
Context Matters: Qualitative Insights into Developers’ Approaches and Challenges

with Software Composition Analysis

Elizabeth Lin, Sparsha Gowda, William Enck, and Dominik Wermke
North Carolina State University

{etlin, ssgowda3, whenck, dwermke}@ncsu.edu

Abstract

Software Composition Analysis (SCA) is an important part

in the software security lifecycle. Establishing the individual

software components and versions that make up an applica-

tion allows for identifying and remediating vulnerabilities.

However, SCA tools have not kept up with the ever grow-

ing number of new vulnerabilities each year. Developers are

flooded with vulnerability alerts and often struggle to quickly

remediate critical issues with external components.

We conducted 20 interviews with developers to investigate

their processes and challenges around using SCA in their

software projects. Interviews covered how SCA tools are inte-

grated into workflows, how reports are interpreted and acted

upon, and what challenges were encountered. We find that

SCA tools are most often integrated into build pipelines and

that users report that information in SCA alerts is too generic

and lack context, specifically context on infrastructure, net-

work configurations, reachability, and exploitability. Based on

our findings we conclude that context matters throughout the

SCA process, including for evaluating impact, when to trigger

SCA scan runners, and how to integrate and communicate

tool findings.

1 Introduction

Software Composition Analysis (SCA) is a method for

identifying and analyzing software components. SCA tools

identify third-party components and libraries in software ap-

plications, enabling the tracking and mitigation of vulnerabil-

ities in these components and the management of software

licenses. External software components make managing vul-

nerabilities challenging, as they are often outside the direct

control of the developers. Various studies estimate more than

75% of applications include third party open source soft-

ware [1], [29], that 96% of codebases contain open source

software, and that 77% of the code in the codebases originate

from open source [1]. Consequently, software composition

analysis is becoming increasingly important, allowing the

industry to identify and manage vulnerabilities in their third-

party components.

The need for SCA tools is further underscored by the rise of

published vulnerability reports. In 2019, 17,308 CVEs were

published. Five years later in 2024, the number of published

CVEs has grown to 29,004 [12]. This growing number of

reported vulnerabilities has caused companies to integrate

SCA tools into their development pipelines to filter and man-

age security risks. The “Log4Shell” arbitrary code execution

vulnerability in the Log4j Java logging framework is a widely

referenced high-impact vulnerability in a third-party compo-

nent [26]. Reported in 2021, companies struggled to identify

whether and where Log4j was used in their systems and even

today there remain vulnerable systems in the wild [47]. The

US government has again emphasized the importance of man-

aging vulnerabilities in third-party components in the 2025

Executive Order 14144 [16]. SCA tools help following federal

requirements such as these by identifying third-party risks

and generating compliance artifacts such as SBOMs.

While SCA tools simplify managing security risk for third-

party components, the large number of alerts they output can

be a challenge. Two factors contribute to the large number of

alerts: (1) the large number of published CVEs and (2) a large

dependency tree from all the imported external components.

The large number of alerts can result in alert fatigue [44],

where developers ignore vulnerability alerts because of being

overwhelmed by them. Managing vulnerabilities in external

libraries is challenging, as they are often maintained by others

and may include additional dependencies. Developers also

must often wait for maintainers to address issues in their

external components, further complicating resolution [20].

Previous studies on SCA have looked into how different

SCA tools compare against each other [21], [41], [55]. How-

ever, they lack understanding on how SCA users interact with

the tools and the actions they take after receiving results from

the tool. Often, software vulnerabilities in external libraries

are resolved when developers update to non-vulnerable re-

lease. Updating external libraries may also introduce com-

patibility issues in applications. For businesses that rely on

with a CVSS severity score [40], though scaling issues has

recently raised doubts into the viability of doing so in the long

term [30], [43], [53]. Each vulnerability database has its own

identifier prefix, though they unilaterally reference the CVE

ID as a canonical identifier. Vulnerabilities are colloquially

known as “CVEs.”

Prior work has extensively considered a range of vulnera-

bility data and management topics [24], [28], [34], [38], in

various ecosystems [2], [25], [49], [54], [57]. Vuln4Real [35]

measures vulnerable dependencies in the Java ecosystem. Wu

et al. [52] investigated the impact of a vulnerability in a de-

pendency on an application based on call graph paths and

reachability of functions. Pashchenko, Vu, and Massacci [36]

conducted a qualitative study with developers to understand

the factors that impact dependency selection decisions. Plate,

Ponta, and Sabetta [37] proposed an approach to assess the

impact of code changes in security fixes.

Unfortunately, the lack and inconsistency of vulnerability

data [4] makes it hard to determine the impact of a vulnera-

ble dependency on an application, including if it matters at

all. Prior studies [9], [15], [39] have pointed out the need to

automatically discover software patch data for vulnerability

discovery and repair.

Interview Studies: Qualitative research uses surveys or inter-

views to gather user opinions and is a growing research area

in the security literature. Multiple qualitative studies have

emerged to address challenges with vulnerability manage-

ment [3], [5], [6], [22], [48]. Barrett et al. [8] conducted 12

interviews with sysadmins, managers, team leads, and oth-

ers in various roles about the security issues, concerns, and

challenges in their work. Gutfleisch et al. [18] interviewed de-

velopers about usability of their secure software development

processes, identifying a high impact of contextual factors such

as stakeholder pressure, presence of expertise, and collabo-

ration culture. Johnson et al. [22] interviewed developers on

their use of static analysis tools and desired improvements.

Prior qualitative studies have also considered the open

source ecosystem. Several studies [33], [45], [51] have dis-

cussed trust and barriers in the open source ecosystem.

Wermke et al. [50] discussed broad security-related challenges

in open source. The open source community relies on develop-

ers who contribute voluntarily, and there could be challenges

relating to issues such as code quality and maintenance [46].

Zhou, Vasilescu, and Kästner [56] discussed ‘forks’ in open

source and Bogart et al. [10] discussed how changes in open

source can break software.

3 Methodology

Over a 6 month period starting October 2024, we conducted

20 semi-structured interviews with industry professionals

with SCA experience. The interviews included discussions on

how the SCA tools were used, encountered challenges, and

how they can be improved. In this section, we outline our in-

terview guide, recruiting participants, conducting interviews,

and how we analyzed the interview data.

3.1 Study Setup

We opted for semi-structured interviews for our study to

gather deep insights from participants. Semi-structured inter-

views allow us to (1) ask questions we prepared and (2) dive

deeper into any interesting insights the participants have.

We based our interview guide on our research questions and

cognitive walk-throughs of six popular SCA tools. We further

refined our interview guide through feedback rounds with

other researchers and a pilot interview. Our final interview

structure covers questions related to the process of using and

integrating SCA tools, how SCA reports are interpreted, as

well as challenges when using the tools.

Cognitive Walk-Throughs: We wanted to understand the full

process related to SCA tools, from the selection of SCA tools

to resolving vulnerability alerts outputted from the SCA tool.

Therefore, before conducting the interviews, two researchers

conducted cognitive walk-throughs of six popular SCA tools:

(1) Snyk Open Source,1 (2) Grype,2 (3) GitHub Dependabot,3

(4) Endor Labs SCA,4 (5) OSV-Scanner,5 and (6) Semgrep

Supply Chain.6 We opted for both open source and proprietary

tools to cover a wide range of tools. The six SCA tools were

selected based on the following criteria: (1) the tool had to be

freely available to us and (2) the tool had to generate a report

of the vulnerabilities existing in the software components

because one of our research questions is concerned with the

handling of such reports. The selected tools only assisted us

in the walk-throughs and are not necessarily the tools our

participants use.

Our cognitive walk-through was focused on completing a

main task: running the the SCA tool on a sample application

and generating a vulnerability report and a subtask: rank or

filter the vulnerability alerts from the tool. We focused on

the following guiding questions while completing the task to

identify additional challenges or issues our interview guide

could focus on: (1) How is the tool used? (2) What do we

need to provide to the tool? (3) What does the tool output?

(4) What information is provided by the SCA tool? (5) What

(additional) features are provided by the SCA tool? These

walk-throughs served as one of the bases of questions we

asked in our interviews.

Interview Guide: We based our interview guide on our 4

main research questions. The structure of the interview guide

and general questions were initially informed by our research

1https://snyk.io/product/open-source-security-management/
2https://github.com/anchore/grype
3https://docs.github.com/en/code-security/dependabot
4https://www.endorlabs.com/use-cases/reachability-based-sca
5https://github.com/google/osv-scanner
6https://semgrep.dev/products/semgrep-supply-chain/

Intro

Introduction to the interview and obtaining verbal consent.

S1 Participant Demographics

Establish project context and role of participant.

S2 SCA Demographics

Explore general questions on SCA tool usage.

S3 SCA Tool Integration

Participant walk through of their SCA tool integration process. Iden-

tify challenges during the integration process.

S4 SCA Report and Interpretation

Participant walk through of actions after receiving output from SCA

tool. Explore methods and challenges for resolving vulnerabilities.

S5 SCA Tool Features

Explore various measures and features in SCA tool and the usefulness

of them.

S6 Opinions and Improvements

Explore participants’ views of problems and potential improvements.

Outro

Debrief and collect feedback for the interview.

