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Abstract A major challenge in understanding the oceanic carbon cycle is estimating the sinking flux of
organic carbon exiting the sunlit surface ocean, termed carbon export. Existing algorithms derive carbon export
from satellite ocean color, but neglect spatiotemporal offsets created by the temporal lag between production
and export, and by horizontal advection. Here, we show that a Lagrangian “growth‐advection” (GA) satellite‐
derived product, where plankton succession and export are mapped onto surface oceanic circulation following
coastal upwelling, succeeds in representing in situ export off the California coast. In situ export is best
represented by a combination of GA export (proportional to modeled zooplankton) and export derived from
ocean color (related to local phytoplankton). Both products also correlate with a long‐term time series of abyssal
carbon flux. These results provide insights on export spatiotemporal patterns and a path toward improving
satellite‐derived carbon export in the California Current and beyond.

Plain Language Summary Climate on Earth is strongly tied to the carbon cycle, which regulates
atmospheric CO2 concentration. A key component of the oceanic carbon cycle is the downward flux of organic
carbon outside of the surface sunlit layer, termed carbon export, which can ultimately sink to the bottom of the
ocean and be sequestered for hundreds of years. Direct measurements of carbon export are scarce, so that models
and satellite data are needed to understand large‐scale patterns. Because organic carbon originates from
phytoplankton fixing CO2 in the ocean surface via photosynthesis, satellite‐derived algorithms have been
developed by relying primarily on phytoplankton ocean color data. However, such models display poor
accuracy. One reason is that they neglect the time elapsed between photosynthesis and carbon export, which can
result in a spatial offset of hundreds of kilometers. Our study explicitly considers these offsets and shows that
export can also be well represented from space without ocean color, using a plankton model and satellite‐derived
oceanic currents. These results provide new insights on what controls carbon export, how to represent it from
space, and its spatiotemporal patterns in a productive oceanic region.

1. Introduction
The biological carbon pump, which transfers organic matter created by primary production from the surface to the
deep ocean, plays a pivotal role in regulating atmospheric CO2 levels (DeVries, 2022). The gravitational pump,
which involves the passive sinking of particulate organic carbon (POC) as dead phytoplankton cells, aggregates,
and fecal pellets, is the dominant biological carbon pump pathway globally (Nowicki et al., 2022) and regionally
in the California Current Ecosystem (CCE) (Stukel et al., 2023). Its magnitude depends on sinking POC flux at the
base of the euphotic zone (carbon export via sinking particles, hereafter “carbon export”) and on transfer effi-
ciency in the mesopelagic, which together determine the POC flux to the deep sea and long‐term carbon
sequestration.

Several algorithms exist that estimate carbon export from remote‐sensing data, primarily ocean color. However,
considerable unexplained variance remains (Jönsson et al., 2023), even for regionally tuned products (Stukel
et al., 2015). Algorithm skill is likely limited by the fact that most are empirical (Brewin et al., 2021) and they
often rely on satellite‐estimated primary production (itself having non‐trivial errors, Siegel et al., 2023). In reality,
export is dominated by zooplankton fecal pellets globally (Nowicki et al., 2022) and in productive regions of the
CCE (Stukel et al., 2013). One satellite‐based mechanistic model considered the role of zooplankton (Siegel
et al., 2014) but only performed marginally better than empirical models in the CCE even when tuned regionally
(Stukel et al., 2015). One possible explanation is that the method assumed that temporal changes in plankton
biomass are exclusively the result of local processes, neglecting horizontal advection. In reality, zooplankton
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production is offset in space and time from primary production, particularly in strongly dynamic regions such as
CCE (∼3 weeks and 50–200 km, Fiechter et al., 2020; Messié & Chavez, 2017; Messié et al., 2022).

Here we assess the potential of a novel satellite‐based, Lagrangian “growth‐advection” (GA) mechanistic model
(Messié et al., 2022), in estimating carbon export from space within the CCE. In the GA model, a simple nutrient,
phytoplankton, zooplankton (NPZ) model represents the temporal evolution of plankton communities within
surface water masses advected by oceanic currents, following nitrate supply by coastal upwelling. The GA model
was originally developed to represent krill hotspots in the CCE (Messié et al., 2022), but also calculates POC
production by zooplankton. The only processes included are upwelling, surface advection, and temporal lags
created by plankton dynamics. The GA model thus explicitly considers the temporal offset between primary
production and carbon export, and the resulting spatial offset due to oceanic advection; it does not rely on satellite‐
derived primary production or other ocean color products.

