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Synchrony dynamics underlie irregular neocortical spiking
Jagruti J. Pattadkal’, Ronan T O’Shea’, David Hansel2, Thibaud Taillefumier'*, Darrin
Brager3* and Nicholas J. Priebe'™*

Abstract

Cortical neurons are characterized by their variable spiking patterns. We challenge
prevalent theories for the origin of spiking variability. We examine the specific
hypothesis that cortical synchrony drives spiking variability in vivo. Using dynamic
clamp, we demonstrate that intrinsic neuronal properties do not contribute substantially
to spiking variability, but rather spiking variability emerges from weakly synchronous
network drive. With large-scale electrophysiology we quantify the degree of synchrony
and its time scale in cortical networks in vivo. We demonstrate that physiological levels
of synchrony are sufficient to generate irregular responses found in vivo. Further, this
synchrony shifts over timescales ranging from 25 to 200 ms, depending on the
presence of external sensory input. Such shifts occur when the network moves from
spontaneous to driven modes, leading naturally to a decline in response variability as
observed across cortical areas. Finally, while individual neurons exhibit reliable
responses to physiological drive, different neurons respond in a distinct fashion
according to their intrinsic properties, contributing to stable synchrony across the neural
network.

Introduction

The variability of neurons has long stood as a central and classical feature of cortical
neurons. In sensory areas like visual cortex, distinct patterns of action potentials are
observed in response to repeated presentations of the same sensory stimulus (1-3).
Similarly, neurons in premotor and motor cortices variably respond when animals are
instructed to execute the same action (4). Spiking variability could arise from noisy
synaptic inputs that converge to individual neurons (5-8), as well as from inherently
intrinsic stochastic cellular mechanisms (9-11). In vitro recordings have revealed that
neurons respond unreliably to steady input, presumably due to stochastic cellular
processes but that large input fluctuations can overcome this stochasticity and lead to
reliable responses, though the physiological relevance of either of these input regimes
is unclear (12).

Previous theoretical studies argued that excitatory drive generally fails to exhibit
variable responses, as neurons are thought to integrate the input from large numbers of
asynchronously spiking neurons (6, 13-16). Variable responses may emerge, however,
from the convergence of strong excitatory and inhibitory asynchronous inputs. In this
condition, the mean drive from these sources cancels out, but their variability remains
(5, 6, 17, 18). The aim of the present study was to determine experimentally the
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physiological conditions that generate variable spiking

in cortical neurons.

Spiking variability is not due to intrinsic neuronal
properties but due to network dynamics

We first examined the relative contributions of synaptic
and intrinsic cellular sources of noise by making whole-
cell conductance dynamic clamp recordings from pyramidal neurons in mouse and
marmoset cortical slices. To emulate physiological input conditions, we injected
excitatory and inhibitory conductances which we previously recorded in vivo in visual
cortex with and without visual stimulation (19). We initially adjusted the conductance
gains to evoked between 3 and 21 spikes/s (mean = 11.5 spikes/s, range 3.7-21.3).
Physiological drive evoked highly variable spiking patterns, characterized by an ISI
coefficient of variation (CV) near 1 (CV of ISI: 1.2 £ 0.2 s.d., 12 cells, input source 1, 0.8
+ 0.2 s.d., 11 cells, input source 2) (Fig. 1A, Sup. Fig 1-1) (5, 13, 14).

Figure 1: The reliability and
variability of cortical neurons. A.
Dynamic clamp was used in vitro
to present excitatory (red) and
inhibitory (blue) conductances
recorded in vivo. Membrane
potential and spiking responses
are shown for repeating the same
conductances (left), or for different
combinations of excitatory and
inhibitory conductance (right) in
an example cell. B. The mean
and variance of the spike count
was measured in 200 ms bins for
the same conductance condition
(black circles) or the different
conductance condition (green
circles). Mean and variance of
each bin for cell in A are shown.
C. As in A, but the inhibitory
conductance was set to 0. D.
Fano factor across neurons for
the same and different
conductance conditions (n = 12
cells for input source 1, 11 cells
for input source 2, 9 cells for
excitatory conductance only). E.
The Fano Factors for the different
conductance conditions are
shown of different time bins.

If intrinsic cellular processes contribute significantly to spiking variability, we expect to
observe different spiking patterns across repeated presentations of the same
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physiological conductance drive. Contrary to this expectation, we found that repeated
injections of the same excitatory and inhibitory conductances yielded precise patterns of
action potentials with little difference in both marmoset and mouse neocortical neurons
in vitro (Fig. 1A). To quantify this observation we computed the spike-count Fano factor,
defined as the ratio of the variance and the mean of the spike count in a fixed time bin
(Fig 1B). We found that repeatedly driving neurons in vitro with the same in vivo-
measured conductances yielded low Fano factors (Fano factor: 0.3 + 0.1 s.d. for input
source 1, 12 cells, 0.3 £ 0.4 s.d. for input source 2, 11 cells) indicating a low degree of
trial-to-trial spike count variability (Fig. 1B,D). In contrast, the Fano factor is near 1 for
visual cortical responses to visual stimuli in vivo (20-22). Because neuronal responses
are highly consistent across repeated injections of the same physiological drive, we
conclude that intrinsic variability is unlikely to be a major source of cortical response
variability and we term these responses ‘quasi-deterministic’ (23).

As intrinsic processes contribute little to response variability across repeats, the spiking
variability measured in vivo across multiple presentations of the same visual stimulus
must stem from variability in synaptic drive (Fig. 1A). To confirm this, we measured
synaptic conductances evoked in vivo by repeated presentations of the same visual
stimulus. We then injected these conductances in vitro to determine whether the cross-
trial synaptic input variability could account for the variability of neuronal discharges. In
contrast to the repeatedly injecting the same conductance (Fig. 1A, left), these cross-
trial conductances resulted in highly variable trial to trial responses for physiological
mean spiking rates (Fig. 1A, right). We found that the Fano factor for neurons in this
condition is larger than 1 (Fano factor: 1.7 £ 0.8 s.d. for input source 1, 12 cells, 2.8 +
1.3 s.d. for input source 2, 11 cells) in both marmosets and mice (Fig. 1B, Sup. fig. 1-1),
a result that persists when varying the bin size used to count spikes (Sup Fig. 1-1). As
expected, emulating trial variability in the synaptic drive allowed us to recapitulate in
vivo spiking variability in vitro.

One caveat of our approach is the uncertainty about how to set the gain for the injected
conductances. Measuring conductances in vivo requires blockade of voltage-gated
channels, such as those responsible for the generation of action potentials (19, 24-27).
Because of this alteration, our conductance measurements are only scaled versions of
the true conductances by an unknown gain parameter. Given this uncertainty, we
systematically varied the gain of both excitatory and inhibitory inputs and measured the
resulting changes in firing rate and spiking variability. Increasing excitatory and
inhibitory conductance gain equivalently led to a consistent change in firing rate but little
change in the Fano factor (Sup. Fig. 2). Therefore, and perhaps surprisingly, although
the overall firing rate changes, our measurements of spiking variability did not depend
on the strength of the presented conductances.
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Taken together, these results demonstrate that cortical spiking variability in vivo is not
due to intrinsic neuronal properties but instead emerges from the network dynamics,
which generate variations in the synaptic drive to individual neurons for the same visual
stimulus (3).

Excitatory conductances alone produce Poisson-like spiking

Previous spiking network modeling studies have demonstrated that excitatory drive
alone, generated by a large pool of neurons firing independently, leads to regular, clock-
like spiking, with a low CV of ISl and a low Fano factor and (13). To test whether this is
also the case for physiological drive, we presented excitatory conductances alone and
measured the resulting Fano factor under two conditions: (1) for repeated presentations
of the same in vivo-measured conductance traces (Fig. 1C, left), and (2) for different in
vivo-measured conductance traces obtained in response to the same visual stimulus
(Fig. 1C, right). With excitation alone, we found that neurons responded consistently in
condition 1 (Fano factor: 0.1 £ 0.2 s.d., 9 cells) and variably in condition 2 (Fano factor:
0.8+ 0.5 s.d., 9 cells), with degrees of consistency and variability similar to the
responses observed with inhibition. Therefore in vivo excitatory conductances alone are
sufficient to generate Poisson-like spiking variability in vitro.

Statistics of in vivo conductances are inconsistent with asynchronous spiking
Our observation that excitatory drive alone is sufficient to generate spiking variability
appears to be at odds with theoretical predictions (13, 14). These predictions stemmed
from two critical assumptions. First, that presynaptic neurons are spiking independently
as suggested by paired extracellular recordings in which correlations between neurons
are weak (28). Second, anatomical studies show that cortical neurons receive synaptic
contacts from a large pool of upstream neurons (29-32), thus the number of synaptic
inputs is also likely to be large. By the law of large numbers, these two assumptions
imply that cortical excitation alone should be a steady drive with very weak fluctuations,
causing cortical neurons to spike regularly, contrary to our experimental observations.
This apparent inconsistency can be resolved when estimating the amount of synchrony
required to account for the fluctuations observed in our in vivo recordings.