Figure 2: Illustration of the flow of topics in the semi-

structured interviews. In each section, participants were pre-

sented with general questions and corresponding follow-ups,

but were generally free to diverge from this flow at will. Solid

boxes were required and dotted boxes were flexible sections.

questions, while the cognitive walk-throughs of SCA tools

provided us with specific questions and follow-ups. We also

collected feedback from researchers with interview experi-

ence on our interview guide. We conducted one pilot interview

and made minor updates to the interview guide based on the

feedback. As there were no major changes needed after the

pilot and feedback, we decided to proceed with interview-

ing actual participants. We conducted the initial interviews

provisionally to test our setup. As no major changes to the

interview guide were needed, we decided to included these

interviews in the final dataset.

After each interview, we reviewed our interview guide and

assessed any new information we learned. After six inter-

views, we identified two new topics related to challenges

with SCA tools. We added a follow-up question on whether

SCA tools perform differently for different programming lan-

guages and ecosystems. We added another follow-up question

on compatibility issues when fixing alerts through updating

dependency versions. Furthermore, we found that discussion

around tool features (S5) would often be discussed with tool

improvements, thus we moved the topic to a lower priority

and only asked it if we had extra time in the interviews. The

interview guide remained unchanged after interview 12. We

provide the final interview guide in Appendix A.

Interview Structure: Our interviews were based around non-

leading, open questions with specific sub-questions as follow-

ups, allowing interviewees to elaborate their thoughts and

answers. Figure 2 shows our final interview structure. We

started the interviews with introduction questions about the

participant’s organization and role (S1). Next, we proceeded

to ask about their SCA experience (S2), where we tried to

understand general information like which tool is used and

how the experience with the tool was. We then proceeded to

ask questions about how they integrate SCA tools into their

pipelines (S3). In this section, we also followed up on chal-

lenges when integrating the tools. After understanding how

SCA tools are integrated, we continued and asked questions

on how the SCA reports are interpreted and managed for re-

solving vulnerabilities identified from the SCA tools (S4).

We also focused on any challenges the users run into when

interpreting the SCA results. Finally, we asked users about

their opinions on SCA tools and how they believe the tools

could be improved (S6).

3.2 Participant Recruitment

We sought to recruit participants from the population of

developers that have used (or even developed) SCA tools in

their projects in the past. Because this is a highly specialized

population and we wanted to gather insights about SCA usage

in a wide range of projects and companies, we used a range

of recruitment strategies to reach a wide and diverse pool of

participants. Specifically, we used the following strategies:

Online Communities: Various online open source and secu-

rity communities provide a forum for developers to engage in

discussion. These communities are often in Discord servers

and Slack channels. We searched the web for such communi-

ties with ‘security’, ‘sec’, or ‘open source’ in their names. We

selected 10 online communities with appropriate channels for

us to recruit participants and invited members to participate

in our interview study.

Freelance Platforms: Freelance platforms include a wide

variety of developers, which can broaden our participant popu-

lation. We recruited developers with SCA experience through

the Upwork7 platform. We posted our study details on the

platform and sent individual invites to freelancers that were a

good fit for our study in terms of experience with SCA tools.

Conference Participants: We also attended local developer

waterholes like a cybersecurity conference, InfoSeCon, and

a security community event, Software Supply Chain Com-

munity Day, organized by our university. We networked and

invited interested developers with SCA experience to partici-

pate in our interview study.

Snowball Sampling: We also asked interview participants

if they knew of anyone else that would be a good fit for our

7https://www.upwork.com/

Table 1: Participant Demographics

P No. Role† Company Type Years of Experience Country Codes Duration

P01 Software engineer Consulting firm 4 US 37 0:48:50

P02 Security engineer Fintech company 9 Germany 33 0:45:55

P03 Security engineer Survey company 14 US 47 0:52:11

P04* Software engineer Software vendor 21 US 34 0:48:13

P05 Security engineer Telecommmunications 5 Norway 31 0:45:01

P06 Security architect Healthcare 6 US 31 0:41:41

P07 Lead engineer Travel arrangements 15 US 29 0:44:57

P08* Director Consulting firm 15 The Netherlands 28 3:06:25‡

P09 Security architect Software vendor 35 US 48 1:00:16

P10 Software engineer Software vendor 11 US 33 0:55:15

P11 Director Electronics provider 30 US 42 0:56:25

P12* Freelancer Consulting 20 The Netherlands 22 0:49:46

P13 Security engineer Career platform 1 India 23 0:49:28

P14 Security manager IT solutions 5 Pakistan 35 0:53:02

P15 Security lead engineer Non-profit organization 25 Norway 25 0:44:38

P16* Security lead engineer Software vendor 7 US 31 0:52:04

P17 Security engineer Healthcare 3 US 28 0:35:58

P18 Security lead engineer Healthcare 15 US 30 0:41:51

P19 Security engineer Healthcare 11 US 29 0:37:16

P20 Security engineer Software vendor 4 US 21 0:34:52

*Participant has experience with developing SCA tool ‡Participant voluntarily exceeded planned interview time
†Participant roles binned to preserve privacy

study. If they recommended someone, we would reach out

and invite them to participate as well.

Of all the strategies, posting in online communities turned

out to be the most effective recruitment method. We recruited

9 participants through online posts. Recruitment through

freelance platforms, conferences, and community events also

turned out to be a good strategy. 6 participants were recruited

from the freelance platform, 4 of our participants were re-

cruited through connecting at conferences, and 1 was from

snowball sampling.

Selection criteria: To be eligible for our interviews, the par-

ticipants had to be at least 18 years of age and certify that they

have had experience with SCA tools. Before the interview,

we asked the participants to answer the following questions:

(1) What SCA tools have you used? (2) Could you briefly

describe your experience with SCA tools? The questions al-

lowed us to verify the participants have used SCA tools and

would be able to answer our interview questions. All partic-

ipants we interviewed had used SCA tools in the past and

provided sufficient insights so that we could base our analysis

on all 20 interviews.

Participants: Table 1 shows the demographic information

of our participants. Our participants come from a wide range

of industries, including but not limited to software vendors

and consulting firms. The participants also have experiences

that cover a broad spectrum, from one to thirty-five years of

experience. The majority of our participants are based in the

US, but there are also participants from Europe and Asia. As

compensation of sharing their experiences and valuable time

for 45 to 60 minutes, we offered each participant $60 or the

equivalent value in Amazon.com vouchers.

3.3 Interview Procedure

Our interview study follows the ethical principles outlined

in the Menlo report [7] and was approved by our university’s

IRB, which we discuss more in Ethics Considerations at the

end of this paper. Prior to the interview, we sent the consent

form to the participant to inform them of their rights, the goal

of our study, and how they would benefit. Our interviews were

conducted and recorded over zoom. The interviews generally

lasted around 45 to 60 minutes; see Table 1 for per-interview

duration. At the start of the interview, we reiterated the goal of

our research and gave participants the chance to ask questions

before we started the interview and recording. The record-

ings were later processed and analyzed, which we discuss in

the next section (Section 3.4). After the interview, we again

gave participants the opportunity to ask any questions and

encouraged them to reach out with any questions or concerns.

0 10 20

50

100

150

Number of interviews

N
u
m

b
er

o
f

su
b
co

d
es

Figure 3: Count of subcodes in the codebook over number

of interviews. A flattening out curve in later stages indicates

reaching thematic saturation.

3.4 Coding and Analysis

To analyze our interviews, we applied a thematic analysis

approach [11] using hybrid (combination of inductive and

deductive) qualitative coding with two coders, a main coder

and an assisting coder, who both also performed the cognitive

walk-throughs mentioned in Section 3.3. The 20 interview

audio files averaged to 54 minutes 18 seconds for each inter-

view. The audio was transcribed into text transcripts using a

locally-run OpenAI whisper machine learning model to ensure

privacy of all participant recordings. Before starting coding,

the lead researcher checked and corrected all transcripts for

transcription mistakes.

We adopted a hybrid coding approach for our codebook de-

velopment. First, we formulated an initial codebook structure

based on our interview guide, with codebook sections corre-

sponding to sections in our interview guide. Based on the first

few interviews, our main coder did a first pass and added new

subcodes to the codebook. During coding, we modified the

initial codebook based on new themes and additional topics

that emerged during subsequent interviews. Both coders par-

ticipated in the cognitive walkthrough to ensure they have

sufficient understanding of SCA tools. Before coding the tran-

scripts, the two coders met to discuss the codebook to ensure

they have the same understanding of the codes. Both coders

iteratively and independently coded all interview transcripts.

After each coded transcript, coders exchanged coding results.

The main coder led conflict resolution, addressing straight-

forward differences (e.g., including an additional word) at

their discretion and adding second coder’s codes they agreed

with. Conflicts were minor and included missing subcodes,

thus they were easily resolved. This iterative process contin-

ued until all conflicts were resolved. As all conflicts were

resolved, we do not report intercoder agreement (IRR) [27].

Prior work has also adopted conflict resolution with similar

approaches [23], [51].

