
A Validation Approach to Over-parameterized Matrix

and Image Recovery

Lijun Ding → Zhen Qin † Liwei Jiang‡ Jinxin Zhou † Zhihui Zhu †

This paper studies the problem of recovering a low-rank matrix from several noisy
random linear measurements. We consider the setting where the rank of the
ground-truth matrix is unknown a priori and use an objective function built from a
rank-overspecified factored representation of the matrix variable, where the global
optimal solutions overfit and do not correspond to the underlying ground truth.
We then solve the associated nonconvex problemusing gradient descent with small
random initialization. We show that as long as the measurement operators satisfy
the restricted isometry property (RIP) with its rank parameter scaling with the
rank of the ground-truth matrix rather than scaling with the overspecified matrix
rank, gradient descent iterations are on a particular trajectory towards the ground-
truth matrix and achieve nearly information-theoretically optimal recovery when it
is stopped appropriately. We then propose an e!cient stopping strategy based on
the common hold-out method and show that it detects a nearly optimal estimator
provably. Moreover, experiments show that the proposed validation approach can
also be e!ciently used for image restoration with deep image prior, which over-
parameterizes an image with a deep network.

1. Introduction

We consider the problem of recovering a low-rank positive semidefinite (PSD) ground-truthmatrix
Xω → Rn↑n, a symmetric matrix with all its eigenvalues nonnegative, of rank rω from m many noisy
linear measurements:

y = A(Xω) + e, (1)
where A : Rn↑n

↑ Rm is a known linear measurement operator, and e → Rm is the additive
independent noise with subgaussian entries with a variance proxy ω

2
↓ 0. We denote the dataset

by (y,A).
Low-rank matrix recovery problems of the form (1) appear in a wide variety of applications, in-
cluding quantum state tomography, image processing, multi-task regression, metric embedding,
and so on [1–5]. A computationally e!cient approach that has recently received tremendous at-
tention is to factorize the optimization variable into X = UU

T with U → Rn↑r and optimize over
the n↔ r matrix U rather than the n↔ nmatrixX [5–16]. This strategy is usually referred to as the
matrix factorization or the Burer-Monteiro approach in [17, 18]. We refer to the parameter r as the
parametrized rank. With this parametrization of X , we recover the low-rank matrix Xω by solving

minimize
U↓Rn→r

f(U) :=
1

2m

∥∥A
(
UU

↔)
↗ y

∥∥2
2
. (2)

Overparametrization: definition and its necessity We refer to the parametrizationX = UU
↔
, U →

Rn↑r with r > rω = rank(Xω) as overparametrization and the case of r = rω as exact parametrization.
When r = rω, it is well-known that simple gradient descent methods can find a matrix with a statis-
tical error that is minimax optimal up to log factors [5, 8, 9]. However, in practice, the ground-truth

→Department of Mathematics, University of California San Diego, La Jolla, CA, USA (l2ding@ucsd.edu.)
†Department of Computer Science and Engineering, Ohio State University, Columbus, OH, USA

(qin.660@osu.edu, zhou.3820@osu.edu, zhu.3440@osu.edu).
‡H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,

GA, USA (ljiang306@gatech.edu).

Second Conference on Parsimony and Learning (CPAL 2025).

rank rω is usually unknown a priori, and it can be challenging to identify the rank rω precisely. Fortu-
nately, one can use overparametrization, since an upper bound of rω is often available from domain
expertise [5, 19] or abundant computational resources. Apart from this practical concern, it is also
theoretically interesting to study overparametrization of the Burer-Monteiro approach due to its
connection to modern neural networks, which are almost always overparametrized [20–22]. These
two concerns have induced a vibrant research direction recently [21, 23–29]. Below, we discuss two
primary issues raised by overparametrization in the noisy regime (ω > 0) that the existing literature
[23, 24, 29] may not adequately address.

Overparemetrization: overfitting issue Overparametrization introduces more parameters to es-
timate, hence the classical issue of machine learning: overfitting. Following [23], in Figure 1,4 We
implement a gradient descent (GD) method coupledwith the so-called spectral initialization (which
enables U0U

↔
0 ↘ Xω) for (2) proposed in [23] with output Û and the recovered matrix X̂ = Û Û

↔,
and recorded the recovery error (or the statistical error), ≃X̂ ↗ Xω≃

2
F and the training error, f(Û).

The recovery error (solid black line) increases as the estimated rank r becomes larger than rω, while
the training error (dashed black line) decreases. This observation is due to the noise being overfit-
ted and is consistent with the guarantees developed in [23, 24, 29], whose bound on the recovery
error scales at least linearly in the estimated rank r. However, it is known that the convex approach
[30] produces an estimator with a statistical error that scales linearly with the true rank rω, and is
also nearly minimax optimal [2, Theorem 2.5].

0 5 10 15 20 25 30 35 40 45 50
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(a) Recovery error and Loss vs
parametrized rank

10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) Recovery error vs dimension

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(c) Training vs Recovery vs Valida-
tion

Figure 1: (a) In Figure 1a, the black solid and dashed line represents the recovery error ≃X̂ ↗Xω≃F

and the training loss f(Û) respectively for the estimator X̂ = Û Û
↔ given in [23] when the

parametrized rank r varies from 0 to 50. The blue solid shows the recovery error given by our esti-
mator. Here, n = 50,m = 1000, ω = 0.3, and rω = 5. (b) In Figure 1b, the black line and the blue line
show the recovery error of the estimator given in [23] and this paper, respectively. Here m = nrω,
ω = 1/n, rω = 5, and n varies from 10 to 80. (c), Gradient descent for the over-parameterized ma-
trix recovery (2) with r = n: training loss (blue curve) is f(Ut) in (2), and the validation loss (red
curve) is the same loss but on the validation data.4

Overparemetrization: stronger condition issue onA Apart from overfitting, another issue for ex-
isting analysis of gradient descent methods coupled with spectral initialization for solving (2) as
those in [23, 24, 29] is that the operator A has to satisfy 2r-RIP (see Definition 2.1 for the formal
definition). In general, the larger r is, the stronger the condition is, and the more measurements are
needed to ensureA satisfying 2r-RIP [30]. However, it is known that for the convex approach, only
2rω-RIP is needed [30]. We note that the requirement onA is not merely a theoretical defect. In Fig-
ure 1b, we set the parametrized rank r = n, the noise parameter ω = 1/n,m = 4nrω, and perform the
method developed in [23].4 Note that the theoretical recovery error in [23], Õ(ω2

nr/m) = Õ(1/nrω)
5 with the above choice of ω,m, and r. However, we can see that the error (the black line) increases
as the dimension n increases, meaning that A fails the 2r-RIP.

4Detailed descriptions of the experiments in Figure 1 are in Section B.
5The notation Õ(·) hides logarithmic factors of n, r,ω and the dependence of the condition number ofXω.

2

Table 1: Comparison with prior theory for over-parameterized noisy matrix sensing (2). Here X̂

denotes the recovered matrix, and ω
2 is the variance proxy for the additive noise.

RIP requirement Initialization Statistical error
≃X̂ ↗Xω≃

2
F

[23, 24, 29]
(rω ⇐ r ⇐ Õ(m/n)) 2r-RIP Spectral initialization:

U0U
↔
0 close to Xω

Õ(ω2
nr/m)

Ours
(r ↓ rω) 2rω-RIP Small random initialization Õ(ω2

nrω/m)

Overview of our methods and contributions This paper addresses the above issues, the over-
fitting and the stronger requirement of A, in the over-parameterized noisy matrix recovery prob-
lem (2). More precisely, by utilizing recent algorithm design and analysis advancements for over-
parametrized matrix sensing [21, 25, 27, 28], particularly [25], we show that gradient descent (GD)
with small random initialization (SRI) generates iterations toward the ground-truth matrix and
achieves nearly information-theoretically optimal recovery within Õ(1) steps.
Theorem 1.1 (Informal). Suppose that A satisfies 2rω-RIP and consider gradient descent (GD) with small
random initialization (SRI) and any r ↓ rω. Within the first Õ(1) steps, one of the iterates achieves statistical
error of Õ(ω2

nrω/m).

As summarized in Table 1, our work improves upon [23, 24, 29] by showing that gradient descent
can achieveminimax optimal statistical error Õ(ω2

nrω/m)with only 2rω-RIP requirement onA, even
in the extreme over-parameterized case r = n.
However, GD with SRI alone is not practical. Because the method so far could not identify the it-
erate that achieves the minimax error and will eventually overfit the noise if not stopped prop-
erly (See Figure 1c). To this end, we introduce a practical and e!cient stopping strategy for over-
parametrized matrix sensing based on the classical validation set approach. In particular, when
training our model, we hold out a subset (yval,Aval) from the data set. We then use the validation
loss 1

2

∥∥Aval
(
UtU

↔
t

)
↗ yval

∥∥2
2
tomonitor the recovery error 1

2≃UtU
↔
t ↗Xω≃

2
F (see red and black curves

in Figure 1c) and detect the valley of the recovery error curve. We have the following guarantee.
Theorem 1.2 (Informal). The validation approach identifies an iterate with a statistical error of
Õ(ω2

nrω/m), which is minimax optimal.

This result shows that our detected iterate has a recovery error that is minimax optimal. Hence, the
error is close to the best iterate, which is further verified by Figure 1c and experiments in Section 4.
Henceforth, the two issues are now addressed theoretically and practically.

Relationship to the noiseless case and the classical validation approach We note that it is ex-
pected that the results from the noiseless case [21, 25] can be extended to the noisy case to a certain
extent. What is surprising to us is that the extension is actually statistically optimal. Achieving this re-
quires careful anddelicate handling of the error caused by the noise anddi"erent techniques beyond
simply bookkeeping of the noiseless case (see detailed explanation in Section 2.2 and Section C.3).
As for stopping via a validation set, though it is a common practice, due to the hardness of trajectory
analysis and nonconvexity, it usually lacks some theoretical guarantees. In this work, we show that
this simple approach is provably e"ective, and in fact optimal, in the setting of overparametrized
matrix sensing.

Extension to image recoverywith a deep image prior (DIP) Learning over-parameterizedmodels
is becoming increasingly important in machine learning. Beyond low-rank matrix recovery prob-
lem, over-parameterizedmodel has also been formally studied for several other important problems,
including compressive sensing [31, 32] (which also uses a similar validation approach), logistic re-
gression on linearly separated data [33], nonlinear least squares [34], deep linear neural networks
and matrix factorization [27, 35–37], deep image prior [38, 39] and so on. Among these, the deep
image prior (DIP) is closely related to the matrix recovery problem. It over-parameterizes an image

3

by a deep network, which is a non-linear multi-layer extension of the factorization UU
↔. While

DIP has shown impressive results on image recovery tasks, it requires appropriate early stopping to
avoid overfitting. Theworks [39, 40] propose an early stopping strategy by either training a coupled
autoencoder or tracking the trend of the variance of the iterates, which are more complicated than
the validation approach. In Section 4, we demonstrate by experiments that the proposed validation
approach,

partitioning the image pixels into a training set and a validation set,

can be used to identify appropriate stopping for DIP e!ciently. The novelty lies in partitioning the
image pixels, traditionally considered one giant piece for training.

