‖L(X?

l )‖ = 1, i ≤ j, ∀i, j ∈ [N − 1], (46)

‖L(X?
i )⊗ · · · ⊗L(X?

j )‖F ≤ Πj−1
l=i ‖L(X?

l )‖‖L(X?
j )‖F =

√
rj , i ≤ j, ∀i, j ∈ [N − 1]. (47)

In addition, according to (39), each row in L(X?
1 )⊗ · · · ⊗L(X?

i ) can be represented as

(L(X?
1 )⊗ · · · ⊗L(X?

i ))(s1 · · · si, :)
= (L(X?

1 )⊗ · · · ⊗L(X?
i ))(s1 + d1(s2 − 2) + · · ·+ d1 · · · di−1(si − 1), :)

=X1(s1) · · ·Xi(si). (48)

Next, we provide some useful lemmas in terms of products of matrices.

Lemma 13 For anyAi,A
?
i ∈ Rri−1×ri , i ∈ [N ], we have

A1A2 · · ·AN −A?
1A

?
2 · · ·A?

N =
N∑
i=1

A?
1 · · ·A?

i−1(Ai −A?
i )Ai+1 · · ·AN . (49)

Proof
The result can be obtained by summing up the following equations:

A1A2 · · ·AN − (A1 −A?
1)A2 · · ·AN = A?

1A2 · · ·AN

A?
1A2 · · ·AN −A?

1(A2 −A?
2)A3 · · ·AN = A?

1A
?
2A3 · · ·AN

...

A?
1A

?
2 · · ·A?

N−1AN −A?
1A

?
2 · · ·A?

N−1(AN −A?
N ) = A?

1A
?
2 · · ·A?

N .
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Lemma 14 For anyAi,A
?
i ∈ Rri−1×ri , i ∈ [N ], we have

A?
1 · · ·A?

N −A1 . . .AN−1AN +
N∑
i=1

A1 · · ·Ai−1(Ai −A?
i )Ai+1 · · ·AN

=

N−1∑
i=1

N∑
j=i+1

A1 · · ·Ai−1(Ai −A?
i )A

?
i+1 · · ·A?

j−1(Aj −A?
j )Aj+1 · · ·AN , (50)

where the right-hand side of (50) contains a total of N(N−1)
2 terms.

Proof We first rewrite the term (A1 −A?
1)A2 · · ·AN as

(A1 −A?
1)A2 · · ·AN = (A1 −A?

1)A?
2 · · ·A?

N + (A1 −A?
1) (A2 · · ·AN −A?

2 · · ·A?
N )

= (A1 −A?
1)A?

2 · · ·A?
N + (A1 −A?

1)

 N∑
j=2

A?
2 · · ·A?

j−1(Aj −A?
j )Aj+1 · · ·AN

 , (51)

where the second line uses Lemma 13 for expanding the difference A2 · · ·AN −A?
2 · · ·A?

N . We
can apply the same approach for i = 2, . . . , N to get

A1 · · ·Ai−1(Ai −A?
i )Ai+1 · · ·AN

=A1 · · ·Ai−1(Ai −A?
i )A

?
i+1 · · ·A?

N

+A1 · · ·Ai−1(Ai −A?
i )

 N∑
j=i+1

A?
i+1 · · ·A?

j−1(Aj −A?
j )Aj+1 · · ·AN

 . (52)

Noting that the sum of the second terms in the right-hand side of (51) and (52) equals the right-hand
side of (50), we complete the proof by checking the rest of the terms:

A?
1A

?
2 · · ·A?

N −A1 · · ·AN−1AN +
N∑
i=1

A1 · · ·Ai−1(Ai −A?
i )A

?
i+1 · · ·A?

N = 0, (53)

which follows from Lemma 13.

Lemma 15 ((Cai et al., 2022; Han et al., 2022)) For any two matrices X,X? with rank r, let
UΣV > and U?Σ?V ?> respectively represent the compact singular value decompositions (SVDs)
ofX andX?. Supposing thatR = arg min

R̃∈Or×r ‖U −U
?R̃‖F , we have

‖U −U?R‖F ≤
2‖X −X?‖F

σr(X?)
. (54)
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Lemma 16 For any two TT format tensors X and X ? with ranks r = (r1, . . . , rN−1). Let {Xi}
and {X?

i } be the corresponding left-orthogonal form factors. Assume σ2(X ) ≤ 9σ2(X ?)
4 . Then we

have

‖X − X ?‖2F ≥
σ2(X ?)

8(N + 1 +
∑N−1

i=2 ri)σ2(X ?)
dist2({Xi}, {X?

i }), (55)

‖X − X ?‖2F ≤
9N

4
dist2({Xi}, {X?

i }), (56)

where dist2({Xi}, {X?
i }) is defined in (6).

Proof By the definition of the i-th unfolding of the tensor X , we have

X 〈i〉 = X≤iX≥i+1, (57)

where each row of the left partX≤i and each column of the right partX≥i+1 can be represented as

X≤i(s1 · · · si, :) = X1(s1) · · ·Xi(si), (58)

X≥i+1(:, si+1 · · · sN ) = Xi+1(si+1) · · ·XN (sN ). (59)

According to (Cai et al., 2022, Lemma 1), the left part in the left-orthogonal TT format satisfies
X≤i

>
X≤i = Iri , i ∈ [N − 1]. Furthermore, based on the analysis of (Cai et al., 2022) stated in

Lemma 15, we have

max
i=1,...,N−1

‖X≤i −X?≤iRi‖F ≤
2‖X − X ?‖F

σ(X ?)
, (60)

whereRi = arg min
R̃i∈Ori×ri ‖X

≤i −X?≤iR̃i‖F .
By the definition of L(X?

1 )⊗ · · · ⊗L(X?
N ) in (48), we have

X≤i −X?≤iRi = L(X1)⊗ · · · ⊗L(Xi)− LR(X?
1 )⊗ · · · ⊗LR(X?

i ), (61)

which together with the above equation gives

‖L(X1)⊗ · · · ⊗L(Xi)− LR(X?
1 )⊗ · · · ⊗LR(X?

i )‖2F ≤
4‖X − X ?‖2F
σ2(X ?)

, i ∈ [N − 1]. (62)

We now use this result to upper bound ‖L(Xi)− LR(X?
i )‖2F for each i. First, setting i = 1 in

the above equation directly yields

‖L(X1)− LR(X?
1 )‖2F ≤

4‖X − X ?‖2F
σ2(X ?)

. (63)

With (47) and (62), we can obtain the result for i = 2 as

‖L(X2)− LR(X?
2 )‖2F

= ‖LR(X?
1 )⊗L(X2)− LR(X?

1 )⊗LR(X?
2 )‖2F

= ‖LR(X?
1 )⊗L(X2)− L(X1)⊗L(X2) + L(X1)⊗L(X2)− LR(X?

1 )⊗LR(X?
2 )‖2F

≤ 2‖LR(X?
1 )⊗L(X2)− L(X1)⊗L(X2)‖2F + 2‖L(X1)⊗L(X2)− LR(X?