Figure 3 shows the total number of subcodes in our code-

book after each coding update. The total number of subcodes

increases quickly in our first few interviews and levels off in

0% 15% 30% 45% 55% 70% 85% 100%

None A few Some Many About
Half

Majority Most
Almost

All
All

0 1–2 3–6 7–8 9–11 12–13 14–17 18–19 20

Figure 4: Interview reporting ranges to help with readability

of results.

later interviews, indicating that we reached saturation [17]. In

total we assigned 637 codes resulting an average of 32 codes

per interview. We provide the final codebook in Appendix B

and discuss identified themes in Section 5.

3.5 Limitations

Our work includes a number of limitations typical for this

type of interview study and should be interpreted in context.

Generally, self-report studies may suffer from biases such as:

over- and under- reporting, sample bias, and social-desirability

bias. We tried to minimize these biases through removing

potential sources of bias in the interview procedure and by

asking non-leading questions. Our work is a convenience sam-

ple and may not fully represent the entire population of SCA

users, our study aimed to reach a broad and diverse sample

through a number of sampling channels. We conducted the

interviews in English, thus we cannot provide insight into

SCA practices in (entirely) non-English speaking regions.

4 Results

This section discusses the results from our interviews. We

divide our findings into the following subsections and discuss

the related observations: (1) SCA tool demographics, (2) tool

integration, (3) tool report, (4) developer opinions, and (5) im-

provements. The sections are largely based on the structure

of our interview guide (Figure 2). We replace the tool name

with a tool ID when a tool is mentioned in a quote to preserve

confidentiality of participants, we also indicate open source

tools by adding (OsT) after the tool ID in the quotes. We

included some participant quotes that relate to SCA develop-

ment experience as they provide additional insight into SCA

tools. To distinguish between between user and development

experience, quotes stemming from SCA development expe-

rience are labeled as participantID-dev. When reporting the

percentage of participants who expressed a related opinion,

we use specific phrases (e.g., “a few,” “many,” “most”) for

better flow and readability. The ranges we used for each of

the terms is shown in Figure 4.

4.1 SCA Demographics

The first main topic discussed in our interviews was the

use of SCA tools, including which SCA tool is used, reasons

for selecting the specific tool, and other related SCA use. We

Table 2: Tool Demographics

Type Times Mentioned Tool ID

Fully open source,
no vendor support

4 T03

2 T09

1 T21, T25, T26, T27

Open source,
with vendor support

2 T17

1 T23, T24, T29, T30

Open core,
with vendor support

10 T01

8 T05

3 T08, T14

2 T02, T06, T12, T16, T19

1 T04, T07, T10, T11, T13,
T15, T18, T20, T22, T28

provide Table 2 for the demographics of SCA tools used by

participants.

4.1.1 Reason for using SCA tools

Most (15) of the participants explicitly mentioned security

as the main reason for running SCA tools. When using SCA

tools for security, the main goal is to find and manage vulner-

abilities. Participants want to make sure that the open source

libraries they used do not include vulnerabilities. However,

security was not the only reason mentioned for using these

tools. About half (10) of the participants also explicitly men-

tioned compliance and licensing issues as a reason for using

SCA tools. Software has an impact on many areas. For ex-

ample, automobile software has to adhere to regulations that

govern the automotive industry. Hence the need for software

compliance.

Some (3) participants also mentioned less intuitive reasons

for using SCA tools, including merger acquisitions and export

relations. These use cases might be less obvious to a engineer,

but are also an important use for SCA tools.

“You have license compliance, security, export re-

strictions. AKA, I cannot have code from any of the

banned countries. [. . .] For export compliance, I

cannot have U.S. laws very strict on certain crypto-

graphic algorithms. [. . .] So, we’re buying a com-

pany or we’re being bought. And you basically have

to prove that your stack, if your stack is somewhat

decently built.” - P08

4.1.2 Selecting SCA tools

There were multiple factors that influence the selection of

SCA tools. A few participants said that their organization was

already using the same tool. Another factor mentioned by

some participants was ease for deploying the tool. Platforms

such as GitHub provide SCA features in their tool and allow

engineers to easily integrate it into their projects hosted on

the platform. “It’s much easier to have it all inbuilt in the

same platform rather than using external tools, which were

required to set up integrations and configurations.” (P05)

Challenges with tool deployment or tool reports led some

(5) participants to report switching tools. Participants reported

using one SCA tool initially, but encountered issues and chal-

lenges, for example: tool requirements were hard to fulfill

“The scan requirements to run T05 were very difficult to ful-

fill for some languages and for the varying build processes

that we used.” (P03) or they were not satisfied with the tool’s

results. “It was not uncommon that the database would be

reporting something wrong [. . .] it would match a component

to an incorrect component, or it would report a license. And

that product had not been built with DevOps and CI/CD in

mind.” (P09) This led them to switch to another SCA tool

that addresses their challenges. A few participants also men-

tioned using multiple tools, because the different features in

different tools complement each other. “I use combination of

tools actually, since some of those tools are free. I use majorly

T09 (OsT) and second is T12 for getting results instantly. [. . .]

T09 (OsT) is very handy for generating reports.” (P13)

Summary: SCA Demographics. The main reason for using

SCA tools are vulnerability detection and license man-

agement. Factors impacting the selection of the tool vary

among participants, including ease of deployment and re-

sult accuracy. It was also common to switch tools after

encountering challenges with the first tool.

4.2 SCA Integration

The next main topic in our interviews was SCA integra-

tion. We asked participants how they ran SCA within their

organizations. This was key to understanding the entire SCA

process in development pipelines and provides better context

for understanding challenges.

4.2.1 Input to SCA analyses

SCA tools use three major types of input: source code,

binaries, and software metadata. Different types of analyses

tailor to users with different use cases and priorities.

Source code and metadata analysis: Source code analysis

was the most common; however one concern brought up by

some participants was the leaking of intellectual property, i.e.,

the source code. “We didn’t use the cloud version because we

didn’t want the code to go outside.” (P05) SCA tools that only

analyze metadata present less risk and can address concerns

about leaking intellectual property. “One of the benefits of our

product is that we only look at manifest, because giving your

code base up to a third party tool is kind of risky sometimes.”

(P04)

Binary analysis: With source code analysis, the tool is able

to identify software components from manifest files or meta-

data. This information is not available to binary SCA analysis.

Therefore, binary SCA analysis must rely on techniques such

as fingerprinting to identify components. Some (3) partici-

pants shared frustrations with identifying components and

versions in binaries. “So a lot of the tools are very good at

saying open source code is present. So like identifying that

OpenSSL, just to pick a random example, is in the code, but

they’re less good at identifying a specific version of OpenSSL.”

(P11)

With fingerprinting, if a single line is changed in the file,

the fingerprint is completely different. “If you change one

single line of code [. . .] you might get a different binary [. . .]

Therefore, you will not have a match.” (P08) Determining

what information to focus on, whether to fingerprint an entire

file or only a function can be a challenge for binary analysis.

Furthermore, tools may not be focusing on the important

information within the binary.

“They’re indexing too much. They’re not looking at

what kind of files are we actually looking at. A good

example is when you’re scanning something like a

.NET project. [. . .] you have lots of generated code

like interfaces for the user interface. And that’s just

a lot of generated code where the tools that create

the user interface, when you generate them, they

just output a lot of boilerplate.” - P12-dev

4.2.2 SCA in the software development lifecycle

SCA can be integrated at various stages in the develop-

ment lifecycle. We discuss how SCA tools are integrated both

within and outside of CI/CD pipelines.

SCA inside CI/CD pipelines: Most (16) of the participants

shared that they integrated the SCA scan into their CI/CD

pipelines. This could be in the form of GitHub actions run

during merge requests or pull requests. It could also be other

custom pipelines used by organizations, e.g., Jenkins. The ma-

jority of (13) participants mentioned the SCA is triggered by

code commits, merge requests, or pull requests. Participants

also pointed out, as the SCA tool is integrated into the build

pipeline, it can disrupt software deployment.

“There is a build pipeline that takes this code after

the code is merged to the GitHub repository, per-

forms different checks, including security checks,

and then creates a build and optionally deploys

it to the target platform or makes it available for

users. [. . .] if there is a security issue, the SCA tool

may say, oh, you have an issue, please fix it and

rerun the pipeline again.” - P15

Some participants mentioned other ways an SCA tool could

be integrated. Some vendors allow users to execute an API

call to the vendor’s backend to run an SCA scan. Other par-

ticipants also shared using the SCA tool as a standalone ap-

plication.

SCA outside CI/CD pipelines: Similar to unit tests, SCA

scans are run frequently in the build pipeline. However, SCA

are also run before and after build and deployment. Some

SCA vendors allow users to directly run the SCA feature in

their integrated development environment, for example as a

VS Code extension. A participant pointed out that integrating

SCA in multiple stages and early in the development cycle

can be beneficial. “We make T05 available to our development

team so they can use it as they need to throughout develop-

ment.” (P11) Finding vulnerabilities early on was beneficial

for them as vulnerabilities can add up during their multiple

month development cycles. “Our development cycles can last

months and we don’t want to wait until the last minute to

figure out, hey, we need to change major components.” (P11)

For more complete monitoring, deployed applications also

need to run SCA frequently due to new vulnerabilities being

found. SCA results can change after the application has fin-

ished development, as vulnerability results can be updated,

further adding to the need to run SCA frequently. “Sometimes

when you go to the NVD, you’ll see something say under-

going reanalysis.” (P09) One participant reported that their

customer would run an SCA scan on the application after

deployment and receive different results “I had a customer

reported thing in an older version of one of our pieces of

software” (P09) This case required back and forth with the

customer to resolve the issue.