Paper organization The rest of the paper is organized as follows. We conclude this introduction
with a related work section to better position our work in the literature. We also include a notation
paragraph explaining the notation used in this paper. In Section 2, wedescribe gradient descentwith
small random initialization in detail and the formal version of our first informal theorem, Theorem
2.3, that GD with SRI has a minimax optimal iterate. Next, in Section 3, we explain the validation
approach for early stopping and the formal statement, Theorem 3.1, of our second informal theorem,
that one can identify which iterate in GDwith SRI is minimax optimal. After the theoretical analysis,
in Section 4, we proceed with numerical verification of our theoretical results. We further extend
our methodology to matrix completion and deep image prior, showing encouraging results. We
summarize the paper in Section 5 and provide future directions.

Notions and notations We denote the singular values of a matrix X → Rn↑n by ω1(X) ↓ · · · ↓

ωn(X). The condition number ofXω is denoted as ε = ε1(Xω)
εrω

(Xω)
. For any matrix Z, we use ≃Z≃, ≃Z≃F,

≃Z≃→ to denote its spectral norm (the largest singular value), the Frobenius norm (the ϑ2 norm of
the singular values, and the nuclear norm (the sum of singular values). We equip the space Rm

with the dot product and the spaceRn↑n with the standard trace inner product. The corresponding
norms are the ϑ2 norm ≃·≃2 and ≃ · ≃F respectively. For a subspace L ⇒ Rn, we use VL to denote an
orthonormal representation of the subspace space of L, i.e., VL has dim(L) orthonormal columns
and the columns span L. Moreover, we denote a representation of the orthogonal space of L by
VL↑ . We use the same notations VL and VL↑ representing the column space of a matrix L and its
orthogonal complement, respectively. For two quantities a, b → R, the inequalities a ↭ b and b ↫ a

mean b ⇐ ca for some universal constant c. A random variable Z with mean µ is subgaussian with
variance proxy ω, denoted as Z ⇑ subG(ω), if E(exp(ϖ(Z ↗ µ))) ⇐ exp(ω2

ϖ
2
/2) for any ϖ → R.

2. GDwith SRI has a minimax optimal iterate

In this section, we first present gradient descent for Problem (2) and a few preliminaries. Next, we
present the main result, which is that gradient descent coupled with small random initialization
has an iterate achieving optimal statistical error.

2.1. Gradient descent and preliminaries

Gradient descent proceeds as follows: pick a stepsize ϱ > 0, an initialization direction U → Rn↑r

and a size ς > 0,
initialize U0 = ςU, and iterate Ut+1 = Ut ↗ ϱ⇓f(Ut), (3)

where ⇓f(Ut) =
1
m ·

(
A

→(A(UtU
↔
t ↗Xω))↗A

→(e)
)
Ut. Here, A→ is the adjoint operator of A.

To analyze the behavior of the gradient descent method (3), we consider the following restricted
isometry condition [1], which states that the map A approximately preserves the ϑ2 norm between
its input and output spaces.
Definition 2.1. [(k, φ)-RIP] A linear map A : Rn↑n

↑ Rm satisfies (k, φ) restricted isometry property
(RIP) for some integer k > 0 and φ → [0, 1] if for any matrixX → Rn↑n with rank(X) ⇐ k, the inequalities
(1↗ φ)≃X≃

2
F ⇐

↗A(X)↗2
2

m ⇐ (1 + φ)≃X≃
2
F hold.

4

Let A(Z) = (⇔A1, Z↖, . . . , ⇔Am, Z↖)↔ for any Z → Rn↑n. According to [2, Thereom 2.3], the (k, φ)-
RIP condition is satisfied with high probability if each sensing matrix Ai contains iid subgaussian
entries and m ↭ nk log(1/ϑ)

ϑ2 .

Thus, if a linearmapA satisfies RIP, then 1
m ≃A(X)≃22 is approximately equal to ≃X≃

2
F forX with low

rank. Additionally, the nearness in the function value actually implies the nearness in the gradient
under certain norms, as the following proposition states.
Proposition 2.2. [25, Lemma 7.3] Suppose A satisfies (k, φ)-RIP. Let I denote the identity map on Rd↑d.
Then for any matrixX → Rn↑n with rank no more than k, and any matrix Z → Rn↑n we have the following
two inequalities:

≃(I ↗
A

→
A

m
)(X)≃ ⇐ φ≃X≃F , (4)

≃(I ↗
A

→
A

m
)(Z)≃ ⇐ φ≃Z≃→. (5)

To see the usefulness of the above bound, letting D = I ↗
A↓A
m , we may decompose (3) as the

following:
Ut+1 = Ut ↗ ϱ(UtU

↔
t ↗Xω)Ut + ϱ[D(UtU

↔
t ↗Xω)]Ut. (6)

Thus we may regard [D(UtU
↔
t ↗ Xω)]Ut as a perturbation term and focus on analyzing Ut+1 =

Ut ↗ ϱ(UtU
↔
t ↗ Xω)Ut. To control the perturbation, we use Proposition 2.2. We defer the detailed

explanation of its usage to Section C.1.

2.2. Optimal statistical error guarantee

We now give a rigorous statement showing that there is a gradient descent iterate Ut, achieving the
optimal statistical error.
Theorem 2.3. We assume that A satisfies (2rω, φ)-RIP with φ ⇐ cε

↘2
r
↘1/2
ω . Suppose the noise vector

e has independent mean-zero SubG(ω2) entries and m ↭ ε
2
n

ε2

ε2
rω

(Xω)
. Further suppose the stepsize ϱ ⇐

cε
↘2

≃Xω≃
↘1 and r ↓ rω. If the scale of initialization satisfies

ς ↫ min

{
1

ε4n4

(
Cεn

2
)↘6ϖ

√
≃Xω≃, ε

√
nrω

m≃Xω≃
ω

}
.

then after t̂ ↫ 1
ϱεmin(Xω)

log

(
Cnϖ

↙
↗Xω↗

ς

)
iterations, we have

≃Ut̂U
↔
t̂ ↗Xω≃

2
F ↫ ω

2
ε
2 rωn

m
.

with probability at least 1↗ C̃/n↗ C̃ exp(↗c̃r), here C, C̃, c, c̃ > 0 are fixed numerical constants.

We note that unlike those bounds obtained in [23, 24], our final error boundO(ε2
ω
2 nrω

m) has no extra
logarithmic dependence on the dimension n or the over-specified rank r. The initialization size ς

needs to be dimensionally small, which we think is mainly an artifact of the proof. We set ς = 10↘6

in our experiments. We explain the rationale behind this small random initialization in Section C.1.
We note that the requirement that φ needs to be smaller than 1≃

rω
might be relaxed further using

the technique developed in [41] for some randomly generated A. The condition m ↭ ε
2
n

ε2

ε2
rω

(Xω)

ensures the noise matrix A
→(e) is small enough compared to the ground-truth Xω.

To prove Theorem 2.3, we utilize the following theorem (proved in Section C), which requires a
deterministic condition on the noise matrix A

→(e) and allows a larger range for choosing ς.
Theorem 2.4. Instate the same assumption in Theorem 2.3 for A, the stepsize ϱ, and the parametrized rank
r. Let E = 1

mA
→(e) and assume ≃E≃ ⇐ cε

↘1
ωmin(Xω). If the scale of initialization satisfies

ς ↫ 1

ε4n4

(
Cεn

2
)↘6ϖ

√
≃Xω≃,

5

then after t̂ ↫ 1
ϱεmin(Xω)

log

(
Cnϖ

↙
↗Xω↗

ς

)
iterations, we have

≃Ut̂U
↔
t̂

↗Xω≃F

≃Xω≃
↫ ς√

≃Xω≃
+
↙
rωε

≃E≃

≃Xω≃

with probability at least 1↗ C̃/n↗ C̃ exp(↗c̃r), here C, C̃, c, c̃ > 0 are fixed numerical constants.

Proof strategy of Theorem 2.4 To prove Theorem 2.4, we first decompose the iterateUt into a signal
matrix and an error matrix. We then analyze the first three phases of GD with SRI among its four
phases: (i) subspace alignment: column space of the signal matrix gets closer to that of Xω, (ii)
signal strength increasing: the strength of the signal matrix increases, (iii) local convergence up to
statistical error: the distance square ≃UtU

↔
t ↗Xω≃

2 decreases up toO(ω2
nrω/m), and (iv) over-fitting

phase: ≃UtU
↔
t ↗Xω≃ increases while f(Ut) keeps shrinking. We defer the decomposition definition,

further explanation of the proof, and the proof details to Section C. Our decomposition and charac-
terization of the three phases closely follow the analysis in [25] with two critical adjustments: (1)
we provide extra leeway in handling the approximately low-rankmatrice UtU

↔
t ↗Xω (See Lemma C.3

and Remark C.4), and (2) we use the spectral norm in the analysis of the local convergence phase
that allows us to use Proposition 2.2, while the norm used in [25] would require a more stringent
condition which is unlikely to hold for the iterates Ut (See the proof of Lemma C.2 and Footnote 7).
These adjustments allow us to deal with the noise matrix E and achieve the optimal statistical error.
Let us now prove Theorem 2.3.

Proof of Theorem 2.3. Consider the following bound on ≃A
→(e)≃:

1

m
≃A

→(e)≃
(a)

↫
√

n

m
ω

(b)
⇐ cε

↘1
ωrω(Xω).

The inequality (a) comes from standard random matrix theory [30, Lemma 1.1] and the step (b) is
due to our assumption on m. Now Theorem 2.3 simply follows from Theorem 2.4 by plugging in
the above bound and the choice of ς.

In Theorem 2.3, we only know that some iterate Ut̂ will achieve the optimal statistical error, and the
question of how to pick such iterate remains. We detail the procedure in Section 3.

3. Stopping via the validation approach

In this section, we propose an e!cient method for stopping, i.e., finding the iterateXt = UtU
↔
t that

has nearly the smallest recovery error ≃Xt ↗Xω≃F .

The validation approach We exploit the validation approach, a common technique used inmachine
learning. Specifically, the data (y,A) can be explicitly expressed as {(yi, Ai)}mi=1 where each data
sample (yi, Ai) → R1+n↑n and yi = [A(Xω)]i = trace(Ai

↔
Xω). We randomly split the set {1, . . . ,m}

to get a partition, Itrain and Ival. We then split the data into mval validation samples with index
set Ival, {(yi, Ai)}i↓Ival , and mtrain training samples with index set Itrain, {(yi, Ai)}i↓Itrain . We denote
the measurement vector in the validation samples as yval → Rm where [yval]i = 0 if i ∝→ Ival and
[yval]i = yi if i → Ival. In other words, we replace the entries in y whose index is not in the validation
set with 0. We define eval (the noise vector for the validation set) similarly. The linear operator for
the validation set Aval : Rn↑n

↑ Rm is [Aval(X)]i = 0 if i ∝→ Ival and trace(AiX) for i → Ival, for
any X → Rn↑n. The vectors ytrain, etrain, and the map Atrain are defined similarly. The training loss
ftrain is ftrain : U ′↑

1
2mtrain

∥∥Atrain(UU
↔)↗ ytrain

∥∥2
2
. Next, we present the algorithm of the GDwith SRI

combined with the validation approach in Algorithm 1.

6

Algorithm 1 GDwith SRI combined with the validation approach
Input: data {(yi, Ai)}mi=1, parametrized rank r, initial scale ς, stepsize ϱ, and iteration number T
Step 1: Split the data into a training set {(yi, Ai)}i↓Itrain of size mtrain and a validation set
{(yi, Ai)}i↓Ival of size mval
Step 2: Initialize U0 = ςU where U → Rn↑r has iid standard Gaussian entries
Step 3: for t = 1, 2, . . . , T

Compute Ut = Ut↘1 ↗ ϱ⇓ftrain(Ut↘1) and the
validation error vt = 1

mval

∥∥Aval(UtU
↔
t)↗ yval

∥∥2
2
.

end for
Output: Ut̂ where t̂ = argmin1⇐t⇐T vt.