This paper compares the satellite‐derived GA product to in situ data sets in the central CCE, primarily data from
drifting sediment traps deployed by the CCE Long‐Term Ecological Research (CCE‐LTER) program (Stukel
et al., 2023). Carbon export from this data set had been previously related to horizontal advection and water mass
age (Chabert et al., 2021), processes that are included in the GA model. Here we take that analysis one step further
by also considering nitrate supply at the origin of water mass trajectories (i.e., coastal upwelling) and the cor-
responding plankton community response including POC production. We first use backward Lagrangian tra-
jectories to demonstrate that in situ export can be reproduced as a function of water mass age and upstream coastal
nitrate supply. We then validate the gridded GA export product against in situ export, comparing its performance
against another satellite export product based on ocean color (Kahru et al., 2020). Finally, we evaluate the po-
tential of both satellite export products in representing deep‐sea POC flux measured at a long‐term abyssal time
series station (Smith et al., 2018).

2. Materials and Methods
2.1. In Situ and Satellite Data Sets

The CCE‐LTER data set includes POC export flux at the base of the euphotic zone off the California central coast
(2007–2021) (Stukel et al., 2023, 2024). Sinking POC flux was measured using surface‐tethered sediment traps
that drifted for 1–7 days over 1–104 km. A power law was used to interpolate or extrapolate to the depth of the
euphotic zone (hereafter Zeu) defined as the 0.1% incident light level (Stukel et al., 2024). See Text S1 in
Supporting Information S1 for more details.

The Station M time series (Smith et al., 2020) spans 1989–2019 with a few additional dates in 2022 (1993 onward
is used here, corresponding with available model estimates). Abyssal POC flux was measured at 3,400 m (600 m
above bottom, average location 123°W, 35°N) using a moored sediment trap with rotating collection cups
(Baldwin & Glatts, 1998). Each cup collected sinking particles typically for 10 days and the time series was
regridded daily by attributing each data point to its corresponding collection duration. An additional 14.5% data
points were infilled from a similar trap deployed 50 m above bottom, using a linear relationship between those two
traps (Smith et al., 2018).

The analysis relies on several satellite‐derived products, including near‐surface currents estimated at 15 m depth
(GlobCurrent, Rio et al., 2014), nitrate supply by coastal upwelling (hereafter Nsupply, Messié et al., 2022), and a
regional product of carbon export derived from ocean color (hereafter EF‐OC, based on Kahru et al., 2020). See
Text S2 in Supporting Information S1 for details.

2.2. Plankton Model

The NPZ model was originally described by Messié and Chavez (2017); updated equations and parameterization
are provided in Figure S1 and Table S1 in Supporting Information S1. POC production within the surface layer
(Cproduction, mgC m−3 d−1) is set to represent a fixed fraction of excretion by large zooplankton (Zbig, tuned to
represent krill), such that Cproduction is proportional to Zbig:

Cproduction = α ∗ Zbig (1)
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When integrated vertically, Cproduction represents the sinking POC flux at the base of the surface layer (SL)
represented by the model. Carbon export at Zeu (CZeu, mgC m−2 d−1) was calculated similarly to sediment trap
Zeu export, using the average attenuation coefficient for the CCE‐LTER data set (Stukel et al., 2023):

CZeu = Cproduction ∗ SL ∗ e−0.72∗(Zeu−SL)/100 (2)

SL was set to 30 m, close to typical mixed layers and to the layer represented by GlobCurrent advection (Figure S2
in Supporting Information S1). CZeu was calibrated against the CCE‐LTER data set by tuning the α constant used
in Equation 1 (see below), so CZeu is independent of SL. For comparisons with Station M, a fixed Zeu value of
65.3 m was used, corresponding to the average of CCE‐LTER Zeu measured within 100 km of Station M (N = 8).