4.2.3 Challenges when integrating SCA

Many challenges emerged when we discussed integration

of SCA with participants.

Challenges with different ecosystems: Some (6) partici-

pants pointed out that SCA tools often perform better for

some ecosystems than others. Strengths and weaknesses are

different for each tool. “Both T05 and T06 were pretty good

at certain languages. I think T05 was really good at Java,

and probably Python. [. . .] they were both pretty bad at Go.”

(P03) Participants sometimes had to work around the weak-

nesses or select another tool. “We had to build a lot of, kind

of additional tooling to help remove false positives for Go

projects.” (P03)

One of the participants with SCA development experience

offered some insight into the reasons for this. “All the package

managers are different. So you have to have exceptions for

each one and you have to figure out what those exceptions

are.” (P04-dev) Ruby has a lock file that locks the library

versions. Python can be trickier because there are different

lock file types and multiple ways of resolving dependencies.

JavaScript has the issue of having too many layers of depen-

dencies, cycle may be present too. Maven does not have lock

files. “It’s an older package manager. They have the pom file,

which is your main manifest. And then you can have parent

poms or other types of poms, and you have to resolve those.

[. . .] And then there’s also interpolation. So you might have

manifests with interpolated versions and you have to figure

out what that is.” (P04-dev) Gradle does not have a static

manifest so it could be very difficult to resolve dependencies.

“They’re actually scripts. You could have like a production

and a test branch in your Gradle script, but you could also

have custom scopes [. . .] they can be nested in folders and

it’s very complex.” (P04-dev) On top of all the complexities,

SCA maintainers also have to keep track of changes in the

ecosystems or package managers.

Unsupported scripts: Some participants mentioned chal-

lenges with scripts not supported by the SCA scan. These

included custom build scripts in the software or legacy pro-

gramming languages, such as Lisp or Fortran. “There is some

software written in these languages as well. Or some exotic

languages maybe. And there is simply not that much knowl-

edge and expertise to create a product that they can analyze

and successfully.” (P15) When a file format is not supported

by an SCA scan, users have to find other ways to run the scan.

“We need to go and either pre-process things ourselves. We

need to work with the supplier to add support for new file

formats.” (P11)

SCA halting the development cycle: Integrating SCA scans

into the build pipeline could act as a double edged sword.

Some (6) participants mentioned SCA scans can bring soft-

ware development to a halt. Participants mentioned SCA alerts

failing builds or the the SCA tool having issues itself. Allow-

ing SCA tools to fail builds means the development cycle is

halted until the issue is fixed. “They slow down velocity [. . .]

like everything just comes to like a screeching halt until we,

until we fix it. We can’t like merge anything and we can’t run

tests and stuff like that.” (P07) One participant shared that

due to these failed builds, they transitioned to running the

SCA scan every week. “Previously, we had it set up with a

custom action that like, when you push the code, it would do

the scanning. Now we have like scheduled it. It’s going to

run every week automatically once to scan everything. We

don’t have it on each push anymore [. . .] It doesn’t become a

blocker.” (P05)

Failed builds slows down the development process because

engineers have to stop development to figure out why the

builds are failing.

“What happens more than blocking, like actually

blocking builds is the sense that it’s blocking work.

Where developers will see a failed check. Techni-

cally they can still merge it if they want. [. . .] they

try to do the right thing or understand why some-

thing’s failing, and so it causes at least a detour

where they have to like reach out, you know, in our

like Slack. [. . .] So you get a temporary implicit

block. Um, usually not for super long, but enough

that, you know, for every developer that’s kind of

annoying.” - P16

Using multiple tools: Some participants shared that they use

multiple tools to gather a more holistic picture. For one of the

participants, a combination of different tool results provides a

more holistic view of the application. The participant has soft-

ware in containers, and software in the container is built from

microservices. They have SCA scans at both the microservice

and container level. The different results complement each

other because they provide results at different levels vertically

along the development lifecycle.

“They definitely complement each other. The mi-

croservice level is for, we kind of think of things

as first degree dependencies or third degree depen-

dencies. If my microservice is pulling this in and

I’m not getting it from platform, then I’m the one

who’s responsible for monitoring its security. And

so for that reason, we need to have that microser-

vice view.” - P09

However, another participant pointed out that integrating

multiple tools into their software pipeline can be a huge chal-

lenge. Differences in tools require additional wrappers or

scripts to connect the tools, and with it comes additional effort

required for the maintenance of the entire pipeline. “Integra-

tion is near impossible. [. . .] They pretty much built every

SCA tool at the time of the market and they spent millions to

build a Frankenstein monster to connect all of those SCAs

together.” (P08) Even with integration, the upkeep of the tool

could be a huge cost.

“SCA, what it’s detecting is the ecosystem, the Java

ecosystem, the Node ecosystem, those continuously

change. [. . .] new build tools could vary. And there

are also multiple new build tools coming on the

market. If your SCA tool doesn’t support those build

tools, you’re screwed. So, the upkeep of that tool

is basically, it’s not sustainable or maintainable.”

- P08

Summary: SCA Integration. SCA tools are most often

integrated into build pipelines and run on pull requests.

While CI integration automates SCA scans and catches

vulnerabilities, it can also block development pipelines.

Huge efforts are needed if trying to integrate multiple SCA

tools together.

4.3 SCA Tool Report

The third main topic discussed in our interviews relates to

actions after running the SCA scan. We wanted to understand

how the outputs are interpreted and processed, and further,

how the vulnerability alerts are resolved. In this subsection,

we discuss: (1) how SCA tool outputs are interpreted, (2) how

vulnerabilities are fixed, (3) false positives, and (4) tooling

around the SCA outputs.

4.3.1 Interpreting vulnerability reports

The majority of of our participants have a role title related

to security. Part of the workload for these participants was

to focus on the SCA process and outputs. These security

engineers reach out to the engineers who wrote the code

to discuss a solution for vulnerability alerts. “Tickets” are

commonly used by security engineers to relay this information

to engineers. “I will look at the findings from the SCA tool

and triage them and determine which ones need to be tickets

that would then go to the engineering team for remediation.”

(P06)

The number of SCA alerts can initially be overwhelming.

Most (15) participants mentioned prioritizing alerts based on

severity. Severity is either CVSS score or a metric specific to

the SCA tool. Other mentioned prioritization methods include:

(a) the time required to fix the vulnerability and (b) whether

the application is of importance. After initial prioritization,

participants evaluate the risk and impact of the vulnerability.

Various factors come into play, including: (a) whether the

vulnerability is exploitable and (b) whether the application is

external facing or behind a firewall. This evaluation process

requires more context and thus security engineers often have

to review each vulnerability manually.

“Ideally as a security team, we know what the prod-

uct is. So you’d be able to tell, like, if you see a

UI, you know, hopefully you might be able to tell

like which feature it might be in [. . .] Then maybe,

you know, which feature that would go in and that

would help you determine, you know, how impactful

that specific vulnerability might be.” - P06

Many (8) participants explicitly expressed the need for ad-

ditional context in vulnerability alerts. One participant gave

an example of how additional context greatly helps with de-

termining how to resolve vulnerability alerts from the tool.

“After getting all the vulnerabilities. [. . .] you will get one

alert from SCA tool and one from SAST, one more from AWS

or Infraside. This tool will combine three of those outputs and

tell you if these three can be combined, become exploitable

thing or not.” (P13)

One participant noted that sometimes not being able to

explain the results from the tool can be a challenge. “I really

want to verify because if, when I’m talking to lawyers, I want

to be able to explain like, this decision was made and this is

why.” (P12)

4.3.2 Fixing vulnerabilities

Updating a library to a newer, non-vulnerable version is the

most common method of resolving a vulnerability, as men-

tioned by the majority of (13) participants. However, partici-

pants also run into cases where updating the library can cause

compatibility issues within their application. Many (8) of the

participants reported that sometimes updating dependencies

would introduce breaking changes into the application. “Let’s

just bump it up. So it goes away, and I hope that nothing

happens. But there is on occasion, that you would introduce a

breaking change if you were to up the version.” (P06) When

a simple solution does not exist, more investigation is needed

to come up with a fix for the vulnerability. Sometimes, it re-

quired a great amount of additional effort, as explained by

one of the participants. “It was going to be very, very time

intensive to do a rip and replace. So instead, we forked it and

we took out the vulnerable pieces. So our fork didn’t have

the vulnerability. [. . .] we took that class out or we took that

method out.” (P09)

Exceptions: Some (4) participants explicitly mentioned that

they had an exceptions process in place for resolving vulner-

abilities. In the exceptions process, the engineer manually

reviews the vulnerability and provide reasons why the vulner-

ability does not need to be removed. Examples of an excep-

tions include: (a) the vulnerability does not impact application

(considered a false positive) and (b) the business risk from

removing the vulnerability does not outweigh the security risk

it brings.