Guarantee of Algorithm 1 We present our main theorem (proved in Section D) for Algorithm 1.
Theorem 3.1. Consider Algorithm 1. Fix ↼ → (0, 1). Instate the same assumption in Theorem 2.3 with (y,A)
replaced by (ytrain,Atrain). Also suppose (ytrain,Atrain) and (yval,Aval) are independent to each and that each
entry of Ai, i → Ival, is iid subG(c1) with mean zero and variance 1 and each ei, i → Ival is iid subG(c2ω2)
with mean zero. Finally suppose (nrω)

2ϖ2mval
m2

train
↓ C

log T
log(1

ε)
and T > Cε

4 log(ε(n + r)) for some universal
C > 0. Also let t̂ = arg min1⇐t⇐T vt. Then, with probability at least 1↗ ↼, we have

≃Ut̂U
↔
t̂

↗Xω≃
2
F ⇐ C

ε
2
ω
2
rωn

mtrain
. (7)

The condition of Theorem 3.1 is satisfied if (1) the sensing matrix Ai and the noise vector e have iid
subgaussian entries, (2) the sample size mtrain ↭ max{nr2ωε

4
,ε

2
n

ε2

ε2
rω

(Xω)
} and T > Cε

4 log(ε(n +

r)), and (3) the configuration of mval, mtrain, and T satisfies (nrω)
2ϖ2mval

m2
train

↓ C
log T
log(1

ε)
. The conditions

(1) and (2) ensure the validity of Theorem 2.3 and are rather standard in the literature for matrix
sensing [5, 8, 10]. The condition (3) is for the validity of the validation approach and holds formany
practical scenarios for moderate condition numbers. For example, (3) holds if mval and mtrain are
on the order of magnitude as nrω, and T = O(max{n2

,ε
4 log ε}). In general, the inequality holds if

(a) the two quantitiesmval andmtrain are of the same order of magnitude and on the order of o(n2),
and (b) the iteration number T is polynomial but not exponential in ε and n.

4. Numerics and Extensions

5 10 15 20

r!

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

σ
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) →Ut̃U
↑
t̃ ↑Xω→

2
F

5 10 15 20

r!

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

σ
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) [→Ut̂U
↑
t̂ ↑Xω→

2
F]

5 10 15 20

r!

10-4

8×10-5

6×10-5

4×10-5

2×10-5

σ
2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(c) →Ut̃U
↑
t̃ ↑Xω→

2
F

5 10 15 20

r!

104

8×10-5

6×10-5

4×10-5

2×10-5

σ
2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(d) →Ut̂U
↑
t̂ ↑Xω→

2
F

Figure 2: Recovery error (whiter indicates better recovery) of Algorithm 1 for over-parameterized
noisy matrix sensing (a & b) and matrix completion (c & d). (a) and (c) uses the iterate Ut̃ closest
to Xω, while (b) and (d) uses the iterate Ut̂ has the smallest validation loss.
In this section, we conduct a set of experiments onmatrix sensing andmatrix completion to demon-
strate the performance of gradient descent with validation approach for over-parameterized matrix
recovery. We also conduct experiments on image recovery with deep image prior to show potential
applications of the validation approach for other related unsupervised learning problems.

Matrix sensing In these experiments, we generate a rank-rω matrix Xω → Rn↑n by setting Xω =
UωU

↔
ω with each entries of Uω → Rn↑rω being normally distributed random variables, and then nor-

malizeXω such that ≃Xω≃F = 1. We then obtainmmeasurements yi = ⇔Ai, Xω↖+ ei for i = 1, . . .m,

7

(a) Noisy image (b) Best Val Loss (30.2) (c) Best PSNR (30.2) (d) Learning Curves

(e) Noisy Image (f) Best Val Loss (25.8) (g) Best PSNR (25.9) (h) Learning Curves

Figure 3: Image denoising by DIP. From left to right: the noisy image, the image with the smallest
validation loss, the image with the best PSNR, and the learning curves in terms of training loss,
validation loss, PSNR. Here, the top row is for Gaussian noise with mean 0 and variance 0.1, while
bottom row is for salt and pepper noise where 10 percent of pixels are randomly corrupted. In (d)
and (h), Perc = 90% means we train UNet on 90% of pixels and the rest of 10% pixels are used for
validation; Perc = 100% means we train the network with the entire pixels. The model is optimized
with Adam for 5000 iterations. The numbers listed in the captions show the corresponding PSNR.
where entries ofAi are i.i.d. generated from standard normal distribution, and ei is a Gaussian ran-
dom variable with zero mean and variance ω2. We set n = 50,m = 1000, and vary the rank rω from
1 to 20 and the noise variance ω2 from 0.1 to 1. We then split themmeasurements intomtrain = 900
training data andmval = 100 validation data to get the training dataset (ytrain,Atrain) and validation
dataset (yval,Aval), respectively. To recover Xω, we use Algorithm 1 with r = n, ϱ = 0.5, T = 500,
and ς = 10↘6, which generates iterates Ut. Within all the generated iterates Ut, we select

t̃ = arg min
1⇐t⇐T

≃UtU
↔
t ↗Xω≃F, t̂ = arg min

1⇐t⇐T

∥∥Aval
(
UtU

↔
t

)
↗ yval

∥∥
2
. (8)

That is, the iterate Ut̃ is the closest to Xω, while Ut̂ achieves the smallest validation loss.

For each pair of rω and ω
2, we conduct 10 Monte Carlo trails and compute the average of the recov-

ered errors for ≃Ut̃U
↔
t̃

↗ Xω≃
2
F and ≃Ut̂U

↔
t̂

↗ Xω≃
2
F. The results are shown in Figure 2 (a) and (b).

In both plots, we observe that the recovery error is proportional to rω and ω
2, consistent with Theo-

rem 2.3 and Theorem 3.1. Moreover, comparing Figure 2 (a) and (b), we observe similar recovery
errors for both Ut̃ and Ut̂, demonstrating the performance of the validation approach.

Matrix completion In the second set of experiments, we test the performance onmatrix completion,
wherewewant to recover a low-rankmatrix from incompletemeasurements. Similar to the setup for
matrix sensing, we generate a rank-rω matrix Xω and then randomly obtain m entries with additive
Gaussian noise of zero mean and variance ω

2. In this case, each selected entry can be viewed as
obtained by a sensing matrix that contains zero entries except for the location of the selected entry
being one. Thus, we can apply the same gradient descent to solve the over-parameterized problem
to recover the ground-truth matrixXω. In these experiments, we set n = 50,m = 1000, ϱ = 0.5, T =
500,ς = 10↘3, and vary the rank rω from 1 to 20 and the noise variance ω

2 from 10↘5 to 10↘4. We
display the recovered error in Figure 2 (c) and (d). Similar to the results in matrix sensing, we also
observe from Figure 2 (c) and (d) that gradient descent with the validation approach produces a
good solution for solving over-parameterized noisy matrix completion problem.

8

Deep image prior In the last set of experiments, we test the performance of the validation approach
on image restoration with deep image prior (DIP). We follow the experiment setting as the work
[38, 42] for the denoising task, except that we randomly hold out 10 percent of pixels to decide the
images with the best performance during the training procedure. Concretely, we train the identical
UNet network on the normalized standard dataset6 with di"erent types of optimizers, noises, and
losses. In particular, the images are corrupted by two types of noises: (i)Gaussian noisewithmean 0
and standard deviation from 0.1 to 0.3, and (ii) salt and pepper noise where a certain ratio (between
10% to 50%) of randomly chosen pixels are replaced with either 1 or 0. We use SGDwith a learning
rate 5 and Adam with a learning rate 0.05. We evaluate the PSNR, a common measure in DIP, the
higher the better, and the validation loss (Val loss) on the hold-out pixels across all experiment
settings.
In Figure 3, we use Adam to train the network with the L2 loss function for the Gaussian noise
(at the top row) and the salt and pepper noise (at the bottom row) for 5000 iterations. From left
to right, we plot the noisy image, the image with the smallest validation loss, the image with the
best PSNR w.r.t. ground-truth image, the learning curves, and the dynamic of training progress.
We observe that for the case with Gaussian noise in the top row, our validation approach finds
an image with PSNR 30.1544, which is close to the best PSNR 30.2032 through the entire training
progress. A similar phenomenons also appear for salt and pepper noise, for which our validation
approach finds an image with a PSNR of 25.7735, which is close to the best PSNR 25.8994. We note
that finding the image with the best PSNR is impractical without knowing the ground-truth image.
On the other hand, as shown in the learning curves, the network overfitts the noise without early
stopping. Finally, one may wonder without the holding out 10 percent of pixels will decreases the
performance. To answer this question, we also plot the learning curves (orange lines) in Figure 3 (d)
and (h) for training the UNet with entire pixels. We observe that the PSNR will only be improved
slightly by using the entire image, achieving PSNR 30.6762 for Gaussian noise and PSNR 26.0728 for
salt-and-pepper noise. Moreover, we further test the validation approach across di"erent images,
loss functions, and noise levels in the supplement and observe its success in all those settings.

5. Discussion

On the matrix recovery side, we analyzed gradient descent for the noisy over-parameterized matrix
recovery problem where the rank is overspecified, and the global solutions overfit the noise and do
not correspond to the ground-truth matrix. Under the restricted isometry property for the mea-
surement operator, we showed that GD with SRI stopped by a validation method achieves nearly
statistically optimal recovery.
Based on recent works in the noiseless regime [28, 43], we think extending our analysis to a non-
symmetric matrixXω, for which we need to optimize over two factors U and V , is promising, while
extending our analysis to the matrix completion problem with Bernoulli sampling, as supported
by the experiments, is still challenging due to the dependence between the training and validation
samples. Moreover, it would be interesting to see whether one can actually stop the method early,
e.g., the method stops after the validation error keeps increasing for 10 consecutive iterations, to
have some computational savings. Answering this question requires the characterization of the
overfitting phase, which our current analysis does not cover. We believe extending our analysis to
the above settings could provide deeper insights into the current analysis of overparametrization
and expand the applicability of the methods described here.
On the image recovery side, we extended our validation approach, by partitioning the pixels of
the image into training and validation sets, to deep images prior to image recovery and achieved
encouraging numerical results. Itwould be interesting to seewhether our validation approach could
help other networks for image recovery and general inverse problems, e.g., [44].

6http://www.cs.tut.fi/~foi/GCF-BM3D/index.htm#ref_results

9

http://www.cs.tut.fi/~foi/GCF-BM3D/index.htm#%23ref_results

Acknowledgement

This work was supported by NSF grants CCF-2023166, CCF-2241298, ECCS-2409701, and IIS-
2402952.

References

[1] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

[2] E. J. Candès and Y. Plan. Tight oracle inequalities for low-rankmatrix recovery from aminimal
number of noisy random measurements. IEEE Trans. Inf. Theory, 57(4):2342–2359, Apr. 2011.

[3] Yi-Kai Liu. Universal low-rank matrix recovery from pauli measurements. Advances in Neural
Information Processing Systems, 24, 2011.

[4] Steven T Flammia, David Gross, Yi-Kai Liu, and Jens Eisert. Quantum tomography via com-
pressed sensing: error bounds, sample complexity and e!cient estimators. New Journal of
Physics, 14(9):095022, 2012.

[5] Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix fac-
torization: An overview. IEEE Transactions on Signal Processing, 67(20):5239–5269, 2019.