1 )⊗LR(X?
2 )‖2F

≤ 2‖L(X2)‖2F ‖L(X1)− LR(X?
1 )‖2F + 2‖L(X1)⊗L(X2)− LR(X?

1 )⊗LR(X?
2 )‖2F

≤
(8r2 + 8)‖X − X ?‖2F

σ2(X ?)
. (64)
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A similar derivation also gives

‖L(Xi)− LR(X?
i )‖2F ≤

(8ri + 8)‖X − X ?‖2F
σ2(X ?)

, i = 3, . . . , N − 1. (65)

Finally, we bound the term for i = N as follows:

‖L(XN )− LR(X?
N )‖22

= ‖LR(X?
1 )⊗ · · · ⊗LR(X?

N−1)⊗(L(XN )− LR(X?
N ))‖22

= ‖LR(X?
1 )⊗ · · · ⊗LR(X?

N−1)⊗L(XN )− L(X1)⊗ · · · ⊗L(XN−1)⊗L(XN )

+L(X1)⊗ · · · ⊗L(XN−1)⊗L(XN )− LR(X?
1 )⊗ · · · ⊗LR(X?

N−1)⊗LR(X?
N )‖22

≤ 2‖R(XN )‖2‖L(X1)⊗ · · · ⊗L(XN−1)− LR(X?
1 )⊗ · · · ⊗LR(X?

N−1)‖2F + 2‖X − X ?‖2F

≤
18σ2(X ?)‖X − X ?‖2F

σ2(X ?)
+ 2‖X − X ?‖2F

≤
20σ2(X ?)‖X − X ?‖2F

σ2(X ?)
, (66)

whereR(XN ) is the right unfolding matrix ofXN and the first inequality follows because ‖A1⊗L(XN )−
A2⊗L(XN )‖F = ‖(A1−A2)R(XN )‖F ≤ ‖A1−A2‖F ‖R(XN )‖ = ‖A1−A2‖Fσ1(X 〈N−1〉)
withA1 = LR(X?

1 )⊗ · · · ⊗LR(X?
N−1) andA2 = L(X1)⊗ · · · ⊗L(XN−1).

Combining (64), (65) and (66) together gives

dist2({Xi}, {X?
i }) ≤

8(N + 1 +
∑N−1

i=2 ri)σ
2(X ?)

σ2(X ?)
‖X − X ?‖2F . (67)

On the other hand, invoking Lemma 13 gives

‖X − X ?‖2F = ‖L(X?
1 )⊗ · · · ⊗L(X?

i−1)⊗(L(Xi)− L(X?
i ))⊗L(Xi+1)⊗ · · · ⊗L(XN )‖2F

≤ N
(

9σ2(X ?)
4

N−1∑
i=1

‖L(Xi)− L(X?
i )‖2F + ‖L(XN )− L(X?

N )‖2F
)

≤ 9N

4
dist2({Xi}, {X?

i }). (68)

where the first inequality follows ‖L(X?
1 )⊗ · · · ⊗(L(Xi)−L(X?

i ))⊗L(Xi+1)⊗ · · · ⊗L(XN )‖F =
‖L(X?

1 )⊗ · · · ⊗(L(Xi) − L(X?
i ))X≥i+1‖F ≤ ‖L(X?

1 )⊗ · · · ⊗(L(Xi) − L(X?
i ))‖F ‖X≥i+1‖ ≤

‖L(X?
1 )‖ · · · ‖L(X?

i−1)‖‖L(Xi)− L(X?
i )‖Fσ(X ).

Lemma 17 ((Li et al., 2021, Lemma 1)) Let X ∈ St(n, r) and ξ ∈ TXSt be given. Con-
sider the point X+ = X + ξ. Then, the polar decomposition-based retraction RetrX(X+) =

X+(X+>X+)−
1
2 satisfies

‖RetrX(X+)−X‖F ≤ ‖X+ −X‖F = ‖X + ξ −X‖F , ∀X ∈ St(n, r). (69)
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Appendix B. Proof of Theorem 2 in Tensor-train Factorization

Proof Before proving Theorem 2, we first present a useful property for the factors L(X
(t)
i ). Due

to the retraction, the factors L(X
(t)
i ), i ∈ [N − 1] are always orthonormal. Assuming that

dist2({X(t)
i }, {X

?
i }) ≤

σ2(X ?)
72(N2 − 1)(N + 1 +

∑N−1
i=2 ri)

, (70)

which is true for t = 0 and will be proved later for t ≥ 1, we obtain that

σ2
1(X (t)〈i〉) = ‖X (t)≥i+1‖2 ≤ min

Ri∈Ori×ri
2‖R>i X ?

≥i+1‖2 + 2‖X (t)≥i+1 −R>i X ?
≥i+1‖2

≤ 2σ2(X ?) + min
Ri∈Ori×ri

2‖X (t)〈i〉 −X ?〈i〉 + X ?〈i〉 −X (t)≤iR>i X ?
≥i+1‖2

≤ 2σ2(X ?) + 4‖X (t) −X ?‖2F + min
Ri∈Ori×ri

4‖R>i X ?
≥i+1‖2‖X (t)≤i −X ?≤iRi‖2F

≤ 2σ2(X ?) +

(
4 +

16σ2(X ?)
σ2(X ?)

)
‖X (t) −X ?‖2F

≤ 2σ2(X ?) +
45Nσ2(X ?)
σ2(X ?)

dist2({X(0)
i }, {X

?
i }) ≤

9σ2(X ?)
4

, i ∈ [N − 1]. (71)

where each element ofX (t)≤i andX (t)≥i+1
are respectively defined in (58) and (59). The fourth and

last lines respectively follow (60) and (56). Note that σ2(X (t)) = maxN−1
i=1 σ2

1(X (t)〈i〉) ≤ 9σ2(X ?)
4 .

We now prove the decay of dist2({X(t+1)
i }, {X?

i }). First recall from (18) that

dist2({X(t+1)
i }, {X?

i })

≤ dist2({X(t)
i }, {X

?
i })− 2µ

N∑
i=1

〈
L(X

(t)
i )− LR(t)(X?

i ),PTL(Xi)
St

(
∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

)〉

+µ2

(
1

σ2(X ?)

N−1∑
i=1

∥∥∥∥PTL(Xi)
St

(
∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

)∥∥∥∥2
F

+

∥∥∥∥∇L(XN )f(X
(t)
1 , . . . ,X

(t)
N )

∥∥∥∥2
2

)
, (72)

where to unify the notation for all i, we define the projection onto the tangent space for i =
N as PTL(XN )St = I since there is no constraint on the N -th factor. Note that the gradient

∇L(Xi)f(X
(t)
1 , . . . ,X

(t)
N ) is defined as

∇L(Xi)f(X
(t)
1 , . . . ,X

(t)
N ) =


∇Xi(1)f(X

(t)
1 , . . . ,X

(t)
N )

...
∇Xi(di)f(X

(t)
1 , . . . ,X

(t)
N )

 , (73)

where the gradient with respect to each factorXi(si) can be computed as

∇Xi(si)f(X
(t)
1 , . . . ,X

(t)
N ) =

∑
s1,...,si−1,si+1,...,sN

((
X (t)(s1, . . . , sN )−X ?(s1, . . . , sN )

)
·

X
(t)
i−1(si−1)> · · ·X(t)

1 (s1)>X
(t)
N (sN )> · · ·X(t)

i+1(si+1)>
)
.
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Note that computing this gradient only requiresX ? and does not rely on the knowledge of the factors
in a TT decomposition of X ?.