2.3. Backward Analysis of the CCE‐LTER Data Set in a Lagrangian Framework

Coastal origin was obtained using 90‐day backward trajectories starting from the deployment and recovery po-
sitions of each CCE‐LTER sediment trap. Trajectories were calculated from GlobCurrent using a 2D custom
version of Ariane (Blanke & Raynaud, 1997) used in the GA model (Messié et al., 2022). Each trajectory's coastal
origin was defined as the first time the trajectory came within 10 km of the coast (no coastal origin was found for
three data points). The 10 km distance is large enough to limit the use of unreliable altimetry and derived currents
close to shore and encompass all coastal upwelling (Messié & Chavez, 2015). It is also small enough to reliably
estimate water age (offshore currents are ∼5–10 km/day, Messié & Chavez, 2015) and latitudinal origin (given
the 25 km Nsupply resolution). Upstream coastal nitrate supply (hereafter source Nsupply) was obtained for each
trajectory by interpolating Nsupply at the trajectory's coastal origin in space and time; Nsupply was previously
smoothed using a three‐point latitude running mean to account for uncertainty in trajectories. Water age was
defined as the deployment or recovery time minus the coastal origin time. Sediment traps for which deployment
and recovery coastal origins differed by more than 1° latitude or 45 days were excluded from the analysis (N = 6);
deployment and recovery coastal origin properties were averaged for the remaining sediment traps (N = 34). Each
sediment trap was matched with output from the NPZ model initialized by its source Nsupply, obtained at the time
of its water age. A type‐2 linear regression between observed and modeled carbon export was used to calibrate α
(Equation 1).

2.4. Satellite‐Derived Lagrangian Growth‐Advection (GA) Model

The GA model is described in detail by Messié et al. (2022) and only briefly summarized here. The method maps
the NPZ model output, including Cproduction, onto 60‐day forward surface Lagrangian trajectories originating daily
at the coast every 3 km in latitude (28–48°N). The NPZ model was initialized by Nsupply interpolated in time and
latitude at each trajectory origin. The trajectories were calculated using an interpolated GlobCurrent product
where nearshore gaps were filled at each latitude by using the first available data point, keeping its along‐shore
component and linearly interpolating its cross‐shore component down to 0 at the coast (Messié et al., 2022). Daily
Lagrangian runs were combined into daily, then monthly maps at 1/8° resolution (∼12 km).

3. Results
3.1. Along‐Trajectory Analysis of the CCE‐LTER Sediment Trap Data Set

The backward analysis revealed a clear relationship between Zeu export and source water characteristics
(Figure 1). In situ Zeu export was significantly proportional to source Nsupply (R2 = 0.28, p < 0.01) and
peaked ∼3 weeks after upwelling (Figure 1b). These characteristics are shared by Zbig in the NPZ model
(Figure 1c; Messié et al., 2022), thus by Cproduction and CZeu (Equations 1 and 2). In situ Zeu export was also higher
for shallower Zeu (Figure 1b), as represented in Equation 2.

Modeled export CZeu was compared to, and calibrated with, in situ Zeu export (Figure 2a). The relationship was
used to determine α = 1.75 gC molC−1 d−1, used to scale Cproduction and CZeu hereafter. Independent of cali-
bration, the result yields a very good predictive relationship when excluding the 3 traps where Zeu was shallower
than 30 m (R2 = 0.69, Table 1). The model performed as well as a relationship based on coincident in situ primary
production and temperature (R2 = 0.67, Stukel et al., 2023), even though it did not include any in situ data beyond
climatologies. The lack of skill when the euphotic zone was shallow likely occurs because Lagrangian trajectories
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are representative of the top 30–50 m (Figure S2b in Supporting Information S1), and thus do not correctly
represent advection above shallower depths.

3.2. Validation of Satellite‐Derived Export Against the CCE‐LTER Data Set

We compared in situ Zeu export to gridded satellite‐derived products by averaging daily EF‐OC export and GA
Cproduction in time and space between recovery and deployment times and locations. Two sediment traps where the
drift was <2 km were excluded (not representative of lower‐resolution gridded products, especially 12‐km GA);

Figure 1. Relationship between Zeu export and coastal origin properties. (a) CCE‐LTER sediment trap Zeu export (green dots, position averaging deployment and
recovery) with backward trajectories from deployment (dark gray) and recovery (light gray) positions underlaid. Sediment traps where trajectories diverged too much or
no coastal origin was identified (see text) are not displayed. (b) In situ Zeu export (y‐axis, lines represent standard error) as a function of water age (x‐axis) and source
Nsupply (colors). Dot size in a and b is inversely proportional to Zeu. (c) Output from the NPZ model initialized by Nsupply, where thick black lines display large
phytoplankton (Pbig) and large zooplankton (Zbig) for an initial Nsupply of 20 mmolC m−3 d−1, while colored lines display Zbig for a range of initial Nsupply values.