[6] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using
alternating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 665–674, 2013.

[7] Ruoyu Sun and Zhi-Quan Luo. Guaranteedmatrix completion via nonconvex factorization. In
Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 270–289.
IEEE, 2015.

[8] Yudong Chen and Martin J Wainwright. Fast low-rank estimation by projected gradient de-
scent: General statistical and algorithmic guarantees. arXiv preprint arXiv:1509.03025, 2015.

[9] Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Srebro. Global optimality of local
search for low rank matrix recovery. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, pages 3880–3888, 2016.

[10] Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Ben Recht. Low-rank
solutions of linear matrix equations via procrustes flow. In International Conference on Machine
Learning, pages 964–973. PMLR, 2016.

[11] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum.
arXiv preprint arXiv:1605.07272, 2016.

[12] Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems:
A unified geometric analysis. In International Conference on Machine Learning, pages 1233–1242.
PMLR, 2017.

[13] Zhihui Zhu, Qiuwei Li, Gongguo Tang, and Michael B Wakin. Global optimality in low-rank
matrix optimization. IEEE Transactions on Signal Processing, 66(13):3614–3628, 2018.

[14] Qiuwei Li, Zhihui Zhu, and Gongguo Tang. The non-convex geometry of low-rank matrix
optimization. Information and Inference: A Journal of the IMA, 8(1):51–96, 2019.

[15] Vasileios Charisopoulos, Yudong Chen, Damek Davis, Mateo Díaz, Lijun Ding, and Dmitriy
Drusvyatskiy. Low-rankmatrix recoverywith composite optimization: good conditioning and
rapid convergence. Foundations of Computational Mathematics, 21(6):1505–1593, 2021.

10

[16] Haixiang Zhang, Yingjie Bi, and Javad Lavaei. General low-rank matrix optimization: Ge-
ometric analysis and sharper bounds. Advances in Neural Information Processing Systems, 34,
2021.

[17] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Mathematical Programming, 95(2):329–357,
2003.

[18] Samuel Burer and Renato DC Monteiro. Local minima and convergence in low-rank semidef-
inite programming. Mathematical Programming, 103(3):427–444, 2005.

[19] Yudong Chen and Yuejie Chi. Harnessing structures in big data via guaranteed low-rank ma-
trix estimation: Recent theory and fast algorithms via convex and nonconvex optimization.
IEEE Signal Processing Magazine, 35(4):14–31, 2018.

[20] Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homo-
geneous models: Layers are automatically balanced. Advances in neural information processing
systems, 31, 2018.

[21] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-
parameterized matrix sensing and neural networks with quadratic activations. In Conference
On Learning Theory, pages 2–47. PMLR, 2018.

[22] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: E!cient training of giant
neural networks using pipeline parallelism. Advances in neural information processing systems,
32, 2019.

[23] Jiacheng Zhuo, Jeongyeol Kwon, Nhat Ho, and Constantine Caramanis. On the com-
putational and statistical complexity of over-parameterized matrix sensing. arXiv preprint
arXiv:2102.02756, 2021.

[24] Jialun Zhang, Salar Fattahi, and Richard Zhang. Preconditioned gradient descent for over-
parameterized nonconvex matrix factorization. Advances in Neural Information Processing Sys-
tems, 34, 2021.

[25] Dominik Stöger and Mahdi Soltanolkotabi. Small random initialization is akin to spectral
learning: Optimization and generalization guarantees for overparameterized low-rank matrix
reconstruction. Advances in Neural Information Processing Systems, 34, 2021.

[26] Cong Ma, Xingyu Xu, Tian Tong, and Yuejie Chi. Provably accelerating ill-conditioned low-
rank estimation via scaled gradient descent, even with overparameterization. arXiv preprint
arXiv:2310.06159, 2023.

[27] Liwei Jiang, Yudong Chen, and Lijun Ding. Algorithmic regularization in model-free over-
parametrized asymmetric matrix factorization. SIAM Journal on Mathematics of Data Science, 5
(3):723–744, 2023.

[28] Mahdi Soltanolkotabi, Dominik Stöger, and Changzhi Xie. Implicit balancing and regulariza-
tion: Generalization and convergence guarantees for overparameterized asymmetric matrix
sensing. Proceedings of Machine Learning Research, 195:5140–5142, 2023.

[29] Jialun Zhang, Richard Y Zhang, and Hong-Ming Chiu. Fast and accurate estimation of low-
rank matrices from noisy measurements via preconditioned non-convex gradient descent. In
International Conference on Artificial Intelligence and Statistics, pages 3772–3780. PMLR, 2024.

[30] Emmanuel J Candès and Yaniv Plan. Tight oracle inequalities for low-rank matrix recovery
from a minimal number of noisy random measurements. IEEE Transactions on Information
Theory, 57(4):2342–2359, 2011.

11

[31] Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for optimal
sparse recovery. Advances in Neural Information Processing Systems, 32, 2019.

[32] Peng Zhao, Yun Yang, and Qiao-Chu He. Implicit regularization via hadamard product over-
parametrization in high-dimensional linear regression. arXiv preprint arXiv:1903.09367, 2019.

[33] Daniel Soudry, Elad Ho"er, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. The Journal of Machine Learning Research, 19
(1):2822–2878, 2018.

[34] Samet Oymak and Mahdi Soltanolkotabi. Overparameterized nonlinear learning: Gradient
descent takes the shortest path? In International Conference on Machine Learning, pages 4951–
4960. PMLR, 2019.

[35] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deepmatrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

[36] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient
descent on linear convolutional networks. Advances in Neural Information Processing Systems,
31, 2018.

[37] Sheng Liu, Zhihui Zhu, Qing Qu, and Chong You. Robust training under label noise by over-
parameterization. arXiv preprint arXiv:2202.14026, 2022.

[38] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 9446–9454, 2018.

[39] HengkangWang, Taihui Li, ZhongZhuang, TiancongChen, Hengyue Liang, and Ju Sun. Early
stopping for deep image prior. arXiv preprint arXiv:2112.06074, 2021.

[40] Taihui Li, Zhong Zhuang, Hengyue Liang, Le Peng, Hengkang Wang, and Ju Sun. Self-
validation: Early stopping for single-instance deep generative priors. arXiv preprint
arXiv:2110.12271, 2021.

[41] Dominik Stöger and Yizhe Zhu. Non-convex matrix sensing: Breaking the quadratic rank
barrier in the sample complexity. arXiv preprint arXiv:2408.13276, 2024.

[42] Chong You, Zhihui Zhu, Qing Qu, and Yi Ma. Robust recovery via implicit bias of discrepant
learning rates for double over-parameterization. Advances in Neural Information Processing Sys-
tems, 33:17733–17744, 2020.

[43] Jianhao Ma and Salar Fattahi. Convergence of gradient descent with small initialization for
unregularized matrix completion. arXiv preprint arXiv:2402.06756, 2024.

[44] Reinhard Heckel and Paul Hand. Deep decoder: Concise image representations from un-
trained non-convolutional networks. arXiv preprint arXiv:1810.03982, 2018.

[45] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019.

[46] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati
Srebro. Implicit regularization inmatrix factorization. Advances inNeural Information Processing
Systems, 30, 2017.

[47] Lijun Ding, Liwei Jiang, Yudong Chen, Qing Qu, and Zhihui Zhu. Rank overspecified robust
matrix recovery: Subgradient method and exact recovery. In Advances in Neural Information
Processing Systems, 2021.

[48] Damek Davis and Liwei Jiang. A local nearly linearly convergent first-order method for nons-
mooth functions with quadratic growth. Foundations of Computational Mathematics, pages 1–82,
2024.

12

[49] Nuoya Xiong, Lijun Ding, and Simon S Du. How over-parameterization slows down gra-
dient descent in matrix sensing: The curses of symmetry and initialization. arXiv preprint
arXiv:2310.01769, 2023.

[50] Jianhao Ma and Salar Fattahi. Sign-rip: A robust restricted isometry property for low-rank
matrix recovery. arXiv preprint arXiv:2102.02969, 2021.

[51] Jianhao Ma and Salar Fattahi. Global convergence of sub-gradient method for robust matrix
recovery: Small initialization, noisy measurements, and over-parameterization. arXiv preprint
arXiv:2202.08788, 2022.

[52] Dominik Stöger and Mahdi Soltanolkotabi. Small random initialization is akin to spectral
learning: Optimization and generalization guarantees for overparameterized low-rank matrix
reconstruction. arXiv preprint arXiv:2106.15013v4, 2022.

[53] Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Appendices

A. Related work

Compared to the relatively mature literature of exact-parameterized case r = rω and the convex
optimization approach tomatrix sensing, the literature on overparametrizedmatrix sensing is more
vibrant and proliferating. We refer the reader to [19, Section 5] and [5] for an overview of exact
parametrization, and to [19, Section 4] and [45, Chapter 9] for comprehensive summaries of the
convex approaches. In the following, we divide the discussion according to the noise level: the
noiseless regime (ω = 0) and the dense noise regime (ω > 0). Additional discussion on related
work on sparse and additive noise, notmodeled in this paper, can be found at the end of this section.

Table 2: Summary of the related work and the position of this work.

small random initialization spectral initialization
Noiseless regime (ω = 0) [21, 25, 26, 28] [23, 24, 29]
Noisy regime (ω > 0) This work [23, 24, 29]

Noiseless regime In the noiseless regime, the work [21, 25, 26, 28] shows that among the first
few iterates of gradient descent (GD) with small random initialization(SRI) for (2), there is one
close to the ground-truth matrixXω, where the closeness can be made arbitrarily small by changing
the initialization scale. More precisely, [21] deals with the case r = n, while [25] deals with the
general case r > rω, and [28] further extends the analysis to the ground-truth matrix that is not
necessarily PSD. In [26], the authors deal with the issue caused by the condition number of Xω. In
these works, the operator A is only required to satisfy 2rω-RIP. The principal idea behind [21, 25,
26, 28] is that even though there exists an infinite number of solutions U such that A(UU

↔) = y =
A(Xω), GD with SRI produces an implicit bias towards low-rank solutions [46]. Nevertheless, such a
conclusion cannot be directly applied to the noisy case since a U can overfit the noise and does not
produce the desired solutionXω. As shown in Figure 1c, while the training loss (blue curve) keeps
decreasing, the iteratesUt eventually tend to overfit as indicated by the recovery error (black curve).
By providing a practical stopping rule and extending the analysis to the noisy regime, our work
shows that GD with SRI can find a minimax optimal estimator when stopped using the validation
approach.

13

Noisy regime In the noisy regime, the works [23, 24, 29] follow the more classical initialization
method, the so-called spectral initialization, and then use the gradient descent method or its vari-
ants. As discussed earlier, the guarantees reflect the overfitting of the algorithm and require 2r-RIP
of the operator A. It is worth noting that even in the noiseless regime, these algorithms require
2r-RIP condition on A. The later work [24, 29] elegantly resolves the issue of the slower conver-
gence of vanilla gradient descent in the overparametrization regime when the number of iterations
approaches infinity, observed in [23, 24, 47, 48], and theoretically confirmed in [49]. However, in
the noisy regime, such quick convergence of methods in [24, 29] means overfitting quickly, though
it is mild when r is larger than but close to rω.

Summary and positioning of the current paper We summarize the prior discussion in Table 2. In
short, our work follows the small initialization strategy used primarily in the noiseless regime and
fills the missing piece in the noisy regime. Furthermore, as mentioned earlier, it provides a practical
way to find an estimator that provably achieves minimax error in a logarithmic number of steps.