The following is to bound the second and third terms in (72), respectively.

Upper bound of the third term in (72) We first define three matrices for i ∈ [N ] as follows:

D1(i) =
[
X

(t)
i−1(1)>· · ·X(t)

1 (1)> · · · X
(t)
i−1(di−1)>· · ·X(t)

1 (d1)>
]

= L>(X
(t)
i−1)⊗ · · · ⊗L>(X

(t)
1 ) ∈ Rri×(d1···di−1), (74)

D2(i) =

 X
(t)
N (1)> · · ·X(t)

i+1(1)>

...
X

(t)
N (dN )> · · ·X(t)

i+1(di+1)>

 ∈ R(di+1···dN )×ri , (75)

where we note that D1(1) = 1 and D2(N) = 1. Moreover, for each si ∈ [di], we define matrix
E(si) ∈ R(d1···di−1)×(di+1···dN ) whose (s1 · · · si−1, si+1 · · · sN )-th element is given by

E(si)(s1 · · · si−1, si+1 · · · sN ) = X(t)(s1, . . . , si, . . . , sN )−X?(s1, . . . , si, . . . , sN ).

Based on the aforementioned notations, we bound
∥∥∥∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )
∥∥∥2

F
by∥∥∥∥∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

∥∥∥∥2

F

=

di∑
si=1

∥∥∥∥∇Xi(si)f(X
(t)
1 , . . . ,X

(t)
N )

∥∥∥∥2

F

=

di∑
si=1

‖D1(i)E(si)D2(i)‖2F

≤
di∑
si=1

‖L>(X
(t)
i−1)⊗ · · · ⊗L>(X

(t)
1 )‖2‖D2(i)‖2‖E(si)‖2F

≤ ‖L(X
(t)
1 )‖2 · · · ‖L(X

(t)
i−1)‖2‖X (t)≥i+1‖2‖X (t) −X ?‖2F

≤

{
9σ2(X ?)

4 ‖X (t) −X ?‖2F , i ∈ [N − 1],

‖X (t) −X ?‖2F , i = N,
(76)

where we use (46), ‖D2(i)‖ = ‖(D2(i))>‖ = ‖X (t)≥i+1‖ = σ1(X (t)〈i〉) ≤ 3σ(X ?)
2 and∑di

si=1 ‖E(si)‖2F = ‖X (t) −X ?‖2F in the second inequality.
Using (76), we obtain an upper bound for the third term in (72) as

1

σ2(X ?)

N−1∑
i=1

∥∥∥∥PTL(Xi)
St

(
∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

)∥∥∥∥2

F

+

∥∥∥∥∇L(XN )f(X
(t)
1 , . . . ,X

(t)
N )

∥∥∥∥2

2

≤ 1

σ2(X ?)

N−1∑
i=1

∥∥∥∥∇L(Xi)f(X
(t)
1 , . . . ,X

(t)
N )

∥∥∥∥2

F

+

∥∥∥∥∇L(XN )f(X
(t)
1 , . . . ,X

(t)
N )

∥∥∥∥2

2

≤ 9N − 5

4
‖X (t) −X ?‖2F , (77)

where the first inequality follows from the fact that for any matrixB = PTL(Xi)
St(B)+P⊥TL(Xi)

St(B)

where PTL(Xi)
St(B) and P⊥TL(Xi)

St(B) are orthogonal, we have ‖PTL(Xi)
St(B)‖2F ≤ ‖B‖2F .
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Lower bound of the second term in (72) We first expand the second term in (72) as follows:

N∑
i=1

〈
L(X

(t)
i )− LR(t)(X?

i ),PTL(Xi)
St

(
∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

)〉

=

N∑
i=1

〈
L(X

(t)
i )− LR(t)(X?

i ),∇L(Xi)f(X
(t)
1 , . . . ,X

(t)
N )

〉
− T1

=

〈
L(X

(t)
1 )⊗ · · · ⊗L(X

(t)
N )− LR(t)(X?

1 )⊗ · · · ⊗LR(t)(X?
N ), L(X

(t)
1 )⊗ · · · ⊗L(X

(t)
N )

− LR(t)(X?
1 )⊗ · · · ⊗LR(t)(X?

N ) + h(t)

〉
− T1, (78)

where we define

h(t) = LR(t)(X?
1 )⊗ · · · ⊗LR(t)(X?

N )− L(X
(t)
1 )⊗ · · · ⊗L(X

(t)
N−1)⊗LR(t)(X?

N )

+

N−1∑
i=1

L(X
(t)
1 )⊗ · · · ⊗L(X

(t)
i−1)⊗(L(X

(t)
i )− LR(t)(X?

i ))⊗L(X
(t)
i+1)⊗ · · · ⊗L(X

(t)
N ), (79)

and

T1 =
N−1∑
i=1

〈
P⊥TL(Xi)

St(L(X
(t)
i )− LR(t)(X?

i )),∇L(Xi)f(X
(t)
1 , . . . ,X

(t)
N )

〉
. (80)

Recalling the definition for orthogonal complement projection in (10), we can rewrite the term
P⊥TL(Xi)

St(·) as

P⊥TL(Xi)
St(L(X

(t)
i )− LR(t)(X?

i ))

=
1

2
L(X

(t)
i )

(
(L(X

(t)
i )− LR(t)(X?

i ))>L(X
(t)
i ) + L>(X

(t)
i )(L(X

(t)
i )− LR(t)(X?

i ))

)
=

1

2
L(X

(t)
i )

(
2Iri − L>R(t)(X

?
i )L(X

(t)
i )− L>(X

(t)
i )LR(t)(X?

i )

)
=

1

2
L(X

(t)
i )

(
(L(X

(t)
i )− LR(t)(X?

i ))>(L(X
(t)
i )− LR(t)(X?

i ))

)
. (81)

To derive the lower bound of (78), we first utilize Lemma 14 to obtain the upper bound on
‖h(t)‖22 as follows:

‖h(t)‖22 = ‖
N−1∑
i=1

N∑
j=i+1

L(X
(t)
1 )⊗ · · · ⊗L(X

(t)
i−1)⊗(L(X

(t)
i )− LR(t)(X?

i ))⊗LR(t)(X?
i+1)⊗

· · · ⊗LR(X?
j−1)⊗(L(X

(t)
j )− LR(t)(X?

j ))⊗L(X
(t)
j+1)⊗ · · · ⊗L(X

(t)
N )‖22

≤ N(N − 1)

2

(N−1∑
j=1

‖L(X
(t)
j )− LR(t)(Xj

?)‖2F ·

( N−1∑
i=j+1

9σ2(X ?)
4

‖L(X
(t)
i )− LR(t)(X?

i )‖2F + ‖L(X
(t)
N )− LR(t)(X?