To show that, let us assume that the activation of each connection is governed by a
Poisson process so that the resulting conductances can be modeled as shot-noise
traces. For simplicity, we study the impact of synchrony on the aggregate conductance
over all the connection contributions. The temporal mean of the aggregate conductance

is independent of the degree of synchrony and is given by Ky = AKrt, where A is the

typical size of a single EPSP, K is the number of inputs, r is the mean individual
synaptic rate, and 7, is the synaptic time constant. In contrast the temporal fluctuations
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Figure 2: Estimates of the number of inputs onto cortical neurons. A. A model
demonstrating how the slope of the relationship between the aggregate input variance
and mean-squared relates to the number of inputs a neuron receives per second. One-
second-long examples of conductance traces are shown above, with color indicating the
rate of asynchronous inputs. B. The relationship between input variance and mean-
squared among in vivo conductance measurements. Each point represents
conductance for a cell for one stimulus condition, 6 cells are used here. C. Example
repeats for two of the points shown in B. D. Histograms of the input rate, R, for both
excitation and inhibition. E. Example spike rasters and net resulting drive from a
population of neurons with pairwise correlations = 0 (left) or 0.01 (right). F. The
relationship between input rate Kr in model neuronal populations relative to the Q
estimated using the asynchronous assumption. The rate, r, is set to 1 spks/s. Color
indicates different pair-wise correlations, symbols are based on simulated models and
the solid line indicates the analytical prediction (see Methods).

of the aggregate conductance depend on synchrony. For independent firing, their
standard deviation scales as 1/ KA. On another hand, for perfect synchrony the

standard deviation scales as K A, as if the conductance changes resulted from the
action of a single synapse of size KA. More generally, one can determine how the
conductance variance depends on the pair-wise spiking correlation, p (see methods,
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(33)). Following on these observations and assuming a known synaptic time constant 7,
one can use the measured y, and o, to form the gain-independent quantity:
2
He

>
27,05

Q= (1)

In the absence of synchrony, i.e., p = 0, Q is a measure of the aggregate input rate to a

cell: Kr. Given the aggregate input rate we can then estimate the number of
connections and compare those to the number of anatomical connections (Fig. 2A).
Applying the same analysis to our in vivo conductance measurements yielded aggregate
input rates that are remarkably low for both excitation and inhibition during visual
stimulation (Excitation: median = 69, range = 10-173 Hz, Inhibition: median = 31, range
= 1-235 Hz), and during spontaneous activity (Excitation: median = 18, range = 5-21
Hz, Inhibition: median = 30, range = 10-59 Hz, Fig. 2B,C). Our estimates of the
aggregate input rate are much lower than the large number of presynaptic contacts
observed anatomically (between 1000 and10000) and the firing rates (1-100) observed
physiologically (30, 34-39).

Although estimates vary between reports (28, 40), in vivo extracellular recordings have
revealed ‘weak’ spiking correlations among pairs of neurons. We hypothesized that
these weak correlations might have an impact that cannot be neglected when
estimating Kr (41). The inclusion of input synchrony causes the measurable quantity O

to underestimate the true values of Kr by a factor 1/(1 + p(K — 1)) (see Methods).
Moreover, these underestimates saturate in the limit of large input numbers with

lim Q(p) = r/p, consistent with the fact that increasing level of spiking correlation
K-

leads to lower estimates of Q(p). We next simulated drives with varying number of
inputs and varying degree of spiking correlation, which replicated our analytical
derivations (Fig. 2E). These analyses and simulations reveal that even a modest level
of spiking correlation (28, 40), e.g., p = 0.01, yields estimates of Kr that are consistent
with realistic values for input numbers and synaptic rates (Fig. 2F).

In vivo population measurements are consistent with cortical synchrony

The above results suggest that synchrony in the spiking activity of pre-synaptic neurons
which is as weak as p = 0.01 could account for aggregate conductance statistics
similar to those we observed experimentally. To determine whether such spiking
correlations are present in vivo, we made large-scale measurements of cortical
responses using neuropixels in marmosets and mice. Our measurements revealed clear
bouts of synchronized responses on individual trials, which significantly deviate from the
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mean responses across trials. It was, however, difficult to quantify the degree of
synchrony of these responses via direct estimates of pairwise correlations because of
the presence of population and temporal heterogeneities.

To address these limitations, we use a population-level synchrony metric y, which we
modified from prior work (42, 43) and defined as

(2)

This y-metric has been proposed as a general measure of synchrony for large
population recordings (42, 43). In our case, X; represents the varying spike counts of
upstream neuron i, with 1 < i < K. To gain intuition about the y-metric, let us consider
an homogeneous population of inputs which also acts independently across time bins.
In such a case, by independence across neurons, we have Cov(X,, Xj) = 0, and the
population variance (numerator in (2)) computed over distinct time bins behaves

additively over the neurons. As a result, we have y(K') = 1/K . By contrast, in the
presence of synchrony, neurons tend to activate together, which leads to positive spike-

count correlations: Cov(X;, X;) > 0. Due to the inclusion of K(K — 1) additional cross

terms Cov(X,, X;), 1 < i # j < K, the population variance (numerator in (3)) no longer
behaves additively. As a result, we have

K)=p+—2
)( —,0 K ’

where p = Cov[X;, X;]/ Var[X;] can be rigorously interpreted as the pairwise spiking-
correlation coefficient. One can therefore estimate input synchrony by examining the
linear dependence of y as a function of 1/K and extract the pairwise correlation
coefficient, p, as the y-intercept. The above arguments generalize, albeit with some
caveats, to heterogeneous neuronal populations with time-varying firing rates (see
Appendix). In particular, compared with classical use of the y-metric, this generalization
computes variance estimates across trials for each time bin, and then average these

variance estimates across time bins, thereby allowing for variable population firing rates
across neurons and time bins.

Applying the y-metric to our measurements in the visual cortex of awake marmosets
and mice revealed clear evidence for synchronous spiking activity (Fig. 3A, Sup. Fig. 3).
Specifically, we found that Eq. 2 provides an excellent linear fit to the data and that

extrapolation to 1/K — 0 consistently yields a y-intercept which is significantly different
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Figure 3: Synchrony in the large-scale extracellular records of cortical networks. A. Raster plots of
simultaneously recorded neurons in marmoset primary visual cortex. Each raster shows the
response to presentations of the same visual stimulus (shaded region). For each trial the population
rate is computed based on the mean response across neurons for a single trial (black traces,
bottom) or across all trials (red traces, bottom). B. Left: The population variance () is plotted as a
function of the number of cells in the population. The standard error (shaded regions) is constructed
by randomly resampling the population for a given K (Methods). To generate a null distribution
spikes were randomly assigned a trial and x was recomputed (gray). C.  is plotted relative to 1/K. A
regression line was fit to estimate the synchrony in the population (43). D. As in C, for spontaneous
data. E. The distribution of synchrony estimated from the population variance measure across
extracellular records for stimulus-evoked conditions (top, mean = 0.014 + 0.014) and spontaneous
conditions (bottom (mean = 0.027 £0.025). F. The autocorrelation of the residual population rate
during visual stimulation (top) or during spontaneous activity (bottom). Exponentials were fit to the
decay of the autocorrelations (dashed lines). G. The distribution of exponential time constant for
stimulus-evoked population responses (top) or spontaneous population responses (bottom)
(stimulus evoked mean =28.3 ms £ 13.7, spontaneous mean = 126.8 ms +- 102.6).
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from zero. Since this intercepts measures the spiking synchrony at the population-level,
this indicates that the spiking activity is significantly correlated across neurons (Fig.
3B,C,D). We found that the degree of spiking correlations varied between recordings,
with mean p of 0.014 + 0.014 s.d. (n = 13 marmoset cortical populations) during visual

stimulation and mean p of 0.027 £+ 0.025 s.d. (n = 10 marmoset cortical populations)
during spontaneous activity, when measured for 200ms-long bins in awake marmosets
(Fig. 3E, Sup Fig 3 for mice). The synchronous responses are a feature of not just the
cortical populations, but also of LGN population (Sup Fig 3B) which sends input to the
visual cortex (44). The degree of correlation also increased upon selecting
subpopulation of visually responsive cells (Sup Fig 4). To assess the significance of our
correlation estimates p, we performed our y-metric analysis on surrogate data whereby

spikes emitted by the same neuron and within the same time bin are shuffled across
trials. Such shuffling erases all spiking correlations while preserving population and
temporal rate heterogeneities. Consistently, we found that the y-metric analysis of these
surrogate data yielded near-zero correlation estimates that were much smaller than the

estimates we obtained on real data, confirming their significance (Fig. 3C,D,E, Sup Fig
3).

In vivo synchrony exhibit characteristic time scales

When computed for short time bins (1ms), the y-metric yielded very small spiking
correlations, indicating that population responses form of synchrony that is not
instantaneous. Rather, populations of neurons exhibit fluctuating responses rates over
larger time scales (22, 40, 45-50). We estimated the time scale of these fluctuations by
performing an autocorrelation analysis of the population spiking measurements on a
trial-by-trial basis and by measuring the time constant of the autocorrelation decay (Fig.
3F). During visual stimulation, the time constant of these fluctuations is broadly
distributed with a median value of 29.3 ms (Fig. 3G, mean tuen=28.3 £ 13.7). We
noticed however, that an exponential decay can be a poor fit to the autocorrelation of
population responses. We therefore employed two additional methods to capture the
fluctuations time scale. First, we measured the width of the autocorrelation at half-
height, which had a mean value of 42 ms £ 16 (51). Second, as using short time
intervals to measure these time constants can induce systematic biases, we used a
Bayesian method to estimate the fluctuations timescales (52)(Sup Fig. 5). All of these
measures indicate that visually evoked fluctuations occur on a time scale between 25
and 50 ms. In contrast, the time scale of spontaneous fluctuations was substantially
slower, (Fig. 3F,G bottom, mean tspontaneous = 126.8 ms + 102.6, width at half height =
241 ms = 144). Despite these changes in the time scale of population synchrony, we did
not find a change in the amplitude of population synchrony, as measured by spiking
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correlations, between spontaneous and visually-evoked conditions (Fig. 3E, Sup Fig.
3D).

