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In the era of 5G and beyond, dynamic Time Division Duplex (TDD) has become essential for supporting

applications that demand high bandwidth and low latency. Emerging uplink-intensive use cases such as

real-time video analytics, autonomous vehicles and augmented reality further complicate the balance between

uplink and downlink resources. Despite their potential, TDD policies employed by current 5G networks remain

underexplored. Our investigation reveals that existing TDD policies are static and predominantly downlink-

focused, failing to adapt to �uctuating network demands. We introduce Wixor, a robust dynamic TDD policy

adaptation system tailored for 5G and next-generation (xG) networks. It proactively adjusts the allocation

of TDD resources between uplink and downlink, addressing various practical challenges. Prototyped on a

programmable testbed,Wixor demonstrates substantial performance improvements across diverse applications,

achieving up to 96.5% enhancement in Quality of Experience (QoE) compared to existing baselines.
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1 Introduction

5G NR heralds a new era of connectivity, promising unprecedented speeds and ultra-low latency.
These advancements are crucial for a wide range of applications, from immersive augmented
reality (AR) experiences [26, 28] and autonomous vehicles [51] to critical healthcare services [75]
and real-time video analytics [23, 53]. To meet the performance requirements of these emerging use
cases, more than 80% of the 5G operators have turned to Time Division Duplex (TDD) [11], whereas
previous technologies (e.g., LTE, 3G) mainly employed Frequency Division Duplex (FDD) [10].
TDD alternates uplink (UL) and downlink (DL) transmissions within the same frequency band
using time slots to enable �exible spectrum utilization and dynamic UL/DL resource allocation. To
accommodate di�erent tra�c patterns, 5G NR introduces dynamic TDD, where the base station
(BS) can dynamically change the distribution of UL and DL time slots, given a TDD policy [20].
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Although the 3GPP speci�cations cover the mechanism for dynamic TDD, they leave the actual
TDD policy implementation open for network operators.

While conceptually reasonable, it remains unclear whether dynamic TDD can ful�ll its prospects
in practice. To our knowledge, existing solutions focus on naive theoretical or simulation-driven
analysis [66, 67, 85] and niche prototype implementation [27]. They usually ignore the impact of
dynamic TDD on real-world applications’ Quality of Experience (QoE). Moreover, these studies fail
to consider the practical challenges in designing a dynamic TDD system capable of supporting a
large number of users, diverse channel conditions, and varying application workloads.
To this end, we conduct a timely measurement study of TDD policies employed by public 5G

networks and show their impact on the QoE of emerging applications (§3). We �nd that the BS
tra�c load �uctuates rapidly and traditional “static” TDD policies fall short in adapting to it. This
leads to suboptimal performance, particularly for latency-sensitive and UL-intensive applications.
Additionally, our investigation reveals that straightforward TDD policies (e.g., a reactive policy
that uses the past tra�c demand information to adjust UL and DL slot distribution) result in lost
performance compared to a proactive approach. Lastly, our experiments demonstrate that even the
arrangement of UL andDL time slots in a TDD policy has a non-trivial impact on the application QoE.
The goal of this work is to design a TDD policy that dynamically adjusts the distribution and

arrangement of UL and DL time slots for application QoE improvement without any QoE feedback
from the user entity (UE) or application server. This problem confronts several challenges. First,
the �exibility in de�ning TDD policies requires exploring numerous UL and DL slot arrangements,
making problem complexity a concern. Second, the rapidly �uctuating tra�c load and channel
conditions must be taken into consideration. Third, limited information about application QoE
goals implies the lack of a well-de�ned optimization objective. Furthermore, frequent TDD pol-
icy adjustments can interfere with transport-layer congestion control or application-layer rate
adaptation logic. Lastly, the inherent asymmetry between UL and DL transmission (§3.3), with UL
typically experiencing higher latency and lower throughput, further complicates optimization.
To address the above challenges, we present Wixor, a practical TDD policy adjustment system

for 5G (xG) radio access network (RAN). Our system performs TDD policy adjustment at the last
mile BSs including private 5G deployments.Wixor reduces the problem complexity by breaking
it down into two parts. First, it predicts the UL and DL slot distribution through a proactive

demand customization engine (§5).Wixor employs a learning-based approach in combination
with BS-level features to handle the highly complex environment and manage the asymmetry
between UL and DL transmissions. Second,Wixor �nds the best arrangement of UL and DL slots
given the slot distribution via a smart policy provision framework (§6). Due to the lack of QoE
information, our solution improves application performance indirectly by optimizing the radio
protocol layer Quality of Service (QoS) metrics. Further, it leverages a “conservative” TDD policy
smoothing technique to avoid abrupt policy changes, thus minimizing the interference with rate
adaptation modules. Our system is particularly useful for emerging private 5G (xG) applications
with stringent bandwidth and latency requirements – it o�ers con�gurable knobs to �ne-tune UL
versus DL priority, and strike a balance between network bandwidth and latency.

We prototypeWixor on a programmable testbed with an open-source 5G cellular suite [16] in
total 2.3K+ lines of code.Wixor is fully 3GPP-compliant, making it readily deployable for any public
or private 5G operator. We carry out comprehensive evaluations in di�erent settings (over-the-air
testbed, trace-driven simulations), with diverse channel traces (driving, walking, etc.), using real
application workloads (edge video analytics, live video conferencing, etc.), and several baselines
(e.g., a recently proposed dynamic TDD system [27]). We highlight experimental results as follows.
•We use a suite of six diverse apps to quantify QoE gains. Compared to baselines,Wixor improves
application QoE metrics by 2.5%-96.5%, or is within 91.6% of the best scheme (§8.2 & §8.3).
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Fig. 1. 5G frame structure and TDD pa�ern for numerology Ć=1

and transmission periodicity ă=2.5 ms. Each TDD pa�ern has 5

slots. S slots may contain DL, UL, and guard symbols. Fig. 2. Radio resource scheduling overview.

• Wixor is particularly useful under changing tra�c loads and �uctuating channel conditions. For
example, compared to the walking scenario, it o�ers 3.2% and 15.3% higher average throughput
and latency improvement for driving (§8.4).
• Wixor respects the radio network’s optimization objectives, is lightweight and scalable, works
well under advanced BS con�gurations, and operates close to the optimal solution (§8.4 & §8.5).

2 Background & Related Work

2.1 A Primer on 5G

5G Frame Structure. Unlike 4G LTE, 5G New Radio (NR) has a �exible numerology and frame
structure. In 5G, numerology (Ć ∈ [0, 4]) enables various subcarrier spacings to meet di�erent
service requirements. As illustrated in Fig. 1, the frame structure is hierarchical: a 10 ms radio
frame contains 10 sub-frames (1 ms each), and sub-frames are divided into 2` slots, with each slot
lasting 2−` ms. Each slot typically contains 14 OFDM symbols with a normal cyclic pre�x.
5G NR TDD. TDD allows UL and DL transmissions to share the same frequency band but separated
in time. In the US, 5G operators use TDD inMid-Band (1-6GHz) andmmWave (24-40GHz) frequen-
cies [6]. Our work focuses onMid-Band TDD, common in private 5G deployments [3], though it
can be applied to mmWave as well. 5G NR de�nes three types of TDD scheduling: (i) static TDD
with �xed UL/DL time slots; (ii) semi-static TDD, which adapts to tra�c patterns using higher-layer
Radio Resource Control (RRC) signaling; and (iii) dynamic TDD, the focus of our work, which
dynamically allocates UL and DL slots based on factors such as real-time tra�c load. This dynamic
TDD approach is generic, encompassing the static and semi-static methods as special cases.
TDD Policy. A TDD pattern de�nes the allocation of time slots and symbols (S&S) for UL and DL
transmissions within a radio frame, as shown in Fig. 1. Transmission periodicity ă refers to the
repetition interval of a TDD pattern, typically in milliseconds (ms). Depending on Ć, each TDD
pattern consists ofĐB = 2` ·ă slots. Note that ă , and thus,ĐB can change over time for a BS. A crucial
element in TDD is the guard period, which prevents interference between UL and DL transmissions
and accounts for propagation delays [29]. In 5G TDD nomenclature, a “TDD policy” refers to the
arrangement of S&Ss within a TDD pattern. The BS uses these S&S for UL/DL (data and control)
transmissions and guard periods. This paper aims to �nd an arrangement of UL and DL S&Ss (TDD
policy) that optimizes our objectives.While 3GPP speci�cations provide signaling mechanisms to
inform UEs about S&S allocation, the actual TDD policy algorithm remains open-ended.
TDDResource Scheduling. Fig. 2 provides an overview of the TDD resource scheduling procedure.
For the DL channel, UEs measure Signal-to-Interference-plus-Noise Ratio (SINR) and report Channel
Quality Indicator (CQI) values to the BS, while the BS directly measures each UE’s UL CQI. DL
data arrives in the Radio Link Control (RLC) per-UE queues, and UEs send periodic Bu�er Status
Reports (BSRs) to inform the BS about the remaining UL data. Based on the TDD policy, CQI,
and outstanding data in UL and DL queues, the TDD MAC scheduler allocates OFDM symbols
among active UEs. Additionally, the scheduler uses CQI to determine the modulation and coding
scheme (MCS) which then determines the Transport Block Size (TBS) or data rate of the UE.
Tra�c load versus BS throughput. The literature de�nes a BS’s tra�c load in various ways, such
as the number of active UEs connected to the BS [74], the utilization of available radio resources [59],
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or the total volume of UL and DL data waiting to be processed [56]. We adopt the last de�nition as
it represents the actual data the BS needs to process. The BS throughput, however, refers to the
amount of data being transmitted (DL) and received (UL) by the BS at any given time.