N )‖22
))
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≤ 9N(N − 1)

8

N−1∑
i=1

‖L(X
(t)
i )− LR(t)(X?

i )‖2F dist2({X(t)
i }, {X

?
i })

≤ 9N(N − 1)

8σ2(X ?)
dist4({X(t)

i }, {X
?
i }), (82)

where (47) and ‖A⊗L(X
(t)
j+1)⊗ · · · ⊗L(X

(t)
N )‖2 = ‖AX (t)≥j+1‖F ≤ ‖X (t)≥j+1‖‖A‖F ≤

3σ(X ?)
2 ‖A‖F withA = L(X

(t)
1 )⊗ · · · ⊗L(X

(t)
i−1)⊗(L(X

(t)
i )− LR(t)(X?

i ))⊗LR(t)(X?
i+1)⊗ · · ·

⊗LR(X?
j−1)⊗(L(X

(t)
j )− LR(t)(X?

j )) are used in the first inequality. We then establish the upper
bound of T1 as follows:

T1 ≤
N−1∑
i=1

1

2
‖L(X

(t)
i )‖‖L(X

(t)
i )− LR(t)(X?

i )‖2F
∣∣∣∣∣∣∣∣∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

∣∣∣∣∣∣∣∣
F

≤
N−1∑
i=1

3σ(X ?)
4
‖L(X

(t)
i )− LR(t)(X?

i )‖2F ‖X (t) −X ?‖F

≤ 1

4
‖X (t) −X ?‖2F +

9(N − 1)σ2(X ?)
16

N−1∑
i=1

‖L(X
(t)
i )− LR(t)(X?

i )‖4F

≤ 1

4
‖X (t) −X ?‖2F +

9(N − 1)

16σ2(X ?)
dist4({X(t)

i }, {X
?
i }), (83)

where the second inequality follows from (76).
Now plugging (82) and (83) into (78) gives

N∑
i=1

〈
L(X

(t)
i )− LR(t)(X?

i ),PTL(Xi)
St

(
∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

)〉
≥ 1

2
‖X (t) −X ?‖2F −

1

2
‖h(t)‖22 −

1

4
‖X (t) −X ?‖2F −

9(N − 1)

16σ2(X ?)
dist4({X(t)

i }, {X
?
i })

≥ 1

4
‖X (t) −X ?‖2F −

9N(N − 1)

16σ2(X ?)
dist4({X(t)

i }, {X
?
i })−

9(N − 1)

16σ2(X ?)
dist4({X(t)

i }, {X
?
i })

≥ σ2(X ?)
128(N + 1 +

∑N−1
i=2 ri)σ2(X ?)

dist2({X(t)
i }, {X

?
i }) +

1

8
‖X (t) −X ?‖2F , (84)

where the first and second inequalities follow from (83) and (82), and we utilize Lemma 16 along
with the initial condition dist2({X(0)

i }, {X?
i }) ≤

σ2(X ?)

72(N2−1)(N+1+
∑N−1
i=2 ri)

in the last line.

Contraction Taking (77) and (84) into (72), we have

dist2({X(t+1)
i }, {X?

i }) ≤
(

1− σ2(X ?)
64(N + 1 +

∑N−1
i=2 ri)σ2(X ?)

µ

)
dist2({X(t)

i }, {X
?
i })

+

(
9N − 5

4
µ2 − µ

4

)
‖X (t) −X ?‖2F

≤
(

1− σ2(X ?)
64(N + 1 +

∑N−1
i=2 ri)σ2(X ?)

µ

)
dist2({X(t)

i }, {X
?
i }), (85)

where we assume µ ≤ 1
9N−5 in the last line.
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Proof of (70) We now prove (70) by induction. First note that (90) holds for t = 0. We now
assume it holds at t = t′, which implies that σ2

1(X (t′)〈i〉) ≤ 9σ2(X ?)
4 , i ∈ [N − 1]. By invoking

(85), we have dist2({X(t′+1)
i }, {X?

i }) ≤ dist2({X(t)
i }, {X?

i }). Consequently, (70) also holds at
t = t′ + 1. By induction, we can conclude that (70) holds for all t ≥ 0. This completes the proof.

Appendix C. Proof of Theorem 6 in Spectral Initialization

We first provide one useful lemma. As an immediate consequence of the RIP, the inner product
between two low-rank TT format tensors is also nearly preserved if A satisfies the RIP.

Lemma 18 ((Candès and Plan, 2011; Rauhut et al., 2017) ) Suppose thatA obeys the 2r-RIP with
a constant δ2r. Then for any left-orthogonal TT formats X1,X2 ∈ Rd1×···×dN of rank at most r, one
has ∣∣∣∣ 1

m
〈A(X1),A(X2)〉 − 〈X1,X2〉

∣∣∣∣ ≤ δ2r‖X1‖F ‖X2‖F , (86)

or equivalently, ∣∣∣∣〈( 1

m
A∗A− I

)
(X1),X2

〉∣∣∣∣ ≤ δ2r‖X1‖F ‖X2‖F , (87)

where A∗ is the adjoint operator of A and is defined as A∗(x) =
∑m

i=1 xiAi.

Proof [Proof of Theorem 6] Before analyzing the spectral initialization, we first define the following
restricted Frobenius norm for any tensorH ∈ Rd1×···×dN :

‖H‖F,r = max
i∈[N−1]

√√√√ ri∑
j=1

σ2
j (H〈i〉)

= max
Vi∈R

di+1···dN×ri ,
ViV

>
i

=Iri ,i∈[N−1]

‖H〈i〉Vi‖F

= max
X∈Rd1×···×dN ,‖X‖F≤1,

rank(X )=(r1,...,rN−1)

〈H,X〉, (88)

where rank(X ) denotes the TT ranks ofX . Similar forms for the matrix case are provided in (Zhang
et al., 2021a; Tong, 2022). We now upper bound ‖X (0) −X ?‖F as

‖X (0) −X ?‖F

=

∥∥∥∥SVDtt
r

(
1

m

m∑
k=1

ykAk
)
−X ?