Both the measurements of synchrony amplitude (p) and time scale (t) were similar in
marmoset V1 and area MT. Further, records from mouse visual cortex from datasets
collected at the Allen Institute also exhibit similar dynamics, though the amplitude of the
synchrony measured in mouse V1 tends to be higher than marmoset V1 (Sup. Fig. 3).
In sum, synchrony amplitude, its time scale, and the dependence of time scale on visual
drive are common across species in the visual system.

Weakly synchronous excitatory inputs can generate Poisson-like spiking.

We have demonstrated that conductance and large-scale population measurements
indicate the presence of synchrony in the network on timescales between 25 and 200
ms. Can such input synchrony also lead to physiological output spiking variability? To
answer this question, we generated synthetic conductance traces arising from
presynaptic activity with a prescribed degree of spiking correlation. We injected these
conductances into neurons in vitro (Fig. 4A) and examined the variability of the spiking
activity they elicited for the same input rate and input correlation statistics. We found
that the spike-count Fano factor was reliably near 1 (Fig. 4C, dark green points, mean
Fano factor = 1.2 + 0.4 s.d., n = 12), across our sample population, consistent with
Poisson-like firing observed in vivo (Fig. 4D). Moreover, as observed in vivo (22), the
Fano factor did not depend on the input firing rate (Fig. 4E) or the bin size used to
measure spike counts (Fig. 4F). Irregularity in spiking pattern was also evident in the ISI
distributions and CV near 1 (Supp. Fig. 6).

To determine whether input synchrony was necessary to generate these variable
responses, we also measured the responses of neurons in vitro in the absence of input
synchrony (Fig. 4B-F). As in the presence of input synchrony, the patterns of action
potentials were variable in the absence of input synchrony (Fig. 4B). However, the spike
count variance was considerably less than the mean in the absence of input synchrony,
resulting in a reduced Fano factor (Mean = 0.6 £ 0.2 s.d., n = 10, Fig. 3C-D). Further,
and in contrast to in vivo observations (53), the resulting Fano factor was negatively
related to the elicited firing rate (Fig. 4E) and to the bin size used for the spike count
measurement (Fig. 4F). Low variability also resulted in more regular spiking and smaller
CV values for cells injected with asynchronous input. (Supp. Fig. 6)
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Figure 4: Poisson spiking response emerge from weakly correlated inputs. A. Bottom plot
shows a raster of model presynaptic excitatory (red) and inhibitory (blue) neurons
generated using a pairwise correlation of 0.030 at a timescale of 50 ms. Those spike trains
are used to generate single trials of excitatory and inhibitory conductances (red and blue
traces). Three example traces are shown, the light and dark colors are to distinguish the

traces. The top two plots show the spike raster and the membrane potential responses of a
neuron recorded in vitro using dynamic clamp injection of the generated conductances. The
first trial is shown in the black trace. B. Same as A, but for conductances generated from an

asynchronous network. C. The mean and variance of spike count per bin for the in vitro
neuron’s responses in the example trial in black shown in A and B. A sliding 200 ms bin
size is used. Dark green points are for the example cell in A with synchronous input and
light green points are for example cell in B with asynchronous inputs. D. Distributions of the
Fano factor from our set of in vitro recordings indicate that responses are slightly above 1
(1.24/-0.4, n = 12) for synchronous inputs shown in dark green and below 1 (0.6 +/- 0.2
s.d., n = 10) for asynchronous inputs shown in light green. E. The relationship between
Fano factor and mean firing rate was not significant for synchronous input (r2 = 0.03, p =
0.3, for asynchronous input R2 =0.5, p = 0.0003). Two different simulated inputs were used
for synchronous injections in dark green, one with pairwise correlation of 0.03 indicated by
triangles, and another with pairwise correlation of 0.015 indicated by squares. F. The bin
size used to count spikes only weakly altered the Fano factor above 100 ms.

Synchrony time scales determine spiking variability in vitro
To examine how synchrony timescales impact spiking variability, we consider a

statistical model for input synchrony that uses two parameters: a parameter p that

captures spiking correlations at a typical bin size and another parameter 7 that captures
the time constant of the correlation decay. Concretely, we obtained this statistical model
by considering that synchronous inputs arise from a fluctuating population-level firing

rate,

which we model as a nonnegative diffusion process with prescribed autocorrelation
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time (see Methods). This model generates similar statistics as jittering spikes over a
given time window, but allow for an analytical treatment of the amplitudes and time
scales of synchrony (28, 46).

Trials

Trials

«

Fano factor

-304

L
1

"] it

0
1.6
0

Asynchronous

-30

2.6

t=1ms

ML

-804

1.6

-804

=50 ms

UL

-30

-804

0.6

0

=100 ms

N

} ~ M\@\J

06
A
Lw” WPy 0 ,,\JL.h\f\,MJ@AMA

0 .
Time (s)

1

o] it :} bl

i
J i, (j LAY
3
T T T
0 0. 1 0 0.5 1
Time (s) Time (s)
C 5
[ ]
4
u =
S [ ]
5 2
hy [ ]
2 %
& 24 .I/.
®
" «/‘6/
®
04
T T T T T
0‘& 000:9 \&6 <« e‘(&

T T 1
0 0.5 1
Time (s)

—m— In vitro neurons

Pyr RS model

Pyr Burst model

Pyr LTS model

Pyr r-Burst model
Wang Buzsaki model

Figure 5: Synchrony timescales alter
spiking statistics. A. Spiking activity
and membrane potential for model and
in vitro neurons for conductances from
networks with varying timescale of
synchrony are shown. Example
conductance traces are shown in the
bottom row, in red for excitatory and
blue for inhibitory. The middle rows
show membrane potential and raster
plot upon injecting such conductances
in vitro. The top rows show membrane
potential and raster plot upon injecting
same conductances in model neurons.
From left to right, first column shows
responses for asynchronous
population input, population synchrony
with a correlation of 0.015 at 1 ms
(second column), 50 ms (third column)
and 100 ms (fourth column). B.
Measurements of Fano factor for the
four conditions presented in Aiin all in
vitro recorded cells. C. As in B, for five
different neuron models, indicated by
color.

We used the above statistical model to generate synaptic inputs with altered synchrony
time scale and injected the resulting synthetic conductances into neurons in vitro (Fig.
5A). As demonstrated previously, asynchronous inputs generate variable spiking, but
with a Fano factor near 0.6. Including synchronous drive at instantaneous time scales (1
ms) increased conductance variability relative to asynchronous drive, but the resulting
Fano factor remained low (FF=0.7, Fig. 5A, T = 1ms). The lack of impact of
instantaneous synchrony on spiking variability is due the low-pass filtering properties of
neurons, which average out fluctuations that are faster than membrane time constant
(t ~ 25ms). Slower input fluctuations pass through the membrane filter, driving larger
membrane potential variability for comparable mean level of activity. In keeping with this
intuition, we found that longer synchrony time scales leads to systematic increases in
the Fano factor of the spiking response of in-vitro neurons (Fig. 5A,B). Similar results
were obtained using numerical simulations using common electrophysiological models
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of cortical neurons (54, 55).Injecting synchronous drives revealed a consistent impact of
synchrony timescale on spiking variability (Fig. 5C,D). Moreover, we found that recorded
and model neurons exhibit similar behavior to changes in input rate, synchrony time
scale, and the bin size dependence of the Fano factor as those recorded our
experiments in vitro (Sup Fig 7,8).
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Figure 6: The dynamics of spiking variability. A. Dynamic clamp in vitro injections of in vivo
recorded conductances result in systematic shifts in the Fano factor between the pre-stimulus
period (0-750 ms) and the visually-driven period (shaded region, 750-2500 ms). Two example
neurons are shown. B. Dynamic clamp in vitro injections of modeled population input in which
the timescale of synchrony shifts from 100 to 50 ms. C. A comparison of the Fano factor
during the spontaneous period and the visually-driven period. Distinct in vivo conductance are
indicated by shape (circle, example 1; square, example 2). Distinct modeled synchrony
amplitudes are indicated by color vellow (p = 0.015) and purple (o = 0.03) diamonds.