2.2 Related Work

Dynamic TDD Schemes. Several past works propose dynamic TDD schemes for 5G/LTE net-
works [27, 31, 32, 35, 63, 69, 72, 73, 82]. DRP [27], a deep reinforcement learning-based scheme is the
closest to our work. DRP uses BSRs and DL bu�er size to derive the optimal TDD pattern. However,
DRP has limited practical applicability due to its lack of consideration of (i) the space-time dynamics
of a wireless channel, (ii) diverse QoS/QoE requirements for di�erent users, (iii) scalability issues as
it uses per-UE features, and (iv) other practical aspects such as S&S arrangement and guard periods.
Wixor, in contrast, considers all these practical concerns in its design. We experimentally compare
Wixor with DRP in §8. Other works focus on speci�c scenarios such as high mobility HetNets [72],
high density environments [73], massive IoT networks [63], small cell networks [35, 82], as well as
leveraging device-to-device communication [69], whereasWixor takes a more generic approach,
i.e., public and private 5G deployments.
5G/LTE resource scheduling. As discussed in §2.1, based on the TDD policy, the MAC scheduler
distributes the UL/DL resources amongst the UEs. The MAC layer scheduling problem has been
studied extensively in literature [22, 33, 34, 55, 81]. RadioSaber [34] and iRSS [81] solve it in the
context of network slicing. SMART [22] tackles the problem for massive MIMO networks, while
ELASE [33] and UQ-vRAN [55] focus on virtual RAN-based 5G networks. Our work, however,
solely focuses on the dynamic TDD adaptation problem, which is orthogonal to, and can work in
conjunction with, the MAC scheduling works described above.
Application-speci�c optimizations in cellular networks. Recently, a large body of work has
focused on improving the performance of speci�c applications over 5G/LTE/WiFi [25, 47, 58, 65,
71, 79]. For example, DChannel [65], Tutti [79], LRP [71], and Zhuge [58] boost the performance of
latency-critical applications such as video analytics, video conferencing, and cloud gaming over
5G/WiFi networks. These works rely on obtaining QoE information directly from applications,
while Wixor leverages the readily available radio protocol layer QoS metrics as indirect indicators
of application performance. Simply put,Wixor does not communicate with applications, making
it application-transparent. Furthermore, Wixor does not focus on any single application and is
designed to simultaneously improve the performance of various types of applications that may
have vastly di�erent QoS objectives in terms of throughput, latency, etc.

3 Motivation & Challenges

3.1 Experiment Setup

Live 5G experiments. To characterize TDD polices employed by today’s 5G operators, we set up
a live 5G testing platform. Speci�cally, our setup employs the NG-Scope tool [78] to decode a BS’s
control channel information, e.g., TBS and MCS of all UEs connected to the BS. Simultaneously, we
utilize a Samsung Galaxy S22+ smartphone, connected to the same BS, to collect lower-layer TDD
con�guration data with Accuver XCAL tool [19]. Overall, we collect 26 hrs+ of data, at di�erent
hours of the day, with T-Mobile (Band 41 @ 2500 MHz), Verizon (Band 77 @ 3700), and AT&T (Band
77 @ 3700). We refer to the collected dataset as DL5G in the remainder of this paper.

Over-the-air 5G testbed. We build an in-lab end-to-end 5G network to run tests under several
controlled settings, e.g., TDD polices, applications, tra�c loads, etc. The testbed comprises of 2×
Google Pixel 7 devices (PX7), a BS, and a 5G Core. The BS has two components: (i) an srsRAN-based
eNB/gNB stack running on a laptop equipped with Intel Core i7 @ 3.00GHz CPU, and (ii) an
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Table 1. Application workloads used in our paper.
UL DL

App Name
Lat. Sen. Bwd. Int. Lat. Sen. Bwd. Int.

Edge Video Analytics (EVA) ✓ 8 ✓ 8

Edge-assisted Vehicle Perception (EVP) ✓ ✓ ✓ 8

Live Video Ingest (LVI) 8 ✓ 8 8

Video-on-Demand (VoD) 8 8 8 ✓

Live Video Conferencing (LVC) ✓ 8 ✓ 8

HTTP File Transfer (HFT) 8 ✓ 8 ✓

Table 2. TDDpolices employed bymajor pub-

lic 5G operators in the US. Operators employ

almost identical policy parameters, assigning

72.8%–74.2% of the S&Ss to the DL.
Pattern 1 (UL/DL) Pattern 2 (UL/DL)

Operator Band
# slots # symbols # slots # symbols

T-Mobile n41 2/3 4/4 0/4 0/0
Verizon/AT&T n77 2/3 4/6 0/4 0/0

RF frontend based on USRP B210 [18] software de�ned radio (SDR) con�gured with Band 78 @
3410 MHz. The Open5GS Core Network (CN) [12] runs on another laptop. To conduct experiments,
we put our testbed in a 20m×12m conference room and walk randomly with PX7 in hand. All
applications are hosted locally with a 15 ms delay between the CN (packet gateway) and the
application server. For edge applications, the delay is 2 ms between the BS and the edge server. Both
servers run on separate desktop machines that have Linux kernel 6.2 and Intel Xeon CPUs with
64 GB RAM. We use ADB scripts to automate and time-synchronize experiments. All experiments
are repeated at least 5×.

Trace-driven simulator. We design a faithful simulator based on Ĥĩ3 5G-Lena [5] to: (i) carry
out experiments under reproducible channel and tra�c conditions; and (ii) accelerate our system’s
model training. The setup (e.g., frequency band) is identical to the over-the-air testbed. Further,
we con�gure our simulator to utilize channel traces collected by previous 5G studies [37, 44, 61].
Overall, the traces consists of 18 hrs+ of SINR values, collected at TTI granularity. We generate 200
traces for our corpus, each with a duration of 300 secs. For each individual test, we randomly select
Ĥ traces for Ĥ UEs from the corpus. Since these traces are collected in di�erent mobility scenarios,
the heterogeneity and randomization ensures that the BS has UEs with diverse channel conditions.
Background tra�c. Scaling the testbed for numerous devices generating realistic application

workloads is costly. Therefore, we generate UL and DL background tra�c using real-world tra�c
traces, postprocessed from NG-Scope (DL5G) TBS data to match our BS con�guration. Each trace
contains UL/DL data from multiple UEs. To conduct an experiment, we randomly select a tra�c
trace to simulate UL/DL UDP tra�c between the UEs and the server. Since we only have two
PX7 devices in our testbed, we use the �rst one to send application tra�c and the second one
to send/receive UDP background tra�c for all UEs in the tra�c trace. For the simulation setup,
however, we generate background tra�c for the number of UEs speci�ed in the trace.
Applications.We develop a suite of diverse (latency-sensitive and/or bandwidth-intensive in

UL/DL) apps for our over-the-air testbed and trace-driven simulator. Table 1 lists these apps, while
the detailed setup is outlined in §8.1.

3.2 Need for Dynamic TDD Policy Adjustment

Existing xG networks con�gure static, DL-biased TDD slot policies, incapable of adapting

to changing network loads. We leverage the 26 hrs+ long dataset DL5G to characterize how
frequently the tra�c load changes and how the network reacts to it. Our analysis reveals four main
insights: (i) Fig. 3a shows rapid BS tra�c load �uctuations, highlighting the need for a dynamic
TDD policy. The empirical CDF (e-CDF) of the rolled coe�cient of variation (RCV1) for tra�c load
with a 1 sec window size in Fig. 3b shows abrupt load changes for T-Mobile and Verizon, with the
median load increasing/decreasing 4.7-5.2 standard deviations above/below the average. (ii) Current
5G networks employ static TDD policies which are incapable of adapting to these load �uctuations.
Table 2 shows that major US network operators use similar, and more importantly static, TDD
policy parameters, regardless of the tra�c load. Note that the 3GPP standards permit two TDD

1RCV measures the relative variability of a time-series over a speci�ed rolling window. It is calculated as the standard

deviation divided by the mean within each window, i.e., (fC−XC :C )/(`C−XC :C ) High RCV values (>1.0) indicate high relative

variability within the window (XC=1s), and vice-versa.
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patterns (pattern 1 and 2) for UL and DL S&S allocation. (iii) Existing networks have DL-biased
TDD policies. From DL5G, the median DL tra�c load is 12.9× higher than UL. Networks allocate
the majority of TDD S&Ss to DL, as seen with T-Mobile assigning ∼72.8% to DL in Table 2. These
DL-biased policies are a bottleneck for emerging xG applications that require high UL bandwidth
and/or low latency. (iv) Despite predominantly DL-heavy tra�c, 4.1% of instances in DL5G show
higher UL tra�c loads, again underscoring the need for dynamic TDD policies.
Case study: To highlight the impact of static TDD policies on application QoE, we run a live video
ingest app on our over-the-air testbed. The �rst PX7 device runs the video ingest app, while the
second one generates background tra�c using 15 random UE traces from DL5G (§3.1). We test �ve
di�erent settings: (S1) UL and DL S&S assignment as per T-Mobile’s con�guration (22.8% UL, 72.8%
DL), (S2) equal UL-DL S&Ss (47.8%, 47.8%), (S3) a “fair”2 UL-DL assignment based on average load
(67.4%, 28.2%), (S4) UL-dominant S&S assignment (72.8%, 22.8%), and (S5) our proposed dynamic
TDD solution. The remaining 4.4% of S&S are reserved for the guard period in S1-4.

