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ABSTRACT

Plants respond to rapid environmental change in ways that depend on both their genetic identity and their phenotypic
plasticity, impacting their survival as well as associated ecosystems. However, genetic and environmental effects on phenotype
are difficult to quantify across large spatial scales and through time. Leaf hyperspectral reflectance offers a potentially robust
approach to map these effects from local to landscape levels. Using a handheld field spectrometer, we analyzed leaf-level
hyperspectral reflectance of the foundation tree species Populus fremontii in wild populations and in three 6-year-old experi-
mental common gardens spanning a steep climatic gradient. First, we show that genetic variation among populations and
among clonal genotypes is detectable with leaf spectra, using both multivariate and univariate approaches. Spectra predicted
population identity with 100% accuracy among trees in the wild, 87%-98% accuracy within a common garden, and 86% accuracy
across different environments. Multiple spectral indices of plant health had significant heritability, with genotype accounting
for 10%-23% of spectral variation within populations and 14%-48% of the variation across all populations. Second, we found
gene by environment interactions leading to population-specific shifts in the spectral phenotype across common garden
environments. Spectral indices indicate that genetically divergent populations made unique adjustments to their chlorophyll
and water content in response to the same environmental stresses, so that detecting genetic identity is critical to predicting tree
response to change. Third, spectral indicators of greenness and photosynthetic efficiency decreased when populations were
transferred to growing environments with higher mean annual maximum temperatures relative to home conditions. This result
suggests altered physiological strategies further from the conditions to which plants are locally adapted. Transfers to cooler
environments had fewer negative effects, demonstrating that plant spectra show directionality in plant performance adjust-
ments. Thus, leaf reflectance data can detect both local adaptation and plastic shifts in plant physiology, informing strategic
restoration and conservation decisions by enabling high resolution tracking of genetic and phenotypic changes in response to
climate change.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.

© 2024 The Author(s). Plant, Cell & Environment published by John Wiley & Sons Ltd.

Plant, Cell & Environment, 2024; 1-16 1 of 16
https://doi.org/10.1111/pce.15263


https://doi.org/10.1111/pce.15263
http://orcid.org/0000-0001-6769-4471
http://orcid.org/0000-0003-2103-064X
http://orcid.org/0000-0002-7228-6293
http://orcid.org/0000-0003-2634-1404
http://orcid.org/0000-0003-3985-7960
http://orcid.org/0000-0002-9393-9556
http://orcid.org/0000-0001-9747-6037
http://orcid.org/0000-0002-8007-4784
http://orcid.org/0000-0002-1262-4342
mailto:rebecca.best@nau.edu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/pce.15263
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fpce.15263&domain=pdf&date_stamp=2024-11-04

1 | Introduction

Because ecosystem structure and function are often highly
dependent on the traits of component plant species, under-
standing the effects of changing environmental conditions on
plant phenotypes is critical as global climate change continues
(Nicotra et al. 2010; Anderegg et al. 2019; Bonamour et al. 2019;
Anderson and Song 2020; Brooker et al. 2022; Anderegg 2023).
Plant phenotype is jointly determined by genetic and environ-
mental factors, and it is important to understand which traits
are sensitive to environmental change and which are relatively
stable across different environments. Unfortunately, quantify-
ing functional traits across multiple environments over large
time periods is both time and resource intensive. In contrast to
morphological, physiological, and chemical assays, leaf reflec-
tance data can potentially provide non-destructive and efficient
screening of many plant traits at multiple genetic (Meireles
et al. 2020; Stasinski et al. 2021) and geographic scales (Stein
et al. 2014; Dungey et al. 2018; Moran et al. 2023). Hyperspectral
leaf reflectance, which is the measurement of light energy
reflected across a large number of individual wavelengths, can
efficiently capture many separate dimensions of trait variation,
and can be measured on the ground as a feature of individual
leaves, or via drones, aircraft, or satellite as a feature of the tree
canopy. Several studies have shown that leaf spectra may more
accurately predict plant identity than models using molecular
(Ballesta et al. 2022), physiological (Yan et al. 2021), or leaf
economic and functional traits (Cavender-Bares et al. 2016;
Villa et al. 2021).

Leaf reflectance spectra can be useful in studies of trait differ-
entiation because they are highly multivariate, with different
wavelengths acting as proxies for specific chemical or physio-
logical traits or as indicators of plant health. For example,
spectra in the visible light region are predictive of concentra-
tions of pigments such as chlorophyll, carotenoids, and xan-
thophylls (Knipling 1970). The visible region (Carter 1993) or
the transition region between visible red to near infrared (NIR)
can indicate plant stress (Curran, Dungan, and Gholz 1990;
Pefiuelas and Filella 1998). NIR wavelengths can predict ana-
tomical and morphological traits such as the cellular structure
of mesophyll (Woolley 1971) and carbohydrate content (Das
et al. 2018; Ely et al. 2019). Shortwave infrared (SWIR) reflec-
tance can predict the concentrations of chemicals such as tan-
nins (Lehmann et al. 2015) and phenolic glycosides (Couture
et al. 2016), as well as water content (Gates et al. 1965). These
traits can indicate different physiological adaptations or accli-
mations to environmental conditions, and also have ecosystem-
wide impacts on processes such as nutrient cycling, drought
resistance, plant growth, and source-sink balance (Ely
et al. 2019). Chemical traits, for example, can shape the com-
position of associated communities of insects and pathogens
(Levin 1976; Richards et al. 2015; Cosmo et al. 2021; Fernandez-
Conradi et al. 2022).

Predicting future plant phenotypes requires us to quantify how
plant traits depend on genetic identity versus responses to new
environmental conditions (i.e., phenotypic plasticity). Plant
genotypes also often differ in their environmental responses,
producing gene by environmental interactions (Via and
Lande 1985; Nicotra et al. 2010). Previous studies on the

determinants of leaf reflectance spectra in forest trees have
largely focused on quantifying the genetic component and have
found differences in spectra at the genotype and population
scales (Cavender-Bares et al. 2016; Blonder et al. 2020, 2022;
Stejskal et al. 2023). However, we know much less about the
importance of these genetic effects relative to plastic responses
to rapidly changing temperatures, which is a major constraint
on our ability to predict future trait distributions under climate
change. Here, we address this gap by evaluating genetic and
environmental influences on leaf reflectance across a steep
climatic gradient in Populus fremontii S. Watson (Fremont
cottonwood), a foundation tree species of riparian ecosystems
with multiple ecotypes (Bothwell et al. 2023) across the
Southwest region of the United States.