Sparse additive noise Apart from dense Subgaussian noise discussed in the main text, over-
parameterized matrix recovery has also been studied in the presence of sparse additive noise
[42, 47, 50, 51], which either models the noise as an explicit term in the optimization objective [42],
or uses subgradient methods with diminishing step sizes for the ϑ1 loss of [47, 50, 51]. We note the
work [51] remarkably extends the approach of ϑ1 loss to the dense Gaussian noise case, based on
the property called sign-RIP for the sensing operator. Unlike the standard RIP, the sign-RIP is only
known to be satisfied byGaussian distribution ofA, andmay not hold for other sub-Gaussian distri-
butions, such as the Rademacher distribution, as the rotation invariance of Gaussian is central to its
proof. Also, the subgradient method requires diminishing step sizes, which need to be fine-tuned
in practice.

B. Details of experiments in Section 1

In this section, we describe the detail of the experiments performed in Section 1.

Experiment detail in Figure 1a We set n = 50, m = 1000, ω = 0.3, and rω = 5. For the method
proposed in [23], and each parametrized rank r in {1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, we generate
a new operator A with standard Gaussian entries, and a new Xω = UU

↔
/≃UU

↔
≃F where U →

Rn↑rω with standard Gaussian entries. We run the gradient descent method coupled with spectral
initialization in [23] (with a learning rate ϱ = 0.25) for one thousand iterations and record the
recovery error and training error of the last iterate U1000. For each r, we repeat the process for 20
times, and average the recovery error and the training error.
For our method, and each parametrized rank r in {1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, we
again generate a new operator A with standard Gaussian entries, and a new Xω = UU

↔
/≃UU

↔
≃F

where U → Rn↑rω with standard Gaussian entries. We use 0.95m samples for training, and 0.05m
for validation. We run our method (Algorithm 1with an initialization scale ς = 10↘9 and the above
training and validation set (with a learning rate ϱ = 0.25) for one thousand iteration, and record
the recovery error of the iterate determined by the validation approach. For each r, we repeat the
process for 20 times, and average the recovery error.

Experiment detail in Figure 1b We setm = 4nrω, rω = 5, and ω = 1/n, and r = n. For each method
and each choice of n → {10, 20, 30, 40, 50, 60, 70, 80}, we repeat the process of generation of A
and the matrixXω, and the methods for 20 times. Eachmethods is performedwith the same choices
of parameter in Figure 1a.

Experiment detail in Figure 1c We set n = 50, m = 1200, and rω = 5. We generate an operator
A with standard Gaussian entries, and a Xω = UU

↔
/≃UU

↔
≃F where U → Rn↑rω with standard

Gaussian entries. We use 0.9m samples for training, and 0.1m for validation. We run our method
(Algorithm 1 with an initialization scale ς = 10↘6 and the above training and validation set (with

14

a learning rate ϱ = 0.25) for one thousand iteration, and record the recovery error, validation error,
and the training loss.

C. Proof of Theorem 2.4

In this section, we prove our main result, Theorem 2.4. We first present some preliminaries and
shorthand notations. We then present the proof strategy. Next, we provide detailed lemmas to
characterize the three phases described in the strategy. Theorem 2.4 follows immediately from these
lemmas.

Some preliminaries and shorthand notations For the ease of the presentation, in the following
sections, we absorb the additional 1≃

m
factor into A and that the linear map A satisfies (k, φ)-RIP

means that
≃A(X)≃22
≃X≃2F

→ [1↗ φ, 1 + φ], ∞X with rank(X) ⇐ k.

We also decompose Xω = UωU
↔
ω . We write εf = ε1(Uω)

εrω
(Uω)

. Note that ε2
f = ε. We define the noise

matrix E = A
→(e). We denote the product iterate Xt = UtU

↔
t and its di"erence to Xω as !t =

Xω ↗ UtU
↔
t . We shall define Wt → Rr↑rω and its orthogonal complement matrix Wt,⇒ → Rr↑(r↘rω)

shortly. With Wt and Wt,⇒ in mind, we denote the adjusted iterate, Ũt = UtWt, its product iterate
X̃t = ŨtŨ

↔
t , the orthogonal complement of the product Xt,⇒ = UtWt,⇒W

↔
t,⇒U

T
t , and the di"erence

of the product to Xω, !̃t = Xω ↗ UtWtW
↔
t U

T
t .

C.1. Proof strategy

Our proof is based on [25], which deals with the case E = 0, with a careful adjustment in handling
the extra error caused by the noise matrix E. In this section, we outline the proof strategy and
explain our contribution in dealing with the issues of the presence of noise. The main strategy is to
show a signal term converges toXω up to some error while a certain error term stays small. To make
the above precise, we present the following decomposition of Ut.

Decomposition of Ut Consider the matrix V
↔
Xω

Ut → Rrω↑r and its singular value decomposition
V

↔
Xω

Ut = Vt”tW
↔
t with Wt → Rr↑rω . Also denote Wt,⇒ → Rr↑(r↘rω) as a matrix with orthnormal

columns and is orthogonal toWt. Then we may decompose Ut into “signal term” and “error term”:

Ut = UtWtW
↔
t︸ ︷︷ 

signal term

+UtWt,⇒W
↔
t,⇒︸ ︷︷ 

error term

. (9)

The above decomposition is introduced in [25, Section 5.1] and may look technical at first sight
as it involves singular value decomposition. A perhaps more natural way of decomposing Ut

is to split it according to the column space of the ground truth Xω as done in [23, 47]: Ut =
VXωV

↔
Xω

Ut + VX↑
ω
V

↔
X↑

ω
Ut. However, as we observed from the experiments (not shown here), with

the small random initialization, though the signal term V
↔
Xω

Ut does increase at a fast speed, the
error term V

↔
X↑

ω
Ut could also increase and does not stay very small. Thus, with 2rω-RIP only, the

analysis becomes di!cult as V ↔
X↑

ω
Ut could be potentially high rank and large in the nuclear norm.

Critical quantities for the analysis What kind of quantities shall we look at to analyze the con-
vergence of UtU

↔
t to Xω? The most natural one perhaps is the distance measured by the Frobenius

norm:
∥∥UtU

↔
t ↗Xω

∥∥
F . However, this quantity is almost stagnant in the initial stage of the gradient

descent dynamic with small random initialization (3). As in [25], we further consider the following
three quantities to enhance the analysis: (a) the magnitude of signal term, ωrω(UtWt), (b) the mag-
nitude of error term, ≃UtWt,⇒≃, and (c) the alignment of column space between signal to ground
truth, ≃V ↔

X↑
ω
VUtWt≃. Here, we assume UtWt is full rank, which can be ensured at initial random ini-

tialization and proved by induction for the remaining iterates. Note that by definition, we have the

15

following equality [25, Lemma 5.1], which is employed often in the analysis,

VXωUt = VXωUtWt. (10)

Four phases of the gradient descent dynamic (3) Herewedescribe the four phases of the evolution
of (3) andhow the corresponding quantities change. The first three phaseswill be rigorously proved
in the appendices.

1. The first phase is called the alignment phase. In this stage, there is an alignment between
column spaces of the signalUtWt and the ground truthXω, i.e., the quantity ≃V ↔

X↑
ω
VUtWt≃de-

creases and becomes small. Moreover, the signal ωrω(UtWt) is larger than the error ≃UtWt,⇒≃
at the end of the phase though both terms are still as small as initialization.

2. The second phase is the signal-increasing stage. The signal term UtWt matches the scaling
of (Xω)

1
2 (i.e., ωrω(UtWt) ↓

↙
εrω

(Xω)

10) at a geometric speed, while the error term ≃UtWt,⇒≃
is almost as small as initialization and the column spaces of the signal UtWt and the ground
truth Xω still align with each other.

3. The third phase is the local convergence phase. In this phase, the distance ≃UtU
↔
t ↗Xω≃F

starts geometrically decreasing up to the statistical error. The analysis of this stage devi-
ates from the one in [25] due to the presence of noise. In this stage, both ≃UtWt,⇒≃ and
≃V

↔
X↑

ω
VUtWt≃ are of similar magnitude as before.

4. The last phase is the over-fitting phase. Due to the presence of noise, the gradient descent
method will fit the noise, and thus ≃UtU

↔
t ↗ Xω≃F will increase, and Ut approaches an

optimal solution of (2) which results in over-fitting.

In short, we observe that the first two phases behave similarly to the noiseless case, and thus, we
only provide the necessary details in adapting the proof in [25]. However, the third phase requires
additional e"orts to deal with the noise matrix E. Next, we describe the e"ect of small random
initialization and why 2rω-RIP is su!cient.

Blessing and curse of small random initialization As mentioned after Theorem 2.3, we require
the initial size to be very small. Since the error term increases at a much lower speed compared
with the signal term, small initialization ensures that UtWtW

↔
t Ut gets closer to Xω while the error

UtWt,⇒ stays very small. The smallness of the error in the later stage of the algorithm is a blessing of
small initialization. However, since ς is very small and the direction U is random, the signal UtWt

initially is also very weak compared to the size of Xω. The initial weak signal is a curse of small
random initialization.

Why is 2rω-RIP enough? Since we are handling n ↔ r matrices, it is puzzling why, in the end, we
only need 2rω RIP of the mapA. As it shall become clear in the proof, the need for RIP is mainly for
bounding ≃(I ↗

A↓A
m)!t≃. With the decomposition (9), we have

≃(I ↗A
→
A)!t≃ ⇐ ≃(I ↗A

→
A)(!̃t +Xt,⇒)≃

(a)
⇐ φ≃!̃t≃+ φ≃Xt,⇒≃→.

(11)

Here, in the inequality (a), we use the spectral-to-Frobenius bound (4) for the first term and the
spectral-to-nuclear bound (5) for the second term. Recall that (i)Xt,⇒ = UtWt,⇒(UtWt,⇒)↔ and the
error term UtWt,⇒ is very small due to the choice of ς, and (ii) !̃t is the quantity of interest. Thus,
bounding ≃(I ↗A

→
A)!t≃ becomes feasible.

C.2. Analyzing the three phases and the proof of Theorem 2.3

We first show the lemma stating the progress after the first two phases. It rigorously characeterizes
the behavior of the three quantities ωrω(UtWt), ≃V ↔

X↑
ω
VUtWt≃, and ≃UtWt,⇒≃ at the end of the second

phase.

16

Lemma C.1. Let U → Rn↑r be a random matrix with i.i.d. entries with distribution N (0, 1/
↙
r). Assume

that the linear map A satisfies (2rω, φ) RIP with φ ⇐
c1

ϖ4
f
≃
rω

and the bound ≃E≃ ⇐ c1ε
↘2
f ωrω(Xω). Let

U0 = ςU for any

ς ⇐ c1 min

(
Cεn

2
)↘6ϖ

ε4n4

√
≃Xω≃, ε

√
nrω

m≃Xω≃
ω


. (12)

Assume that the step size satisfies ϱ ⇐ c2ε
↘2
f ≃Uω≃

2. Then with probability at least 1 ↗ C exp(↗cr) ↗ C
n ,

after at most t1 iterations where t1 ↫ 1
ϱε2

min(Uω)


ln

(
Cεn

2
)
+ ln


εmin(Uω)

φ


for some ↽ → ς[cn , Cε

2
n
2],

we have

ωmin


V

T
Xω

Ut


↓

ωmin(Uω)
↙
10

(13)

≃UtWt,⇒≃ ⇐ 2ω
1
8
min(Uω)↽

7
8 , (14)

≃Ut≃ ⇐ 3≃Uω≃, and ≃V
T
X↑

ω
VUtWt≃ ⇐ c2ε

↘2
f . (15)

Here c, C, c1, c2 > 0 are absolute numerical constants.