Fig. 4 shows the sending bitrate and the ingest delay for each setting. Ingest delay measures the
time from frame generation to its quality variants being available for download [84]. Assigning
more resources to the UL results in higher QoE (notice that S3 > S2 > S1). However, ramping up
UL resources beyond a point will come at a cost of less DL resources, since the network has limited
bandwidth. This will cause the DL to become a bottleneck, leading to more bu�ering in DL queues
and longer ingest delays, as seen for S4. In contrast, our solution (S5) adapts to changing loads,
achieving 37.5% higher bitrate and 11.6% lower ingest delay than the next best setting (S3).
A reactive TDD slot adjustment policy is sub-optimal. A straightforward, naive solution to
the dynamic TDD policy adjustment problem is to adjust the DL and UL slot percentage based
on the past tra�c load. However, as shown above (Fig. 3), the tra�c load changes signi�cantly
within short time periods, and TDD policy adjustment based on outdated tra�c load information
can potentially result in performance loss. For applications in Table 1, a reactive approach incurs
signi�cant QoE reduction compared to our proposed system (details in §8.2).
UL/DL S&S arrangement incurs additional complexity.We �nd that, in addition to the per-
centage of UL and DL S&S in TDD pattern, their arrangement can impact QoE too, especially
for latency-sensitive apps. Each S&S arrangement leads to a certain average delay between two
consecutive UL or DL slots (inter-slot delay). By keeping the background tra�c rate (15 random
UE traces from DL5G) and the number of UL/DL slots constant, we test the Edge Video Analytics
(EVA) performance for di�erent inter-slot delays (2ms, 4ms, 6ms) and tra�c loads (30-30, 60-30). A
60-30 tra�c load indicates a 60% UL and 30% DL tra�c load. As shown in Fig. 5a, the average frame
response latency is 30.1 ms for a 2 ms inter-slot delay, increasing to 40.8 ms for a 6 ms delay (a
35.5% increase). Additionally, high tra�c loads cause user data to bu�er, further impacting response
latency (see Fig. 5b). Thus, the UL and DL S&S arrangement complicates deriving the optimal TDD
policy, with possible con�gurations ranging from hundreds to thousands.

2UL needs more resources than DL to provide a same level of throughput; that is why a fair static policy will have more UL

S&S than the UL tra�c load ratio.
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3.3 Challenges

Scalability. 5G NR enables the BS to �exibly de�ne a TDD policy where the arrangement of
S&Ss within a TDD pattern is crucial for optimizing application performance (§3.2). However, this
�exibility introduces a new challenge: we must exhaustively explore all possible combinations of
UL and DL S&S arrangements to identify the optimal TDD pattern, which can be computationally
intensive. For example, numerology Ć=1 results in over 1450 unique S&Ss arrangements.
Highly dynamic environment.Many factors render the TDD policy adjustment problem complex:
(i) the UL and DL tra�c load changes frequently and straightforward solutions (e.g., Static and
Reactive) do not work well (§3.2). Additionally, tra�c load is hard to predict; (ii) application
workloads are highly diverse in a radio network ecosystem, and the BS lacks information on QoE
goals and feedback from UEs or application servers; and (iii) channel conditions �uctuate rapidly
making the problem even more complex. Channel conditions (measured through metrics such as
SINR) determine the e�ective data transmission rate that dictates the optimal TDD policy.
Interference with rate adaptationmodules. Frequently changing the TDD policy can disrupt the
transport-layer congestion control or application-layer rate adaptation. To illustrate this, we use the
same over-the-air testbed setup as above with a TCP sender (default Cubic congestion control [41]).
The TDD policy is adjusted every second using Oracle (details in §8.5). Fig. 6 shows a UE’s UL
TCP congestion window (ęĭĤĚ) alongside the TDD policy (% of UL TDD S&S). At the 8Cℎ sec, the
UL S&S % drops from 61.8% to 42.1%, causing packet bu�ering, a TCP timeout, and a reduction in
ęĭĤĚ . However, before the TCP sender restores ęĭĤĚ , another drop in UL S&S leads to another
reset. This creates a signi�cant gap between the instantaneous demand and achieved throughput,
as seen in the shaded region of Fig. 6, hindering rate adaptation and, ultimately, throughput.
Asymmetric UL and DL transmission. Our investigation reveals a discrepancy between UL and
DL latency, in addition to throughput di�erences. Intuitively, one-way latency should be similar
in both directions. However, over-the-air testbed experiments with equal UL and DL S&Ss show
that UL is almost 40% slower than DL at low sending rates (see Fig. 7). Additionally, the UL latency
in�ates quickly (due to bu�erbloat [39] or limited radio resources [65]) once the sending rate
exceeds the link capacity. Our public 5G experiments reveal similar insights. Factors such as limited
UE transmission power [36], delays from UL scheduling grants [54], lower carrier aggregation [62],
and the use of SC-FDMA for power e�ciency [24] contribute to less performant UL.

4 Wixor Design

To address the challenges outlined in §3.3, Wixor employs a two-stage approach to TDD policy
adjustment. First, it predicts the UL and DL S&S distribution (percentages) based on the BS context
such as tra�c load and channel quality. Once the distribution is determined, Wixor �nds the
best S&S arrangement. This decomposition signi�cantly reduces the search space compared to
an exhaustive search method, evaluating only 5-25 arrangements for Ć=1 (a 58-290× reduction).
While this two-stage approach may incur slight performance losses if the initial prediction is
inaccurate – especially when relying on �xed models that do not generalize well to complex RAN
environments – Wixor mitigates this risk by employing a learning-based approach in combination
with BS-level features. This approach e�ectively manages the complexity of the environment and
the asymmetry between UL and DL transmission. Additionally, the system utilizes a conservative
policy smoothing technique to prevent abrupt policy changes, thereby minimizing the interference
with transport-layer congestion control and application-layer rate adaption logic.

The basic operation of Wixor is illustrated in Fig. 8. In the UL direction, UEs request radio
resources from the BS, obtain the allocated UL resources, and transmit the data, which is then
forwarded to the Internet. Conversely, in the DL direction, the incoming data arrives into the
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per-UE queues, and the BS transmits it to UEs. In the above process, ensuring that the BS e�ectively
balances available TDD S&Ss between UL and DL such that UEs receive su�cient resources promptly
is the key to improving application QoE.Wixor operates as a lightweight service at the BS to ensure
TDD policy adjustment in a timely manner.

To this end, Wixor leverages the tra�c, BS load, channel quality, and QoS features (readily
available at the BS) as the system inputs, and outputs the TDD pattern to guide the BS’s TDD
policy adjustment via two major modules: (i) A proactive demand customization engine (§5) to
precisely predict future UL and DL resource demands. Speci�cally, it utilizes cross-layer BS-level
features to capture the RAN context (§5.1). Wixor then feeds these features into the context-aware
resource forecasting module (§5.2), which outputs the S&S percentage allocations for UL and DL.
(ii) Wixor drives a smart policy provision framework (§6) to ensure that the TDD policy is
con�gured reliably for application QoE improvement. It �rst applies conservative policy smoothing
to reduce the impact of abrupt TDD policy changes on application QoE (§6.1). Then, the QoS-aware
TDD policy derivation module (§6.2) computes the �nal arrangement of UL and DL S&S within the
TDD pattern. In doing so, it judiciously balances the trade-o� between the inter-slot delay (which
impacts network latency) and guard period overhead (which impacts network throughput).

5 Proactive Demand Customization

Wixor �rst constructs BS-level features from raw BS logs (§5.1). These features are then passed to a
reinforcement learning (RL) agent to forecast future tra�c demand (§5.2). The RL agent employs a
neural network (NN) to interpret the RAN context, represented by the BS-level features. Training
the RL agent in a live 5G environment is impractical due to the random exploration required by
RL, which would signi�cantly impact application QoE. Therefore, we train Wixor’s RL agent using
a faithful simulator with real-world tra�c and channel traces (§3.1). Wixor’s RL agent utilizes
normalized features to ensure seamless transferability from simulation to over-the-air setups.

5.1 Cross-layer BS-level Feature Engineering

We considered two choices for feature engineering: per-UE features and BS-level features. Per-UE
features can precisely characterize the behavior of all ĤC active users at time Ī , but they have
practical issues. First, the dynamic nature of user presence in the RAN ecosystem causes signi�cant
variation in ĤC over time. Handling this variation would require the NN to process variable-sized
inputs, leading to scalability issues. Second, the number of NN inputs scales with ĤC , a�ecting its
learning ability (curse of dimensionality). In contrast, BS-level features aggregate per-UE features
to represent overall UE behavior at the BS. They mitigate the scalability issue as the NN inputs
are �xed-size regardless of ĤC . However, engineering meaningful BS-level features without losing
critical information is challenging. We address this by using statistical measures to aggregate
per-UE features into a comprehensive yet practical representation of the BS state. In §7, we detail
howWixor collects raw BS logs from di�erent radio protocol stack layers to compute these features.
(i) Tra�c demand features. These features help Wixor understand the tra�c demands of active
users ĤC . We concatenate average bu�er occupancy levels þDC and þ3C , maximum bu�er levelsĉD

C
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andĉ3
C , tra�c arrival rates ýD

C and ý3
C , and head-of-line delays Ą

D
C and Ą3

C at time Ī to create tra�c

demand feature vector
⃗⃗ ⃗⃗ ⃗⃗
D C = {þDC , þ

3
C , ĉ

D
C , ĉ

3
C , ý

D
C , ý

3
C , Ą

D
C , Ą

3
C }. For each metric, ī and Ě represent

UL and DL. þDC is calculated as
∑

8 Ę
D,8
C /(ĤC ∗ ę), where Ę

D,8
C is the UL bu�er level for UE ğ and ę is the

RLC bu�er capacity. We calculate ĉD
C = max8 (Ę

D,8
C /ę) as the maximum UL bu�er level across all

UEs. The data arrival rate ýD
C indicates how quickly data is arriving in the UL bu�ers. We model

each UE’s rate ėD,8C = ąD,8C ∗ ĩ̂D,8C as a Poisson process, where ąD,8C is the inter-packet arrival rate and

ĩ̂D,8C is the average packet size. The overall arrival rate ýD
C =

∑
8 ė

D,8
C is the sum of individual UE

arrival rates. We normalize ýD
C by dividing it with the maximum data arrival rate supported by the

BS3. The head-of-line (HoL) delay ĄD
C =

∑
8 ℎ

D,8
C /ĤC is the average HoL delay experienced by all UEs.