Fremont cottonwood ecotypes occupy diverse climate niches,
ranging from hot sea-level habitats in southern Arizona to
cooler high-elevation areas on the Colorado Plateau, and show
substantial intraspecific genetic divergence among populations
of each ecotype (Grady et al. 2011; Cushman et al. 2014; Ikeda
et al. 2017; Cooper et al. 2019). The populations studied here
have evolved locally adapted traits consistent with climate-
driven selection (Hultine et al. 2020; Blasini et al. 2021; Cooper
et al. 2022; Moran et al. 2023), but many of these traits also
show substantial plasticity. For example, interactions between
genetic identity and growing environment can shape leaf phe-
nology (Cooper et al. 2019), leaf morphology and decomposition
(Jeplawy et al. 2021), and phytochemistry (Eisenring
et al. 2022). Since many of these traits are often highly pre-
dictable from leaf reflectance spectra (Grzybowski et al. 2021),
spectra should provide a more efficient way to quantify gene by
environmental interactions in these traits over larger areas and
better temporal resolution than direct trait assessments, which
can be time consuming and costly. If spectra can reliably detect
genotype and population level differences regardless of growing
environment, they could also be used to screen trees for specific
advantageous trait values or specific types of plastic responses.
Furthermore, as foundation species (Ellison et al. 2005) cot-
tonwoods largely define many riparian ecosystems that are
increasingly threatened by extreme temperatures and drought
(Moran et al. 2023) and projected to suffer major declines in
their geographic distribution (Bothwell et al. 2021). Cotton-
woods support diverse communities that differ among individ-
ual tree genotypes, populations, and ecotypes, due to their
multivariate trait phenotypes (Holeski et al. 2012; Lamit
et al. 2015; Whitham et al. 2020; Bothwell et al. 2023). As such,
novel methods for predicting future phenotypes could also help
predict impacts on dependent communities and ecosystem
processes in this and other forest ecosystems.

To test whether leaf reflectance can detect both genetic and
plastic differences in this species, we sampled leaf reflectance
spectra from Fremont cottonwood clones collected from 12
populations and reciprocally transplanted to three common
gardens in cold, moderate (henceforth ‘mid’, intermediate in
elevation and temperature), and hot locations (Figure 1). Rep-
licated common garden experimental designs are particularly
powerful for parsing whether trait variation is due to underlying
genetics, environmental factors, or gene by environment inter-
actions. Using wavelengths from 500 to 2300nm, which
includes spectral regions known to correlate with
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FIGURE1 | Locations of population home sites and the three
common gardens (Cold, Mid and Hot) along a gradient in mean annual
temperature set by increasing elevation from southwest to northeast.
The ‘Mid’ common garden is at intermediate elevation and temperature
representing the centre of the species' climate range in Arizona. As
indicated by the dashed line, the three northeastern populations fall
within the Utah High Plateau ecotype, whereas the remaining popu-
lations are part of the Sonoran Desert ecotype (Bothwell et al. 2023).
Climate data from WorldClim 2 (Fick and Hijmans 2017). [Color figure
can be viewed at wileyonlinelibrary.com]

morphological and chemical leaf traits (Figure 2a), we com-
pared trees within and across gardens. For each hypothesis, we
combined approaches using the full spectra and approaches
using specific wavelengths to calculate commonly used indices
of plant physiology and photosynthetic efficiency (Gamon,
Serrano, and Surfus 1997; Eitel et al. 2006; Letts et al. 2008).

First, we hypothesized (H1) that leaf spectra would show her-
itable genetic effects across populations and genotypes
(Figure 2a). We investigated this by (a) testing whether multi-
variate leaf spectra could accurately identify populations and
genotypes growing within any common environment, and (b)
quantifying the heritability of common spectral indices. Second,
we hypothesized (H2) that growing environment would shift
leaf reflectance via phenotypic plasticity (Figure 2b), and that
the extent of plasticity would vary across populations, produc-
ing gene by environment (gxe) interactions (Figure 2c). We
investigated this by (a) testing for genetic, environmental, and
g x e effects on multivariate spectra, (b) comparing the degree of

environmental effects among spectral regions, which are asso-
ciated with different traits, and (c), by testing for g x e effects on
spectral indices. Finally, we predicted (H3) that indicators of
altered plant physiology or stress (such as reduced photo-
synthetic efficiency) should increase with the magnitude of
environmental change between their transferred garden loca-
tion and the local conditions to which populations are adapted.
We investigated this by quantifying the difference in mean
annual maximum temperature between home sites and com-
mon gardens, and testing whether this transfer distance could
predict variation in spectral indices of plant physiology. Col-
lectively, tests of these hypotheses will determine how leaf
reflectance spectra indicate ways that plant physiology and
genetic diversity within and among populations respond to
ongoing and projected future climate changes. If leaf spectra
can accurately indicate plant genotype and phenotypes across
spatial and temporal scales, this could significantly improve
restoration planning and ecosystem monitoring in a region
simultaneously experiencing ongoing megadrought (Williams,
Cook, and Smerdon 2022) and extreme temperatures
(McKinnon, Poppick, and Simpson 2021). If found to be broadly
applicable, this approach could assist worldwide efforts to
mitigate global change impacts on vegetation (IPCC 2022).

2 | Materials and Methods
2.1 | Study Sites

In this study we used three Fremont cottonwood common
gardens established in 2014 in cold, hot and moderate locations
along a steep elevation gradient in Arizona and Utah, USA
(Figure 1). Cuttings from multiple genotypes within each of 16
wild populations representing two ecotypes, the Sonoran Desert
ecotype, and the Utah High Plateau ecotype (Bothwell
et al. 2023) were harvested and reared at the Northern Arizona
University research greenhouse for 9 months, then planted in
the common gardens in a randomized block design with 2m
spacing. Supplemental water was provided via drip irrigation to
each individual tree at the Cold and Mid gardens, and via flood
irrigation at the Hot garden during the growing season. More
information on garden design and establishment is available in
Cooper et al. (2019). For this study, we included 12 populations
spanning the temperature and elevational ranges of Fremont
cottonwood in Arizona (see Supporting Information S1:
Table S1 for GPS coordinates). In each garden we sampled 3-4
replicate trees for each of the same 4-12 genotypes per popu-
lation, for a total of 74 genotypes. Spectral measurements were
also collected at 10 of the original wild populations (henceforth
called ‘home sites’) where the common garden cuttings were
harvested in 2014 (Figure 1).