Proof. The proof can be adapted from the one in [25] dealing with the first two phases. Here, we
only provide the necessary details:

1. In the first phase, one uses the proof of [25, Lemma 8.7] and replaces the iterated matrix
M = A

→
A(Xω) with M = A

→
A(Xω) + E.

2. In the second phase, one uses [25, Proof of Theorem 9.6, Phase II] and replaces the iterated
matrix (I ↗A

→
A)(!t) by (I ↗A

→
A)(!t) + E.

3. In combining the above proof, set the quantities ↼ and ⇀ in [25, Lemma 8.7] to be 1
n and ς

4φ

respectively.

4. All the argument there then works for the noisy case with the extra condition: ≃E≃ ⇐

c1εrω
(Xω)

ϖ2 for some small c1.

Di"erent from the noiseless case, the iterate Ut can only get close to Uω up to some level due to the
presence of noise. The following lemma characterizing the quantity ≃!t≃F is our main technical
endeavor, whose proof is in Section C.3.
Lemma C.2. Instate the assumptions and notations in Lemma C.1. and define

t! =
ln

max


1; ϖf

min{r;n}↘rω


↗Uω↗
φ



ϱωmin (Uω)
2 . (16)

If r > rω, then after t̂↗ t1 ↫ t! iterations, it holds that

≃!t̂≃F ↫
(min {r;n}↗ rω)

3/4
r
1/2
ω

ε
3/16
f

· ↽
21/16

≃Uω≃
21/16 + r

1/2
ω ε

2
f≃E≃.

If r = rω, then for any t ↓ t1, we have

≃!t≃F ↫ r
1/2
ω


1↗

ϱ

400
ωmin (Uω)

2
t↘t1

≃Uω≃
2 + r

1/2
ω ≃E≃ε

2
f .

We end the subsection with the proof of Theorem 2.4

Proof of Theorem 2.4. Theorem 2.4 is immediate by using C.1 and C.2 and the range of ↽ and ς.

17

C.3. Proof of Lemma C.2

We start with a lemma showing that UtU
T
t converges towards Xω up to some statistical error when

projected onto the column space of Xω. The proof of the lemma can be found in Section C.4.

Lemma C.3. Assume that ≃Ut≃ ⇐ 3≃Uω≃, ≃E≃ ⇐ ≃Uω≃
2, ≃Xt,⇒≃→ ⇐ ≃Uω≃

2, and ωmin


Ũt


↓

1≃
10
ωmin (Uω). Moreover, assume that ϱ ⇐ cε

↘2
f ≃Uω≃

↘2, ≃V T
X↑

ω
VŨt

≃ ⇐ cε
↘2
f , and

≃ (I ↗A
→
A) (!t) ≃ ⇐cε

↘2
f

(
≃!̃t≃+ ≃Xt,⇒≃→

)
(17)

where the constant c > 0 is chosen small enough. Then, it holds that

≃V
T
Xω

!t+1≃ ⇐


1↗

ϱ

200
ω
2
min (Uω)


≃V

T
Xω

!t≃ +ϱ
ω
2
min (Uω)

100
≃Xt,⇒≃→ + 18ϱ≃Uω≃

2
≃E≃.

Remark C.4. We note that an analogous result of Lemma C.3 is established in [25, Lemma 9.5]. Unfortu-
nately, the condition there requires the RHS of (17) to be ≃Xω ↗ UtU

↔
t ≃ instead of ≃Xω ↗ UtWtW

↔
t U

T
t ≃+

≃UtWt,⇒W
↔
t,⇒Ut≃→. Such a condition, ≃ (I ↗A

→
A) (!t) ≃ ⇐ cε

↘2
f ≃Xω ↗ UtU

↔
t ≃, can not be satisfied by

2rω-RIP alone as UtU
↔
t is not necessarily low rank. Indeed, in the later version [52], the author changes the

condition in the lemma, though still di!erent from the one here.

Let us now prove Lemma C.2.

Proof of Lemma C.2. Case r > rω: Set t̂ := t1 + t!̃, where t!̃ =
300

ϱεmin(Uω)
2 ln


ε
1/4
f

1
16(min{r;n}↘rω)

↗Uω↗7/4

φ7/4


. Note that t!̃ ↫ t! from the range of ↽. Denote

⇁1 = 1 ↗ ϱ
400ω

2
min (Uω), ⇁2 = 1 + 80ϱc2ω2

min (Uω), and ⇁3 = 1 ↗ ϱε2
min(Uω)
200 . We first state our induction

hypothesis for t1 ⇐ t ⇐ t̂:

ωmin (UtWt) ↓ωmin


V

T
Xω

Ut


↓

ωmin (Uω)
↙
10

, (18)

≃UtWt,⇒≃ ⇐⇁
t↘t1
2 ≃Ut1Wt1,⇒≃, (19)

≃Ut≃ ⇐3≃Uω≃, (20)
≃V

T
X↑

ω
VUtWt≃ ⇐c2ε

↘2
f , (21)

≃V
T
Xω

!t≃ ⇐10⇁t↘t1
1 ≃Uω≃

2 + 18ϱ≃Uω≃
2
≃E≃

t

↼=t1+1

⇁
↼↘t1↘1
3 . (22)

For t = t1 we note the inequalities (18), (20), and (21) follow from Lemma C.1.7 The inequality
(19) trivially holds for t = t1. For t = t1, the inequality (22) holds due to the following derivation:

≃V
T
Xω

!t≃ = ≃V
T
Xω

!̃t≃ ⇐ ≃Xω≃+ ≃X̃t≃ ⇐ 10≃Uω≃
2
.

The last step is due to ≃Ut1Wt1≃ ⇐ ≃Ut1≃ ⇐ 3≃Uω≃ by (20).
Using triangle inequality, the bound for ≃ (A→

A↗ I) (!t) ≃ in [25, pp. 27 of the supplement], and
the assumption onE, we see that ≃ (A→

A↗ I) (!t)+E≃ ⇐ 40c1ε
↘2
f ωrω (Uω)

2
. This inequality allows

us to use the argument in [25, Section 9, Proof of Theorem 9.6, Phase III] to prove (18), (20), (19),
(21), for all t → [t1, t̂]. We omit the proof details. In particular, from (19), (14), and the range of ↽,
we have ≃Xt,⇒≃→ ⇐ ≃Uω≃

2.
7Note our hypotheses are the same as those in [25, (62)-(66)] with the critical exception (22). Here, we use

the spectral norm rather than the Frobenius norm as in [25, (67)]. If we use Frobenius norm, then according
to [25, Proof of Theorem 9.6, p. 27 of the supplement] and [25, Lemma 9.5], we need → (I ↑A

→
A) (!t) →F ↓

cε↓2
f →Xω ↑ UtU

↑
t →F. It appears very di!cult (if not impossible) to justify this condition with only 2rω-RIP

even if the rank of Ut is no more than rω. In the later version [52], the authors of [25] use a di"erent method
in proving [25, (66)].

18

Next, the inequality (17) in Lemma C.3 is satisfied due to (11). Thus we have that

≃V
T
Xω

!t+1≃ ⇐⇁3≃V
T
Xω

!t≃+ ϱ
ωmin (Uω)

2

100
≃Xt,⇒≃→ + 18ϱ≃Uω≃

2
≃E≃

(a)
⇐10≃Uω≃

2
⇁3⇁

t↘t1
1 + ϱ

ωmin (Uω)
2

100
≃Xt,⇒≃→ + 18ϱ≃Uω≃

2
≃E≃

t+1

↼=t1+1

⇁
↼↘t1↘1
3 ,

where in step (a), we use the induction hypothesis (22). Now (22) holds for t + 1 if the following
holds.

≃Xt,⇒≃→ ⇐
1

4
⇁
t↘t1
1 ≃Uω≃

2
. (23)

Using the relationship between the operator norm and the nuclear norm, we have

≃Xt,⇒≃→ ⇐ (min {r;n}↗ rω)≃UtWt,⇒≃
2

(a)
⇐ 4(min {r;n}↗ rω)

(
1 + 80ϱc2ωmin (Uω)

2)2(t↘t1)
ωmin (Uω)

1/4
↽
7/4

,

where in step (a), we use (19) and the bound on ≃Ut1Wt1,⇒≃ from (14). Hence, the in-
equality (23) holds if c2 > 0 is small enough and 16(min {r;n} ↗ rω)ωmin (Uω)

1/4
↽
7/4

⇐
1↗ ϱ

350ωmin (Uω)
2
t↘t1

≃Uω≃
2
. This inequality is indeed true so long as t ⇐ t̂ = t1 + t!̃. The

induction step for the case r > rω is finished.

Let us now verify the inequality for ≃!t≃F for r > rω:

≃!t̂≃F

(a)
⇐4≃V T

Xω
!t̂≃F + ≃Xt̂,⇒≃→

(b)

↫ r
1/2
ω ⇁

t̂↘t1
1 ≃Uω≃

2 + r
1/2
ω ϱ≃Uω≃

2
≃E≃

t̂

↼=t1+1

⇁
↼↘t1↘1
3

(c)

↫r
1/2
ω


ε
1/4
f

min {r;n}↗ rω

≃Uω≃
7/4

↽7/4

↘3/4

≃Uω≃
2 + r

1/2
ω ≃E≃ε

2
f

(24)

where inequality (a) follows from Lemma C.5. Inequality (b) follows from (22) and (23). The step
(c) is due to the definition of t̂.
Case r = rω: We note that for t = t1, we have Ut = UtWtW

↔
t and Wt,⇒ = 0 because ωrω(UtWt) > 0

andWt is of size rω↔rω. Following almost the same procedure as before, we can prove the induction
hypothesis (18) to (22) for any t ↓ t1 again with (19) replaced by ≃UtWt,⇒≃ = 0. Since we can
ignore the term UtWt,⇒ in (23), we have (22) for all t ↓ t1. Finally, to bound ≃UtU

T
t ↗Xω≃F, we can

replace t̂ by t in (24), stop at step (b), and bound r
1/2
ω ϱ≃Uω≃

2
≃E≃

t̂
↼=t1+1


1↗ ϱ

200ωmin (Uω)
2
↼↘t1↘1

by r
1/2
ω ≃E≃ε

2
f .

C.4. Proof of Lemma C.3

We start with the following technical lemma.
Lemma C.5. Under the assumptions of Lemma C.3, the following inequalities hold:

≃V
T
X↑

ω
Xt≃ ⇐ 3≃V T

Xω
!t≃+ ≃Xt,⇒≃, (25)

≃!t≃ ⇐ 4≃V T
Xω

!t≃+ ≃Xt,⇒≃, (26)

≃!̃t≃ ⇐ 4≃V T
Xω

!t≃. (27)

Proof. The first two inequalities are proved in [25, Lemma B.4]. To prove the last inequality, we first
decompose !̃t as

!̃t = VXωV
↔
Xω

!̃t + VX↑
ω
V

↔
X↑

ω
!̃t. (28)

19

For the first term, we have

VXωV
↔
Xω

!̃t
(a)
= VXωV

↔
Xω

Xω ↗ VXωV
↔
Xω

UtWtW
↔
t U

T
t

(b)
= VXωV

↔
Xω

Xω ↗ VXωV
↔
Xω

UtU
T
t = VXωV

↔
Xω

!t.