The DL counterparts of these metrics in
⃗⃗ ⃗⃗ ⃗⃗
D C follow the same terminology.

(ii) BS load features.We also consider BS load features
⃗⃗ ⃗⃗⃗
L C = {ĐD

C ,Đ
3
C , Ď

D
C , Ď

3
C } to capture the e�ect

of tra�c demand on BS’s resources. ĐD
C =

∑
8 Ī

D,8
C represents the UL BS throughput, where ĪD,8C is

UE ğ’s UL throughput normalized by the maximum BS throughput. ĎDC =

∑
8 Ĩ

D,8
C is the total resource

utilization, which is calculated as the sum of the normalized UL resource blocks ĨD,8C assigned to
each UE where the normalization is performed against the total number of resource blocks.
(iii) Channel quality features. Given the impact of channel conditions on network perfor-
mance (§3), we incorporate channel quality indicator (CQI) information as well. However, simply

averaging individual UEs’ wideband CQIs ęD,8C does not work well in practice, as UEs encounter ex-
tremely diverse channel conditions in the real world. Therefore, to encode meaningful information
about channel variation, we employ median, 25th %ile, and 75th %ile CQI values to get channel

quality features
⃗⃗ ⃗⃗
C C = {P-258 (ę

D,8
C ), P-258 (ę

3,8
C ), P-508 (ę

D,8
C ), P-508 (ę

3,8
C ), P-758 (ę

D,8
C ), P-758 (ę

3,8
C )}. These

CQI values are further normalized using the maximum possible CQI value in 5G (i.e., 31).
(iv) QoS features. Lastly, a bu�er tolerance factor ĀC ∈ [0, 1] indicates BS’s cumulative bu�ering
tolerance for all UEs. A low tolerance (i.e., ĀC ≃ 0) loosely represents latency-sensitive tra�c.

5.2 Context-aware Resource Forecasting

We consider two options forWixor’s objectives: the application layer QoE metrics and the radio pro-
tocol layerQoSmetrics. Directly optimizing QoEmetrics may lead to high end-user performance, but
it requires explicit QoE feedback from the applications. In contrast, although QoSmetrics are generic
indicators of application performance, they can be directly estimated at the BS without application
support.Wixor, therefore, optimizes an objective based on three key QoS metrics: (O1) maximize
the sum of UL and DL BS throughput, i.e., maxĐD

C and maxĐ3
C ; (O2) minimize network latency

estimated as the highest bu�er occupancy level (or self-in�icted queuing delay [77]) for all UEs,
i.e., minĉD

C and minĉ3
C ; and (O3) avoid data loss approximated as the bu�er over�ow tendency

of RLC queues, i.e., min 1 −ĉD
C and min 1 −ĉ3

C . We next describe Wixor’s NN-based RL agent.
Reward: As shown in Eqn. 1,Wixor’s RL agent combines O1, O2 and O3 into a reward function ĨC .
O2 and O3 create a trade-o�, hence, we leverage the bu�er tolerance factor ĀC , previously de�ned
in §5.1, to determine the weight for each objective. ā ∈ [0, 1] is Wixor’s UL tra�c priority. On a
high level, the reward increases if the BS throughput is high, and the worst bu�ering delay is low.

ĨC = ā (ĐD
C + ĀC −ĉD

C ) + (1 − ā) (Đ3
C + ĀC −ĉ3

C ) (1)

State:At each time step Ī ,Wixor’s learning agent takes state inputs ĩC = {
⃗⃗⃗⃗ ⃗⃗
D C−: :C ,

⃗⃗ ⃗⃗⃗
L C−: :C ,

⃗⃗ ⃗⃗
C C−: :C , ĀC }

for its NN.
⃗⃗ ⃗⃗ ⃗⃗
D C−: :C ,

⃗⃗ ⃗⃗⃗
L C−: :C , and

⃗⃗ ⃗⃗
C C−: :C are tra�c demand, BS load, and channel quality feature

vectors, respectively, for the past ġ time steps.

3The maximum BS data arrival rate (and throughput) can either be computed empirically by saturating BS with over 100%

load under optimal channel conditions, or theoretically using subcarrier spacing (`), channel bandwidth, beamforming

parameters, etc. [21]. Wixor uses the latter by default.
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Action: Given ĩC , the learning agent predicts the UL S&S percentage needed, i.e., ėC = ĦDC ∈ [0, 1].

Note that the sum of UL (ĦDC ), DL (Ħ3C ) and guard period (Ħ
6
C ) S&S percentages amounts to one, i.e.,

ĦDC + Ħ3C + Ħ
6
C = 1. We explain how to compute Ħ3C and Ħ

6
C in §6.2.

RL Model Training: After applying each action, the simulated environment transitions to a new
state and provides a reward to the RL agent. The primary goal of the RL agent is to maximize
the expected cumulative reward, i.e., maxE[

∑∞
C=0 ĨC ]. Various algorithms can train an RL agent

within the abstract RL framework described above (e.g., DQN [60], PPO [64]). We use the soft
actor-critic (SAC) algorithm [42] for two primary reasons: (i) it is the state-of-the-art and has been
applied successfully to numerous learning problems in networked systems [45, 46, 57]; and (ii) its
asynchronous parallel training allows multiple BSs to send their experience feedback to the RL
agent, leading to a shorter model convergence time as opposed to other RL algorithms. We present
the details of NN architecture and training methodology in Appendix A.1. To adapt to varying
tra�c patterns and network policies,Wixor temporarily stores BS-level logs in a bu�er and updates
the model every 15 minutes with a small learning rate (1e-4). Unlike o�ine simulator training, the
RL agent does not perform exploration during runtime.

6 Context-aware Policy Provision

After receiving the predicted UL S&S percentage, Wixor employs a conservative policy smoothing
technique to reduce abrupt policy changes (§6.1). Subsequently, it balances the tradeo� between
the inter-slot delay and guard period overhead to determine the best TDD pattern (§6.2).

6.1 Conservative Policy Smoothing

As noted in §3.3, abrupt TDD policy changes due to �uctuating load can misguide the transport-
layer congestion control or application-layer rate adaptation logic. To prevent this, Wixor must
tolerate tra�c load noise shown in Fig. 3a, while promptly responding to long-term tra�c load
variations. To achieve this, Wixor applies a conservation policy smoothing technique to the action
(ėC = ĦDC ) generated by the resource forecasting module.

ĀC = ÿĀC−1 + (1 − ÿ) |ĦDC − ĦDC−1 | (2a)

ĂC = ĀC1 /ģėĮ (ĀC−Cĩ : C ) (2b)

Ħ̂DC = ĂCĦ
D
C + (1 − ĂC )Ħ̂

D
C−1 (2c)

Eqn. 2c represents the traditional Exponentially Weighted Moving Average (EWMA). Through
large-scale simulations, we �nd that the proper value of weight ĂC is not static. Therefore, Eqn. 2a
applies another EWMA to smooth out the TDD policy variation ĀC (the weight ÿ is found to be
insensitive to the prediction result; we empirically use 0.5), and Eqn. 2b normalizes ĀC

1
using a time

window [Ī − ĪB , Ī] where ĪB is a large positive multiple of system time step length �Ī . Through
testing various ĪB values, we found that 30�Ī best balances the trade-o� between mitigating tra�c
noise and ensuring prompt responsiveness. Intuitively, a sudden large change in predicted UL S&S
percentage (ĦDC ) will lead to a large ĂC , which makes Ħ̂DC rely less on (potentially stale) Ħ̂DC−1.