While cortical spiking activity is generally characterized as Poisson, because the Fano
factor is near 1, it can also exhibit super-Poisson variability, whereby spike-count Fano
factors substantially exceed unit value. Such super-Poisson spiking statistic are found
across the cortex during spontaneous activity, whereas input drives tend to quench
variability, leading to Poisson-like spiking (4). To determine if we can recover both
variability regimes in vitro, we injected in-vivo conductances recorded during
spontaneous (pre-stimulus period) and evoked activity (visual stimulation period). As
expected, we found that spiking statistics shifted from super-Poisson during
spontaneous drive to Poisson activity during stimulus-evoked drive (Fig. 6A). Our
population recording revealed that a key distinction between spontaneous and stimulus-
evoked regimes is that the input drives shorten the time scale of synchrony. We
hypothesized that this change in synchrony time scale is responsible for the shift from
super-Poisson and Poisson spiking. To validate this hypothesis in vitro, we injected
synthetic conductances for which the synchrony time scale changed from 100 to 50 ms,
mimicking a pre-stimulus period followed by a stimulus-driven period (Fig. 6B). To
reproduce physiological conditions, we jointly increase the mean input rate and the
synchrony timescale when switching from the simulated spontaneous period to the
stimulus-driven period. We note, however, that the increase in input drive is not the
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determinant factor as changing synchrony time-scale alone is sufficient to quench
variability (Sup. Fig. 9).
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Figure 7: Intrinsic process shape neuronal responses. A. The responses of many neurons
recorded in vitro to the same conductance input. The population raster shows the spikes of
each cell, while the overall firing rate is computed as in Mainen and Sejnowski (1995).
Membrane potential traces are shown for four of the neurons in the sample population. B. The
responses of a single neuron (4) to the same stimulus presented repeatedly. Firing rate and
membrane potential as in A, but for this single neuron. C. The reliability of population
response (red) is always lower than individual neurons (black) and declines steadily with the
threshold rate. D. Individual neurons are more precise than the population.

Spiking responses are quasi-deterministic but neuron-specific

Our results show that achieving realistic spiking variability requires synaptic inputs with
specific characteristics in terms of synchrony amplitude and time scales. Indeed, we
have demonstrated that neurons reliably generate the same spiking patterns when
driven by the same conductances (Fig. 1A,B,Fig. 7A,B). At the same time, we find that
spiking patterns in response to the same conductances vary significantly from cell-to-
cell (Fig. 7A). This suggests that each neuron has its own set of intrinsic properties that
sculpt responses. These diverse spiking patterns are especially noteworthy as we
neglected the differentiating impact of dendritic integration by presenting conductances
to the soma. To quantify the spiking variability due to the heterogeneity of neuronal
intrinsic properties, we compared the reliability and precision of single-neuron
responses with the responses of distinct neurons driven by the same input (72). For
repeated injections of same conductance into the same cell, the reliability of spiking
patterns across repeats was high (mean = 0.92 + 0.05, n = 10) and spike times within
an event across repeats also showed high precision (mean = 3.9 ms + 1.3, across =
10, Fig. 7C). We compared these metrics with across-cell measurements by injecting
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the same conductance in different cells and treating spiking patterns of different cells as
a repeat. In this case, the reliability of spiking was considerably lower (mean = 0.72 +
0.06, across 10 cells) and spike times across cells within an event also showed low
precision (mean = 4.6 ms + 0.6, across 10 cells). These distinct spiking patterns
demonstrate how intrinsic properties sculpt responses of neurons differentially. Such
response diversity has the impact of reducing the overall spiking synchrony in the
population which weakens the spiking correlation of neurons receiving common drive
(56).

Discussion

We have demonstrated that irregular spiking observed in single cells in vivo results from
external synaptic drive. Our experimental and modeling results revealed that synchrony
is an essential determinant of cortical variability, which poses several challenges to
existing theories.

To support this claim, we demonstrated a network-level origin for cortical variability via
two key observations at the single-cell level. First, we showed that neurons respond
reliably to repetition of the same physiological synaptic inputs that were recorded in
vivo, as suggested by previous in-vitro studies that used synthetic input (12). Second, we
found that spiking variability is fully accounted for by the fluctuations of the synaptic
drive that a neuron receives in response to the same sensory stimulus. This supports
the idea that neurons faithfully respond to variable inputs, whose fluctuations originate
from network properties rather than intrinsic sources. Further, we have established that
cross-trial fluctuations in the excitatory drive are sufficient to evoke variable spiking
responses. This suggests that, at the single-cell level, balancing strong excitation and
inhibition in the inputs is not a requirement for spiking variability to emerge.

We argue that the physiological synchrony in networks generates input fluctuations that
result in irregular spiking. To support such a role for synchrony, we followed four lines of
evidence. First, statistical analyses of conductance traces recorded in vivo shows that
the strength of their fluctuations can only be explained by some degree of synaptic input
synchrony. Second, using a population correlation analysis of large-scale spiking
recordings we quantified the presence of spiking correlations. Third, we developed
models that generate inputs with various degree of synchrony. With these models, we
showed that the level of spiking correlation measured in our experiments yields
synthetic conductance traces with physiological levels of fluctuations. Fourth, injecting
neurons with these synthetic conductances demonstrates that input synchrony is
sufficient to drive physiological spiking variability in vitro.
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Our measurements identify the time scale of synchrony as a key component controlling
spiking variability. Shifting synchrony timescales from slow to fast, as occurs at the
transition from spontaneous and driven states, reduces the degree of spiking variability
from super-Poisson to Poisson, as has been observed across cortical areas. The
distinction between super-Poisson and Poisson spiking regime is thus explained by
frequency modulation rather than amplitude modulation (4).

It remains unclear how such synchrony emerges within cortical networks. We
presented evidence that synchrony not only exists at the level of the cortex, but in the
afferent inputs from the thalamus (Sup. Fig 3), suggesting that cortical networks may
only need to maintain and modulate synchrony. Correlated activity varies with internal
state (e.g. attention), suggesting that there are multiple stable synchronous network
states. Network models composed of multiple clusters of interconnected neurons, as
observed in vivo (57-61), can generate metastable dynamics with slow synchronous
network fluctuations, whose timescales are modulated by input drives (62).
Mechanistically explaining the origins of cortical variability likely hinges on
understanding the stable emergence and maintenance of these synchronous
fluctuations in structured spiking networks (6, 62-64). This will probably require
considering network models beyond classical approximations that neglect non-
Gaussian, correlation-based, correction terms (65-67).

Methods

All marmoset and mice experiments were conducted with the approval of The University
of Texas at Austin and University of Nevada at Las Vegas Institutional Animal Care and
Use Committees.

In vivo physiology procedures:3 male and 1 female marmoset was used in the current
study. These animals had chambers implanted over primary visual cortex or area MT.
Surgical procedures were similar to previous descriptions (68). Custom-made headpost
and chambers were affixed to the skull in a sterile anaesthetized procedure. Throughout
the procedure, the body temperature was maintained at 36-37°C and the heart rate,
SPO2 and CO2 were monitored. Animals were placed in stereotaxic frames, circular
craniotomies were performed on the intended chamber location identified using
stereotaxic coordinates, chambers and the headpost were placed and the dura was
removed. An implant from dental acrylic was built around the headpost and chambers,
covering the remaining exposed skull. The skin around the implant was affixed to the
implant using Vetbond. The animals were then returned to the cages after recovery from
anaesthesia.

Chamber design: The chamber consisted of 4 parts. The outermost part of the chamber
was a ring of height 1.6 mm and of diameters ranging from 5-7mm. This ring had 1 mm
long thin feet that were inserted inside the skull following craniotomy. The second piece
was a thin chamber nut (thickness 1.5 mm) that was screwed on the outside of the
chamber ring and rested on top of the skull. This assembly was further sealed using
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Metabond (Parkell, New York). A removable imaging well was screwed on the inside of
the chamber ring. The well consisted of a metal insert to which a coverglass was
attached at the bottom. A thin cap (1 mm) was screwed on top of the chamber ring to
close it.

Behavioral training and experimental control: After recovery from surgery, marmosets
were habituated to head fixation and trained to fixate visual targets. Experimental
control was provided by the Maestro software suite, which collected eye movement
data, controlled visual stimulation, and provided juice reward (https://sites.google.com/a/
srscicomp.com/maestro/).

Population recordings: Large scale population recordings from V1 and area MT data
were collected using Neuropixels 1.0 probes. We used an IMEC PXle acquisition
module mounted on a National Instruments (NI) PXle chassis (PXle-1071) with NI
PXle-8381 and NI PCle-8381 for remote control. Voltage signals were recorded at 30
kHz from 384 channels using SpikeGLX. Waveforms were first automatically sorted
using Kilosort and then manually curated using the phy software (69). Large-scale
population recordings in mice were downloaded from the publicly available dataset at
the Allen Institute (70).

In vitro physiology procedures: Mice and marmosets underwent cardiac perfusions with
ice-cold saline consisting of (in mM): 2.5 KCI, 1.25 NaH2P0O4, 25 NaHCQO3, 0.5 CaCl2,
7 MgCl2, 7 dextrose, 205 sucrose, 1.3 ascorbicate acid, and 3 sodium pyruvate
(bubbled constantly with 95% 02/5% CO2 to maintain pH at ~7.4). The brain was
removed and sliced into 300 uM sections containing V1 region of cortex or temporal
association cortex were made using a vibrating tissue slicer (Vibratome 300, Vibratome
Inc). The slices were placed in a chamber filled with artificial cerebral spinal fluid (aCSF)
consisting of (in mM): 125 NaCl, 2.5 KClI, 1.25 NaH2PO4, 25 NaHCOQO3, 2 CaCl2, 2
MgCl2, 10 dextrose, 1.3 ascorbic acid and 3 sodium pyruvate (bubbled constantly with
95% 02/5% CO2) for 30 minutes at 35°C and then held at room temperature until time
of recording.