Here the step (a) is the definition of !̃t, and the step (b) is due to (10). Thus, we have ≃VXωV
↔
Xω

!̃t≃ ⇐

≃V
↔
Xω

!t≃. Our task is then to bound the second term of (28):

≃VX↑
ω
V

↔
X↑

ω
!̃t≃ ⇐≃VX↑

ω
V

↔
X↑

ω
!̃tVXω≃+ ≃VX↑

ω
V

↔
X↑

ω
!̃tVX↑

ω
V

↔
X↑

ω
≃

(a)
⇐≃!tVXω≃+ ≃VX↑

ω
X̃tVX↑

ω
≃.

The step (a) is due to (10). For the second term ≃VX↑
ω
X̃tVX↑

ω
≃, we have the following estimate:

≃V
T
X↑

ω
X̃tVX↑

ω
≃ =≃V

T
X↑

ω
VŨt

V
T
Ũt
X̃tVX↑

ω
≃ = ≃V

T
X↑

ω
VŨt


V

T
Xω

VŨt

↘1
V

T
Xω

VŨt
V

T
Ũt
X̃tVX↑

ω
≃

⇐≃V
T
X↑

ω
VŨt

≃≃


V

T
Xω

VŨt

↘1
≃≃V

T
Xω

VŨt
V

T
Ũt
X̃tVX↑

ω
≃.

(29)

Using (10) again, we know

V
T
Xω

VŨt
V

T
Ũt
X̃tVX↑

ω
= V

T
Xω

UtU
T
t VX↑

ω
= V

T
Xω

!tVX↑
ω
.

We also have
↗V T

X↑
ω
VŨt

↗

εmin

(
V T
Xω

VŨt

) ⇐ 2 due to ≃V
↔
X↑

ω
VŨt

≃ ⇐ cε
↘2
f . This is true by noting that VŨt

=

VXωV
↔
Xω

VŨt
+ VX↑

ω
V

↔
X↑

ω
VŨt

and ωrϑ(V ↔
Xω

VŨt
) = ωrϑ(VXωV

↔
Xω

VŨt
)

(a)
↓ ωrϑ(VŨt

) ↗ ≃VX↑
ω
V

↔
X↑

ω
VŨt

≃ =

1↗≃V
↔
X↑

ω
VŨt

≃, where the step (a) is due toWeyl’s inequality. Thus, the proof is completed by contin-

uing the chain of inequality of (29): ≃V T
X↑

ω
X̃tVX↑

ω
≃ ⇐

↗V T
X↑

ω
VŨt

↗

εmin

(
V T
Xω

VŨt

)≃V T
Xω

!tVX↑
ω
≃ ⇐ 2≃V T

Xω
!t≃.

Let us now prove Lemma C.3.

Proof of Lemma C.3. As in [25, Proof of Lemma 9.5], we can decompose !t+1 = Xω ↗Xt+1 into five
terms by using the formula Ut+1 = Ut + ϱ [(A→

A) (!t) + E]Ut and Xt+1 = Ut+1U
↔
t+1:

!t+1 = (I ↗ ϱXt) (!t) (I ↗ ϱXt)︸ ︷︷ 
=Q1

+ ϱ[(I ↗A
→
A) (!t) + E]Xt︸ ︷︷ 

=Q2

+ ϱXt [(I ↗A
→
A) (!t) + E]︸ ︷︷ 

=Q3

↗ ϱ
2
Xt!tXt︸ ︷︷ 

=Q4

↗ ϱ
2[(A→

A) (!t) + E]Xt [(A
→
A) (!t) + E]︸ ︷︷ 

=Q5

.

Here, I is the identity matrix. We shall bound V
T
Xω

Qi, i = 1, . . . , 5. Their bounds below and that
ϱ ⇐ cε

↘2
f ≃Uω≃

↘2 give the result.

Bounding V
T
Xω

Q1 and V
T
Xω

Q4: Because these two terms do not involve the noise matrix E, we may
recycle the proof of [25, Lemma 9.5, Estimation of (I) and (IV)] and conclude that

≃V
T
Xω

Q1≃ ⇐ (1↗
ϱ

40
ω
2
min(Uω))≃V

↔
Xω

!t≃+ ϱ
ω
2
min(Uω)

400
≃Xt,⇒≃

and

ϱ
2
≃V

↔
Xω

Xt (!t)X
↔
t ≃ ⇐

ϱ

1000
ω
2
min (Uω)


5≃V T

Xω
!t≃+ ≃Xt,⇒≃


.

20

Bounding V
↔
Xω

Q2: From triangle inequality and submultiplicity of ≃ · ≃, we have

≃V
T
Xω

[(I ↗A
→
A) (!t) + E]UtU

T
t ≃

⇐
(
≃ (I ↗A

→
A) (!t) ≃+ ≃V

↔
X E≃

)
≃Ut≃

2

(a)
⇐32

(
≃ (I ↗A

→
A) (!t) ≃+ ≃V

↔
X E≃

)
≃Uω≃

2

(b)
⇐33cω2

min (Uω)
(
≃Xω ↗ UtWtW

↔
t U

T
t ≃+ ≃UtWt,⇒W

↔
t,⇒Ut≃→

)

+ 9≃V ↔
Xω

E≃≃Uω≃
2

(c)
⇐4 · 33cω2

min (Uω)

≃V

T
Xω

(!t) ≃+ ≃UtWt,⇒W
T
t,⇒Ut≃→



+ 32≃V ↔
Xω

E≃≃Uω≃
2
.

In the step (a), we use the assumption ≃U≃ ⇐ 3≃Uω≃, and in the step (b), we use assumption (17). In
the step (c), we use Lemma C.5. By taking a small constant c > 0, we have

≃V
T
Xω


(I ↗A

→
A)

(
Xω ↗ UU

T
t

)
UtU

T
t ≃

⇐
1

1000
ω
2
min (Uω)


≃V

T
Xω

!t≃+ ≃Xt,⇒≃→


+ 32≃V ↔

Xω
E≃≃Uω≃

2
.

Bounding VXωQ3: We derive the following inequality similarly as bounding VXωQ3:

≃V
T
Xω

UtU
T
t [(I ↗A

→
A) (!t) + E] ≃

⇐
1

1000
ω
2
min (Uω)


≃V

T
Xω

!t≃+ ≃Xt,⇒≃→


+ 32≃E≃≃Uω≃

2
.

Bounding VXωQ5: First, we have the following bound:

≃ (A→
A) (!t) ≃ ⇐ ≃!t≃+ ≃ [(I ↗A

→
A) (!t)] ≃

⇐ 2

≃!̃t≃+ ≃Xt,⇒≃→


, (30)

⇐ 2
(
2≃Uω≃

2 + ≃Ut≃
2
)
. (31)

In the step (30), we use the assumption (17). In the step (31), we use the assumptions (17) and
≃Xt,⇒≃→ ⇐ ≃Uω≃

2. We can bound the term VXωQ5 as follows:

≃V
T
Xω

[(A→
A) (!t) + E]UtU

T
t [(A→

A) (!t) + E] ≃

⇐ (≃ [(A→
A) (!t)] ≃+ ≃E≃) ≃Ut≃

2 (≃ (A→
A) (!t) ≃+ ≃E≃)

(a)
⇐4


≃!̃t≃+ ≃Xt,⇒≃→ + ≃E≃


≃Ut≃

2
(
2≃Uω≃

2 + ≃Ut≃
2 + ≃E≃

)

(b)
⇐64


≃!̃t≃+ ≃X̃t≃→ + ≃E≃


≃Uω≃

4

(c)
⇐4 · 64


≃V

T
Xω

!t≃+ ≃Xt,⇒≃→ + ≃E≃


≃Uω≃

4
.

Here, in the step (a), we used the (30) and (31) . The step (b) is due to the assumption ≃Ut≃ ⇐ 3≃Uω≃

and ≃E≃ ⇐ ≃Uω≃
2. In the step (c), we used Lemma C.5. Thus, we have

ϱ
2
≃V

T
Xω

Q5≃
(a)
⇐

ϱω
2
min (X)

1000


≃V

T
Xω

!t≃+ 2.5≃Xt,⇒≃→ + 2.5≃E≃]

,

where the step (a) is due to the assumption on the stepsize ϱ ⇐ cε
↘2
f ≃Uω≃

↘2.

D. Proof in Section 3

We start with the proof of Lemma D.1.

21

To get a guarantee of the validation approach, we start with a lemma showing that the validation
error of an arbitrary sequenceD1, . . . , DT is close to its expectation if the entries ofAi are iid drawn
from a subgaussian distribution.
Lemma D.1. Suppose each entry in Ai, i → Ival is i.i.d. subG(c1) with mean zero and variance 1 and each
ei is also a zero-mean sub-Gaussian distribution subG(c2ω2)with variance ω2, where c1, c2 ↓ 1 are absolute
constants. Let T > 0. Assume matrices D1, . . . , DT → Rd↑d are independent of Aval and eval. For any
φval > 0, ifmval ↓ C1

log T
ϑ2val

, then with probability at least 1↗ 2T exp
(
↗C2mvalφ

2
val
)
,

≃Aval(Dt) + e≃
2
2 ↗mval(≃Dt≃

2
F + ω

2)
 ↓ φvalmval(≃Dt≃

2
F + ω

2), ∞ t = 1, . . . , T. (32)

Here C1, C2 ↓ 0 are constants that only depend on c1 and c2.

Proof. For any D → Rn↑n, ⇔Ai, D↖+ ei is a zero-mean sub-Gaussian random variable with variance
≃D≃

2
F + ω

2 and sub-Gaussian norm
≃⇔Ai, D↖+ ei≃

2
↽2

⇐ C
(
c1≃D≃

2
F + c2ω

2
)
⇐ C1

(
≃D≃

2
F + ω

2
)
,

where C is an absolute constant and C1 ↓ 0 is a constant depending on c1 and c2. The above
inequality implies that (⇔Ai, D↖+ ei)2 is sub-exponential with a sub-exponential norm the same as
≃⇔Ai, D↖+ ei≃

2
↽2

[53, Theorem 2.7.6]. For each s ↓ 0 and t = 1, . . . , T , define the event St(s) to be
{
|

1

mval
≃Aval(Dt) + e≃

2
F ↗ (≃Dt≃

2
F + ω

2)| ↓ sC1(≃D≃
2
F + ω

2)

}

Using [53, Theorem 2.8.1], we have P (St(s)) ⇐ 2 exp
(
↗C2 min

(
mvals

2
,mvals

))
,where C2 > 0 is an

absolute constant. Taking s = φval/C1 and mval = O(log
2 T

ϑ2val
), the union bound for S1(s), . . . , ST (s)

implies that
P(∈T

t=1St(s)) ⇐ 2T exp
(
↗C2mvalφ

2
val
)
,

where we absorb C1 into C2 in the last equation.

Next, we show the error identified by the validation is close to the optimal if each validation error
is close to its expectation.
Lemma D.2. Given any T > 0 and matrices D1, . . . , DT → Rd↑d, define t̂ =
arg min1⇐t⇐T ≃Aval(Dt) + e≃2 and t̃ = arg min1⇐t⇐T ≃Dt≃F. If

(1↗ φval)(≃Dt≃
2
F + ω

2) ⇐
1

mval
≃Aval(Dt) + e≃

2
2 (1 + φval)(≃Dt≃

2
F + ω

2), ∞t = 1, . . . , T, (33)

then,
≃Dt̂≃

2
F ⇐

1 + φval
1↗ φval

≃Dt̃≃
2
F +

2φval
1↗ φval

ω
2
.