6.2 QoS-aware TDD Policy Derivation

Once Wixor knows Ħ̂DC , it must determine the S&S arrangement for the TDD policy PC while
accounting for guard periods. However, deriving PC is not straightforward due to the signi�cant
impact of inter-slot delay on network latency and application QoE (§3.2). The key challenge lies in
balancing the tradeo� between minimizing inter-slot delay and managing guard period overhead.
Lower inter-slot delays reduce network latency but increase DL→UL and UL→DL transitions,
leading to higher guard period overhead and, ultimately, reduced throughput.Wixor judiciously
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balances this tradeo� by �nding a TDD pattern withminimum normalized weight between inter-slot
delay and guard period overhead.
Calculating guard period. In TDD systems, guard periods are implemented as brief intervals of
no transmission between UL and DL symbols to: (i) avoid interference and account for propagation
delays, and (ii) allow BS and UE radio hardware time to switch between transmission (Tx) and
reception (Rx) modes. The guard period primarily depends on two factors: themaximumBS coverage
radius that determines the propagation delay between the BS and the UE, and the switching delay
between Rx and Tx modes for both the BS and the UE. Based on these factors, Wixor explicitly
calculates the number of guard symbols required for DL→UL transitions (ĝ3,D ) and UL→DL
transitions (ĝD,3 ). The detailed procedure to compute ĝ3,D and ĝD,3 is described in Appendix A.2.
Computing valid TDD policy set. Given Ħ̂DC , ĝ

3,D , and ĝD,3 , Wixor can compute all possible
arrangements of UL, DL, and guard S&Ss. In order to adhere to 3GPP speci�cations, which restrict
how TDD patterns are de�ned [20],Wixor generates valid TDD patterns (S&S arrangements) for
all suitable transmission periodicities to create a TDD policy set SC . SC typically has a size of 5-25
valid patterns depending on Ħ̂DC , numerology (Ć), and transmission periodicity (ă). For each pattern
ĩ : ĩ ∈ SC ,Wixor also computes: (i) the guard period overhead Ħ6,B given by the percentage of guard
S&Ss in ĩ . Depending on the pattern and BS con�guration, the guard periods can result in 0.2-3.1%
of wasted bandwidth; and (ii) the total inter-slot delay ĚB for DL→UL and UL→DL transitions.
Finding the best TDD policy.Wixor balances the tradeo� between the guard period overhead
and the inter-slot delay. The inter-slot delay dictates the minimum amount of time network packets
spend in the per-UE queues waiting to be transmitted. Therefore, the bu�ering tolerance factor
ĀC introduced earlier (§5.1) can be leveraged to encode our preference for network latency. Wixor

then employs ĀC to compute a normalized weightĭB using Eqn. 3. Lastly,Wixor �nds the pattern
with minimum normalized weight to get the best TDD policy PC from SC as argmin

B∈SĪ

(ĭB ).

ĭB
= ĀC

ĚB
∑

B∈SĪ
ĚB

+ (1 − ĀC )
Ħ6,B

∑
B∈SĪ

Ħ6,B
(3)

Note on design. The TDD policy derivation approach described here is not an optimal choice
derived through formal analysis - it is a heuristic, particularly the calculation of bu�ering tolerance
factor ĀC , in part due to the lack of application-level support or QoE feedback. However: (i) it
performs well in realistic settings (§8.5), (ii) it provides a con�gurable knob to �ne-tune the latency
versus throughput tradeo�, and (iii)Wixor supports arbitrary ĀC derivation methods. We implement
two approaches: (i) a �xed approach where ĀC does not change over time, and (ii) a default approach
where ĀC is calculated based on the number of latency-sensitive �ows in the BS (details in §7).

7 Implementation

Wixor is built on top of srsRAN [13, 16] in over 2.3K lines of C/C++ code. Apart from that, we add
support for runtime TDD policy adaptation and multi-layer (MAC, RLC, and PDCP) data logging
in srsRAN. We also develop a faithful 5G network simulator based on the Ĥĩ3 5G Lena [5] codebase
for large-scale trace-driven simulations. The implementation details are in Appendix §B.

8 Evaluation

Due to the lack of operator-side support and the cost of deploying a commercial BS, most of our
experiments are carried out using an in-lab over-the-air testbed and a large-scale Ĥĩ3 simulator
driven by real-world traces, previously described in §3.1. We summarize our main �ndings here.
• We use a suite of six diverse apps to quantify QoE gains. Compared to baselines,Wixor improves
application QoE metrics by 2.5%-96.5%, or is within 91.6% of the best scheme (§8.2 & §8.3).
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• Wixor is particularly useful under changing tra�c loads and �uctuating channel conditions. For
example, compared to the walking scenario, it o�ers 3.2% and 15.3% higher average throughput
and latency improvement for driving (§8.4).
• Wixor respects the radio network’s optimization objectives, is scalable, workswell under advanced
BS con�gurations, and operates close to the optimal solution (§8.4 & §8.5).

8.1 Experiment Setup

Methodology.Our experiments use 5G numerology Ć=1 (30 KHz subcarrier spacing) and the propor-
tional fair MAC scheduler, unless otherwise mentioned. The BS operates with Band 78 @ 3410 MHz
and 20 MHz channel bandwidth. The channel quality indicator (CQI) reporting interval is set to
40 ms. We trainWixor with 60% of the (channel and tra�c) traces and use the rest for evaluation.
The UL and DL priority for Wixor is equal (i.e., ā=0.5), and the bu�ering tolerance factor (ĀC ) is
adjusted according to the 5QI method discussed in §7.

Baselines. (i) Default: the default static, DL-heavy TDD policy employed by current 5G networks
(i.e., 22.8% UL and 72.8% DL S&Ss); (ii) SFair: a static TDD policy that fairly distributes S&Ss among
UL and DL based on the average tra�c load of an experiment; (iii) Reactive: a TDD policy that
con�gures S&Ss at time step Ī according to the previous time step’s tra�c load; (iv) DRP [27]: a
recent RL-based algorithm that derives UL and DL S&S percentage to minimize bu�er over�ows.
To the best our ability, we train DRP’s RL agent using BS-level features and parameters described
in the paper. Further, we use the same UL and DL priority as Wixor.

Applications and metrics. Apart from the trace-generated background tra�c (§3.1), we use six
diverse application workloads to generate tra�c. (i) Edge Video Analytics (EVA): We select a popular
EVA task, i.e., Object Detection. We use the frame response latency and perceptive accuracy as
performance metrics. The perceptive accuracy [40, 49] captures mean average precision for sending
frames, and replaces a frame’s inference with the last feedback if a response is not received within
40 ms. (ii) Edge-assisted Vehicle Perception (EAVP): Autonomous vehicles rely on object tracking
to ensure safe and robust driving performance. We compute object tracking’s frame response
latency and the mean Intersection over Union (IoU) metric. IoU measures the overlap between the
predicted bounding box of the object and the ground truth bounding box across consecutive frames.
(iii) Live Video Ingest (LVI): We measure the performance in terms of sending bitrate and ingest
delay for published video streams. Ingest delay [84] calculates the time elapsed from the video
frame generation to the reception of the corresponding segment at the video server for clients to
download. (iv) Video-on-Demand (VoD): We normalize the video bitrate using the maximum bitrate
while the stall percentage is the proportion of time the video is stalled during a video playback
session. (v) Live Video Conferencing (LVC): We calculate the average Structural Similarity Index
(SSIM) to quantify similarity between sent and received frames for both clients. Likewise, video
delay is the average duration between frame reception and transmission times for both clients.
(vi) HTTP File Transfer (HFT): The UE repeatedly uploads/downloads a 128 MB �le to/from the
application server. We log the total �le upload/download time to show results. The detailed setup
for each of the six applications is described in Appendix C.1.

8.2 Overall Benefit for the Applications

We conduct extensive simulations to evaluate the performance of Wixor. Our evaluation only
utilizes the six applications described earlier (§8.1) to generate user tra�c; we do not generate any
background tra�c for this experiment. Each app has up to 10 instances running concurrently, with
each instance running for a maximum of 300 secs. To distribute the tra�c temporally, we generate
app instance start times using a Poisson random process. Speci�cally, we determine inter-arrival
times for app instances with an arrival rate ą = 10/300 = 0.033 and convert these to start times.
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Fig. 9. BS QoS metrics for

the simulation experiments

in Table 3.

Table 3. Overall QoE improvement for six application workloads and 6 hrs+

of channel traces. The numbers represent the mean and standard deviation.

Wixor outperforms baselines for most of the metrics. The up (↑) and down (³)

arrows indicate the direction of QoE improvement. The gray shaded region

highlights the best performing scheme.

Application Metric Default SFair Reactive DRP Wixor

Edge Video
Analytics (EVA)

Response Latency (ms) ³ 93.3±10.6 77.2±9.1 44.9±7.5 57.4±7.1 38.1±6.4

Perceptive Accuracy (%) ↑ 34.7±6.2 40.1±6.1 54.8±7.0 47.6±7.9 68.2±8.5

Edge-assisted Autonomous
Vehicle Perception (EAVP)

Response Latency (ms) ³ 67.8±6.5 60.3±6.5 51.7±6.1 56.8±6.2 46.3±5.9

Mean IoU ↑ 0.68±0.1 0.71±0.1 0.77±0.2 0.74±0.1 0.78±0.1

Live Video
Ingest (LVI)

Ingest Delay (ms) ³ 284.9±34.7 255.3±28.5 246.4±28.3 233.8±24.0 191.5±22.5

Sending Bitrate (Mbps) ↑ 3.8±1.5 5.5±1.2 5.8±1.3 6.1±1.3 6.2±1.2

Video-on-Demand
(VoD) Streaming

Normalized Bitrate ↑ 0.83±0.1 0.63±0.2 0.77±0.2 0.80±0.2 0.81±0.2

Stall Percentage (%) ³ 0.63±0.3 0.11±0.1 0.18±0.1 0.25±0.2 0.12±0.2

Live Video
Conferencing (LVC)

Video Quality (SSIM dB) ↑ 15.3±1.1 13.1±1.4 14.1±1.5 14.6±1.1 15.7±1.4

Video Delay (ms) ³ 48.7±5.6 65.9±5.8 48.3±5.7 58.4±6.3 43.9±5.2

HTTP File
Transfer (HFT)