“This thing needs to ship or we don’t make money.

Can we get a security exception? [. . .] you have

to weigh what’s the security risk versus what’s the

business risk. And at some point, it’s a choice be-

tween the business going belly up and potentially

getting breached. That’s a call that upper manage-

ment has to make.” - P10

Isolating vulnerable components: Participants also men-

tioned isolating the vulnerable component. Oftentimes, re-

moving network connections to a component eliminates risk,

because no external input can exploit the vulnerability. “Most

security vulnerabilities, the risk of that can be negated if you

basically just make sure that it doesn’t have a connection to

the internet.” (P08) By isolating the component, the risk of

the vulnerability reduces to an amount that is small enough to

be accepted. This is not the ideal solution but can be used as

a last resort. “There have been cases where we might accept

risk of a vulnerability, but only for a certain amount of time.

[. . .] and what you would do is you would do a limited release,

but you would say, okay, you need to add these firewall rules

so this vulnerability can’t be exploited.” (P09) One participant

explains that there are times when a non-vulnerable alterna-

tive is not available, thus the only choice is to make sure the

component is not exposed. “We’ve got some suppliers that

supply industry. They are the only choice through the dom-

inant force. It’s basically you’ve got a choice of either you

work with them or you don’t have a product in that area.”

(P11)

4.3.3 False positives

In our study, we consider a false positive to be an SCA

vulnerability alert where the vulnerability does not impact the

software. False positives are a big concern for SCA users, a

topic discussed by all except one participant (15). One par-

ticipant explicitly stated false positives as the reason they

switched from on SCA tool to another. “[T03 (OsT)] throws

a lot of false positives. That’s the main reason that we adopted

the commercial tool” (P02) The reasons for false positives

differ. One reason mentioned was test or build dependencies.

“Some of it was just like the tool couldn’t ignore test depen-

dencies.” (P03)

While impact could be defined differently for different

engineers, almost all the participants agree that a lot of the

SCA vulnerability alerts do not pose a direct threat or impact

to their application. “I do think that many SCA findings do not

present an actual risk to an application.” (P06) Determining

the actual impact of the vulnerability requires experience and

knowledge about the vulnerability and the application itself.

This process is not easily automated and requires manual

effort. Often, the security team and the engineering team

need to work together to determine whether an alert is a false

positive. “[security team] they’re the ones responsible for like

investigating a CVE [. . .] And working with the development

teams to answer: Is this a false positive? Is it a true positive?”

(P10)

An approach to combat false positives mentioned by one of

the participants was to include library maintainer insight into

the vulnerability alerts, as library maintainers are the ones

most familiar with the code in the library. “Those maintainers

give reports about CVEs on their projects. So they, the main-

tainer can tell [. . .] that a certain CVE is a false positive. And

so we can surface that to our customers.” (P04)

4.3.4 Tooling and automation around SCA output

As discussed in Section 4.3.1, additional manual effort is of-

ten needed after receiving SCA reports. Some (4) participants

shared how they built automation and tooling around the SCA

tool to reduce the effort needed to review vulnerabilities. One

of the main advantages mentioned was the tooling reduced

efforts to fix the same issues over and over. The tooling would

be able to resolve previously fixed vulnerabilities. If a single

vulnerability affected multiple applications, the tooling would

also link all the results to a single result, which eliminates the

need to fix duplicate issues.
“With earlier tooling, each software component that

used a fundamental library like Spring Framework

would have had an individual ticket for a criti-

cal vulnerability, but because they ingested it from

a base image, absent forking, they could not di-

rectly remediate the issue themselves. We [. . .] have

[evolved] the automation [to] find the root cause

[. . .], which component or project is initially bring-

ing this in. And then, everybody who’s getting it

transitively, they still have a ticket, but their ticket

will link to the root cause.” - P09
The tooling sometimes also learns from past feedback and

experiences from the user and applies that on newly found vul-

nerabilities. This capability eliminates the need for engineers

to re-evaluate the same issues.
“We build tooling around it that interprets the results

[. . .] lets us mark it in version 1 that says this isn’t

applicable because it doesn’t apply to our architec-

ture. And then on version 2 of the product, when

we scan it with T05 and get the same finding, the

past triage [. . .] is automatically applied to it [. . .]

it basically carries forward the learnings and the

scorings from past investigations into vulnerabil-

ities and applies those to the same thing for the

same code base for later versions of it.” - P11

Unknowns in how an SCA tool worked also presented

challenges for users. For example, debugging issues with a

tool requires knowledge of how a tool works. Without an

understanding of how SCA tools run, users are not able to fix

issues encountered when using the tool. A few participants

discussed unknowns in the tool as a challenge. “There were a

lot of unknowns in how the product worked. And so we would

use it a certain way and then it might crash, or it couldn’t

handle the number of scans.” (P03)

Different approaches between small and large organiza-

tions: We observed different approaches of interpreting and

acting on SCA results between small and large organizations.

Larger organizations have a larger workforce, thus they can

allocate more effort into specifically building and maintaining

a tool around the SCA process that tailors to their pipelines.

“My team develops the security automation tools. And then

we have a security team who’s a little bit more of the higher

level of security. And they’re the ones responsible for like in-

vestigating a CVE.” (P10) Smaller companies are not able to

do this and the developers often have to take care of the SCA

process from start to finish. There is also less testing in place

to catch issues with updating library versions. “I think many

companies don’t have that maturity in their end in testing.

And so, you know, this, it’s risky to say, okay, let’s bump up

this JavaScript library up to here and hope everything works

out.” (P06)

Summary: SCA Reports. False positives from the tools are

common, and users are not able to determine the impact

of the alert solely from the tool reports. Manual effort is

needed to gather additional context relating to the vulner-

ability and assess the impact of it. In an effort to reduce

manual labor, organizations are also spending additional

effort developing tooling around SCA tools to manage the

large number of vulnerability alerts. Sometimes fixing the

alerts is simple as updating the library version. Other times,

additional effort is required to propose a solution that does

not break the application and fixes the vulnerability. Re-

solving vulnerabilities differs case by case.

4.4 Developer Opinions

In our interviews, we also gave participants the opportunity

to voice their opinions about SCA tools and vulnerability data

in general. In this subsection, we discuss several opinions

from participants.

False sense of security: Some (3) participants reported that

SCA can only identify known vulnerabilities and can give

you a false sense of security. Running an SCA scan can give

the impression that the tool will report all vulnerabilities.

However, there could be existing vulnerabilities that have yet

to be reported publicly, those vulnerabilities can pose a huge

risk to organizations. “SCA scans are great at pointing out

vulnerabilities that people have already found, but they’re

not going to help you with vulnerabilities that people haven’t

found. [. . .] But it’s the threats that you can’t see that will kill

you.” (P10)

CVE data: Some (3) participants expressed their opinions

on how CVEs are reported and managed. They expressed

concern over the large number of CVEs and the need for better

CVE standards. As discussed in Section 2, CVE data does not

have specific requirements other than the ID, description, and

references. “There are just so many CVEs being submitted all

at once that there’s just no way to properly govern them all.

[. . .] I’m exaggerating, but you can submit like a children’s

novel and get published as a CVE. I think that the standard for

submitting a CVE can definitely go up, can definitely improve.”

(P06) A participant pointed out that the metrics used to convey

vulnerability severity can be misleading. “[CVSS score] is a

big lie, in my opinion. CVSS scores. The people who report it

to NVD, they try to inflate it most of the time. So it’s not at all

helpful.” (P13)

4.5 Improvements for SCA

In the last topic of our interviews, we asked participants

what kind of improvements they would like to see.

Context: The most commonly discussed improvement was

additional context for more actionable actions for SCA users,

as discussed in Section 4.3.1. One participant proposed an ap-

proach that combines SCA, SAST, and infrastructure context.

This approach greatly helped them with resolving SCA alerts.

“SCA itself is not that useful since we do not have full picture.

So SCA combined with SAST is very helpful. And if you add

your infrastructure configuration context also, it becomes a

lot more helpful to prioritize things.” (P13) Some participants

also pointed out that LLMs could help by providing more

information on vulnerabilities.

Reachability: Reachability was another concept brought up

by about half (9) of participants. “A lot of these findings that

come from these SCA tools, are of, you know, functions that

don’t ever get called. And so therefore they don’t present any

risk, confirmed risk to the application.” (P06) In the case of

vulnerabilities and SCA, reachability is often used to analyze

whether a vulnerable function is called from the main appli-

cation. It can help by narrowing down vulnerability alerts to

the functions that are actually called. It is a fairly new ap-

proach adopted by some SCA tools, but some (4) participants

believe it can greatly improve to reduce efforts needed to man-

age alerts from SCA tools. “I think the reachability analysis

would be the biggest game changer that will come to SCA in

the next five years.” (P06)

User Feedback: Another potential improvement brought up

by some (3) participants was some kind of feature in the tool

that would receive user input and improve future results based

on that. The motivation comes from tool results being inaccu-

rate or irrelevant sometimes, and the user may want to override

results or teach the tool to make different determinations for

future results. This concept is similar to the motivation for

the additional tooling around an SCA tool discussed in Sec-

tion 4.3.4. “Having more intelligence to them where you can

better train them to say, hey, this isn’t an issue for us in this

context. So don’t flag this as an issue next time around. So

basically eliminate the need for some of the custom tooling

we’ve written.” (P11)

Better License Detection: SCA relating to managing licenses

was brought up by the majority of participants, as discussed

in Section 4.1. Some (3) participants explicitly expressed

opinions for better detection and management of licenses. One

participant provided some insight as to why license detection

can be a challenge. “For many licenses, there is a standard

way to basically say this file is under this particular license.