Figure 2. Validation of satellite‐derived carbon export products (y‐axis) against in situ Zeu export (CCE‐LTER data set, x‐axis). (a) Along‐trajectory CZeu predicted at
t = water age by the NPZ model initialized by source Nsupply. (b) EF‐OC (red) and GA CZeu (blue) gridded satellite products; gray lines join predictions for the same
sediment trap data point. (c) Combined product, calculated as 0.8041*EF + 0.4281*CZeu (coefficients were determined using a multilinear regression, see text). In a and
c, dots are colored as a function of drift between deployment and recovery and dot size is inversely related to Zeu (black circles indicate Zeu < 30 m); gray lines represent
standard error.
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remaining traps drifted for >9 km. GA export (i.e., CZeu) was estimated for each trap from gridded Cproduction

following Equation 2. The correlation between gridded GA CZeu and in situ export is significantly lower than
when calculated along trajectories (Table 1), with GA explaining 43% of the in situ variance as a gridded product
(Figure 2b blue) versus 69% along trajectories when excluding shallow Zeu (Figure 2a). This difference is pri-
marily explained by the fact that the gridded GA product is based on forward instead of backward Lagrangian
trajectories, so that grid cells include several water mass histories beyond the ones estimated for the deployment
and recovery locations. EF‐OC performed better (58% variance explained, Figure 2b red), noting that its spatial
resolution is higher (4 vs. 12 km).

We combined both satellite products using a multilinear regression against in situ Zeu export (Figure 2c), which
represents coastal water parcels advected long distances (GA) interacting and mixing with other nearby water
parcels (EF‐OC). Despite GA and EF‐OC being correlated with each other for the CCE‐LTER data set (R2 = 0.29,
p < 0.001), the combined product still displayed higher accuracy than either product when compared to CCE‐
LTER sediment traps (66% variance explained, Table 1). Interestingly, GA, EF‐OC, and combined products
all underestimate high export (>400 mgC m−2 d−1, Figures 2b and 2c).

3.3. Comparing Satellite‐Derived Surface Export and Abyssal POC Flux

Deep‐sea POC fluxes measured at Station M were compared to surface carbon export using time‐lagged cor-
relations (Figure 3, Table 1). Correlations were maximal near Station M, within up to ∼50–100 km, for both GA
and EF‐OC products (Figure 3c). POC pulses at 3,400 m often corresponded to peaks in surface export above
Station M for both products (Figure 3a). The GA product displays more intense export peaks than EF‐OC,
generated by a combination of upwelling variability and surface current convergence, and higher variability that
more accurately matches the observed variability in deep‐sea POC fluxes (Figure 3b). However, there is little
overall correspondence between surface (from either product) and deep‐sea POC pulse timing and magnitude
(Figure 3a). Correlations are significant but low for daily time series although low‐frequency variability is better
represented (Table 1). Lags were below the 10‐day effective resolution of the Station M time series. The com-
bined product performed better than GA or EF‐OC alone, explaining ∼20–30% of event‐scale to interannual
variance (Table 1).

Table 1
Statistics Comparing Satellite‐Derived Products to In Situ Data Sets

Comparison with CCE‐LTER Zeu export N R2 log10 R2 RMSE [mgC m−2 d−1]

Along‐trajectory backward analysis

CZeu 34 0.43 0.57 150

idem where Zeu is below 30 m 31 0.69 0.59 94

Gridded satellite‐derived products

GA CZeu 41 0.43 0.34 155

EF‐OC 41 0.58 0.60 130

Combined product 41 0.66 0.66 114

Comparison with station M POC flux time series at 3,400 m Lagged R2 (daily) Lag [days] R2 (monthly) R2 (yearly)

Gridded satellite‐derived products (50‐km radius circle around Station M)

GA CZeu (fixed Zeu = 65.3 m) 0.18 7 0.20 0.31 (p < 0.01)

EF‐OC 0.16 4 0.18 p > 0.05

Combined product 0.22 6 0.24 0.32 (p < 0.05)

Note. N is the number of data points, R2 the correlation coefficient squared (all correlations are significant at p < 0.001 except where indicated, log10 indicates cor-
relation on log10‐transformed data), and RMSE the root mean squared error. Correlations with CCE‐LTER sediment traps are partly driven by Zeu but remain high after
normalizing to 100 m depth (Table S2 in Supporting Information S1). Note that GA RMSEs are improved by α calibration, but correlations are independent of cali-
bration. P‐values were corrected for autocorrelation in time series comparisons following Pyper and Peterman (1998).
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4. Discussion
4.1. GA Export Limitations and Potential for Improvement