In vitro Electrophysiology

Slices were placed in a submerged, heated (32-34 C°) recording chamber and
continually perfused at 1-2 ml/min with aCSF (in mM): 125 NaCl, 3 KClI, 1.25 NaH2PO4,
25 NaHCOg3, 2 CaCl2, 1 MgClI2, 10 dextrose, and 3 sodium pyruvate (bubbled
constantly with 95% 02/5% CQ2). lonotropic glutamatergic and GABAergic synaptic
transmission were blocked with 20 uM DNQX, 25 yM D-AP5, and 2 uM gabazine.
Neurons were visualized with a Zeiss AxioExaminer under 60x magnification. All drugs
were obtained from Tocris, Abcam pharmaceutical, or Sigma and prepared from a
1000x stock solution in water.

Whole cell recordings were made using a Dagan BVC-700 amplifier and custom written
acquisition software using Igor Pro (WaveMetrics) or Axograph X (Axograph). Data were
sampled at 20-50 kHz, filtered at 3 kHz, and then digitized by an InstruTECH ITC-18

interface (HEKA). The internal recording solution consisted of (in mM): 135 K-gluconate,
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10 HEPES, 7 NaCl, 7 K2-phosphocreatine, 0.3 Na-GTP, 4 Mg-ATP (pH corrected to 7.3
with KOH). Recording electrodes were pulled using Flaming/Brown puller (Model P-97,
Sutter Instruments) from borosilicate glass (outer diameter 1.65 mm, World Precision
Instruments) and had an open tip resistance of 4-6 MQ. Series resistance was
compensated using the bridge balance circuit and was monitored throughout the
experiment. Experiments were discarded in series resistance exceeded 35MQ.

Dynamic clamp experiments were performed using a Teensy 3.6 microcontroller that
converted excitatory and inhibitory conductance commands with the records of
membrane potential into current at a high rate (100 kHz) (Desai et al. 2017). Excitatory
and inhibitory reversal potentials were set to 0 and -80 mV, respectively. Action
potentials were identified by extracting the times at which membrane potential exceeded
a threshold voltage.

Conductance commands: Conductances injected in vitro were either from
measurements made in vivo (Tan et al.) or using generated synthetically at a timescale
of 8kHz. The gain of the in vivo conductances was adjusted equally during experiments
to generate approximately 7 spikes/sec, except for those experiments in which the
conductance gain was systematically adjusted (Sup. Fig. 2). The relative gain of
excitatory and inhibitory conductances was not varied, apart from those experiments in
which inhibitory conductance was set to 0. Baseline holding currents at either the
reversal potential for excitation or inhibition were computed from the bottom fifth
percentile of the distribution of current values. These baseline currents were subtracted
from the current traces and converted into conductance traces, which were used as
commands to the dynamic clamp system.

Synthetic conductances were generated as shot-noise traces by exponentially filtering
the spiking patterns of 500 excitatory neurons and 200 inhibitory neurons characterized
by a rate, correlation, and correlation time scale. We simulated synchronous spiking
activity via as a doubly-stochastic procedure, whereby the common neuronal spiking

rate r is prescribed as a random Cox-Ingersoll-Ross (CIR) process. Such a process is

governed by
dt
dr, = (m - rt) — + \/Eth, (3)
T

T

where m is the mean firing rate, 7 is the correlation time, o is the noise coefficient, and
W is a Brownian motion. Then, to simulate spiking inputs from K inputs, we sample the
number of active inputs in each time bin of duration At by sampling a Poisson random
variable with parameter KrAt, where r refers to the (average) value of the fluctuating
rate in that time bin. Given m and 7, we choose ¢ to achieve the level of experimentally
measured level of spiking correlations (the larger o, the larger the spiking correlation
p). In our simulations, At = 1/8000s, while m, pand 7 were varied. The spiking

correlation p was varied by choosing ¢ when measured in time bins of 15 ms duration.
The degree of correlation between excitatory and inhibitory inputs was also varied by

considering that each type of inputs were driven by two separate CIR processes r, and
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r;. This varying degree of correlation was obtained by allowing for 7, and r; to be driven
by a shared noise component in equation (3): W, = sW, +v/1 — s*W/ and
W, = sW, +1/1 — s>W/ where s denotes the fraction of shared noise, W, denotes a

shared Brownian motion drive and where W, and W; denote independent private
Brownian motion drives. Input spikes were passed through exponential decays of either
5 ms (excitatory neurons) or 10 ms (inhibitory neurons). The overall gain of inhibitory
drive was set to twice the excitatory gains, which matches the difference in conductance
gain measured between excitatory and inhibitory conductances.

Neuron simulations: We used the single compartment models of regular-spiking
pyramidal cell, bursting pyramidal cell, repetitive bursting pyramidal cell, and low-
threshold spiking (LTS) pyramidal cell from Pospischil et al. 2008 (55) as well as the
model of interneuron of Wang-Buszaki (54). We downloaded these five models from
the ModelDB repository and used the simulation environment Neuron (71, 72). The
parameters were not adjusted. Simulations were either performed at 8 kHz, for the
neurons from Pospichil et al., or at 160 kHz for the Wang-Buzsaki neuron. The
conductance of the external inputs was generated using the same method for those
cells recorded in vitro. As for in vitro experiments, action potentials were extracted by
identify the time at which membrane potential exceeded a voltage threshold.

Population variance: Measurements of y were made from simultaneously recorded

populations of neurons. The number of neurons included in the y measurement was
systematically varied from K= 2 to the total number of neurons (Kiot)in the recorded
population. For each K, K neurons were selected randomly and the population variance
was computed by measuring the variance of the population rate across trials relative to
the summed variance of the individual neurons (equation 2).

For each subpopulation size K, K neurons were selected 50 times randomly. Both the

mean and 95% confidence intervals of y were computed from mean and standard
deviation of this distribution. We then shuffled the spikes randomly between the trials,
to disrupt any trial-by-trial covariance, and performed the same analysis (51). To
measure the population variance as K approaches infinity was extracted from the y-

intercept of the linear regression using the log-transformed y values from the 1/Kt to 1/
(Ktot*0.5).

Synchrony time course: Estimates of the timescale of population synchrony were made
using two different procedures. First, we estimated the synchrony time course from the
decay in the autocorrelation of the residual population response. We measured by the
population response from the summed activity of neurons in a given trial, and computed
the residuals from the difference in the individual trial populations from the population
responses averaged across all repeats of the same stimulus. The autocorrelations of
these residual responses from each trial and across conditions were averaged and an
exponential time constant was fit to the average autocorrelation. The second method we
used to estimate synchrony time scale was to employ the method described in Zeraati
et al 2022, which uses a generative model based on Ornstein-Uhlenbeck processes.
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Measurements of precision and reliability were based on the procedure outlined in
Mainen and Sejnowski, 1995 (12). PSTHs were generated either for neuronal
populations, by integrating the responses of distinct neurons to the same conductance
injection, or by integrating the responses of a single neuron to injection of the same
conductance. An adaptive filter was applied to the average responses which was
centered on each time bin and widened until half of the responses contained a spike or
the bin width reached 100 ms. Events were then identified as by firing rate crossing a
threshold level of firing rate, which was varied systematically in steps of 10 from 10 to
50 spikes/s. Reliability is defined as the fraction of spikes that occur within these
events, whereas precision is defined as the standard deviation of spike times within an
event.
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Supp. Fig. 1: CV and bin size dependence of Fano factors.

A and B.Distributions of the inter-spike interval are shown for the example cell in Fig. 1A
and C respectively. The cell in A is injected with ge + gi, while cell in B is injected with ge
alone. Left and right columns are output from same g and different g injections
respectively. C A comparison of CV of the ISI distribution for all cells which input
conductance is the same or different. D. A comparison of the Fano factor using different
bin sizes. Markers are same as in C.
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Supp. Fig. 2: Effect of changes in gain on Fano factor and firing rate.

A.The Fano factor for changes in excitatory and inhibitory conductance gains
example cells. Each column is a separate cell. Green points are output from
different g injections and gray points are output from same g injections. B. The
changes in spike rate as a function of gain for the cells in A, for same g
injections. C. The changes in spike rate as a function of gain for cells in A, for
different g injections.
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Supp. Fig. 3: Synchrony in large scale extracellular recordings from mouse

cortex and visual thalamus (LGN).

A. Shows population variance as a function of number of cells during stimulus-
evoked (top) and spontaneous (bottom) conditions for an example session. B.
Show autocorrelation of population activity for the session in A. The dotted line
shows the fitted exponential decay. C. Distribution of population activity timescale
(tau) across all sessions. D. Distribution of synchrony across all sessions. E-H,
as for A-B, but for thalamic recordings. Data is from Allen Institute (70).
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stimulus-evoked synchrony and B is for spontaneous synchrony.
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Supp. Fig. 5: Estimation of activity timescales using abcTau method.