2.2 | Spectral Data

In summer of 2020, we collected leaf spectral data in the three
experimental common gardens. We sampled in the Hot garden
9-15, the Mid garden May 25-29, and the Cold garden June
22-25. All days were clear and temperatures were similar
throughout each sampling week. The temporal separation
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FIGURE 2 | Spectral reflectance regions and hypothetical genetic and environmental effects. We present hypothetical reflectance scenarios

which show: (a) a genetic effect in which spectral amplitudes differ across source populations, (b) an environmental effect in which spectral

amplitudes differ between common garden climates and (c) an interactive (g x e) effect where the degree of genetic differentiation depends on the

growing environment. We also show (d) actual averaged leaf reflectance measurements from the three populations from the coldest source sites and

the three populations from the hottest source sites, growing in the Cold and Hot common gardens. Reflectance units are a ratio from 0 to 1, where 1 is

100% reflectance. Vertical dashed lines indicate wavelengths associated with several important biochemical and morphological traits as documented
in the following references: chlorophyll (Knipling 1970), mesophyll (Woolley 1971), starches (Das et al. 2018), sugars and proteins (Ely et al. 2019),
tannins (Lehmann et al. 2015), phenolic compounds (Couture et al. 2016) and water content (Gates et al. 1965). [Color figure can be viewed at

wileyonlinelibrary.com]

between gardens was designed to match the differences in leaf
phenology between these gardens (Cooper et al. 2019). Three to
five fresh leaves were collected per tree and immediately placed
in a cooler. Readings were taken within 2h of harvest. To
standardize for variation within the canopy, leaves were col-
lected on either the west or east side of the tree at breast height
(~1.5m). We standardized leaf age by only sampling mature,
fully expanded ‘early’ leaves formed in the buds set the previous
fall (Critchfield 1960; Neuwirthova et al. 2021). Spectral mea-
surements were taken with a handheld spectrometer (ASD
Fieldspec 3, Malvern Panalytical) and ASD leaf clip attachment
fitted with an optical black and white standard. The spec-
trometer is equipped with three internal sensors which measure
reflectance values from 350 to 2500 nm with resolutions of 3 nm
at 700 nm and 10 nm at 1400 and 2100 nm (Figure 2). Care was
taken to measure one bilateral half of the leaf tissue on the
adaxial surface avoiding the midrib. After allowing the ASD to
warm up for 30 min, we measured reflectance using the optical
black standard. We obtained the spectral data for each leaf by
averaging three measurements at different locations on the leaf,
with each measurement itself the average of five internal
readings. We recalibrated the spectrometer with the optical
white standard approximately every 10 leaves. Before averaging
to the tree level, anomalous samples with obviously spurious
reflectance values (e.g., due to misalignment of the leaf clip)
were removed (Burnett et al. 2021). A splice correction was
applied to each reading to account for regions of sensor overlap
(1000 and 1830 nm) using the Prospectr package (Stevens and
Ramirez-Lopez 2022) in R (R Core Team 2022). Following the
recommendations presented in Burnett et al. (2021), we

removed the potentially noisy data below 500 nm and above
2300 nm, but did not use data pre-processing or transformation
techniques aside from splice correction and removal of obvi-
ously erroneous reflectance readings before statistical analysis.

Spectral data were collected at the home sites in June 2020. At
each site, we revisited the original mother trees that supplied
the cuttings for the gardens, collected ten fresh leaves per tree,
and analyzed the spectra using the same protocol implemented
for common garden trees. Two populations (Sonoita Creek and
Keams Canyon) were inaccessible due to travel and U.S. border
restrictions. The wild site data serve as a baseline to compare
spectral changes from each genotype in its home environment
to its clonal offspring transplanted to a common garden.

2.3 | Statistical Analyses

2.3.1 | H1 - Genetic Effects and Heritability of Leaf
Reflectance Spectra

We tested for genetic effects on multivariate spectra within a
growing environment using partial least squares discriminant
analysis (PLS-DA). Categories included genotype, population,
and environment (common garden). PLS-DA is a supervised
method routinely used to assess large multivariate datasets such
as leaf reflectance. It functions by classifying samples into
groups based on the latent structure of predictor and response
variables. PLS-DA was implemented in R using the caret
(Kuhn 2008) and vegan (Oksanen et al. 2022) packages as well

4 of 16

Plant, Cell & Environment, 2024

SRR suoWIOy) aAnEa1) A[quandde o £q PaLLIAOS A1e SA[IIIE YO 2SN JO $A[NI 0] AIBIGI] AUIUQ) A[IAL UO (SUODIPUOD-PUB-SULIANWI0Y Ka[1a AIRIqIauIuoy/:scty) SUONIPUOD PUE SWLIAL, ) 938 [SZ0Z/10/67] U0 ATeIqrT SUIUQ AD[IAL * ANSIDAIUQ BUOZLIY WIAYMON - UB[[Y PIBIaD) Aq €97€1°05d/ [ 1 1°01/10p/wod Ko Apaqiouriuoy/:sdiy woiy papeojumod ‘0 0p0gSos |


http://wileyonlinelibrary.com

as the protocol outlined by Burnett et al. (2021). To determine
whether to use all leaves for each tree or an average of leaves we
compared preliminary PLS-DA models for each. We found that
using all leaves provided slightly higher predictive accuracy and
included leaf-level data for PLS-DA modelling. We did not
correct for time of day as previous studies have shown that
reducing variation in wavelengths to control for time reduced
the accuracy of predictive models (Barnes et al. 2017; Ely
et al. 2019).