Upload Time (s) ³ 562.3±75.7 422.9±64.3 418.4±74.7 397.3±63.9 405.7±61.4

Download Time (s) ³ 352.8±56.9 379.8±54.2 376.3±58.4 381.6±62.7 385.2±60.3

Each experiment ran for 30 mins, using random channel traces from our corpus. We repeated
each experiment 5×, selecting di�erent random traces for each run. The overall tra�c load for the
experiment ranged between 30% and 90%.
Overall QoS improvement. Wixor considers three BS QoS metrics in its overall objective for all
applications, i.e., BS throughput, bu�er level, and bu�er over�ows (§5.2). Fig. 9 compares these
metrics across all baselines to Wixor. There are two main takeaways: (i) Wixor outperforms static
TDD policies (Default and SFair) across all metrics. For instance, it achieves an average 16.1%-29.5%
higher BS throughput compared to static schemes. While Default provides high DL throughput, its
UL performance degrades due to the DL-heavy S&S allocation; and (ii) DRP performs similarly to
Wixor in terms of BS throughput and bu�er over�ows. However,DRP maintains 1.9× higher average
bu�er level than Wixor. Since DRP’s reward function prioritizes a high bu�er level while avoiding
over�ows, latency-sensitive applications will experience signi�cant performance degradation.
QoE bene�ts. Table 3 showcases the overall QoE gains Wixor brings for various applications. Our
results highlight three main �ndings: (i) Wixor achieves signi�cantly higher performance than the
baselines for all latency-sensitive applications (EVA, EAVP, and LVC). For EVA, it achieves an average
24.4%-96.5% higher perceptive accuracy compared to other schemes, while reducing the response
latency by 15.1%-59.2%. The reduction in latency can be mainly attributed toWixor’s latency-aware
optimization objective (§5.2) and policy derivation mechanism (§6.2). (ii) Default, having DL-heavy
S&S allocation, performs slightly better thanWixor for the DL bandwidth-intensive applications
(VoD, HFT download). As an example, Default has an average 2.5% and 3.7% higher VoD bitrate than
Wixor and DRP , respectively. (iii) Wixor and DRP o�er similar performance for the UL bandwidth-
intensive applications (HFT upload, LVI). To summarize, Wixor primarily balances UL and DL S&S
allocation to promptly provision resources for all application types - it outperforms or is within
91.6% of baselines for all metrics. Note that here we usedWixor’s default parameter values (e.g.,
ā=0.5). We later (§8.5) show that Wixor can be easily tuned to prefer certain use cases.

8.3 Over-the-air Evaluation of Wixor

We evaluateWixor prototype with a combination of application and trace-generated background
tra�c. We conduct 5 hrs+ of experiments using the over-the-air setup described in §3.1. The
background tra�c is generated with 15 random UE traces from DL5G.
Dissecting Wixor’s performance gains.We �rst test the EVA app that runs on one PX7, with
background tra�c running on the other. These experiments use a �xed ĀC (i.e., 0.5). Fig. 10 (left)
shows the frame response latency and perceptive accuracy. In our setup, the latency-sensitive
EVA requires a frame response latency of less than 40 ms, as indicated by the dotted gray line. To
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Fig. 10. Comparison of Edge Video Ana-

lytics QoE across baselines.
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Table 4. System overhead of

Wixor (65% tra�ic load).
Metric Default Wixor � Gap

CPU
Utilization (%)

52.4±6.5 60.1±6.8 7.7

Memory
Utilization (%)

23.9±2.1 26.2±2.0 2.3

Table 5. Wixor neural net-

work’s inference time.

Method Inference Time (ms)

CPU 13.1±1.9
GPU 6.8±1.3

demonstrate that Wixor maintains fairness for other users, we also plot the overall BS throughput
(right) There are four key takeaways. (i) Wixor signi�cantly outperforms the baselines across both
metrics. For example, it o�ers an average 24.9%-94.5% higher perceptive accuracy and 21%-60.1%
lower response latency than baselines. (ii) Unlike DRP , Wixor’s incorporation of latency objectives
in its RL reward (Eqn. 1) minimizes bu�ering delays for latency-sensitive applications. On average,
DRP incurs 36.5% higher response latency than our approach, largely due to DRP’s higher bu�er
levels and queuing delays. Although not shown here, DRP’s median bu�er level is 1.4× larger than
Wixor’s during the experiment. (iii) Static schemes like Default and SFair cannot adapt to changing
tra�c loads, leading to the lowest performance in our tests. (iv) Interestingly, Reactive, by following
the UL and DL tra�c patterns to reduce bu�er levels, outperforms DRP in terms of QoE, delivering
19.6% and 19.9% better average response latency and perceptive accuracy, respectively. However,
Reactive still falls short of Wixor performance due to its reactive nature (§3.2).
Next, we evaluateWixor with the most ubiquitous form of Internet tra�c, i.e., VoD streaming.

Our results in Fig. 11 indicate thatWixor, Default and DRP o�er similar throughput performance
for DL bandwidth-intensive apps. For instance,Wixor o�ers 2.5% lower average bitrate than Default
while reducing average stall up to 40%. Default’s high DL performance comes at the cost of lower
UL performance as seen earlier in Table 3. DRP , on the other hand, performs well for bandwidth-
intensive applications, but incurs QoE loss for latency-sensitive applications, as seen above.
Wixor’s overhead.We record the CPU overhead and memory consumption of Wixor in Table 4.
Compared to Default, Wixor increases the absolute CPU and memory utilization by 7.7% and 2.3%,
respectively. The overhead primarily comes fromWixor’s RL agent’s resource forecasting (§5.2),
which may slightly rise with the number of users. Although not shown here, the CPU and memory
utilization only increases by 3.2% and 1.1%, respectively, when the tra�c load increases from 65% to
90%. We also compute RL agent’s inference time in Table 5. By default,Wixor performs inference
on a CPU which takes only 13 ms on average. The inference time can be further reduced with a
GPU, e.g., NVIDIA GeForce RTX 3060 Ti GPU cuts the average inference time to 7 ms (48.1% ³).

8.4 Wixor under Diverse Se�ings

We use Ĥĩ3 simulations, with trace-generated background tra�c (from 30 random UE traces unless
otherwise mentioned), to evaluate how Wixor performs under di�erent settings.
Tra�c load. We pick three tra�c traces with varying �uctuation levels (standard deviation)
from DL5G: T1, T2, and T3 with approximately 60%±10%, 60%±20%, and 60%±30% average tra�c
load, respectively. Each trace is 10 mins long. Our results in Table 6 highlight thatWixor’s TDD
policy adapts well to the changing load, while other baselines cannot. For example, the absolute
performance gap betweenWixor and Reactive increases from 3.5% to 8.5% as load variation goes up.
Radio channel quality. Our channel trace corpus consists of various mobility scenarios (e.g.,
walking and driving). The driving scenario sees more channel �uctuations than the walking case –
driving has an average SINR of 14±5 dB while walking has 17±3 dB SINR. Although not shown,
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Table 6. The average BS

throughput gap (�, in %)

b/w Wixor and baselines.

Trace � SFair � Reactive � DRP

T1 9.1 7.3 3.8
T2 12.0 10.2 5.2
T3 15.2 14.9 6.4

Table 7. Comparing Wixor perfor-

mance across 5G numerologies.

ą
Reactive Wixor

BS
Throughput

Per-packet
Latency

BS
Throughput

Per-packet
Latency

0 52.2±6.3 48.1±7.0 57.5±6.8 40.1±4.9
1 49.8±6.3 47.4±5.9 55.1±6.7 36.7±5.3
2 48.3±6.4 47.6±6.2 53.0±6.7 33.2±5.2
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Fig. 12. Wixor’s impact on RAN metrics.

Wixor o�ers higher performance improvement when the radio channel �uctuates frequently due
to its use of channel quality features (§5.1). For example,Wixor has 1.4% higher BS throughput and
32.1% lower per-packet latency than DRP on average for the walking case. For driving, the average
throughput and latency improvement is 4.6% (↑3.2%) and 47.4% (↑15.2%), respectively.
Advanced BS con�gurations.Our evaluations have used a 5G numerology Ć=1 (30 KHz subcarrier
spacing) so far, which is the Ć used by 5G Mid-Band operators these days [37]. We test Wixor

with other numerologies and summarize the results in Table 7. In general, higher Ć values lead
to more slots per subframe which ultimately increases the number of possible S&S arrangements.
This results in lower network latency but slightly reduced BS throughput. Wixor therefore reduces
network latency when Ć increases (or # of S&S arrangements increases).

8.5 Wixor Deep Dive

RAN objectives. Here, our setup utilizes Ĥĩ3 simulations with trace-generated background tra�c
only (from 30 random UE traces). Fig. 12 (left) plots the user fairness and spectral e�ciency for
di�erent UL priority (ā) values. To evaluate user fairness, we calculate the Jain’s fairness index of the
long-term average throughput among users. Spectral e�ciency (bit/s/Hz) indicates the amount of
information sent through a network using the available bandwidth. The right plot in Fig. 12 shows
the distribution of UL and DL BS throughput. Our results provide two key insights: (i) Wixor’s
fairness for the default UL priority (i.e., ā=0.5) is within 98.9% of the Default. In addition, Wixor