A. Shows distribution of timescales (tau) for marmoset cortical populations using
the abcTau method. Top row is stimulus evoked timescale, bottom row is
spontaneous timescale. B. Same as A, for mouse cortical populations.
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Each point is the Fano factor of a cell injected with input with synchrony at
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that point. Same cells were injected with multiple input rates.
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Supp. Fig. 8: Variations in Fano factor and output firing rate with synchrony
timescale, input rate, and correlation in simulations. A. The firing rate (top) and
fano factor (bottom) are shown for the 5 types of model neurons. The synchrony
time constant and input firing rate were systematically altered for a pair-wise
correlation of 0.02. B. As in A, but the synchrony time constant and pair-wise
correlation were systematically varied. The input firing rate was set to 7.5 Hz.
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Supp. Fig. 9: Variability quenching in simulated neurons. A. Top row shows raster
for an example simulated neuron. Gray shaded region is when time-scale of
simulated input shifts from 100 ms to 50 ms (same as in Fig. 6B). Bottom row
shows the Fano factor of the model cell in 200 ms bins. The left column is when
firing rate is allowed to change from simulated spontaneous (1 spk/s) to stimulus
evoked (7.5 spks/s) period. Right column is when firing rate is held constant
through the 2 s trial (7.5 spks/s). B) Shows spontaneous and stimulus evoked
fano factor comparisons for 5 types of neuron simulation models. Black points
are for input with firing rate changes, gray points are for constant firing rate.B.
The mean Fano factor for each model cell in the driven (synchrony time scale =
50 ms) and spontaneous periods (synchrony time scale = 100 ms) for each
model cell. Changes in Fano factor were measured when the input firing changed
from 1 to 7.5 spks/s (gray symbols) or when the input firing rate was fixed (black
symbols).
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1 x-metric estimates for spiking correlations

In this section, the scaling behavior the y-metric with respect to the number of considered neurons K. To
do so, we consider a series of spiking statistical models under increasingly realistic assumptions.

1.1 Temporally independent, homogeneous case

1.1.1 Bernoulli counts

Consider some spike train data X;,,, 1 < ¢ < K, where ¢ is the neuron index and m the time index.
Assuming stationarity, we can neglect time dependence and disregard ¢t. We also assume exchangeability
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and allow for nontrivial correlation. Let us define
p:E[XZ] :P[Xz = 1] =7rAt and q:E[XZXJ] :P[XZ :X]' = 1] 5 (1)

where p is the probability to find a spike in a bin, where 7 denotes the spiking rate, and where ¢ = p? in the
absence of correlations. The spike correlation is defined as

p= E[X;X;] - E[X;]E[X}] = | )
\/<E 7] - (B[] - ELGP) p(1—p)

so that we have ¢ = p? + pp(1 — p). In this context, the y-metric can be computed as

1 & 1 K ? K ?
Vi=S"x;| = — [E x| |- (E]S x; , 3)
e - o5 ()
1 (& K 2
= = | B+ > E[XM(ZE[XA) , @)
i=1 1<i#j<K i=1
1
= o (Kp+ K(K = 1)q — (Kp)?) , 5)
_ . P
_ _ 1—p
= p(1-p) <p+K > 7

where the last line is obtained by expressing ¢ in term of the spike correlation p. For spiking data, we
commonly have p = rAt < 1, so that p(1 — p) ~ p = rAt, leading to the rate normalized x-metric

1 & 1 &
KZ;X KZ_;X] ®)

The above relation demonstrates that for the Bernoulli homogeneous case, studying the (1/K)-dependence
of the x-metric allows one to rigorously infer the shared spiking correlation.

1 1—p 1
—V = P Sy VRS
p(1—p) Pt K rAt

1.1.2 Binomial counts
Assuming no temporal correlations, the above result generalizes to the spike counts observed in many time
bins. Specifically, for an integer bin size M, we have Y; = Z%ﬂ Xim» where {X1 ..., XK m b 1<m<Ms
are independent samples across time. This corresponds to taking:
r_ _ M _ M — 1] —
P =E[Yi] =E[SM Xim| = S0, P (X = 1) = Mp, ©)

¢ =EYiY;] = fozl Zﬁil E [XimXjn] = Zrﬂr{:l 27]14:1 P[Xim = Xjm =1] . 10)

Separating the contributions of coincidental time bins and noncoincidental (independent) time bins yields

M
q = PXim=Xjm=1 + > PXjm=1P[X;n=1=Mq+MM-1)p*. (11)
m=1 1<m#n<M
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Similarly, we have

M M
§=E[Y?] =) P[Xim=Xipn=1=Mp+MM—1)p’. (12)

m=1n=1

Using the same calculation as for the Bernoulli case, this allows one to evaluate the new normalized y-metric

1 & 1 [&E K ?
— 2 V. _ .
VIgd Y| = = | LEMT+ X B (ZM}) , (13)
1=1 i=1 1<i#j<K 1=1
1
= 5z (K" + K(K = 1) = (Kp)?) | (14)
/ /
' 2, 54
= ¢ -+ —. 15
R (15)

Expressing p/, ¢/, and s in terms of p and ¢, we get

\V4 1§:y - 4 _ /2+1ﬂ (16)
K 2" ¢ —p T
M _
= Mg+ D a7)
_ _ 1=»
= Mp(1-p) (p+ e > (18)

Thus, after proper rate normalization, larger bin sizes do not affect the (1/K)-dependence.

1.1.3 Poisson counts

From there, another generalization is to consider Poisson distributed spike counts, given a common spiking
rate 7, this classically corresponds to considering

M
Yari(T) = > Xasim (19)
m=1

in the limit M — oo, where {Xa7,1.m, ..., X Kk.m}1<m<m is the spiking activity in a time bin of size
T'/M so that we have E [ X/ ; ] = py = rT'/M = p/M. Assuming that the pairwise correlation persists
at small timescale is equivalent to assuming that the scaling g = E [X a7, mXs,j,m] = ¢/M holds as
well. This scaling corresponds to an instantaneous form of synchrony, which we discuss in more detailed in
Section[2.1] This instantaneous form of synchrony follows from the fact that under the considered scaling,
one obtains limit Poisson processes N;(1") = lim s, Yas,; which can jump synchronously. One can derive
the corresponding limit y-metric by first observing that

Py = EYai(T)] = Mpyr = p, (20)
¢ = EYari(T)Yar j(T)] = Maar + M(M — 1)p3, = ¢ +p*(1 — 1/M), 1)
shy = E [Yari(T)?] = Mpy + M(M — 1)py, = p+p*(1 = 1/M). (22)

This leads to the limit pairwise spiking correlation

_au vy @/M—(p/M)? Mo g
M= o(T—pa) (/M) (1 — p/M) =y 9

3
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Using the above results, we have

1 . 1
1€SK 1€SK
o | S~y
. / /
= m (QM_pM+ K ) ’ =
B p—q . 2
= g+ P20y i g, (26)
1—p

— __r 2

p<p+ K ) ) (27)

where the last equality follows from substituting ¢ = pp. This leads to the instantaneous Poisson version of
the x-metric

1 1 ' P I—p\ 1—p
TV ?Z Ny(T) _T(p+K >—T<P+K )7 (28)

which exhibits a similar (1/K’)-dependence as for the binomial case.

1.2 Population heterogeneity
1.2.1 Discrete-time model

Let us consider the more realistic case of heterogeneous spiking rates and heterogeneous correlations, which
we parametrized via

For an integer bin size M, the quantities of interest are the spike counts Y; = Z%zl X m, where the vectors
{X1m,---s XKm}1<m<m, are independent samples across times. Similarly to the homogeneous case, we
introduce the following useful quantities:

p;=E[Y;]=E [Z%:l Xzym} = Z%:l P[Xim =1] = Mp;, (30)
¢; =E[Y;Y;] =S S P [Xim = X = 1] = Mgij + M(M — 1)p;p;, (3D
si=E[V?] = Yt Yonet P Xim = X = 1] = Mp; + M(M — 1)p} . (32)

It is also convenient to compute the binned covariance as
cij = di; — Piply = Maij + M(M — 1)pip; — Mpip; = M(qij — pip;) = Mcij (33)

where ¢;; is the single-bin covariance. Taking into account heterogeneities causes the y-metric to depend
on the set of K neurons under consideration, which we denote by Sk C {1, ..., K'}. With this in mind, we
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can evaluate

2

1 1

VIig D Y| = 15| EN+ Y EDY-| D EM] |, (34)
1€SK 1€SK 1#jESK 1€SK
2

1

= | st > di— (] | (35)
1€SK i;éjGSK 1E€SK
1 (K—-1)
= lsihiesi + g (dyiziesi = (Pi)iesy (36)
(si)iesk — (@ij)izjes

= {tizesk — Pies +— 37

Due to heterogeneities, there are actually (1/K )-correction terms in the inhomogeneous term:

1 1
(@ij)itjesx — Piies, = KK =1 Z P+ | - e Z Pipy, (38)
i#jESK 1,j€SK
1 1 ;.
= <K2+K2(K—1)> > i (39)
i#£jESK
]‘ / ]‘ /!
+m ‘ Z % R2 Z PiPj s (40)
i#jESK 1,jESK
1 1 /o 1 /2
I N 2 : 41
% | 7E—D D v - D (41)
1#jESK €S
1 /
I i (42)
K&, 2
1
= 7 (Wip})izjes — (P )iesx) + (Cijizjesy - 43)

Thus, we have the following overall (1/K)-dependence for the y-metric

v % S| = s+ (Pip})iziesy — <P§2>¢GSKK+ (si)iesk — (alj)iziesx 4
i€SK
= M <<Cij>i$éj€SK + pill pi)>i€s;; — <Cij>#‘jeSK) ) (45)
where the last equality follows from observing that
si —pi = Mp; + M(M — 1)p} — M?p} = Mp;(1 - pi). (46)