∥∥∥∥
F,2r

≤
∥∥∥∥SVDtt

r

(
1

m

m∑
k=1

ykAk
)
− 1

m

m∑
k=1

ykAk
∥∥∥∥
F,2r

+

∥∥∥∥ 1

m

m∑
k=1

ykAk −X ?
∥∥∥∥
F,2r

≤
√
N − 1

∥∥∥∥optr

(
1

m

m∑
k=1

ykAk
)
− 1

m

m∑
k=1

ykAk
∥∥∥∥
F,2r

+

∥∥∥∥ 1

m

m∑
k=1

ykAk −X ?
∥∥∥∥
F,2r
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≤ (1 +
√
N − 1)

∥∥∥∥ 1

m

m∑
k=1

ykAk −X ?
∥∥∥∥
F,2r

= (1 +
√
N − 1) max

Z∈Rd1×···×dN ,‖Z‖F≤1,

rank(Z)=(2r1,...,2rN−1)

∣∣∣∣〈( 1

m
A∗A− I

)
(X ?),Z

〉∣∣∣∣
≤ δ3r(1 +

√
N − 1)‖X ?‖F , (89)

where optr( 1
m

∑m
k=1 ykAk) is the best TT-approximation of ranks r to 1

m

∑m
k=1 ykAk in the Frobe-

nius norm, the second inequality utilizes the quasi-optimality property of TT-SVD projection (Os-
eledets, 2011), the third inequality follows because the definition of optr(·) and X ? has ranks r, and
the last uses (87).

Appendix D. Proof of Theorem 7 in Tensor-train Sensing

Proof The proof follows a similar approach to that for Theorem 2 in Appendix B. We first present
useful properties for the factors L(X

(t)
i ). Due to the retraction, L(X

(t)
i ), i ∈ [N − 1] are always

orthonormal. Assuming that

dist2({X(t)
i }, {X

?
i }) ≤

(4− 15δ(N+3)r)σ
2(X ?)

8(N + 1 +
∑N−1

i=2 ri)(57N2 + 393N − 450)
, (90)

which is true for t = 0 and will be proved later for t ≥ 1, based on the derivation of (71), we have

σ2
1(X (t)〈i〉) = ‖X (t)≥i+1‖2 ≤ 2σ2(X ?) +

(
4 +

16σ2(X ?)
σ2(X ?)

)
‖X (t) −X ?‖2F

≤ 2σ2(X ?) +
45Nσ2(X ?)
σ2(X ?)

dist2({X(0)
i }, {X

?
i }) ≤

9σ2(X ?)
4

, i ∈ [N − 1]. (91)

Note that σ2(X (t)) = maxN−1
i=1 σ2

1(X (t)〈i〉) ≤ 9σ2(X ?)
4 .

We now prove the decay of the distance based on the result ‖X (t)≥i+1‖2 ≤ 9σ2(X ?)
4 , i ∈ [N−1].

First recall (18):

dist2({X(t+1)
i }, {X?

i })

≤ dist2({X(t)
i }, {X

?
i })− 2µ

N∑
i=1

〈
L(X

(t)
i )− LR(t)(X?

i ),PTL(Xi)
St

(
∇L(Xi)g(X

(t)
1 , . . . ,X

(t)
N )

)〉

+µ2

(
1

σ2(X ?)

N−1∑
i=1

∥∥∥∥PTL(Xi)
St

(
∇L(Xi)g(X

(t)
1 , . . . ,X

(t)
N )

)∥∥∥∥2
F

+

∥∥∥∥∇L(XN )g(X
(t)
1 , . . . ,X

(t)
N )

∥∥∥∥2
2

)
. (92)

Note that the gradient is defined as

∇L(Xi)g(X
(t)
1 , . . . ,X

(t)
N ) =


∇Xi(1)g(X

(t)
1 , . . . ,X

(t)
N )

...
∇Xi(di)g(X

(t)
1 , . . . ,X

(t)
N )

 , (93)
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where the gradient with respect to each factorXi(si) can be obtained as

∇Xi(si)g(X
(t)
1 , . . . ,X

(t)
N ) =

1

m

m∑
k=1

(〈Ak,X (t)〉 − yk)
∑

s1,...,si−1,si+1,...,sN

(
Ak(s1, . . . , sN )·

X
(t)
i−1(si−1)> · · ·X(t)

1 (s1)>X
(t)
N (sN )> · · ·X(t)

i+1(si+1)>
)
.

Upper bound of the third term in (92) Using the RIP, we begin by quantifying the difference in
the gradients of g and f through

∥∥∥∥∇L(Xi)g(X
(t)
1 , . . . ,X

(t)
N )−∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

∥∥∥∥
F

= max
Hi∈R

ri−1×di×ri
‖Hi‖F≤1

〈∇L(Xi)g(X
(t)
1 , . . . ,X

(t)
N )−∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N ), L(Hi)〉

= max
Hi∈R

ri−1×di×ri
‖Hi‖F≤1

〈( 1

m
A∗A− I)(X (t) −X ?), [X(t)

1 , . . . ,Hi, . . . ,X
(t)
N ]〉

≤ δ3r‖X (t) −X ?‖F ‖[X(t)
1 , . . . ,Hi, . . . ,X

(t)
N ]‖F

≤

{
3σ(X ?)

2 δ3r‖X (t) −X ?‖F , i ∈ [N − 1],

δ3r‖X (t) −X ?‖F , i = N,
(94)

where the first inequality follows (87) and the second inequality uses (47) and ‖[X(t)
1 , . . . ,Hi, . . . ,

X
(t)
N ]‖F = ‖(L(X

(t)
1 )⊗ · · · ⊗L(Hi))X (t)≥i+1‖F ≤ ‖L(X

(t)
1 )⊗ · · · ⊗L(Hi)‖F ‖X (t)≥i+1‖. This

together with the upper bound for
∥∥∥∥∇L(Xi)f(X

(t)
1 , . . . ,X

(t)
N )

∥∥∥∥
F

in (76) gives

∥∥∥∥∇L(Xi)g(X
(t)
1 , . . . ,X

(t)
N )

∥∥∥∥
F

≤

{
3σ(X ?)

2 (1 + δ3r)‖X (t) −X ?‖F , i ∈ [N − 1],

(1 + δ3r)‖X (t) −X ?‖F , i = N.
(95)

Plugging this into the third term in (92) and following the same analysis of (77), we can obtain

1

σ2(X ?)

N−1∑
i=1

∥∥∥∥PTL(Xi)
St

(
∇L(Xi)g(X

(t)
1 , . . . ,X

(t)
N )

)∥∥∥∥2

F

+

∥∥∥∥∇L(XN )g(X
(t)
1 , . . . ,X

(t)
N )

∥∥∥∥2

2

≤ 1

σ2(X ?)

N−1∑
i=1

∥∥∥∥∇L(Xi)g(X
(t)
1 , . . . ,X

(t)
N )

∥∥∥∥2

F

+

∥∥∥∥∇L(XN )g(X
(t)
1 , . . . ,X

(t)
N )

∥∥∥∥2

2

≤ 9N − 5

2
(1 + δ3r)

2‖X (t) −X ?‖2F . (96)
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Lower bound of the second term in (92) We first expand the second term of (92) as follows:

N∑
i=1

〈
L(X

(t)
i )− LR(t)(X?

i ),PTL(Xi)
St

(
∇L(Xi)g(X

(t)
1 , . . . ,X

(t)
N )

)〉

=

N∑
i=1

〈
L(X

(t)
i )− LR(t)(X?

i ),∇L(Xi)g(X
(t)
1 , . . . ,X

(t)
N )

〉
− T2

=
1

m

m∑
k=1

〈ak, L(X
(t)
1 )⊗ · · · ⊗L(X

(t)
N )− LR(t)(X?