Data points were subset according to garden, population, or
genotype to ensure even contribution from each category, then
randomly assigned to calibration and validation datasets com-
posed of 80% and 20% of the data, respectively. Model training
was performed using 10-fold cross validation repeated three
times. This means splitting the calibration data set into 10
random groups and using each group as the test set to be pre-
dicted with the model. The optimal number of components to
include in the model was identified by comparing models with
increasing components over 100 iterations and was based on the
highest kappa value. In classification models, kappa shows how
well a classifier performs compared to a random assignment.
Values less than or equal to zero indicate a poor classifier, while
positive values indicate agreement. Model performance was
estimated based on the kappa and accuracy values of the vali-
dation (test) set. Influential predictor variables for each model
were identified using the loading values to ascertain variables of
importance (VIPs) for the predictive models. Finally, we con-
structed confusion matrices to show the percent of well classi-
fied observations, that is, the ratio of correctly assigned
classifications over the total classifications. This measure is
used to assess the performance of the PLS-DA model by com-
paring training and validation similarity. We assessed classifi-
cation accuracy within common garden environments and
across all home sites.

In addition to testing for genotype and population effects on the
full leaf reflectance spectra, we also calculated several spectral
indices often inferred to indicate physiological strategies and/or
some degree of stress either through chlorosis, low water con-
tent, or degradation of tissues. Formulas and references for each
index are in Supporting Information S1: Table S2. These include
indicators of photosynthetic pigment content, the chlorophyll
index (CI; Gitelson and Merzlyak 1994) and carotenoid reflec-
tance index (CRI; Gitelson, Keydan, and Merzlyak 2006), as
well as an indicator of photosynthetic efficiency, the scaled
photosynthetic reflectance index (sPRI; Gamon, Serrano, and
Surfus 1997; Letts et al. 2008). We also calculated an indicator of
vegetation greenness, the normalized difference vegetation
index (NDVI; Tucker 1979), and two indicators of water con-
tent, the normalized difference water index (NDWI; Gao 1996),
and maximum difference water index (MDWT; Eitel et al. 2006).
To examine the strength of genetic effects on these indices we
quantified the heritability of each index within each environ-
ment. In a common environment, broad sense heritability can
be quantified as the proportion of total phenotypic variance (Vp)
that is due to genotypic variance (V). We calculated Vs/Vp
using a mixed model implemented in Ime4 (Bates et al. 2015) for
each common garden. We extracted the variance components
for Vi =the random effect of genotype and Vp= Vg + Vieia-
Using 1000 iterations of each model, we calculated both means

and 95% confidence intervals for heritability estimates across all
genotypes (collection-wide) and across genotypes nested within
populations (hierarchical) as in Evans et al. (2016).

2.3.2 | H2—Environmental Modification of Leaf
Reflectance Across Wavelengths and Indices

Moving from single-garden to multi-garden comparisons, we
tested the influence of genotype, population, garden, and their
interactions on leaf spectra by conducting a three-way permu-
tational analysis of variance (PERMANOVA). The PERMA-
NOVA test was completed using the ‘adonis2’ function from the
vegan package (Oksanen et al. 2022) with the input being a
distance matrix using Bray-Curtis dissimilarity in the ‘vegdist’
function. We assessed term significance by margin and repeated
the model for 999 iterations. Following PERMANOVA, we
assessed the homogeneity of group dispersions using the
‘permdist’ function.

To examine how different regions of the reflectance spectra are
influenced by genetic versus environmental factors, we plotted
the difference in reflectance for each population between their
home site and each common garden environment. Finally, we
again used our set of spectral indices to examine phenotypic
responses across growing environments (i.e., reaction norms of
spectral traits). We used linear mixed models to fit fixed effects
of common garden environment and random effects of popu-
lation and genotype, and then plotted population x environment
means to examine environmental effects on each index. We also
compared these to values of the indices for the populations at
their home sites.

2.3.3 | H3—Transfer Distances From Home Climates

Given that these populations show evidence of local adaptation,
with maximum survival and growth in their home climates
(Cooper et al. 2019, 2022), we tested whether genotypes trans-
ferred a greater temperature difference from home showed
spectral signals of greater physiological adjustment or higher
stress (e.g., reduced photosynthetic efficiency). To do this we fit
linear regressions of each of the spectral indices as a function of
their transfer distance. We calculated the difference in the mean
annual maximum temperature (MAMT C°) between each
population's home site and each common garden, where posi-
tive values of transfer distance indicate moving a population to
a hotter temperature than its home climate and negative values
indicate moving a population to a colder temperature than its
home climate. MAMT for each home and common garden site
was obtained from WorldClim (Fick and Hijmans 2017).

3 | Results

3.1 | Hl—Leaf Reflectance Spectra Differ Among
Genotypes and Populations

Within a common garden, we found that populations were
clearly predictable (87%-98% accuracy) and genotypes less so
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TABLE 1 | PLS-DA results for predicting genotype, population or environment identity using leaf hyperspectral data.

Classification Unit Sites Accuracy (sd) [95% CI] Kappa (sd) Components
Genotype All gardens 0.24 (0.04) [0.21, 0.28] 0.23 (0.05) 10
Cold 0.43 (0.09) [0.34, 0.51] 0.40 (0.07) 10
Mid 0.30 (0.06) [0.26, 0.37] 0.30 (0.05) 10
Hot 0.44 (0.08) [0.36, 0.53] 0.43 (0.08) 10
Population All gardens 0.86 (0.04) [0.82, 0.88] 0.84 (0.04) 77
Cold 0.98 (0.01) [0.97, 0.98] 0.99 (0.02) 60
Mid 0.87 (0.01) [0.82, 0.91] 0.86 (0.01) 67
Hot 0.94 (0.01) [0.89, 0.97] 0.93 (0.02) 61
Home 1 (0.01) [0.96, 1.00] 0.97 (0.02) 36
Garden All gardens 1 (0.02) [0.95, 1.00] 0.98 (0.02) 10

Note: Separate PLS-DA tests were used to predict genotype and population identity within each common garden as well as among all gardens. ‘Site’ indicates in which
environment the model is predicting a classification unit, for example, predicting genotype identity in the Cold garden. Only genotypes present in all three common
gardens with an n > 3 were included for the ‘All gardens’ analysis. We report the validation (test) results as: ‘Accuracy’ with standard deviation with a 95% confidence
interval, ‘Kappa’ with standard deviation, and the number of components used for each PLS-DA. Accuracy indicates the percent of correct classifications where 1.0
indicates 100% correct predictions based on spectra and 0 indicates all incorrect predictions. ‘Kappa’ is a chance-corrected metric which shows both the accuracy and
reliability of classifications. Population identity was predicted within each common garden, among all common gardens and among home sites. To predict populations
from all common gardens, only populations present in every garden were used. Lastly, we used PLS-DA to predict environment identity, that is, which common garden a

leaf came from.