In the presence of population heterogeneity, one thus obtain the (1/K)-dependence for the y-metric by
merely performing the population averages of the involved statistics.
1.2.2 Continuous-time model

Obtaining the continuous-time model amounts to taking the Poissonian limit of the discrete model, which
involves considering time bins of duration At = T'/M with M — oo. Taking such a Poissonian limit yields
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instantaneously synchronous Poisson processes [V;, whereby each process register the spiking activity of
neuron ¢. Moreover, one can check that in the Poissonian limit, the y-metric satisfies

1 1 (ri)iesix — (ij)i£jesk
7V Kgs Ni(T) | = (vij)izjesx + % ; 7
1 K

where the instantaneous covariance coefficients v;; = Mc;j/T = c¢;;/At satisfy C[dN;(t)dN;(t)] =
[E [dN;(t)dN;(t)] = ~i;dt. Finally, the x-metric can be written as

1 1 1—5

where we have defined the correlation-like coefficient pg, as the ratio of the average instantaneous co-
variance with respect to the average instantaneous variance: ps, = (Vij)izjeSy/(7i)ieS, - Note that the
latter quantity is distinct from the average correlation. For instance, consider the case of a constant pair-
wise spiking correlation p so that we have v;; = p,/ri7;j. Then, ps,, = p(\/Ti7})i#jesx / (Ti)ies,» Which
differs from p in general. Note also that we have assumed the set of neurons Sk fixed throughout the
calculation. Numerical estimation of y-metric actually benefits from evaluating the (1/K)-dependence via
sample-average variance estimate obtained by randomly sampling S for intermediate K. This corresponds
to altering the results by performing an additional average over Sk, but should not change the essence of
the result.

1.3 Temporal correlations
1.3.1 Discrete-time model

Finally, we consider a spiking correlation model that also includes temporal correlations. For simplicity, we
consider that these temporal correlations are homogeneous in time and identical across neuronal pairs. For
a Bernoulli model, this corresponds to considering forall 1 <: < K, 1 <m <M

Pi = E [Xz,m] =P [Xz m — 1] = T‘iAt, (49)

)

andforall 1 <i,j < K,1 <m,n <M with (i,m) # (j,m)
Gijomn = E[XimXjn] = P[Xim = Xjn = 1] = gijf(m —n) + (1 = f(m —n))pip; , (50)

where the function f quantifies temporal correlations and is such that 0 < f < 1 with f(0) = 1. Observe
that by definition gj; mm = E[X;mXim] = E[Xim] = pi- A typical example of such functions that
involves a single time scale 7 is given by f(n) = exp (—|n|At/7), where At denotes the duration of a bin.
Similarly to the temporally independent case, we introduce the following useful quantities:

Py =EY] =301 P[Xim = 1] = Mp;, (51)
T = MO0 = T Doca Pom = Ko = 1] = Sty + (M Fi) (52)

si=E[Y?] =M SM PX;m=Xin=1] = Mp; + (Far — M)gis + (M? — Far) p?, (53)

where we have defined

M M
Fy =YY f(m—n) with M < Fy <M. (54)

m=1n=1
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Observe that using (50)), Fy; can be interpreted as

g clvy
Fy=) Y ===y Y CXim, Xjm] = — 5 43)
mein=1 i — PiDj S i

where ¢;; s the single-bin covariance. It is also convenient to compute the binned covariance as
ro_ /) 2 2 _ _
cij = qij — 00y = Fuqiy + (M? — Far) pips — M?pipj = Far(qij — pipj) = Farcij - (56)

Following the same calculations as for the case without temporal correlations, we find overall (1/K)-
dependence for the y-metric to be

1 (DD )itjes — (PP)iesi + (Shhiesk — (d);)izjes
Vg D Y| = (s + o SRS (5])
iE€SK
= Fu(cij)igjese + (58)
M{pi(1 — pi))ies, + (Far — M){(qii — p2)ies — Far(cij)iziesy
K , (59)

where the last equality follows from observing that

si—p? = Mp;+ (Fa — M)gi; + (M? — Fap) pi — M?p3 (60)
= Mpi(1—p)+ (Fayr — M) (g — p7).- (61)

Thus, we still obtain the characteristic (1/K)-dependence of the y-metric observed in the absence of tem-
poral correlation, albeit with a scaling factor Fs that depends on the duration of the bin as well as on the
time scale of the correlations.

1.3.2 Continuous-time model

As before, obtaining the continuous-time model amounts to taking the Poissonian limit of the discrete model,
which involves considering time bins of duration At = T'/M with M — oc. By contrast with the temporally
independent case, the corresponding limit counting processes specified by V;(7') = limps_,~ Y; are Poisson
processes with stochastic rates, which are commonly referred to as doubly-stochastic processes. Moreover,
in the presence of temporal correlations, one expects that F; scales as M?2. For instance, one can check
that for f(n) = exp (—|n|T/MT), we have

F(T,7) =T? lim Fy/M? = 272 (e_T/T 1+ T/T) . (62)
M—o0

This is by contrast with the temporally independent case for which F); ~ M and suggests that we consider
a different form of scaling for the parameters g;;, which are assumed to satisfy ¢;; ~ At ~ 1/M when
modeling instantaneous synchrony. Clearly, one has to assume that g;; ~ At? ~ 1/M?, a scaling that is
naturally achieved for doubly stochastic models. To see why, let us consider that neuron  and neuron j
spike according to two conditionally independent Poisson processes with correlated stochastic rates denoted
by Z;(t) and Z;(t), respectively. Given that we have E [Z;] = r;, and denoting Z; ,,, = Z;(mAt) and
Zjn = Z;j(nAt), we model X; ,,, and X ,, as conditional independent Bernoulli variables with parameters
Zi mAt and Z; , At, respectively. Then, one can check that as expected, we have

Gijonn = B [XimXjn] = BB [XimXjn | Zi, Z;]] = E[ZimZjn] AL, (63)
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The above scaling, achieved for doubly-stochastic models, corresponds to a more realistic form of synchrony
that does not assume instantaneously synchronous spiking and which we discuss in Section To connect
the doubly-stochastic model with our discrete model, observe that

Gijmn = (ClZimZjn) + B[Zim| B[ Zjn]) At? = (C[ZimZjn) + rivj) At (64)

Then, comparing the above expression with shows that doubly-stochastic models correspond to choos-
ing f such that

C[ZimZjn) A = f(m —n)(gij — pipj) = f(m —n)cij . (65)
In particular, we have the limit behaviors

Gj 1o 2 _
Ay Az = 72 A, Moo (Al = ClZin, Zinl ©

In turn, denoting ¢;; = C (Zin, Z j,n]’ we obtain the Poissonian limit for the y-metric as

1 1/1€SKk  \Sij/#JESK i)ieSkl
v KzeZS:K Ni(T)| = F(T,7) <<Cij>i;£jeSK + (Gis)ies K<<j> #j€S > n (r >[e(S | ©

which again exhibits the characteristic (1/K)-dependence but where the scaling factor T2F (T, 7) depends
on the bin duration 7' and the correlation time scale 7. Tellingly, one can interpret the scaling factor
T2F(T, 7) in term of the doubly-stochastic processes N;(t) by observing that

T2F), T°CY;,Y;] . A2 1

FOM = M3 =™ My a0 Yl = g CINAD, N (68

One can further deduce the expression of F'(T, 7) from the rate crosscorrelations C [Z;(s), Z;(t)] (see Sec-

tion 2.2.3) by evaluating

T
D). N = [[ Clzis). 2,00 s, (©9)

For instance, one can check that the limit expression consistently corresponds to choosing C [Z;(s), Z;(t)] =
(Z-je_‘t_sv T. Finally, the above remarks allows one to check that as expected, expression for the x-
metric is indeed equivalent to

V[Sies N0 15
Ky es VIN(D)] 75T K

(70)

where we have defined the correlation-like coefficient pg,. as the ratio of the average covariance with respect
to the average variance: pg, = (C[Ny(T), N;j(T)])izjcsy/(V [Ni(T)])ics,. Note that as for pg,., the
quantity pg, is again distinct from the average correlation in the presence of population heterogeneities.
In the presence of temporal correlation, the main difference is that the normalization of the yx-metric must
involved the variance rather than the rate alone as: V [N;(T)] = E[Z]T + V[Z]T? = r;T + (;T? > r;T
(see Section[2.2.3).
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2 Synchronous spiking input models

In this section, we discuss spiking population models exhibiting two distinct form of synchrony. The first
class exhibits instantaneous synchrony, whereby neurons’ spiking activity are governed by Poisson processes
which can jump simultaneously. The second class exhibits a looser but more realistic form of synchrony,
whereby neurons are governed by Poisson processes with fluctuating, correlated rates. The focus is one
deriving parametric forms for the correlation coefficients and for the Fano factors of the neuronal spike
counts.

2.1 Instantaneous synchrony

For simplicity, we consider exchangeable models for which neurons are assumed to be pooled from a large
(infinite-size) reservoir of identically acting neurons. In this context, instantaneous-synchrony models corre-
spond to assuming that synchrony arises from an independently fluctuating mean spiking count across time
bins. When this probability is high, neurons tend to coactivate; when this probability is low, neurons tend to
remain collectively silent. Such mean count fluctuations thereby lead to overall spiking synchrony.