1 )⊗ · · · ⊗LR(t)(X?
N )〉〈ak,h(t)〉

+
1

m
‖A(X (t) −X ?)‖22 − T2, (97)

where ak = vec(Ak) and T2 is defined as

T2 =

N−1∑
i=1

〈
P⊥TL(Xi)

St(L(X
(t)
i )− LR(t)(X?

i )),∇L(Xi)g(X
(t)
1 , . . . ,X

(t)
N )

〉
. (98)

T2 can be upper bonded by

T2 ≤
1

2

N−1∑
i=1

‖L(X
(t)
i )‖‖L(X

(t)
i )− LR(t)(X?

i )‖2F
∣∣∣∣∣∣∣∣∇L(Xi)g(X

(t)
1 , . . . ,X

(t)
N )

∣∣∣∣∣∣∣∣
F

≤ 3σ(X ?)
2

N−1∑
i=1

‖L(X
(t)
i )− LR(t)(X?

i )‖2F ‖X (t) −X ?‖F

≤ 1

10
‖X (t) −X ?‖2F +

45(N − 1)σ2(X ?)
8

N−1∑
i=1

‖L(X
(t)
i )− LR(t)(X?

i )‖4F

≤ 1

10
‖X (t) −X ?‖2F +

45(N − 1)

8σ2(X ?)
dist4({X(t)

i }, {X
?
i }), (99)

where the second inequality follows (95) with δ3r = 1. We now plug this into (97) to get

N∑
i=1

〈
L(X

(t)
i )− LR(t)(X?

i ),PTL(Xi)
St

(
∇L(Xi)g(X

(t)
1 , . . . ,X

(t)
N )

)〉
≥ (1− δ2r)‖X (t) −X ?‖2F + 〈L(X

(t)
1 )⊗ · · · ⊗L(X

(t)
N )− LR(t)(X?

1 )⊗ · · · ⊗LR(t)(X?
N ),h(t)〉

−δ(N+3)r‖X (t) −X ?‖F ‖h(t)‖2 −
1

10
‖X (t) −X ?‖2F −

45(N − 1)

8σ2(X ?)
dist4({X(t)

i }, {X
?
i })

≥
(

9

10
− δ(N+3)r

)
‖X (t) −X ?‖2F −

1 + δ(N+3)r

2
(‖X (t) −X ?‖2F + ‖h(t)‖22)

−45(N − 1)

8σ2(X ?)
dist4({X(t)

i }, {X
?
i })

≥
4− 15δ(N+3)r

20
‖X (t) −X ?‖2F −

19

30
‖h(t)‖22 −

45(N − 1)

8σ2(X ?)
dist4({X(t)

i }, {X
?
i })

≥
(4− 15δ(N+3)r)σ

2(X ?)
640(N + 1 +

∑N−1
i=2 ri)σ2(X ?)

dist2({X(t)
i }, {X

?
i }) +

4− 15δ(N+3)r

40
‖X (t) −X ?‖2F , (100)
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where we utilize (99), Theorem 5, and Lemma 18 in the first inequality. Note that according to
the definition of h(t) in (79), it has TT ranks at most ((N + 1)r1, . . . , (N + 1)rN−1). Therefore,
with the TT format L(X

(t)
1 )⊗ · · · ⊗L(X

(t)
N )− LR(t)(X?

1 )⊗ · · · ⊗LR(t)(X?
N ), which has TT ranks

(2r1, . . . , 2rN−1), the measurement operatorA needs to satisfy the (N+3)r-RIP which is assumed.
The third inequality follows because δ2r ≤ δ(N+3)r ≤ 4

15 . The last line utilizes Lemma 16, (82),

and the initial condition dist2({X(0)
i }, {X?

i }) ≤
(4−15δ(N+3)r)σ

2(X ?)

8(N+1+
∑N−1
i=2 ri)(57N2+393N−450)

.

Contraction Taking (96) and (100) into (92), we can get

dist2({X(t+1)
i }, {X?

i })

≤
(

1−
(4− 15δ(N+3)r)σ

2(X ?)
320(N + 1 +

∑N−1
i=2 ri)σ2(X ?)

µ

)
dist2({X(t)

i }, {X
?
i })

+

(
9N − 5

2
(1 + δ3r)

2µ2 −
4− 15δ(N+3)r

20
µ

)
‖X (t) −X ?‖2F

≤
(

1−
(4− 15δ(N+3)r)σ

2(X ?)
320(N + 1 +

∑N−1
i=2 ri)σ2(X ?)

µ

)
dist2({X(t)

i }, {X
?
i }), (101)

where we use µ ≤ 4−15δ(N+3)r

10(9N−5)(1+δ(N+3)r)
2 in the last line.

Proof of (90) This can be proved by using the same induction argument in (70) together with
δ(N+3)r ≤ 4

15 . This completes the proof.

Appendix E. Proof of Theorem 9 for Noisy Spectral Initialization

Proof
Recalling the definition of ‖ · ‖F,r in (88), we follow the same approach in (89) to quantify

‖X (0) −X ?‖F :

‖X (0) −X ?‖F

=

∥∥∥∥SVDtt
r

(
1

m

m∑
k=1

(yk + εk)Ak
)
−X ?

∥∥∥∥
F,2r

≤ (1 +
√
N − 1)

∥∥∥∥ 1

m

m∑
k=1

(yk + εk)Ak −X ?
∥∥∥∥
F,2r

≤ (1 +
√
N − 1)

∥∥∥∥ 1

m

m∑
k=1

ykAk −X ?
∥∥∥∥
F,2r

+ (1 +
√
N − 1)

∥∥∥∥ 1

m

m∑
k=1

εkAk
∥∥∥∥
F,2r

≤ δ3r(1 +
√
N − 1)‖X ?‖F + (1 +

√
N − 1)

∥∥∥∥ 1

m

m∑
k=1

εkAk
∥∥∥∥
F,2r

. (102)
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Next, we will use an ε-net and a covering argument to bound the second term in the last line:∥∥∥∥ 1

m

m∑
k=1

εkAk
∥∥∥∥
F,2r

= max
H∈Rd1×···×dN ,‖H‖F≤1,

rank(H)=(2r1,...,2rN−1)

〈 1

m

m∑
k=1

εkAk,H〉 = max
H∈Rd1×···×dN ,‖H‖F≤1,

rank(H)=(2r1,...,2rN−1)

1

m
〈ε,A(H)〉. (103)

To begin, according to (Zhang et al., 2018), for each i ∈ [N − 1], we can construct an ε-net
{L(H

(1)
i ), . . . , L(H

(ni)
i )} with the covering number ni ≤ (4+ε

ε )diri−1ri for the set of factors
{L(Hi) ∈ Rdiri−1×ri : ‖L(Hi)‖ ≤ 1} such that

sup
L(Hi):‖L(Hi)‖≤1

min
pi≤ni

‖L(Hi)− L(H
(pi)
i )‖ ≤ ε. (104)