(30%-43% accuracy for the 74 genotypes) using PLS-DA
(Table 1). In comparison, population was predictable with
100% accuracy among the home sites (Figure 3a), whereas
pooling the data from all gardens had the lowest predictive
accuracy (Figure 3b). This illustrates that comparing spectra
among wild populations, where both genetic identity and local
environmental conditions may differ, leads to maximal differ-
entiation in leaf reflectance. Conversely, pooling data from
multiple common gardens adds environmental noise to each
genotype due to plastic effects on spectra (see Supporting
Information S1: Figure S1 for plots of the full spectra in each
environment). However, even across the environmental varia-
tion of the three common gardens pooled together we could still
identify populations with 86% accuracy, which was similar to
within the Mid common garden.

Just as prediction accuracies were higher for the 12 populations
than the 74 genotypes (Table 1), heritability estimates were higher
when considering genetic variation among all genotypes in each
garden rather than only within populations (Table 2). These
collection-wide heritability values were significant for all indices in
the Mid common garden and three to four of the six indices in the
other gardens. However, half of the indices (CI, CRI and NDVI)
also had significant within-population heritability in at least one of
the common gardens, and all three were significant in the Mid
garden (Table 2). Of those spectral heritability estimates that were
significant, genotypic variation accounted for 10%-23% of the
variation within populations and 14%-48% of the variation among
all genotypes regardless of population.

3.2 | H2—Environmental and Gene-by-
Environment Effects Modify Leaf Reflectance
Spectra

In agreement with our hypothesis that leaf spectra are jointly
determined by genetic and environmental effects, PERMANOVA
tests using full spectra (500-2400 nm) showed significant main

and interactive effects (Table 3). Across all wavelengths on
average, environment affected reflectance in ways that were
population-specific. This included both across common gardens
increasing in temperature (Table 3a, note the exclusion of the
Cold common garden because not all of the hot populations had
survived there) and between home sites and the Mid-elevation
garden at the centre of the climate gradient (Table 3b).

Not only did environmental effects differ among populations,
but they also varied across wavelengths. We found that moving
trees from their home sites to common garden conditions
generally increased their reflectance in the visible spectra
(500-700 nm), leading to negative difference values in Figure 4.
Because higher reflectance at these wavelengths has often been
associated with reduced plant health, this may indicate stress
responses to transplanting. This interpretation is validated by
three cases where visible reflectance instead decreased slightly
in the common garden or stayed the same (populations JLAJAK
in the Cold garden and KWFWIL and CAFAUG in the Mid
garden, Figure 4a,b). These are the common gardens closest to
the home conditions for these populations, with CAFAUG
originating from immediately outside the Mid garden. In con-
trast to the visible wavelengths, the decreased reflectance in the
NIR and SWIR regions for CAFAUG transplanted to the Hot
garden (Figure 4c) could indicate shifting values of leaf mor-
phological and chemical traits.

Focusing on spectral indices, across populations we also found
significant environmental and genetic x environmental effects
in their reaction norms (Figure 5). However, for the indices
related to photosynthetic pigments and photosynthetic effi-
ciency, there was a general decreasing trend for most popula-
tions with increasing garden temperature, either from the Cold
garden to the Mid and Hot gardens, or from the Mid garden to
the Hot garden. For the proxies of chlorophyll content (CI) and
photosynthetic efficiency (sPRI), populations were relatively
consistent in their shifts from Mid to Hot, but varied in their
response to the Cold garden (Figure 5a,c). For carotenoid
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content (CRI) and greenness (NDVI), populations responded
similarly to a temperature increase from the Cold to Mid gar-
dens, but had very divergent responses to the Hot garden
(Figure 5b,d). For the water content indices NDWI and MDWI,

FIGURE 3

d. BwEL 0%

populations varied in their responses across all gardens
(Figure 5e,f). Finally, most of the indices showed a similar
amount of variation among home sites as they did among gar-
dens (Figure 5), but photosynthetic efficiency tended to be the
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TABLE 2 | Broad-sense heritability estimates for each spectral index for each common garden, with 95% confidence intervals from 1000
bootstraps in parentheses.

H? Hierarchical (within populations) H? Collection-wide (across all genotypes)
Index Cold Mid Hot Cold Mid Hot
CI 0.11 (0, 0.24) 0.18 (0.08, 0.29)  0.23 (0.01, 0.44)  0.28 (0.10, 0.39)  0.32 (0.19, 0.43)  0.45 (0.14, 0.64)
CRI 0.12 (0.07, 0.22)  0.13 (0.04, 0.24) 0.00 (0, 0.06) 0.48 (0.28, 0.61)  0.42 (0.26, 0.55) 0.11 (0, 0.24)
SPRI 0.00 (0, 0) 0.00 (0, 0.06) 0.09 (0, 0.22) 0.03 (0, 0.22) 0.14 (0.02, 0.23)  0.38 (0.12, 0.57)
NDVI 0.00 (0, 0.34) 0.10 (0.02, 0.21) 0.00 (0, 0.03) 0.34 (0.06, 0.62)  0.38 (0.2, 0.49) 0.17 (0, 0.33)
NDWI 0.11 (0, 0.33) 0.00 (0, 0.11) 0.12 (0, 0.27) 0.13 (0, 0.33) 0.31 (0.1, 0.45)  0.34 (0.19, 0.42)
MDWI 0.13 (0, 0.29) 0.04 (0, 0.2) 0.02 (0, 0.25) 0.15 (0, 0.3) 0.30 (0.14, 0.4)  0.26 (0.04, 0.47)

Note: Cases where the confidence interval does not include 0 are bolded to show significant heritability. As described in Evans et al. (2016), H> hierarchical accounts for
and removes population variance from the heritability equation (i.e., genetic variation within populations), whereas H* collection-wide calculates heritability across all
genotypes regardless of population (i.e., all genetic variation within and among populations). Abbreviations are: chlorophyll index (CI), carotenoid reflectance index (CRI),
scaled photochemical reflectance index (sPRI), normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and maximum difference
water index (MDWI).