The GA model performed very well in predicting in situ POC fluxes, including both abyssal POC flux (relative to
EF‐OC) and surface export. This is particularly remarkable considering the small set of processes represented
(discussed in Text S3 in Supporting Information S1) and the fact that the model was tuned to represent krill
hotspots rather than export. Comparisons with Station M point toward a timing issue within the model, however,
that offers the strongest potential for improvement. Maximum correlations between Station M and GA export
(Figure 3c), representing the mean source location, are found ∼50–100 km southwest (downstream) of Station M
instead of <50 km as observed for EF‐OC and in a model (Ruhl et al., 2020, their Figure 6c). This suggests that
export peaked too late in space and/or in time in the GA model, which could also explain unrealistically short lags
between surface GA and Station M POC flux (Table 1). Indeed, lags <10 days correspond to average sinking
velocities >330 m d−1, which is much higher than identified previously at Station M (averaging 34–137 m d−1

overall, 234 m d−1 during pulse events, Smith et al., 2008, 2018) and elsewhere (e.g., Picard et al., 2024).

Improving the timing of export in the GA model is beyond the scope of this paper but can be attained by better
constraining several aspects, starting with the plankton model. How export is modeled, and its timing following
upwelling, can be improved by (a) taking into account the contribution of sinking phytoplankton, (b) improving
the zooplankton contribution (e.g., by calculating POC production as a function of zooplankton grazing rather

Figure 3. Relationship between satellite‐derived carbon export and deep‐sea POC flux at Station M. (a) Time series of abyssal
POC flux and surface export averaged in a 50‐km radius circle. Red indicates pulse events for each time series (defined as
exceeding mean +2 standard deviations); blue triangles mark Station M pulse events. Time periods when no Station M data is
available are displayed in gray. (b) Time series histograms (the x‐axis in b corresponds to the y‐axis in a). (c) Maximum
lagged correlation between Station M POC flux at 3,400 m and satellite‐derived export at each grid cell. Station M is
indicated by a star; the 50‐km radius circle is displayed in black. GA low spatial autocorrelation (Figure S3 in Supporting
Information S1) explains that correlations can be higher for GA than EF‐OC when averaged spatially (Table 1) despite higher
per‐pixel correlations for EF‐OC.
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than biomass), and (c) tuning the model parameters, although it may be challenging to improve the excellent
along‐trajectory relationship further (Figure 2a).

Tuning timing in the plankton model is, however, complicated by its convolution with timing within Lagrangian
trajectories, themselves dependent on satellite‐derived currents. The GA method relies on a satellite current
product using classical nadir altimetry, which is relatively coarse resolution and subject to caution within 50 km of
shore (Bouffard et al., 2008). The newly launched SWOT satellite may improve satellite‐derived currents, in
particular nearshore where current speed and direction have a disproportionate impact on subsequent current
trajectory and timing. As new satellite‐derived currents incorporating SWOT data become available, the GA
method is likely to become more precise in space and time.

4.2. Processes Driving Carbon Export and Abyssal POC Flux

Models and observations have shown that coastal upwelling drives ecosystem processes in the CCE, including
phytoplankton (Fiechter et al., 2018; Messié & Chavez, 2015), zooplankton (Fiechter et al., 2020; Messié
et al., 2022), and higher trophic levels down to the abyssal seafloor (Messié et al., 2023). Here, we showed how
the interplay of coastal upwelling, oceanic advection, and plankton dynamics also shapes carbon export and
abyssal POC flux. Our results indicate that export in the CCE may be best estimated from space by combining
local processes assessed from ocean color and lagged processes as derived from the GA model, which yield very
different patterns (Figure S4 in Supporting Information S1). The spatial and temporal offset between nutrient
supply and fast‐growing phytoplankton on one side (tightly coupled in the NPZ model), and slow‐growing
zooplankton and export on the other side, appears to be crucially important in shaping carbon export in the
CCE and needs to be taken into account in satellite‐derived export products. Such offset had been highlighted
previously in the CCE (e.g., Chabert et al., 2021; Chavez & Messié, 2009; Kranz et al., 2020; Pennington
et al., 2009; Plattner et al., 2005; Stukel et al., 2023) but had not yet, to our knowledge, been incorporated into
algorithms used to derive export from space.

Deep‐sea POC flux measured at Station M had been previously shown to correlate with carbon export derived
from ocean color averaged in 50‐ or 100‐km circles above (e.g., Smith et al., 2008, 2018). Comparisons with EF‐
OC and GA yield similar results, with a mean surface catchment area likely located within 50–100 km above
Station M (Figure 3c), although Station M catchment area is variable and can extend much further (Ruhl
et al., 2020). Lags are however unrealistically short (see Section 4.1); this suggests timing needs to be improved
for GA and perhaps for EF‐OC, which integrates primary production during the previous 5 days (no integration in
past studies; e.g., Smith et al., 2018).