Similarly, we can construct an ε-net {L(H
(1)
N ), . . . , L(H

(nN )
N )} with the covering number nN ≤

(2+ε
ε )dNrN−1 for {L(HN ) ∈ RdNrN−1×1 : ‖L(HN )‖2 ≤ 1} such that

sup
L(HN ):‖L(HN )‖2≤1

min
pN≤nN

‖L(HN )− L(H
(pN )
N )‖2 ≤ ε. (105)

Therefore, we can construct an ε-net {H(1), . . . ,H(n1···nN )} with covering number

ΠN
i=1ni ≤ (

4 + ε

ε
)d1r1+

∑N−1
i=2 diri−1ri+dNrN−1 ≤ (

4 + ε

ε
)Ndr

2

(where r = maxN−1
i=1 ri and d = maxNi=1 di) for any TT format tensors H = [H1, . . . ,HN ] ∈

Rd1×···×dN with TT ranks (r1, . . . , rN−1).
Denote by T the value of (103), i.e.,

[H̃1, . . . , H̃N ] = arg max
L(Hi) ∈ R2diri−1×2ri

‖L(Hi)‖ ≤ 1, i ∈ [N − 1]
‖L(HN )‖2 ≤ 1

1

m

m∑
k=1

〈εkAk, [H1, . . . ,HN ]〉, (106)

T :=
1

m

m∑
k=1

〈εkAk, [H̃1, . . . , H̃N ]〉. (107)

Using I to denote the index set [n1] × · · · × [nN ], then according to the construction of the ε-net,
there exists p = (p1, . . . , pN ) ∈ I such that

‖L(H̃i)− L(H
(pi)
i )‖ ≤ ε, i ∈ [N − 1] and ‖L(H̃N )− L(H

(pN )
N )‖2 ≤ ε. (108)

Now taking ε = 1
2N gives

T =
1

m

m∑
k=1

〈εkAk, [H
(p1)
1 , . . . ,H

(pN )
N ]〉+

1

m

m∑
k=1

〈εkAk, [H̃1, . . . , H̃N ]− [H
(p1)
1 , . . . ,H

(pN )
N ]〉

=
1

m

m∑
k=1

〈εkAk, [H
(p1)
1 , . . . ,H

(pN )
N ]〉+

1

m

m∑
k=1

〈εkAk,
N∑

a1=1

[H
(p1)
1 , . . . ,H

(pa1 )
a1 − H̃a1 , . . . , H̃N ]〉

≤ 1

m

m∑
k=1

〈εkAk, [H
(p1)
1 , . . . ,H

(pN )
N ]〉+NεT

=
1

m

m∑
k=1

〈εkAk, [H
(p1)
1 , . . . ,H

(pN )
N ]〉+

T

2
, (109)
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where the second line uses Lemma 13 to rewrite [H̃1, . . . , H̃N ] − [H
(p1)
1 , . . . ,H

(pN )
N ] into a sum

of N terms.
Note that when conditioned on {Ak}mk=1, for any fixed H(p) ∈ Rd1×···×dN , 1

m〈ε,A(H(p))〉 has

a normal distribution with zero mean and variance γ2‖A(H(p))‖22
m2 , which implies that

P
(

1

m
|〈ε,A(H(p))〉| ≥ t|{Ak}mk=1

)
≤ e
− m2t2

2γ2‖A(H(p))‖22 . (110)

Furthermore, under the event F := {A satisfies 2r-RIP with constant δ2r}, which implies that
1
m‖A(H(p))‖22 ≤ (1 + δ2r)‖H(p)‖2F , plugging this together with the fact ‖H(p)‖F ≤ 1 into the
above further gives

P
(

1

m
|〈ε,A(H(p))〉| ≥ t|F

)
≤ e−

mt2

2(1+δ2r)γ
2 . (111)

We now apply this tail bound to (109) and get

P (T ≥ t|F ) ≤ P

(
max
p1,...,pn

1

m

m∑
k=1

〈εkAk, [H
(p1)
1 , . . . ,H

(pN )
N ]〉 ≥ t

2
|F

)

≤
(

4 + ε

ε

)4Ndr2

e
− mt2

8(1+δ2r)γ
2 ≤ e−

mt2

8(1+δ2r)γ
2 +c1Ndr2 logN

, (112)

where c1 is a constant and based on the assumption in (109), 4+ε
ε =

4+ 1
2N
1

2N

= 8N + 1.

Hence, we can take t =
c2r
√

(1+δ2r)Nd(logN)√
m

γ with a constant c2 and further derive

P

T ≤ c2r
√

(1 + δ2r)Nd(logN)
√
m

γ


≥ P

T ≤ c2r
√

(1 + δ2r)Nd(logN)
√
m

γ ∩ F


≥ P (F )P

T ≤ c2r
√

(1 + δ2r)Nd(logN)
√
m

γ|F


≥ (1− e−c3Ndr2 logN )(1− e−c4Ndr2 logN ) ≥ 1− 2e−c5Ndr

2 logN , (113)

where ci, i = 3, 4, 5 are constants. Note that P (F ) is obtained via Theorem 5 by setting ε in (24) to
be e−c3Ndr

2 logN .
Combing (102) and (113), we finally obtain that with probability 1− 2e−c5Ndr

2 logN ,

‖X (0) −X ?‖F ≤ (1 +
√
N − 1)

(
δ3r‖X ?‖F +

c2r
√

(1 + δ3r)Nd logN
√
m

γ

)
, (114)

where δ2r ≤ δ3r is used.
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Appendix F. Proof of Theorem 10 for Noisy TT Format Tensor Sensing

Proof By the same analysis in the beginning of Appendix D, we can get that L(X
(t)
i ), i ∈ [N − 1]

are orthonormal matrices and σ2
1(X (t)〈i〉) = ‖X (t)≥i+1‖2 ≤ 9σ2(X ?)

4 , i ∈ [N − 1], t ≥ 0 by
assuming

dist2({X(t)
i }, {X

?
i }) ≤

σ2(X ?)
180N

, (115)

which will be proved later. Now recall (18):

dist2({X(t+1)
i }, {X?

i })

≤ dist2({X(t)
i }, {X

?
i })− 2µ

N∑
i=1

〈
L(X

(t)
i )− LR(t)(X?

i ),PTL(Xi)
St

(
∇L(Xi)G(X

(t)
1 , . . . ,X

(t)
N )

)〉

+µ2

(
1

σ2(X ?)