improves average spectral e�ciency by 1.6% compared to Default. (ii) The ā parameter can be
adjusted to �ne-tune UL performance. A higher ā (0.75) enhances UL performance, but the overall
BS throughput and spectral e�ciency decrease, as UL typically requires more S&Ss to achieve the
same performance as DL (§3.3).
Scalability and application-level fairness. We evaluate Wixor with a large number of users
simultaneously performing HTTP File Transfer (HFT). Each user simultaneously downloads and
uploads a 128 MB �le. Fig. 13 plots the average UL and DL �le transfer time as the total number of
users grow. When users increase, the �le transfer time gradually increases due to limited bandwidth
of our BS. However, the increase is almost linear, and the standard deviations are small, suggesting
that Wixor also o�ers application-level fairness in the presence of multi-user competition.
Optimality. Next, we analyze the performance gap betweenWixor and an o�ine optimal solution
(Oracle). Oracle employs dynamic programming to compute the optimal TDD policy. Speci�cally, we
exhaustively search all TDD patterns to �nd the one that o�ers the best performance based on Eqns. 1
& 3 (§4). Fig. 14 illustratesWixor’s BS throughput and per-packet latency for di�erent bu�ering
tolerance factors (Ā) and compares it with Oracle. Our results highlight two main �ndings: (i) On
average, Wixor is within 82.2% and 88.0% of the Oracle for per-packet latency and BS throughput,
respectively. The performance gap stems from two factors: prediction errors in the forecasting
module (§5.2) and performance loss from breaking TDD policy adaptation into sequential steps
instead of joint optimization (§4). We explore both factors next. (ii) The con�gurable bu�ering
tolerance factor e�ectively tradeo�s latency for higher throughput and vice versa.
Prediction accuracy of demand customization engine.We utilize Ĥĩ3 simulations (HFT with
30 users, Ā=0.9) to analyze how well Wixor predicts the UL S&S (ĦDC ). Note that we use a high Ā
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value here to tradeo� latency for higher throughput. The left plot in Fig. 15 quanti�es �le download
and upload times while the right plot shows the Mean Absolute Error (MAE) between ĦDC and the
ground truth UL tra�c load. Compared to DRP ,Wixor reduces the median �le transfer time by 2.3%-
3.5%. Wixor’s higher performance can be attributed to its use of cross-layer BS-level features (§5.1)
and careful learning agent design (§6). Overall,Wixor leads to 66.1% lower average MAE than DRP .
Contribution of policy derivation module.We investigate ifWixor’s policy derivation mod-
ule (§6.2) e�ectively �nds the best TDD policy. Again, we use Ĥĩ3 simulations with trace-generated
background tra�c from 30 random UE traces in DL5G. We leverage the ground truth (GT) UL tra�c
load instead of the predicted UL S&S percentage ĦDC for a fair comparison (w/ GT ). Our results in
Fig. 16 depict thatWixor operates close (3.6%-7.6% gap depending on the metric) to the Oracle when
it uses ground truth (w/ GT ) UL S&S percentage. The gap between Wixor and Oracle increases
slightly (7.0%-25.6%) for the w/o GT case due to the ĦDC prediction error.
Micro-benchmarking. Lastly, we evaluate the conservative policy smoothing (CPS) technique (§6.1),
compare Wixor with other RL schemes, conduct a comprehensive parameter sweep of the NN, and
pro�le Wixor’s training time in Appendix C.2. We summarize key takeaways as follow. (i) CPS
e�ectively mitigates the impact of abrupt TDD policy changes on application/transport layer rate
adaptation modules. For instance, Wixor results in 5.9% lower TCP RTT and 14.7% higher through-
put, on average, compared to a setting where CPS is disabled. (ii) Tabular RL schemes are unable to
capture the complexities of the RAN environment; Wixor delivers 27.9% higher average reward
compared to them. (iii) A NN architecture with a single hidden layer and 64 neurons and 1D-CNN
�lters performs the best. (iv) Wixor’s overall training time is ∼3.5 hrs.

9 Discussion & Conclusion

Limitations and future work.We acknowledge several limitations of our work. First,Wixor does
not consider cross-link interference between BSs in its solution, an area for future exploration.
Second, we evaluatedWixor only with 5GMid-Band, not mmWave, although the same dynamic
TDD policy adaptation principle should apply. Fourth, Wixor’s RL agent is trained with a simulator
and then transferred to the over-the-air setup; continuous online RL training remains a future goal.
In addition, our solution requires 5QI information to compute the bu�ering tolerance ĀC . While
feasible for private 5G, public 5G networks could use alternatives like a �xed ĀC (§6.2). Lastly,
integrating Wixor with new software-de�ned 5G paradigms, such as network slicing [83] and
OpenRAN’s Radio Intelligent Controller [4], is a promising direction for future work.

Despite these limitations, we present a dynamic TDD policy adaptation solution for 5G/xG that
e�ectively balances the UL and DL resources. We implement and evaluateWixor through simula-
tions and over-the-air experiments, demonstrating signi�cant performance bene�ts. Furthermore,
Wixor’s standard-compatible design is friendly to both public and private 5G deployments.
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Fig. 17. An overview of how the context-aware resource

forecasting module applies RL to the TDD policy adjust-

ment problem. The simulated environment generates RAN

state, which is fed to the RL agent. A�er executing the

agent-generated action, the environment transitions to a

new a state and outputs the reward. Fig. 18. The NN and So� Actor-Critic algorithm

that Wixor uses for resource forecasting.

A Design & Implementation Details

A.1 RL Agent Architecture and Training

RL Policy:Wixor’s RL agent outputs action ėĪ based on an RL policy, de�ned as the conditional
probability distribution over state ÿ : ÿ (ėĪ |ĩĪ ) ∈ [0, 1]. ÿ (ėĪ |ĩĪ ) is the probability of action ėĪ given
state ĩĪ . In practice, there are intractably many {state, action} pairs, e.g., bu�er level, and throughput
estimates are continuous real numbers. To address this, Wixor employs a neural network (NN) to
model ÿ with a feasible number of trainable parameters Ă . The policy is thus expressed as ÿĂ (ėĪ |ĩĪ ).
The actor network in Fig. 18 depicts how Wixor uses a NN to represent the RL policy.
RL algorithm: The SAC algorithm used by Wixor to train its RL policy is a policy gradient
method [43]. The key idea in policy gradient methods is to estimate the gradient of the expected
total reward by observing the trajectories of executions obtained by following the RL policy. A
central feature of SAC is entropy regularization: the policy is trained tomaximize a trade-o� between
expected return and entropy, a measure of randomness in the policy. The entropy regularization
term encourages exploration, i.e., the RL agent discovers and learns about the environment by
trying out di�erent random actions. As illustrated in Fig. 18, SAC concurrently learns a policy ÿĂ
(actor network) and two Q-functionsčč1, čč2 (critic and value networks). The Q-function, denoted
as č (ĩĪ , ėĪ ) represents the expected return (total accumulated reward) starting from state ĩĪ , taking
action ėĪ , and subsequently following a policy ÿ . It is important to note that the critic and value
networks merely help to train the actor network: post-training, only the actor network is required
to generate actions.
Model Training: After applying each action, the simulated environment provides the learning
agent with a reward ĨĪ , as highlighted in Fig. 17. The RL agent continually performs gradient
descent to improve the RL policy. To further improve and accelerate training, Wixor launches
multiple RL agents to operate concurrently. By default, we employ 8 parallel agents. Each agent is
set up with di�erent input parameters (e.g., channel traces and tra�c workloads). These agents
continuously transmit their {state, action, reward} tuples to a central agent, which aggregates the
data to create a uni�ed model. For each received sequence of tuples, the central agent employs
the SAC algorithm to compute policy gradients and perform gradient descent. Subsequently, the
central agent updates the actor network and distributes the updated model to the corresponding
agent that sent the tuple. This process occurs asynchronously among all agents, eliminating the
need for a locking mechanism between them.
NN implementation. As shown in Fig. 18, for each input type, we use a proper embedding method
to extract the underlying features. Speci�cally, for each tra�c demand, BS load, and channel quality
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Table 8. 5G QoS Identifier (5QI) for each application used in evaluation (§8).

Application 5QI Latency-sensitive Application 5QI Latency-sensitive

EVA 7 Yes LVC 80 Yes
EAVP 84 Yes HFT 6 No
LVI 71 No Background Tra�c 6 No
VoD 6 No

feature, we �rst leverage a single 1D-CNN layer with kernel=4, channels=64, stride=1 to extract
corresponding features to a 64-dim layer. Meanwhile, we utilize a fully connected layer to extract
useful characteristics for the QoS feature. The selected features are then passed into another fully
connected layer and outputs a 64-dims vectors. Finally, the output of the actor network is a single
neuron, which represents the percentage of UL S&S. We utilize ReLU as the active function for each
feature extraction layer and leverage sigmoid for the last layer. We use TensorFlow [9] to construct
the NN architecture and TensorFlow Serving [15] to containerize, deploy, and manage the NN
models.Wixor’s RL agent takes the past sequence length ġ = 8 into the NN. We set the learning
rate to 1ě−3 and use the Adam optimizer [48] to train the model. The batch size is 64 by default.

A.2 Guard Period Calculation

Eqns. 4a and 4b calculate the number of guard symbols required for DL→UL transition ĝĚ,ī and
UL→DL transition ĝī,Ě , respectively. First, Wixor determines the symbol duration �ĩ (Eqn. 4c)
according to the BS numerology Ć and cyclic pre�x length �ęĦ needed to combat inter-symbol
interference. To get ĝĚ,ī , Wixor adds two terms as noted in Eqn. 4a: (i) the propagation delay given
by 2 × R/ę , where R is the maximum coverage radius of the BS and ę is the speed of light, and

(ii) UE’s hardware delay when switching from Rx to Tx mode �ĐĮ,ĎĮ
īě . Finally, it divides the sum

of two terms by the symbol duration to get guard symbols required for DL→UL transition. On the
other hand, the calculation of ĝī,Ě does not consider the propagation delay as the BS already sends
the timing advance to ensure that UL transmissions from all UEs are synchronized when received

by the BS [1, 2]. Therefore, Eqn. 4b simply divides BS’s Rx to Tx switching delay �
ĎĮ,ĐĮ
Ęĩ

with the

symbol duration to get ĝī,Ě . �ĎĮ,ĐĮ
Ęĩ

, in turn, depends on BS’s timing advance o�set (ĊĐý,ċĜ Ĝ ĩěĪ ·Đę ),
where ĊĐý,ċĜ Ĝ ĩěĪ is the reference point for the UE’s initial transmission and Đę is simply BS’s time
unit (0.509 ns). For our typical BS con�guration (Ć=1,R=100m, �ęĦ=2.34us), the calculations suggest
using at least 2 guard symbols for DL→UL transition and 1 guard symbol for UL→DL transition.