TABLE 3 | PERMANOVA results showing main effects of population and environment and their interactions.

Model Source Df Mean Sq F R? p
a. Environment (Hot vs. Mid garden) 1 0.1102 62.2 0.030 <0.001
Population 11 0.1941 10.0 0.052 <0.001
Environment x population 11 0.5101 30.6 0.137 <0.001
b. Environment (Home vs. Mid garden) 1 0.1174 203.5 0.296 <0.001
Population 9 0.0068 11.7 0.153 < 0.001
Environment x population 9 0.0033 5.7 0.075 <0.001

Note: We tested for (a) spectral effects of growing environment between the Mid and Hot common gardens, simulating a warming effect between two controlled
environments, and (b) effects of moving trees from their environmentally different home sites to the common growing conditions of the Mid garden.

highest at home sites and lowest in the Hot garden (Figure 5c), stress in some hot populations moved to slightly colder locations
likely indicating some reduced functioning at high temperatures. than in cold populations moved to hot locations. Overall, transfer
to hotter conditions appeared to cause shifts in physiological
strategies that decreased photosynthetic efficiency more than

3.3 | H3—Spectral Indicators of Altered Plant water content. Transfer to colder conditions did not lead to any
Physiology or Stress Should Be Highest in Trees indicators of decreased chlorophyll or photosynthesis, but did
That Have Been Transferred the Greatest Climate appear to decrease water content. Thus, spectral indices show
Difference From Their Home Site strong dependence of tree stress on the direction of temperature

transfer, and different indices show distinct types of physiological

When analyzing spectral indices relative to a tree's change from  adjustments or stress within trees moved in the same direction.
home conditions, all indices were significantly related to MAMT

transfer distance except for maximum difference water index

(MDWI, Figure 6). Transfer to environments 5°C-10°C hotter =~ 4 | Discussion

than home conditions resulted in indications of decreased pho-

tosynthetic pigment content and greenness (Figure 6ab,d). 4.1 | Leaf Reflectance Is Jointly Shaped by
Transfer to hotter conditions also led to decreased sPRI, indi- Genetic and Environmental Factors

cating decreased photosynthetic light use efficiency and CO,

uptake (Figure 6¢). In contrast, transfer to colder environments We present the first evidence that leaf reflectance can be used to
than home decreased NDWI (Figure 6e), indicating more water ~ detect both genetic and environmental effects for Fremont

FIGURE 3 | Confusion matrices of partial least squares discriminant analyses (PLS-DA) validation (test) results between genotypes, populations,
and environments. Matrices show the percent of correct classification between the reference (training) data and the prediction (test) data. The
diagonal line indicates correct classification for the category while areas adjacent to the diagonal indicate a false classification by the model.
Populations are ordered by mean annual temperature at the home site. We show (a) predictions of population identity for populations at source home
sites (100% accuracy) and (b) predictions of population identity across all common gardens pooled together (86% accuracy, sum of the diagonal
values). Note that two populations (KKHOPI, SCTMEX) could not be resampled at home due to access restrictions. [Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 4 | Differences on average leaf reflectance values between each of the (a) Cold, (b) Mid and (c) Hot gardens and home sites. Reflectance

units are a ratio from 0 to 1, where 1 is 100% reflectance. Values of 0 indicate no change in reflectance between the garden and home site. Positive

values indicate a decrease in reflectance in the common garden and negative values show an increase in reflectance in the common garden. The
dashed line in panel b represents the wild population growing adjacent to this garden (CAFAUG). Populations are coloured by home site MAMT
(Mean Annual Maximum Temperature) with cool colours indicating colder MAMT and warm colours indicating hotter MAMT. [Color figure can be

viewed at wileyonlinelibrary.com]

cottonwood (Populus fremontii) over its distribution along a steep
climate gradient. Using a controlled comparison of populations
adapted to divergent climatic regimes (Cooper et al. 2022) across
multiple common gardens and home sites, we found that hyper-
spectral leaf reflectance data could identify wild populations with
100% accuracy. When we removed environmental variation using
common gardens, we could still identify the genetic effects of
population with 87%-98% accuracy and individual genotypes with
30%-43% accuracy (Table 1). Adding maximal environmental
noise by pooling all common gardens still resulted in 86% accuracy
for population identification. Although previous studies have
shown that spectra can be used to identify different Populus spe-
cies in a common garden (Deacon et al. 2017; Dmitriev et al. 2022),
and can detect genetic variation within a Populus species in the
wild (Blonder et al. 2020), these studies have not attempted to
disentangle the relative influence of genetic and environmental
effects on intraspecific trait variation. Here, we decompose the
factors driving leaf reflectance in the wild, which is necessary to
correctly interpret hyperspectral data to monitor and assess tree

health, acclimation, and population genetic structure as climate
change shifts environmental conditions across the landscape. We
show that hyperspectral leaf reflectance can indeed be a valuable
tool for helping to understand the large-scale responses of foun-
dation species and their associated ecosystems to rapid climate
change. This includes identifying and tracking genetic composi-
tion and monitoring tree stress under changing conditions. With
careful attention to the possible contributions of genetic and en-
vironmental components, including how far trees are from the
historical climate conditions under which they evolved, our find-
ings show that ecologists can leverage hyperspectral approaches to
improve the conservation and restoration of wild species.