Interestingly, GA performed better than EF‐OC against abyssal POC flux, while EF‐OC performed better than
GA against Zeu export (Table 1). This likely arises because uncertainty in satellite‐derived currents leads to
spatial inaccuracies in the GA product that are more pronounced when compared to shallower sediment traps with
a smaller catchment area. The GA approach was also able to much more accurately represent the histogram of
abyssal POC flux than EF‐OC (Figure 3b), which highlights the mechanistic role of zooplankton‐mediated lag
times and mesoscale advection in driving gravitational flux patterns. Indeed, GA and EF‐OC represent different
origins of export flux: GA represents the contribution of upstream coastal phytoplankton such as diatoms (via
zooplankton fecal pellets) while EF‐OC represents the contribution of local phytoplankton (mostly picoplankton
offshore). These differences may lead to distinct export characteristics in terms of nature and size of sinking
particles and their associated microbial community (e.g., Durkin et al., 2022). Export flux composition further
impacts attenuation processes within the ocean mesopelagic zone (Stephens et al., 2024), sinking velocities and
thus lags between surface and abyss (Cram et al., 2018), and has been linked to Station M pulse events (Michaud
et al., 2022). While carbon export and abyssal POC flux are better represented by combining EF‐OC and GA
products, considering them separately may thus provide the best value as the fate of the flux they represent may
differ.

5. Conclusion
This study used a Lagrangian framework to investigate carbon export, demonstrating the role of upstream
characteristics (including coastal upwelling and water age) in controlling the rate and nature of surface carbon
export. This is the latest in a suite of studies using Lagrangian frameworks to explain biological processes,
including zooplankton hotspots (Messié & Chavez, 2017; Messié et al., 2022), diazotroph blooms triggered by
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island mass effects (Messié et al., 2020), and the structure of plankton communities (Gangrade &
Mangolte, 2024).

The satellite‐based GA model shows significant promise in predicting carbon export and abyssal POC flux in the
CCE, especially considering its high potential for improvement. One notable implication is that carbon export
may be significantly more temporally variable than previously recognized. The research community is mostly
looking to improve satellite algorithms by incorporating information on phytoplankton taxonomy provided by the
newly launched PACE satellite (Cetinić et al., 2024; Kramer et al., 2024). Estimating export from coincident
ocean color data may be adequate in stable, unproductive regions where phytoplankton and zooplankton are
tightly coupled and horizontal advection is weak. However, in productive, dynamic regions such as the CCE, the
accuracy of satellite‐derived products is likely limited by spatiotemporal offsets between production and export.
Explicitly incorporating the zooplankton contribution to export, including its offset from variables derived from
ocean color, and oceanic advection, is a promising avenue to improve satellite‐derived export products in the CCE
and beyond.

Data Availability Statement
In situ data: CCE‐LTER export data is available through the Environmental Data Initiative repository (California
Current Ecosystem LTER et al., 2022). Station M abyssal POC time series is available on Zenodo
(Huffard, 2024).

Satellite inputs: GlobCurrent is available online (E.U. Copernicus Marine Service Information, 2024). EF‐OC is
available online at https://spg‐satdata.ucsd.edu/wc_productivity/wc_productivity.htm. The satellite‐derived
products used as inputs to Nsupply and GA were updated relative to Messié et al. (2022) (see Text S2 in Sup-
porting Information S1); the updated Nsupply and Zbig monthly products are available on Zenodo (Messié,
Sancho‐Gallegos, et al., 2025) and updated monthly using near‐realtime fields at https://www.mbari.org/data/
nitrate‐supply‐estimates‐in‐upwelling‐systems/ and https://www.mbari.org/data/krill‐hotspots‐in‐the‐california‐
current/, respectively.

Results: Daily GA export products (Cproduction and export at a fixed 100 m depth) are available on Zenodo (Messié,
Huffard, et al., 2025).

Software: Analyzes were performed using Matlab R2024a. The NPZ model is available on Zenodo (Mes-
sié, 2024) and https://github.com/messiem/toolbox_GrowthAdvection. The code to reproduce figures and main
results from the paper is available at https://github.com/messiem/sourcecode_GAexport and published on Zen-
odo (Messié, 2025). Maps were displayed using m_map (Pawlowicz, 2020); the colorbar in Figure 1a is algae
from cmocean (Thyng et al., 2016).
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