But there are lots of stubborn developers who are thinking

like, no, I’m going to do it in a different way because that’s

better. And then for the scanning tools, basically it causes

issues.” (P12)

New Metrics: Lastly, A few (2) participants expressed the

need for the tools to be more proactive to adapting new metrics

and having more support from the tool or the community

around the tool.

Summary: Improvements. Information in SCA alerts are

too generic for users and lack context. Participants wanted

more specific information on actions they can take and

insights into the impact of the vulnerability on their appli-

cation.

5 Discussion

In this section, we summarize our findings by (1) presenting

Figure 5, a revised version of Figure 1 that includes our find-

ings on how SCA is integrated into development pipelines and

(2) answering our research questions and discuss how each

finding relate to our main finding: context matters. More

context is needed throughout the SCA process to stream-

line vulnerability management. We identified three emergent

themes through which context matters:

• T1: More information is needed to evaluate the risk and

impact of the vulnerability alert.

• T2: When and how the SCA scan runs in the develop-

ment cycle matter.

• T3: Integration of SCA and communication of the results

More context needed for vulnerability alerts (T1): A com-

mon complaint from participants was the lack of context

within vulnerability alerts. SCA tools output all vulnerabili-

ties found in libraries used in the application, regardless of

how the library is used. Participants mentioned that the vul-

nerability often does not affect their use case. Furthermore,

the alerts are often generic and do not provide enough infor-

mation on how to resolve the vulnerability. Users often have

to find more information on the vulnerability to determine

how to resolve it.

Fixing SCA alerts at scale (T3): The number of SCA alerts

at a large organization overwhelms security engineers. As dis-

cussed in Section 4.3.4, large organizations invest significant

effort into building automated tooling around the SCA tool

outputs in order to manage them efficiently. Multiple SCA

alerts may be related to the same root cause. Rather than each

engineer resolving the alert individually, the tooling elimi-

nates duplicate efforts. The automated tooling relays context

along the SCA process, but at a large maintenance cost for

organizations. Challenges also arise between software ven-

dors, customers, or auditors when the different parties receive

different SCA results: “If your customer or an auditor is scan-

ning with a different tool, they might get different results. And

the results might be not just the library of the CVE, but the

severity can differ.” (P09)

5.3 Improvements for the SCA process

Answering RQ4: How can the SCA process be improved?

Based on previous discussion and results, we suggest several

approaches for stakeholders to address the lack of context

throughout the SCA process.

Tool users: For SCA users, finding a tool that fits well into

the engineering teams’ software pipeline is beneficial (T2).

No tool is perfect, and understanding the strengths and weak-

nesses of each tool helps with tool selection. As discussed in

Section 4.2.3, SCA tools can perform differently for different

languages. Some tools require access to source code or bi-

naries, others only require metadata; this could be a concern

for companies that value the confidentiality of their source

code. Different tools may also have different integration meth-

ods into the software development pipeline. These should be

taken into account when selecting SCA tools. Furthermore,

not everything in the SCA process is currently automatable.

Resolving vulnerabilities often requires multiple teams to

work together. Understanding the tool and having clear com-

munication between engineering teams will make the process

smoother (T3).

Tool vendors: For SCA vendors, more information about

vulnerability alerts is greatly needed (T1). SCA users often

require in extra manual effort to determine how to resolve the

alerts. Providing less generic information, and more informa-

tion specific to the users’ use case can reduce this effort, this

could include the following information:

• Function reachability: Considering how the vulnerable

dependency is used within the application and whether

the vulnerable function is reachable through call graphs

would help filter out unreachable vulnerabilities and re-

duce false positives, as discussed in Section 4.5.

• Infrastructure: Different applications are set up differ-

ently. Understanding the infrastructure underlying the

application and how the application interacts with users

and other applications will help identify how data is

passed through the application, addressing Section 4.3.1

and 4.5.

• Network configurations: As discussed in Section 4.3.1

and 4.3.2, vulnerabilities are often exploited through un-

trusted data input. Some applications sit behind a firewall

that protects it from untrusted data, hence the applica-

tion would not be vulnerable to attacks through untrusted

input data.

• Exploitability: Combining the points listed above with

SAST capabilities and providing information such as

data flow analysis or sanitization will provide developers

with a bigger picture (Section 4.3.1), with which they

can make better decisions to determine the exploitabil-

ity of a vulnerability. SCA vendors could also consider

adding LLM inference to combine all the information

gathered to provide SCA users with a clear suggestion

on resolving the vulnerability.

Furthermore, participants also desired a feature that allows

users to train the tool or provide feedback on results. SCA

tools can also be improved to address process overhead (T3).

For example, participants created custom tooling around SCA

tools. Vendors should consider how to make SCA platforms

more customizable to different pipelines.

Researchers: We encourage researchers to investigate tech-

niques to (a) provide more context about the vulnerability and

its impact and (b) reduce false positives (T1). As we discussed

in Section 4.5, participants mentioned alerts from SCA tools

being too generic. Techniques such as debloating and reacha-

bility have potential to identify if a vulnerability impacts an

application. Research on how to assist SCA tool vendors in

providing better quality data for the four types of information

mentioned can help provide better context. Research on how

to use LLMs to reduce manual effort of interpreting SCA

results would be beneficial. LLMs could be used to (1) com-

bine the four types of information to determine vulnerability

impact and (2) provide users with fix suggestions.

6 Conclusion

To understand the use of SCA tools and challenges that

come with it, we conducted 20 semi-structured interviews

with industry professionals with SCA experience. The inter-

views uncovered challenges with integrating the tools and

challenges with resolving the vulnerabilities outputted by the

tools. We found that throughout the SCA process context

matters and that the lack of it creates challenges for the users.

Acknowledgments

This work was supported in part by the National Science

Foundation grant CNS-2207008. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of the funding agencies. We thank our participants

for participating in the study, sharing their experiences, and

providing valuable input. We also thank all the anonymous

reviewers and shepherds for their thoughtful comments and

feedback.

Ethics Considerations

We structured our interview study to follow the ethical

principles outlined in the Menlo report. Prior to conduct-

ing interviews, we obtained approval for our study setup by

our university’s Institutional Review Board (IRB). We pro-

vided all invited participants with detailed information on

our study’s goals, methods, and data handling strategies. We

sent out a consent form to inform each participant of study

details, how their data will be handled, and their freedom to

skip any question or withdraw from the interview at any time.

Before each interview, we obtained informed consent from

each participant and encouraged invited participants to bring

up any questions or concerns they have and addressed their

concerns.

All data was collected and stored according to our IRB

guidelines and GDPR. All authors went through IRB training

for data handling. Participant data, interview recordings and

transcripts were stored locally in an encrypted volume. Audio

recordings of the interviews were turned into pseudonymized

/ redacted transcripts using a locally-run OpenAI whisper

machine learning model and recordings were deleted after

transcription.

We informed the participants of the risk in participating in

our research in our consent form. The primary risk in our study

is reputational damage to the participant or their organization

when describing their security practices. To prevent damage,

we stored identifiable data in encrypted volumes and removed

all identifiers in publicly available data. As compensation

for sharing their experiences and valuable time for 45 to 60

minutes, we offered each participant $60 or the equivalent

value in Amazon.com vouchers. The benefit of our study is

motivation for stakeholders to improve the SCA process. We

weighed the risks and benefits of our study and believe that

the benefits outweighed the risks.

Open Science

We acknowledge the USENIX Security open science policy.

The research artifacts associated with this study are:

• Raw interview transcripts

• Anonymized interview transcripts

• Interview guide

• Codebook

Things we have shared: The interview guide is an important

part of the design of our interview study, which is included in

Appendix A. We also share the codebook, with codes and ex-

ample subcodes, in Appendix B. We discuss identified major

themes in Section 5. We have also shared an online replica-

tion package including (1) the consent form, (2) the interview

guide, and (3) the codebook. The replication package can be

found at https://doi.org/10.5281/zenodo.15537121.

Things we cannot share: We cannot share recordings as

these were destroyed after transcription. For the privacy of the

participants and compliance with IRB, we cannot share raw

transcripts. We are also unwilling to share the anonymized

transcripts as there is a high risk of de-anonymizing the partic-

ipants given the large amount of discussion in the interviews.

References

[1] 2024 Open Source Security and Risk Analysis Re-

port, https://www.blackduck.com/resources/

analyst-reports/open-source-security-risk-

analysis.html, 2024.

[2] M. Alfadel, D. E. Costa, and E. Shihab, “Empirical

analysis of security vulnerabilities in python pack-

ages,” Empirical Software Engineering, vol. 28, no. 3,

p. 59, 2023.