4.2 | The Scale of Genetic Differentiation in Leaf
Reflectance

So far, most research on spectral detection of taxonomic cate-
gories has either focused on detecting variation among or
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FIGURE 5 | Reaction norms of common spectral indices showing the average index value for populations in each common garden environment

(Cold, Mid, Hot). For all indices, the g x e interaction between population and garden environment was significant at p <0.001 (see Supporting
Information S1: Table S3). We also show the spectral indices from each population at their home site as a baseline comparison (right column in each
panel). Populations are coloured by home site MAMT (Mean Annual Maximum Temperature) with cool colours indicating colder MAMT and warm
colours indicating hotter MAMT. Indices are: (a) chlorophyll index (CI), (b) carotenoid reflectance index (CRI), (c) scaled photochemical reflectance
index (sPRI), (d) normalized difference vegetation index (NDVI), (e) normalized difference water index (NDWI) and (f) maximum difference water
index (MDWI). Arrows indicate direction of increase in interpreted physical traits. Optimal values of most indices should be environmentally
dependent except for sPRI, which is an indicator of photosynthetic efficiency. For sPRI, lower values suggest higher tree stress. [Color figure can be

viewed at wileyonlinelibrary.com]

within species in the wild, where both genetics and environ-
ment may contribute (Madritch et al. 2014; Blonder et al. 2022;
Czyz et al. 2023; Seeley et al. 2023a; D'Odorico et al. 2023), or
detecting genotypes in highly controlled agricultural environ-
ments (Yao et al. 2004; Wang et al. 2010; Galan et al. 2020). In
the wild, leaf spectra have been used to successfully identify
evolutionary relationships among species (Meireles et al. 2020),
with predictive accuracy increasing as phylogenetic scale
increased from population to species to clade (Cavender-Bares
et al. 2016). Extending that finding to intraspecific variation
while controlling for growing environment, we found that the
accuracy of classification using PLS-DA was higher at the
population level than the genotype level (Table 1). Spectral
indices were also more strongly differentiated across all popu-
lations than within populations (Table 2), but heritability esti-
mates for some spectral indices were significant even within
populations, explaining 10%-23% of the phenotypic variation
(Table 2). These values fall within the range of heritability es-
timates for morphological and phenological traits in this species
(Cooper et al. 2022) and support our first hypothesis that
spectra can detect genetic differences at both levels. This finding
is not surprising given that spectroscopy can predict a wide
range of plant traits in Populus species that are often genetically
differentiated, including phytochemistry (Rubert-Nason
et al. 2013; Couture et al. 2016; Kyaw et al. 2022), photo-
synthetic capacity (Kyaw et al. 2022), chlorophyll content
(Castro and Sanchez-Azofeifa 2008; Wang et al. 2018), moisture

content (Koumbi-Mounanga et al. 2015), and senescence
(Castro and Sanchez-Azofeifa 2008).

4.3 | Leaf Spectra Show Plasticity in Response to
Environmental Change

We found that population differences in cottonwood spectral
phenotype are maximized in the wild, where both genetic and
environmental differences can contribute, and attenuated but
still distinct once environmental effects are removed by com-
mon growing conditions (Figure 3). This is consistent with
our second hypothesis that environmental effects would modify
leaf reflectance, and with previous research investigating en-
vironmental effects on genotype spectra between lab and field
conditions (Li et al. 2023) and across island field sites (Seeley
et al. 2023b). In some ways, this result is also similar to results
from a previous study in oaks, where spectra could distinguish
among populations growing in controlled watering conditions,
as well as the environmental effect between two different wa-
tering treatments (Cavender-Bares et al. 2016). However, that
study did not find decreased accuracy when combining popu-
lation replicates from multiple environments, which is in con-
trast with our results (Table 1: all gardens or at home). This
difference may be because the environmental contrasts we
investigated span a large gradient of 12°C in mean annual
temperature, and the home sites vary in additional variables
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common garden. Positive values of MAMT indicate transfer to a hotter temperature than a population's home climate and negative values
indicate transfer to a colder environment. All regressions are significant at p <0.002 except for (f) MDWI, whether analyzed as a simple linear
regression or as a mixed model regression with Population as a random factor. Populations are coloured by home site MAMT with cool colours
indicating colder MAMT and warm colours indicating hotter MAMT. Full names of spectral indices are as in Figure 5. Arrows indicate direction
of increase in interpreted physical traits. Optimal values of most indices should be environmentally dependent except for Scaled Photosynthetic
Reflectance Index (sPRI), which is an indicator of photosynthetic efficiency. For sPRI, lower values suggest higher tree stress. [Color figure can
be viewed at wileyonlinelibrary.com]|

such as elevation, soils, interactions with insects, and access to Importantly, despite all of these gene x environmental interac-
groundwater (Bothwell et al. 2023). Thus, environmental vari- tions we still achieved high accuracy (86%) for classifying
ation among the three common gardens and among the home populations when pooling trees from the three very different
sites likely produced larger and more diverse effects on leaf  gardens (Table 1). We also found very high accuracy (100%) for

reflectance than we would see from a watering treatment alone. distinguishing different common garden environments from
each other (Table 1). This illustrates the potential power of
Across these disparate environments, genetically distinct pop- hyperspectral data: multivariate analyses using the full spectra

ulations adjusted their leaf spectra in diverse ways, producing can correctly detect genetic and environmental influences
gene x environmental interactions (Table 3), consistent with despite numerous genex environmental interactions affecting
our second hypothesis. For example, the two coldest popula- individual wavelengths or regions.

tions had similar reflectance at home and in the Cold common

garden, although the similarity was highest in SWIR wave-

lengths for one population and NIR wavelengths for the other 4.4 | Using Leaf Reflectance to Interpret Plant
(Figure 4). Populations from slightly warmer locations such as ~ Health Under Climate Change

BCEBUL and CLFLCR responded strongly to all common gar-

den environments. Our most central population, CAFAUG, One of the most pressing questions in global change biology is
responded strongly to being transferred to the Hot common whether populations and genotypes will respond to their changing
garden in the opposite direction than both colder and hotter environments in ways that are beneficial or detrimental, decreasing
source populations (Figure 4c). Using the spectral indices based or increasing their stress. For example, we have previously shown
on a few specific wavelengths, populations diverged in some that phenological plasticity in Fremont cottonwood can allow
garden environments while converging in others, but this pat- populations to respond to increased growing temperatures by
tern also varied across indices (Figure 5). For example, popu- leafing out earlier and maximizing growth, but can also increase
lation divergence in greenness (NDVI) was highest in the Hot mortality from fall frost (Cooper et al. 2019). Thus, it is essential
garden while divergence in water content (NDWI) was highest that we can detect whether trees in the wild are showing elevated
in the middle garden. stress when transplanted to new conditions or experiencing new
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climate extremes. One of the major benefits of hyperspectral data is
that extensive work from agricultural and silvicultural applications
has developed clear links between leaf reflectance data and in-
dicators of abiotic (Sanaeifar et al. 2023) and biotic stress (Kuska
et al. 2015; Haagsma et al. 2020). For example, hyperspectral data
at leaf and/or canopy levels have been used to detect drought stress
in maize (Weber et al. 2012; Cotrozzi et al. 2020), soybean
(Guilherme Teixeira Crusiol et al. 2021), olive (Marino et al. 2014),
and tomato (Alordzinu et al. 2021; Genangeli et al. 2023).