N−1∑
i=1

∥∥∥∥PTL(Xi)
St

(
∇L(Xi)G(X

(t)
1 , . . . ,X

(t)
N )

)∥∥∥∥2
F

+

∥∥∥∥∇L(XN )G(X
(t)
1 , . . . ,X

(t)
N )

∥∥∥∥2
2

)
,

(116)

where the gradient with respect to each factorXi(si) can be computed as

∇Xi(si)G(X
(t)
1 , . . . ,X

(t)
N ) =

1

m

m∑
k=1

(〈Ak,X (t)〉 − yk − εk)
∑

s1,...,si−1,si+1,...,sN

(
Ak(s1, . . . , sN )·

X
(t)
i−1(si−1)> · · ·X(t)

1 (s1)>X
(t)
N (sN )> · · ·X(t)

i+1(si+1)>
)
.

Upper bound of the third term in (116) To upper bound ‖∇L(Xi)G(X
(t)
1 , . . . ,X

(t)
N )‖F , we first

analyze the difference in the gradient caused by noise, using the same analysis in (113). Specifically,
with the same ε-net argument in (103),∥∥∥∇L(Xi)g(X

(t)
1 , . . . ,X

(t)
N )−∇L(Xi)G(X

(t)
1 , . . . ,X

(t)
N )
∥∥∥
F

= max
Hi∈R

ri−1×di×ri
‖Hi‖F≤1

〈
∇L(Xi)g(X

(t)
1 , . . . ,X

(t)
N )−∇L(Xi)G(X

(t)
1 , . . . ,X

(t)
N ), L(Hi)

〉

= max
Hi∈R

ri−1×di×ri
‖Hi‖F≤1

〈
1

m

m∑
k=1

εkAk, [X
(t)
1 , . . . ,X

(t)
i−1,Hi,X

(t)
i+1, . . . ,X

(t)
N ]

〉

≤


cir
√

(1+δ3r)Nd(logN)γσ(X ?)√
m

, i = 1, . . . , N − 1,

cNr
√

(1+δ3r)Nd(logN)γ√
m

, i = N,

where the last inequality holds with probability at least 1−2Ne−Ω(Ndr2 logN) with ci, i ∈ [N ] being
positive constants, and is derived by using (47) that ‖[X(t)

1 , . . . ,Hi, . . . ,X
(t)
N ]‖F = ‖(L(X

(t)
1 )⊗

· · · ⊗L(Hi))X (t)≥i+1‖F ≤ ‖L(X
(t)
1 )⊗ · · · ⊗L(Hi)‖F ‖X (t)≥i+1‖ ≤ 3σ(X ?)

2 , i ∈ [N − 1] and

‖[X(t)
1 , . . . ,X

(t)
N−1,HN ]‖F = ‖HN‖F ≤ 1.
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This together with the bound for
∥∥∇L(Xi)g(X

(t)
1 , . . . ,X

(t)
N )
∥∥
F

in (95) gives∥∥∥∥∇L(Xi)G(X
(t)
1 , . . . ,X

(t)
N )

∥∥∥∥
F

≤
∥∥∥∥∇L(Xi)g(X

(t)
1 , . . . ,X

(t)
N )

∥∥∥∥
F

+
∥∥∥∇L(Xi)g(X

(t)
1 , . . . ,X

(t)
N )−∇L(Xi)G(X

(t)
1 , . . . ,X

(t)
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∥∥∥
F

≤


3σ(X ?)

2 (1 + δ3r)‖X (t) −X ?‖F +
cir
√

(1+δ3r)Nd(logN)γσ(X ?)√
m

, i = 1, . . . , N − 1,

(1 + δ3r)‖X (t) −X ?‖F +
cNr
√

(1+δ3r)Nd(logN)γ√
m

, i = N.
(117)

We now plug the above into the third term in (113) to get

1

σ2(X ?)
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i=1

∥∥∥∥PTL(Xi)
St

(
∇L(Xi)G(X

(t)
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(t)
N )

)∥∥∥∥2

F

+

∥∥∥∥∇L(XN )G(X
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(t)
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≤ 1
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F

+
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2

≤ 9N − 5

2
(1 + δ3r)

2‖X (t) −X ?‖2F +O

(
(1 + δ3r)N

2dr2(logN)γ2

m

)
. (118)

Lower bound of the second term in (116) To apply the same approach as in (100) for establishing
a lower bound for the second term in (116), we first need to establish upper bounds for two terms
involving noise. To begin, following the derivation of (99), we can get

N−1∑
i=1

〈
P⊥TL(Xi)

St(L(X
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i )− LR(t)(X?
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‖X (t) −X ?‖2F + 46(N − 1)σ2(X ?)

N−1∑
i=1

‖L(X
(t)
i )− LR(t)(X?

i )‖4F

+
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i (1 + δ3r)Ndr
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16m

≤ 1

20
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(119)
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where the second inequality uses (117). In addition, recalling the notations of ak = vec(Ak) and
h(t) defined in (79), then with probability 1− 2e−Ω(N3dr2 logN), we have

1

m

m∑
k=1

〈εkak, L(X
(t)
1 )⊗ · · · ⊗L(X
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N )− LR(t)(X?
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N ) + h(t)〉
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+

1

10
‖X (t) −X ?‖2F

+
9N(N − 1)

80σ2(X ?)
dist4({X(t)

i }, {X
?
i }), (120)

where the first inequality follows the same ε-net argument used in (103) and the fact that the TT
ranks of the second term in the cross term is ((N + 3)r1, . . . , (N + 3)rN−1), and the last inequality
uses (82).

Using (119), we can proceed with the analysis similar to (100) to obtain the following derivation
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)
, (121)

where we use δ(N+3)r ≤ 7
30 , (120) and (82) in the second inequality, and the last line follows

Lemma 16 and the initial condition dist2({X(0)
i }, {X?

i }) ≤
(7−30δ(N+3)r)σ

2(X ?)

8(N+1+
∑N−1
i=2 ri)(129N2+7231N−7360)

.
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Contraction Taking (118) and (121) into (116), with probability 1−2Ne−Ω(Ndr2 logN)−2e−Ω(N3dr2 logN),
we can get

dist2({X(t+1)
i }, {X?

i }) ≤
(
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2(X ?)
1280(N + 1 +
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, (122)

where we use µ ≤ 7−30δ(N+3)r

20(9N−5)(1+δ(N+3)r)
2 in the last line. By induction, this further implies that
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)
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Proof of (115) We can prove it by induction as used in the proof of (70). First note that (90) holds
for t = 0. We now assume it holds for all t ≤ t′, which implies that σ2

1(X (t′)〈i〉) = ‖X (t′)≥i+1‖2 ≤
9σ2(X ?)

4 , i ∈ [N − 1]. By invoking (123), we have

dist2({X(t′+1)
i }, {X?

i })

≤ dist2({X(0)
i }, {X

?
i }) +O

(
(N + µ)(N + 1 +
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i=2 ri)(1 + δ(N+3)r)N

2dr2(logN)σ2(X ?)γ2

m(7− 30δ(N+3)r)σ2(X ?)
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180N
,

as long as m ≥ CN5dr3(logN)σ2(X ?)γ2

σ4(X ?)
with a universal constant C. Consequently, (115) also holds

at t = t′ + 1. By induction, we can conclude that (115) holds for all t ≥ 0. This completes the
proof.
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