ĝĚ,ī =

⌈

(2 × R/ę + �
ĎĮ,ĐĮ
īě )/�ĩ

⌉

(4a)

ĝī,Ě =

⌈

�
ĎĮ,ĐĮ
Ęĩ

/�ĩ
⌉

=

⌈

ĊĐý,ċĜ Ĝ ĩěĪ ·Đę/�ĩ
⌉

(4b)

�ĩ =
1

2Ć × 15ćĄİ
+ �ęĦ (4c)

A.3 5G QoS Identifier (5QI)

Table 8 presents the 5QI values for all applications. These values are used in the calculation of
bu�ering tolerance factor ĀĪ (§7). For simulation experiments, each app sets up its data bearers with
the corresponding 5QI value. The PX7 phone however lacks the ability to con�gure 5QI, therefore,
we use a �xed value (ĀĪ = 0.5) in our over-the-air testbed evaluations (§8.3).

B Wixor Implementation

Wixor prototype.Wixor is built on top of srsRAN [13, 16], an open-source 5G software de�ned
radio suite. We modi�ed the user plane protocol stack (5G Layer 2) in srsRAN to implement Wixor

in over 2.3K lines of C/C++ code. First, we added support for dynamic TDD, enabling runtime TDD
policy adaptation. Further, we implemented necessary logging functionality for the PDCP, RLC,
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and MAC layers to support feature engineering. We developed a modular TDD policy adaptation
engine atop the TDD MAC scheduler, capable of supporting any TDD policy out of the box. The
engine receives BS logs at (con�gurable) periodic intervals and includes a callback function to
change the TDD policy.Wixor is implemented as a derived class of this modular engine. It processes
BS logs (to be described next) to create BS-level features (§5.1), which are then fed toWixor’s RL
agent (§5.2). Deployed with TensorFlow Serving [15], the RL agent outputs the UL S&S percentage,
which is post-processed using the conservative policy smoothing technique (§6.1). Wixor then
derives the best TDD pattern using the UL S&S percentage and guard period information (§6.2).
If the newly computed TDD pattern di�ers from the current one, Wixor waits until the next
transmission period to execute the TDD policy via the callback. Once triggered, the modular TDD
policy adaptation engine simply updates BS’s objects and data structures that maintain the TDD
policy information. We believe that this deployment is practical, given that cellular networks,
including BSs are becoming open and programmable [30].
Faithful simulator. We developed a faithful 5G network simulator based on the Ĥĩ3 5G Lena [5]
codebase. Wixor’s simulator proof-of-concept essentially mirrors the over-the-air prototype’s
implementation, including support for dynamic TDD and a modular TDD policy adaptation engine.
Additionally, we integrated trace-driven channel simulations and implemented several application
tra�cworkload generators (§3.1). Lastly, we used the ns3-gym toolkit [38] alongwith Tensor�ow [9]
to train the RL models. Overall, we added or modi�ed 4.2K+ lines of C/C++ and Python code.
Data collection for feature engineering. Recall from §5.1 thatWixor uses several features to

understand the RAN context. Speci�cally, it obtains the DL bu�er occupancy ĘĚ,ğĪ for UE ğ from

the RLC per-UE queues and Ęī,ğĪ from quantized bu�er status reports (BSRs) via the MAC control

element. Inter-arrival times ąī,ğĪ and ąĚ,ğĪ are calculated using RLC service data units (SDUs) arriving

in the UL and DL RLC queues, respectively.Wixor also computes ĩ̂Ě,ğĪ and ĩ̂ī,ğĪ as the average SDU

packet sizes from these queues. The DL HoL delay ℎĚ,ğĪ represents the time spent by the �rst SDU

packet in the DL RLC queue. Besides, ℎī,ğĪ is estimated as (Ęī,ğĪ−1 − Ī
ī,ğ
Ī · �Ī)/ĩ̂ī,ğĪ , where Īī,ğĪ (ĪĚ,ğĪ ) are

UE’s UL (DL) throughput from the PDCP layer, and �Ī is the system time step. Resource utilizations

ĨĚ,ğĪ and Ĩī,ğĪ are derived from the MAC scheduler layer. DL channel quality ęĚ,ğĪ comes from CQI

reports, while BS directly measures ęī,ğĪ for the UL channel. InWixor, the bu�ering tolerance factor
ĀĪ can be either �xed or computed using 5G QoS identi�er (5QI), with the default being the latter.
ĀĪ is computed as the ratio of latency-sensitive �ows in the BS. Appendix A.3 details our use of 5QI
to identify latency-sensitive �ows for tested applications (§3.1).

C Evaluation Details & Supplementary Results

C.1 Application Setup

(i) Edge Video Analytics (EVA): We select a popular EVA task, i.e., Object Detection. The EVA app
uses a state-of-the-art video analytics model (i.e., YOLOv7 [76]) deployed on the edge server (§3.1).
Instead of sending camera feeds, a UE streams video frames from the COCO dataset [52] at 30 FPS.
(ii) Edge-assisted Vehicle Perception (EAVP): Autonomous vehicles rely on object tracking to ensure
safe and robust driving performance. Using siamFC++ model [80], we set up an EAVP app on the
edge server for multiple object tracking. The UE transmits �ve camera feeds (front and sides) at
30 FPS using theWaymo Open Dataset [70]. (iii) Live Video Ingest (LVI): We re-purpose Ant-Media’s
LiveVideoBroadcaster [7] to publish a pre-recorded video stream (1080p @ 30 FPS with 6.5 Mbps
average bitrate). The UEs send adaptive RTMP feeds [17] to an Ant Media server [7] deployed on
the application server (§3.1). (iv) Video-on-Demand (VoD): Our VoD streaming experiments use a
dash.js [8] player to stream a 4min video.Wemainly test bu�er-based BOLA [68] and rate-based [50]
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Fig. 19. Evaluating conserva-

tive policy smoothing.

Table 9. Comparing

di�erent RL schemes.

RL Scheme
Average test

reward ĨĪ
Wixor’s SAC 0.93±0.22

DQN 0.67±0.28

PPO 0.90±0.21

Table 10. Varying number

of neurons.

# of neurons and �lters

for each 1D-CNN unit

Average test

reward ĨĪ
32 0.82±0.28

64 0.93±0.22

128 0.94±0.18

256 0.94±0.14

Table 11. Varying num-

ber of hidden layers.

# of hidden layers
Average test

reward ĨĪ
1 0.93±0.22

2 0.93±0.28

3 0.89±0.26

6 0.81±0.34

adaptive bitrate (ABR) algorithms due to their popularity. The video is encoded at 6 unique quality 
levels with average bitrates ranging from 0.8 Mbps to 6 Mbps. (v) Live Video Conferencing (LVC): 
We implement a peer-to-peer LVC app based on WebRTC [14], a real-time video communication 
framework. Instead of using the video camera, the LVC app streams a 1280 × 780 pre-recorded 
meeting video at 30 FPS. (vi) HTTP File Transfer (HFT): The UE repeatedly uploads/downloads a 
128 MB �le to/from the application server. We log the total �le download/upload time to show results.

C.2 Micro-benchmarking

Benefit of conservation policy smoothing. Recall from §3.2 that abrupt TDD policy changes 
can mislead rate adaptation modules and result in lost performance. We repeat the same TCP 
experiment (Fig. 6) to see how well the conservative policy smoothing (CPS) module addresses the 
issue. Fig. 19 compares the TCP throughput and round-trip-time (RTT) for two cases: CPS enabled 
(on) and disabled (off). Compared to the case when CPS is disabled, the CPS enabled setting results 
in 5.9% lower average RTT and 14.7% higher average throughput. In addition, the CPS enabled 
setting reduces the RTT variance caused by TDD policy changes.
Comparison with RL schemes. While we employ the Soft-Actor-Critic (SAC) algorithm to 
train Wixor’s RL agent, a variety of algorithms can be utilized within the abstract RL framework 
described in §5.2. Here, we compare Wixor with Deep Q-Network (DQN [60]) and Proximal Policy 
Optimization (PPO [64]). DQN is a “tabular” q-learning method that represents the RL policy as 
a table with discrete entries for all state-action pairs, whereas PPO is a recent policy gradient 
method. We train PPO in the same way as Wixor while DQN uses fine-grained state and action 
space quantization. Table 9 presents the average QoS reward ĨĪ (Eqn. 1) attained by each method 
on the test traces. The results indicate a substantial performance disparity (27.9%) between the 
tabular scheme and Wixor, underscoring the inadequacy of tabular RL schemes in capturing the 
complexities of the RAN environment. Conversely, PPO demonstrates performance comparable to 
Wixor’s SAC method, with only a 3.2% gap.
NN architecture. We conduct a comprehensive parameter sweep to evaluate the impact of various 
NN parameters on ĨĪ . Tables 10 and 11 present the average test reward corresponding to different 
numbers of neurons and hidden layers, respectively. Our findings indicate that performance 
plateaus once the number of filters in the 1D-CNN and the number of neurons each exceed 64. 
Additionally, the results reveal that the NN with a single hidden layer yields the best performance.
Training time. We quantify the overhead associated with training Wixor’s RL agent. The training 
process encompassed approximately 300,000 iterations, equivalent to 3.5 hours of runtime. Each 
iteration required 42 milliseconds and involved concurrent parameter updates for 8 agents. It is 
important to note that this overhead represents a one-time, offline computational cost.
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