In Populus specifically, the Maximum Difference Water Index
(MDWI) is a strong predictor of leaf water content among trees
experiencing low versus high water stress (Eitel et al. 2006).
Here, we found that MDWI decreased in the coldest popula-
tions moved to the Hot common gardens (Figure 5f). This could
indicate that high elevation populations are less able to utilize
the high amount of water needed for evaporative cooling at high
temperatures (Moran et al. 2023; Posch et al. 2024) while still
maintaining adequate water content. On the other hand, MDWI
was one of the most variable indices across populations and
genotypes (Figure 5f) and the weakest responder to temperature
transfer distance from home conditions (Figure 6f). This sug-
gests that more investigation of genetic variation in spectral
responses to interactive effects of temperature and drought
stress would be a valuable next step.

For spectral indicators of photosynthetic pigments and capacity,
the environmental effects were much stronger and more con-
sistent than those shown by MDWI. CI and sPRI indicated
lower chlorophyll content and photosynthetic efficiency as
populations were moved to the hot, southernmost common
garden with a higher mean annual maximum temperature than
their home sites (Figure 6, R?>=10.36-0.43). This is consistent
with another recent study in P. angustifolia, where moving
populations to cooler, higher latitude sites increased their
chlorophyll content in apparent compensation for a reduced
growing season (Kaluthota et al. 2024). These results are con-
sistent with our third hypothesis, indicating negative plant
health effects for genotypes transferred to environments with
much hotter temperatures than those to which they are adapted
(Grady et al. 2015; Cooper et al. 2019). Importantly, most pre-
vious studies on the effects of transfer distance have been lim-
ited to a few traits and plant performance outcomes such as
growth or survival. Our results suggest hyperspectral data offer
increased capacity to detect and anticipate the underlying
phenotypic adjustments and stress responses that trees may be
making as temperature and drought conditions increase across
the Southwest. For example, failure to maintain hydraulic
function necessary for leaf cooling at high temperatures has
been connected to stand-level mortality at the hot edge of the
Fremont cottonwood species distribution (Moran et al. 2023).
By monitoring spectral indices associated with temperature
stress, such mortality events could be anticipated.

4.5 | Using Leaf Reflectance Spectra for
Conservation and Restoration Under Climate
Change

Understanding differences in spectral phenotype between pop-
ulations in changing environments is necessary to track tree

acclimation and evolution in response to global change and
make effective restoration and conservation decisions. For ex-
ample, detecting genotypes and populations across a back-
ground of environmental variation allows us to use
hyperspectral data to identify wild trees on the landscape (Robb
et al. 2022). Using spectra, we can track range shifts of geneti-
cally distinct populations over time, assessing the effects of
climate change and landscape connectivity on gene flow. This
monitoring capacity is vital for regions like the American
Southwest, where an ongoing megadrought since 2000 is con-
sidered the worst in 1200 years (Williams, Cook, and
Smerdon 2022), and coincides with stand-level diebacks in this
and other tree species, resulting in changes in forest genetic
structure (Sthultz, Gehring, and Whitham 2009). The distribu-
tions of both Fremont and narrowleaf cottonwood (P. angusti-
folia) are predicted to shift this century, with 50%-88% habitat
loss depending on ecotype (Ikeda et al. 2017; Bothwell
et al. 2021, 2023). Monitoring the fate of hot-adapted versus
cold-adapted populations on the landscape can help us to
develop better predictive models for the future distributions of
these foundation species, whose loss would be devastating for
diverse communities, sensitive and listed species, and riparian
habitat (Durben et al. 2021).

In addition, the ability to infer both tree traits and tree per-
formance from hyperspectral data suggests that we can use
reflectance from wild trees of known genetic identity to assess
both phenotypic plasticity and tree stress across populations.
This could allow us to select and prioritize trees that maintain
photosynthetic function across a wide range of conditions while
continuing to effectively defend themselves from pathogens
(Haagsma et al. 2020). Conversely, monitoring tree stress across
the landscape may help to identify marginal habitats where
restoration plantings are unlikely to succeed without substantial
hydrological intervention, preventing wasted efforts in restoring
marginal habitat that would be lost this century to climate
change (Bothwell et al. 2021). Such large-scale efforts may be
further facilitated by translating leaf-level results like those re-
ported here into canopy-level patterns that can be identified
using hyperspectral spectrometers mounted on drones, aircraft,
or satellites.

5 | Conclusion

Landscape level mortality of forests worldwide is increasingly
tied to drought and heat exposure (Allen et al. 2010). Regional
drought led to increased mortality and decreased growth across
a million hectares of Populus tremuloides in Canada (Hogg,
Brandt, and Michaelian 2008) and forests in western North
America, parts of the Amazon, and at the dry edges of species
ranges may be consistently at elevated risk (Anderegg
et al. 2019, 2022). Such challenges are also reflected by esti-
mates that 30% of world's tree species are threatened with ex-
tinction (BGCI 2021). Our findings suggest that hyperspectral
imaging can facilitate landscape level assessments of important
tree traits that affect their mortality and survival. Using leaf-
level hyperspectral data from the same genetic identities across
multiple common gardens and home sites, we show that leaf
reflectance across the climate range of Fremont cottonwood is
shaped by complex interactions between growing environment
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and genetic differences. Using spectra to interpret tree genetic
identity or assess tree health in the wild requires careful
attention to the possible roles of genetic and environmental
influences. However, our findings suggest both of these objec-
tives are possible due to the highly multivariate nature of the
data and the growing wealth of research linking the interpre-
tation of specific wavelengths to specific traits or indicators of
plant health. With additional research validating those links
between spectral phenotype and functional traits in this system,
hyperspectral approaches should vastly improve our ability to
monitor responses and design interventions associated with the
rapid climate change already affecting forested landscapes
across the Southwest.
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