[3] A. S. Ami, K. Moran, D. Poshyvanyk, and A. Nadkarni,

““False negative - that one is going to kill you”: Under-

standing Industry Perspectives of Static Analysis based

Security Testing,” 2024 IEEE Symposium on Security

and Privacy, 2024.

[4] A. Anwar, A. Abusnaina, S. Chen, F. Li, and D. Mo-

haisen, “Cleaning the NVD: Comprehensive quality

assessment, improvements, and analyses,” IEEE Trans-

actions on Dependable and Secure Computing, vol. 19,

no. 6, pp. 4255–4269, 2021.

[5] H. Assal and S. Chiasson, “Security in the software

development lifecycle,” in Fourteenth symposium on

usable privacy and security (SOUPS 2018), 2018,

pp. 281–296.

[6] H. Assal and S. Chiasson, “’Think secure from the

beginning’ A Survey with Software Developers,” in

Proceedings of the 2019 CHI conference on human

factors in computing systems, 2019, pp. 1–13.

[7] M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan,

“The Menlo Report,” IEEE Security & Privacy, vol. 10,

no. 2, pp. 71–75, 2012.

[8] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber,

L. A. Takayama, and M. Prabaker, “Field studies of

computer system administrators: analysis of system

management tools and practices,” in Proceedings of

the 2004 ACM conference on Computer supported co-

operative work, 2004, pp. 388–395.

[9] G. Bhandari, A. Naseer, and L. Moonen, “CVEfixes:

automated collection of vulnerabilities and their fixes

from open-source software,” in Proceedings of the 17th

International Conference on Predictive Models and

Data Analytics in Software Engineering, 2021, pp. 30–

39.

[10] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung,

“When and how to make breaking changes: Policies

and practices in 18 open source software ecosys-

tems,” ACM Transactions on Software Engineering

and Methodology (TOSEM), vol. 30, no. 4, pp. 1–56,

2021.

[11] V. Braun and V. Clarke, “Using thematic analysis in

psychology,” Qualitative research in psychology, vol. 3,

no. 2, pp. 77–101, 2006.

[12] CVE Metrics, https : / / www . cve . org / about /

Metrics.

[13] A. Dann, H. Plate, B. Hermann, S. E. Ponta, and E.

Bodden, “Identifying challenges for oss vulnerability

scanners-a study & test suite,” IEEE Transactions on

Software Engineering, vol. 48, no. 9, pp. 3613–3625,

2021.

[14] J. Dietrich, S. Rasheed, A. Jordan, and T. White, “On

the security blind spots of software composition analy-

sis,” in Proceedings of the 2024 Workshop on Software

Supply Chain Offensive Research and Ecosystem De-

fenses, 2023, pp. 77–87.

[15] T. Dunlap, E. Lin, W. Enck, and B. Reaves,

“VFCFinder: Seamlessly pairing security advisories

and patches,” arXiv preprint arXiv:2311.01532, 2023.

[16] EO 14144: Strengthening and Promoting Innova-

tion in the Nation’s Cybersecurity, https://www.

federalregister.gov/documents/2025/01/17/

2025 - 01470 / strengthening - and - promoting -

innovation- in- the- nations- cybersecurity,

2025.

[17] P. I. Fusch Ph D and L. R. Ness, “Are we there yet?

Data saturation in qualitative research,” The Qualita-

tive Report, vol. 20, no. 9, pp. 1408–1416, 2015.

[18] M. Gutfleisch, J. H. Klemmer, N. Busch, Y. Acar, M. A.

Sasse, and S. Fahl, “How Does Usable Security (Not)

End Up in Software Products? Results From a Quali-

tative Interview Study,” in 43rd IEEE Symposium on

Security and Privacy, IEEE S&P 2022, May 22-26,

2022, IEEE Computer Society, May 2022.

[19] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li,

and A. Bates, “Nodoze: Combatting threat alert fatigue

with automated provenance triage,” in network and

distributed systems security symposium, 2019.

[20] N. Imtiaz, A. Khanom, and L. Williams, “Open or

sneaky? fast or slow? light or heavy?: Investigating

security releases of open source packages,” IEEE

Transactions on Software Engineering, vol. 49, no. 4,

pp. 1540–1560, 2022.

[21] N. Imtiaz, S. Thorn, and L. Williams, “A compara-

tive study of vulnerability reporting by software com-

position analysis tools,” in Proceedings of the 15th

ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM), 2021,

pp. 1–11.

[22] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge,

“Why don’t software developers use static analysis

tools to find bugs?” In 35th IEEE/ACM International

Conference on Software Engineering (ICSE’13), IEEE,

IEEE, 2013, pp. 672–681.

[23] A. Krause, H. Kaur, J. H. Klemmer, O. Wiese, and S.

Fahl, ““That’s my perspective from 30 years of doing

this”: An Interview Study on Practices, Experiences,

and Challenges of Updating Cryptographic Code,”

[24] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. In-

oue, “Do developers update their library dependencies?

An empirical study on the impact of security advisories

on library migration,” Empirical Software Engineering,

vol. 23, pp. 384–417, 2018.

[25] V. B. Livshits and M. S. Lam, “Finding Security Vul-

nerabilities in Java Applications with Static Analysis.,”

in USENIX security symposium, vol. 14, 2005, pp. 18–

18.

[26] Log4j - CVE-2021-44228, https://nvd.nist.gov/

vuln/detail/cve-2021-44228.

[27] N. McDonald, S. Schoenebeck, and A. Forte, “Relia-

bility and inter-rater reliability in qualitative research:

Norms and guidelines for CSCW and HCI practice,”

Proceedings of the ACM on human-computer interac-

tion, vol. 3, no. CSCW, pp. 1–23, 2019.

[28] S. Mirhosseini and C. Parnin, “Can automated pull

requests encourage software developers to upgrade

out-of-date dependencies?” In 2017 32nd IEEE/ACM

international conference on automated software engi-

neering (ASE), IEEE, 2017, pp. 84–94.

[29] J. Musseau, J. S. Meyers, G. P. Sieniawski, C. A.

Thompson, and D. German, “Is open source eating the

world’s software? measuring the proportion of open

source in proprietary software using Java binaries,” in

Proceedings of the 19th International Conference on

Mining Software Repositories, 2022, pp. 561–565.

[30] National Vulnerability Database: Opaque changes

and unanswered questions, https : / / anchore .

com/blog/national-vulnerability-database-

opaque-changes-and-unanswered-questions/.

[31] S. Nocera, S. Vegas, G. Scanniello, and N. Juristo,

“Software Composition Analysis and Supply Chain Se-

curity in Apache Projects: an Empirical Study,” 2025.

[32] P. Ombredanne, “Free and open source software license

compliance: Tools for software composition analysis,”

Computer, vol. 53, no. 10, pp. 105–109, 2020.

[33] H. Orsila, J. Geldenhuys, A. Ruokonen, and I. Ham-

mouda, “Trust issues in open source software develop-

ment,” Jan. 2009.

[34] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and

F. Massacci, “Vulnerable open source dependencies:

Counting those that matter,” in Proceedings of the 12th

ACM/IEEE international symposium on empirical soft-

ware engineering and measurement, 2018, pp. 1–10.

[35] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and

F. Massacci, “Vuln4real: A methodology for counting

actually vulnerable dependencies,” IEEE Transactions

on Software Engineering, vol. 48, no. 5, pp. 1592–1609,

2020.

[36] I. Pashchenko, D.-L. Vu, and F. Massacci, “A quali-

tative study of dependency management and its secu-

rity implications,” in Proceedings of the 2020 ACM

SIGSAC conference on computer and communications

security, 2020, pp. 1513–1531.

[37] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assess-

ment for vulnerabilities in open-source software li-

braries,” in 2015 IEEE International Conference on

Software Maintenance and Evolution (ICSME), IEEE,

2015, pp. 411–420.

[38] S. E. Ponta, H. Plate, and A. Sabetta, “Beyond meta-

data: Code-centric and usage-based analysis of known

vulnerabilities in open-source software,” in 2018 IEEE

International Conference on Software Maintenance

and Evolution (ICSME), IEEE, 2018, pp. 449–460.

[39] S. Reis and R. Abreu, “A ground-truth dataset of real

security patches,” arXiv preprint arXiv:2110.09635,

2021.

[40] K. Scarfone and P. Mell, “An analysis of CVSS ver-

sion 2 vulnerability scoring,” in 2009 3rd International

Symposium on Empirical Software Engineering and

Measurement, IEEE, 2009, pp. 516–525.

[41] P. Sharma, Z. Shi, Ş. Şimşek, D. Starobinski, and D. S.

Medina, “Understanding Similarities and Differences

Between Software Composition Analysis Tools,” IEEE

Security & Privacy, 2024.

[42] S. de Smale, R. van Dijk, X. Bouwman, J. van der Ham,

and M. van Eeten, “No one drinks from the firehose:

How organizations filter and prioritize vulnerability

information,” in 2023 IEEE Symposium on Security

and Privacy (SP), IEEE, 2023, pp. 1980–1996.

[43] J. Spring, E. Hatleback, A. Householder, A. Manion,

and D. Shick, “Time to Change the CVSS?” IEEE

Security & Privacy, vol. 19, no. 2, pp. 74–78, 2021.