Proof of Lemma D.2. Since t̂ = arg min1⇐t⇐T ≃A(Dt) + e≃2, we have

≃Dt̂≃
2
F + ω

2
⇐

1

1↗ φval
≃Aval(Dt̂) + e≃

2
F

⇐
1

1↗ φval
≃Aval(Dt̃) + e≃

2
F ⇐

1 + φval
1↗ φval

(≃Dt̃≃
2
F + ω

2),

which further implies that

≃Dt̂≃
2
F ⇐

1 + φval
1↗ φval

≃Dt̃≃
2
F +

2φval
1↗ φval

ω
2
.

Finally, let us prove Theorem 3.1.

Proof of Theorem 3.1. Let φval = ϖ2nrω
mtrain

and Dt = UtU
↔
t ↗Xω where Ut, t = 1, . . . , T are iterates from

(3) with (y,A) replaced by (y train,Atrain). With this choice of φval andDt and the above lemmas, the
theorem is immediate.

22

E. Additional Experiments on DIP

In Section 4, we present the validity of our hold-out method for determining the denoised image
through the training progress across di"erent types of noise. In this section, we further conduct ex-
tensive experiments to investigate and verify the universal e"ectiveness. In Section E.1, we demon-
strate that validity of our method is not limited on Adam by the experiments on SGD. In Section E.2,
we demonstrate that validity of our method also holds for L1 loss function. In Section E.3, we
demonstrate that validity of our method also exists across a wide range of noise degree for both
gaussian noise and salt and pepper noise.

E.1. Validty across di!erent optimizers

In this part, we verify the success of our method exists across di"erent types of optimizers for df-
ferent noise. We use Adam with learning rate 0.05 (at the top row) and SGD with learning rate 5
(at the bottom row) to train the network for recovering the noise images under L2 loss for 20000
iterations, where we evaluate the validation loss between generated images and corrupted images ,
and the PSNR between generated image and clean images every 200 iterations. In Figure 4, we show
that both Adam and SGD work for Gaussian noise, where we use the Gaussian noise with mean 0
and variance 0.2. At the top row, we plot the results of recovering images optimized by Adam. The
PSNR of chosen recovered image according to the validation loss is 20.7518 at the second column,
which is comparable to the Best PSNR 20.8550 through the training progress at the third column.
The best PSNR of full noisy image is 21.0714 through the training progress at the last column. At
the bottom row, we show the results of SGD, The PSNR of decided image according to the valida-
tion loss is 20.6964 at the second column, which is comparable to the Best PSNR 20.7551 through
the training progress at the third column. The best PSNR of full noisy image is 20.9449 through the
training progress at the last column. In Figure 5, we show that both Adam and SGD works for salt
and pepper noise, where 10% percent of pixels are randomly corrupted. At the top row, we plot the
results of recovering images optimized byAdam. The PSNR of chosen recovered image according to
the validation loss is 20.8008 at the second column, which is comparable to the Best PSNR 20.9488
through the training progress at the third column. The best PSNR of full noisy image is 21.0576
through the training progress at the last column. At the bottom row, we show the results of SGD,
The PSNR of decided image according to the validation loss is 20.7496 at the second column, which
is comparable to the Best PSNR 20.8691 through the training progress at the third column. The best
PSNR of full noisy image is 21.0461 through the training progress at the last column. Comparing
these results, the SGD optimization algorithm usually takes more iterations to recovery the noisy
images corrupted by either Gaussian noise and salt and pepper noise, therefore we will use Adam
in the following parts.

E.2. Validty across loss functions

In this part, we verify the success of our method exists across di"erent types of loss functions for
di"erent noise. We use Adam with learning rate 0.05 to train the network for recovering the noise
images under either L1 loss (at the top row) or L2 loss (at the bottom row) for 50000 iterations,
where we evaluate the validation loss between generated images and corrupted images, and the
PSNR between generated image and clean images every 500 iterations. In Figure 6, we show that
both L1 loss and L2 loss works for Gaussian noise, where we use the Gaussian noise with mean 0
and variance 0.2. At the top row, we plot the results of recovering images under L1 loss. The PSNR
of chosen recovered image according to the validation loss is 27.5232 at the second column, which
is comparable to the Best PSNR 27.5233 through the training progress at the third column. The best
PSNR of full noisy image is 28.1647 through the training progress at the last column. At the bottom
row, we show the results under L2 loss, The PSNR of decided image according to the validation
loss is 27.7941 at the second column, which is comparable to the Best PSNR 27.9268 through the
training progress at the third column. The best PSNR of full noisy image is 27.9370 through the
training progress at the last column. In Figure 7, we show that both L1 loss and L2 loss works for
salt and pepper noise, where 30% percent of pixels are randomly corrupted. At the top row, we plot

23

(a) Noisy Image (b) Best Val Loss (20.8) (c) Best PSNR (20.9) (d) Progress

(e) Noisy Image (f) Best Val Loss (20.7) (g) Best PSNR (20.8) (h) Progress

Figure 4: Results across di!erent optimizer for guassian noise. The top row plots the results for
Adam, and the bottom row plots the results for SGD.

(a) Noisy Image (b) Best Val Loss (20.8) (c) Best PSNR (20.9) (d) Progress

(e) Noisy Image (f) Best Val Loss (20.7) (g) Best PSNR (20.9) (h) Progress

Figure 5: Results across di!erent optimizer for salt and pepper noise. The top rowplots the results
for Adam, and the bottom row plots the results for SGD.

the results of recovering images under L1 loss. The PSNR of chosen recovered image according to
the validation loss is 35.2155 at the second column, which is comparable to the Best PSNR 35.2266
through the training progress at the third column. The best PSNR of full noisy image is 35.9319
through the training progress at the last column. At the bottom row, we show the results under L2
loss, The PSNR of decided image according to the validation loss is 21.8679 at the second column,
which is comparable to the Best PSNR 21.8679 through the training progress at the third column.
The best PSNR of full noisy image is 22.1088 through the training progress at the last column. Com-
paring these results, the L1 loss usually performs comparably as L2 loss to recovery the noisy images

24

(a) Noisy Image (b) Best Val Loss (27.5) (c) Best PSNR (27.5) (d) Progress

(e) Noisy Image (f) Best Val Loss (27.8) (g) Best PSNR (27.9) (h) Progress

Figure 6: Results across di!erent losses for guassian noise. The top row plots the results for L1
loss, and the bottom row plots the results for L2 loss.

(a) Noisy Image (b) Best Val Loss (35.2) (c) Best PSNR (35.2) (d) Progress

(e) Noisy Image (f) Best Val Loss (21.9) (g) Best PSNR (21.9) (h) Progress

Figure 7: Results across di!erent losses for salt and pepper noise. The top row plots the results
for L1 loss, and the bottom row plots the results for L2 loss.

corrupted by either Gaussian noise, and L1 loss produces cleaner recovered image than L2 loss for
salt and pepper noise, therefore, we will use L1 loss in the following parts.

E.3. Validty across noise degree

In this part, we verify the success of our method exists across di"erent noise degrees for di"erent
noise. We use Adamwith learning rate 0.05 to train the network for recovering the noise images un-
der L1 loss for 50000 iterations, wherewe evaluate the validation loss between generated images and

25

corrupted images, and the PSNR between generated image and clean images every 500 iterations.
In Figure 8, we show that our methods works for di"erent noise degree of Gaussian noise, where
we use the Gaussian noise with mean 0. At the top row, we plot the results of recovering images
under 0.1 variance of gaussian noise. The PSNR of chosen recovered image according to the vali-
dation loss is 28.6694 at the second column, which is comparable to the Best PSNR 28.6694 through
the training progress at the third column. The best PSNR of full noisy image is 28.9929 through the
training progress at the last column. At the middel row, we plot the results of recovering images
under 0.2 variance of gaussian noise. The PSNR of chosen recovered image according to the vali-
dation loss is 25.6036 at the second column, which is comparable to the Best PSNR 25.6839 through
the training progress at the third column. The best PSNR of full noisy image is 25.8879 through
the training progress at the last column. At the bottom row, we show the results under under 0.3
variance of gaussian noise, The PSNR of decided image according to the validation loss is 23.7784
at the second column, which is identical to the Best PSNR 23.7784 through the training progress
at the third column. The best PSNR of full noisy image is 23.9001 through the training progress
at the last column. In Figure 9, we show that our methods works for di"erent noise degree of salt
and pepper noise. At the top row, we plot the results of recovering images with 10 percent of pixels
randomly corrupted by salt and pepper noise. The PSNR of chosen recovered image according to
the validation loss is 35.3710 at the second column, which is comparable to the Best PSNR 35.5430
through the training progress at the third column. The best PSNR of full noisy image is 35.9778
through the training progress at the last column. At the middel row, we plot the results of recover-
ing images under 30 percent of pixels randomly corrupted by salt and pepper noise. The PSNR of
chosen recovered image according to the validation loss is 32.9904 at the second column, which is
comparable to the Best PSNR 33.0188 through the training progress at the third column. The best
PSNR of full noisy image is 33.4267 through the training progress at the last column. At the bottom
row, we show the results under 50 percent of pixels randomly corrupted by salt and pepper noise
The PSNR of decided image according to the validation loss is 29.8836 at the second column, which
is identical to the Best PSNR 29.8836 through the training progress at the third column. The best
PSNR of full noisy image is 30.1512 through the training progress at the last column. Comparing
both the results of gaussian noise and salt and pepper noise, we can draw three conclusion. First,
the PSNR of recovered image drops with the noise degree increases. Second, The peak of PSNR
occurs earlier with the noise degree increases. Last, the neighbor near the peak of PSNR becomes
shaper with the noise degree increases.

26

(a) Noisy Image (b) Best Val Loss (28.7) (c) Best PSNR (28.7) (d) Progress

(e) Noisy Image (f) Best Val Loss (25.6) (g) Best PSNR (25.7) (h) Progress

(i) Noisy Image (j) Best Val Loss (23.8) (k) Best PSNR (23.8) (l) Progress

Figure 8: Results across noise degree for gaussian noise. The top row plots the results for gaussian
noise with mean 0 and variance 0.1, the middle row plots the results for gaussian noise with mean
0 and variance 0.2, and the bottom row plots the result for gaussian noise with mean 0 and variance
0.3.

27

(a) Noisy Image (b) Best Val Loss (35.4) (c) Best PSNR (35.5) (d) Progress

(e) Noisy Image (f) Best Val Loss (33.0) (g) Best PSNR (33.0) (h) Progress

(i) Noisy Image (j) Best Val Loss (29.9) (k) Best PSNR (29.9) (l) Progress

Figure 9: Results across noise degree for salt and pepper noise. The top row plots the results for
10 percent of corrupted pixels, the middle row plots the results for 30 percent of corrupted pixels,
and the bottom row plots the result for 50 percent of corrupted pixels.

28

	. Introduction
	. GD with SRI has a minimax optimal iterate
	. Gradient descent and preliminaries
	. Optimal statistical error guarantee

	. Stopping via the validation approach
	. Numerics and Extensions
	. Discussion
	Appendices
	. Related work
	. Details of experiments in Section 1
	. Proof of Theorem 2.4
	. Proof strategy
	. Analyzing the three phases and the proof of Theorem 2.3
	. Proof of Lemma C.2
	. Proof of Lemma C.3

	. Proof in Section 3
	. Additional Experiments on DIP
	. Validty across different optimizers
	. Validty across loss functions
	. Validty across noise degree