[44] B. Stanton, M. F. Theofanos, S. S. Prettyman, and S.

Furman, “Security fatigue,” It Professional, vol. 18,

no. 5, pp. 26–32, 2016.

[45] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Red-

miles, “Social Barriers Faced by Newcomers Plac-

ing Their First Contribution in Open Source Software

Projects,” in Proceedings of the 18th ACM Conference

on Computer Supported Cooperative Work & Social

Computing, ser. CSCW ’15, Vancouver, BC, Canada:

Association for Computing Machinery, 2015, pp. 1379–

1392.

[46] K.-J. Stol, M. A. Babar, P. Avgeriou, and B. Fitzger-

ald, “A comparative study of challenges in integrating

open source software and inner source software,” In-

formation and Software Technology, vol. 53, no. 12,

pp. 1319–1336, 2011.

[47] The gift that keeps on giving: A new opportunis-

tic Log4j campaign, https : / / securitylabs .

datadoghq . com / articles / the - gift - that -

keeps - on - giving - a - new - opportunistic -

log4j-campaign/, 2024.

[48] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C.

Gall, and A. Zaidman, “How developers engage with

static analysis tools in different contexts,” Empirical

Software Engineering, vol. 25, pp. 1419–1457, 2020.

[49] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng,

Y. Wu, and Y. Liu, “An empirical study of usages, up-

dates and risks of third-party libraries in java projects,”

in 2020 IEEE International Conference on Software

Maintenance and Evolution (ICSME), IEEE, 2020,

pp. 35–45.

[50] D. Wermke, J. H. Klemmer, N. Wöhler, J. Schmüser,

H. S. Ramulu, Y. Acar, and S. Fahl, ““Always Con-

tribute Back”: A Qualitative Study on Security Chal-

lenges of the Open Source Supply Chain,” in 44th IEEE

Symposium on Security and Privacy (S&P’23), IEEE,

May 2023, pp. 1545–1560.

[51] D. Wermke, N. Wöhler, J. H. Klemmer, M. Fourné,

Y. Acar, and S. Fahl, “Committed to Trust: A Qualita-

tive Study on Security & Trust in Open Source Soft-

ware Projects,” in 43rd IEEE Symposium on Security

and Privacy, IEEE S&P 2022, May 22-26, 2022, IEEE,

IEEE Computer Society, May 2022, pp. 1880–1896.

[52] Y. Wu, Z. Yu, M. Wen, Q. Li, D. Zou, and H. Jin, “Un-

derstanding the threats of upstream vulnerabilities to

downstream projects in the maven ecosystem,” in 2023

IEEE/ACM 45th International Conference on Software

Engineering (ICSE), IEEE, 2023, pp. 1046–1058.

[53] J. Wunder, A. Kurtz, C. Eichenmüller, F. Gassmann,

and Z. Benenson, “Shedding light on CVSS scoring

inconsistencies: A user-centric study on evaluating

widespread security vulnerabilities,” in 2024 IEEE

Symposium on Security and Privacy (SP), IEEE, 2024,

pp. 1102–1121.

[54] A. Zerouali, T. Mens, A. Decan, and C. De Roover, “On

the impact of security vulnerabilities in the npm and

RubyGems dependency networks,” Empirical Software

Engineering, vol. 27, no. 5, p. 107, 2022.

[55] L. Zhao, S. Chen, Z. Xu, C. Liu, L. Zhang, J. Wu, J. Sun,

and Y. Liu, “Software composition analysis for vulner-

ability detection: An empirical study on Java projects,”

in Proceedings of the 31st ACM Joint European Soft-

ware Engineering Conference and Symposium on the

Foundations of Software Engineering, 2023, pp. 960–

972.

[56] S. Zhou, B. Vasilescu, and C. Kästner, “How has fork-

ing changed in the last 20 years? a study of hard forks

on github,” in Proceedings of the ACM/IEEE 42nd In-

ternational Conference on Software Engineering, 2020,

pp. 445–456.

[57] M. Zimmermann, C.-A. Staicu, C. Tenny, and M.

Pradel, “Small world with high risks: A study of secu-

rity threats in the npm ecosystem,” in 28th USENIX

Security symposium (USENIX security 19), 2019,

pp. 995–1010.

A Interview Guide

S1 Participant Demographics

Can you tell us a little about the organization you are part of

and your role?

S2 SCA Demographics

Main question: Can you briefly explain your experience with

using SCA tools?

• What SCA tools are used in your workflow?

• What is the goal for using the SCA tool?

• How was the decision to pick this SCA tool made?

• If SCA tools are used in your organization: What kind

of projects integrate SCA tools?

– What projects do not integrate SCA tools?

– What is the reason for not using SCA tools?

• Do you run SCA on source code or binaries?

S3 SCA tool process

Main question: Could you give us an example of how you use

[SCA tool] in a project?

• How is [SCA tool] integrated into the SDLC?

• At which point of the SDLC is [SCA tool] triggered to

run?

• How often are they triggered?

• What applications do you run [SCA tool] on? (web appli-

cation, container images, directories, gh repos, microser-

vices etc?)

• Is there a policy or standardized process at your organi-

zation that governs how you work with [SCA tool]?

• What are some challenges you have run into when run-

ning the tools?

• From your experience, do the tools perform better at

certain programming languages or ecosystems?

S4 SCA tool report

Main question: Can you take us through a typical workflow

for interpreting the output / report from [SCA tool]?

• What follows after receiving the output / report from

[SCA tool]?

– Is there an automation process for managing the

SCA outputs?

• What do you look for when interpreting the output /

report?

• How are warnings / alerts from the SCA tool resolved?

– How is the decision on whether or not to resolve it

made?

– Who makes the call: developer / security engineer?

– What is the relationship between developer / secu-

rity engineer?

– What factors affect the decision to resolve or accept

risk?

• How are the warnings / alerts fixed?

– Do you run into compatibility issues when updat-

ing dependencies?

• Is there a process for prioritizing the SCA alerts?

• What are some challenges when interpreting the output /

report from [SCA tool]?

– Have you run into FP / FN from [SCA tool]?

– Can you walk us through how you would handle

FP / FN?

S5 SCA tool features

• What are existing [SCA tool] features you think have

been useful?

• What measures / signals / indicators from the tool have

been useful?

• Do you make modifications/patches to [SCA tool]?

– Can you describe how the modification/patch pro-

cess works?

• What other features / measures do you wish were avail-

able in [SCA tool]?

– Do you think reachability information would be

useful?

S6 Participant opinion

• What is your opinion on SCA tools?

• What do you think about different SCA tools and the

different results?

– Was this considered when choosing SCA tools?

• What other information on vulnerabilities and CVEs do

you wish are available?

• What do you think would help with SCA tools / vulnera-

ble components going forward?

• What is an ideal SCA tool in your opinion? Which fea-

tures do you value most?

• Anything relevant to the topic we haven’t discussed but

you want to mention?

B Codebook

1. Participant information

2. SCA tool usage

(a) SCA tool used

(b) Decisions on selection of SCA tool

e.g., tool output, easy to setup

i. switched tools

e.g., easy to deploy, scan requirements

(c) Goal of using tool

e.g., basic security, compliance audits

3. SCA tool integration / process

(a) Challenges / concerns

e.g., code privacy, unknowns in how tool worked

• SCA development

e.g., package manager changes, identifying li-

censes

(b) Integration

e.g., ide plugin, CI/CD pipeline

i. Type of application

ii. SCA tool run frequency

e.g., on code commit, every week

(c) Policies

(d) Modifications / patches to SCA tool

4. SCA tool report (output of the tool)

(a) Postprocess output / automation tooling

e.g., create ticket, resolve related vulnerability

alerts

(b) Resolving warnings / alerts

i. Decision on whether to resolve

ii. How to resolve

e.g., updating dependencies, exception, isolate

vulnerable component

iii. Time to resolve

(c) Prioritizing / interpreting alerts

e.g., severity, project importance

(d) FP / FN

i. determining if alert is TP / FP

e.g., manual review, developer decides

ii. reasons for FP

e.g., development dependencies, application

not exposed

5. SCA tool features

(a) Useful features

e.g., automatic pull request

(b) Less useful features / measures

6. Participant opinion

(a) Better SCA tools / vulnerability management

e.g., actionable findings, LLM inference

(b) Different SCA tools and different results

e.g., relevant results matter more, different results

can be frustrating

(c) Opinion on SCA tool

e.g., false sense of security

(d) Reachability

(e) Vulnerability data

e.g., CVEs need better standards

	Introduction
	Background and Related Work
	Methodology
	Study Setup
	Participant Recruitment
	Interview Procedure
	Coding and Analysis
	Limitations

	Results
	SCA Demographics
	Reason for using SCA tools
	Selecting SCA tools

	SCA Integration
	Input to SCA analyses
	SCA in the software development lifecycle
	Challenges when integrating SCA

	SCA Tool Report
	Interpreting vulnerability reports
	Fixing vulnerabilities
	False positives
	Tooling and automation around SCA output

	Developer Opinions
	Improvements for SCA

	Discussion
	Challenges with SCA Deployment
	Acting on SCA Results
	Improvements for the SCA process

	Conclusion
	Interview Guide
	Codebook