2.1.1 The Poisson-gamma model

The Poisson-gamma model is defined by assuming that the common mean spiking count of K exchangeable
Poisson neurons follows a gamma distribution p, 5. Specifically, given a time bin of duration At, we
consider po g = Gamma(a, 3) with parameter o/ = rAt for some » > 0 and 3 > 0. Then, the
spike-count vector Ny, ..., Nk is given by

K -
z
P[Ny =ny,...,Ng = ng] :/H <'e > dpa,p(2) (1)
el ng:
For exchangeable neurons, the spike-count correlation is defined as
C [Nk, N
. (72)
V [Nk]
For an exchangeable Poisson model with directing mean count probability (., 5, we have
0o o0 STk T )
E[NeN] = )0 memy i “dpta,p(z) (73)
k=0 =0 i
0o 00 S o )
= —*d 74
[ X e deeal) (74
=11=1
= [ s, 75)
(76)
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so that we have C [Ny, Nj] = E [Ny N;] — E[N,]> = E [Z2?] - E [Z)? = V[Z]. At the same time, we also
have

E[NZ] = > ni / Zje‘zdua,ﬁ(z), a7
k=0
& P . P
= + “Fdpug , 78
/(;2 (n — 2)! ;(nk—l)!>€ Ha,5(2) (78)
= / (2* + 2) dpap(2), (79)

so that we have V[N;] = E [N?] — E[Ny)? = E [Z?] + E[Z] - E[Z)> = V[Z] + E[Z]. Thus the
instantaneous spike-count correlation is specified for an exchangeable Poisson model as

B V[Z] B 1 \!
p_V[Z]HE[Z]_<HF[Z]> ’ (80

where [ [Z] denotes the Fano factor of the underlying mean count Z. This can further be specified for the
Poisson-gamma model by using the fact that 1/F [Z] = [ to obtain p = 1/(1 + /3), so that 3 parametrizes
spike-count correlations.

2.1.2 Independent Poisson-gamma process

Given a sequence of M time bin of duration At, let us consider that the spiking activity in each time bin
follows an independent Poisson-gamma model. For a K -neuron model, this means that the probability of the
time-indexed population vector { Ny ,,}, 1 < k < K,1 < m < M, with Zle Nim = Ny, is specified
by

nkm

[{Nkm = Nk m}

—Zm dluOé,B Zm H pnl ymsee MK, m * (81)

As we consider exchangeable models for which every inputs play the same role, it is actually enough to
track the total spike count N,,, = Zszl Ni,m in each time bin. The corresponding time-indexed population
vector { N, }, 1 < m < M, satisfies

M (K)o
]P)[Nl = 7’L1,..-,NM = ’I?,M] = | | /nm' _sz d,ua,ﬁ Zm | | P, (82)
m!

A nice feature of the independent Poisson-gamma process is that it enjoys divisibility in the sense that the
functional form of its probability law is stable under dividing and merging bins. For fixed correlation p, i.e.,
for fixed 3, this follows from the additivity of Poisson and gamma random variables. For instance, one can

10
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check that upon merging M bins, one has

ni+...+np =y m=1

! M KZ% 1 2m M

ni+.. +nM =y m=1
M Y KZm 1%m
= [ (KX rhmwm, (85)
m=1
K n
/( nZ‘) efKZ dMMa,ﬁ(Z)- (86)

The above observation implies that the spike-count correlation p is independent of the bin size M At. Simi-
larly, the cell-specific Fano factor is also independent of the bin size M At as one can check that

MV [Nk
F[Zth]:W:F[th]:lJrF[Z]:lJr;:lip. (87)

Accordingly, the spike-count correlation p is also independent of the number of bins M:

M M
. C [Emzl Nims D ne1 szn} M C[Nims Nl C [N, N 1 88)

V [0 N S V [Nin] ViNewl 148

Finally, denoting by Z;; a gamma random variable with parameter (M «, 3), we can check that the popula-
tion Fano factor is given by

M
F [Z N,,
m=1

_E‘xﬁ:F[Nm]:1+F[ZM]:1+I;. (89)

2.1.3 Continuous-time limit for the independent Poisson-gamma process

The continuous-time limit is obtained by considering the discrete spiking model for time bins of duration
At = T/M with M — oco. By exchangeability of the discrete model, it is enough to keep track of time-
indexed the total spike count N,,, = Zszl Ni,m in each time bins. Given our additional assumption that
Ni,..., Ny, are i.i.d., let us denote by N a generic total spike count. By additivity of Poisson random
variables, the distribution of Y over {0,1,..., K} is given by

P,=P[N =n]= / (Kz)ne*KZ dpta,p(2) - (90)

n!

Evaluating the above integral yields the distribution of the counting variable IV as

1 B \7 K \'"T(a+n)
P, = ) 91
o) <K+ﬂ> (K—i—ﬂ) n! ©h
which is always summable as
r
(O‘J") ~ (n+ 1), (92)

11
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It is then convenient to think of the discrete process Nys = Zﬁ/lzl N,, as an integer-valued random walk
with i.i.d. positive jumps, denoted by k. By construction, these jumps have distribution Py /(1 — Py) on N*.
In the discrete model, the mean spiking count is given by E [Z] = «/8 = rT/M, so that one can achieve
the continuous-time limit M/ — oo by considering o« — 0. In this continuous-time limit, by independence
across time bins, one can then show that the random walk Y}, tends to a compound Poisson process Y ()
such that forall ¢ > 0

N(t)

where N is a Poisson process with rate b and k,, are i.i.d. with common distribution

, P, K\ 1 B\ "
— 1 {1+ ) (1+2) . 94
Pk = e 1= Ry n<+5>k<+K> 4

The rate b of the driving Poisson process [V is specified by the conservation of the overall spiking rate, which
imposes that bE [k] = Kr so that:

b=Kr/E[k] =rf1n <1+I;> . 95)

Observe that continuous-time limit o — 0 leaves the correlation coefficients and the Fano factor unchanged
as these only depend on the parameter 5 and K. In turn, these parameters entirely specify the common
jump distribution py, which explain the emergence of perfect synchrony in the presence of nonzero spiking
correlations. In the absence of correlations (p = 0 and 3 = c0), synapses spike asynchronously so that only
one synapse activates at a time: k£ = 1 with probability one, i.e., py = 1. In the presence of correlations
(p > 0 and 8 < 00), synapses act synchronously so that many synapses activate at the same time: £ > 1
with nonzero probability, i.e., p1 < 1.

2.2 Loose synchrony

For simplicity, we still consider exchangeable models for which neurons are assumed to be pooled from a
large (infinite-size) reservoir of identically acting neurons. In this context, we model a loose form of spiking
synchrony by assuming that this synchrony arises from a collective fluctuating spiking rate (as opposed to
a mean spiking count) across time bins. Such models belong to the class of doubly-stochastic models and
allow for the introduction of temporal correlations across time bins. This is by contrast with instantaneous
models, which rely on the assumption of temporal independence. Synchrony is established by stochastically
alternating periods of elevated and depleted spiking rate. This form of synchrony is more realistic for not
relying on exactly synchronous spiking across neurons.

2.2.1 Basic facts about the CIR process

We model synchrony with finite temporal correlation by assuming that the underlying firing rate follows a
Cox-Ingersoll-Ross (CIR) dynamics. Specifically, we consider that the joint firing rate Z; of an exchange-
able sequence of K Poisson neurons follows the stochastic equation

1 27
d&:(a—&>ﬁ+ﬂtﬂﬂ, (96)
T ’}/ T’}/
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where W; denotes the canonical Brownian motion. In the above equation, « is a positive dimensionless
parameter, vy is a positive time scale, both of which are to be discussed later, and 7 is the correlation time of
the dynamics. Denoting ( = e ¥/7, the CIR Markov transition kernel is known analytically as

y(y+¢z)
. B ,yayafle*T( & ,.YZkazk k
p(y|Z, t) - (1 _ C)a Z k:'F(a+ k)(l _ C)Qk ’ (97)
e . — 2t oo 2 Ch o5
- T’ ° Zkvra+k Ok | ©8)
F¢(a+y)
B e YV CzY 29v/Czy
= o | gy ( 1) () e

where I,_; denotes the modified Bessel function of the first kind with parameter « — 1. Moreover, the
moment-generating function of the transition kernel is also known as

o <1 i cw)
['zt _ (u) ) [euZz,t] —F [euZt ’NO = Z] = (1 — u(l — C)/’y)o‘ . (100)

From there, one can compute that

EZ:y] = ElZe|Zo=2]=—(1-¢) +2C, (101)

VZi] = VIZ|Zo=4=—1-0)(al-¢)+72) . (102)

The above CIR dynamics admits a stationary distribution given as the gamma distribution

v 1

a— -z
fay(2) = T’ °© 7. (103)
Considering a CIR process with initial condition Ny distributed as 11, ~ specifies the stationary CIR process,
simply denoted as Z;, for which we have

o «
~2

E[Z)] = o V(z,] = and C[Zy, Zo) = V[Zo] ¢ = % e7U/7, (104)

72

confirming that 7 as a correlation time constant, whereas ~y can be interpreted as the inverse stationary Fano
factory = E [Z;] /V [Z;] = 1/F [Z,]. The later quantity must have unit of a time, since Z; will be interpreted
as a rate in the following (as opposed to being spike counts as for the Poisson-gamma model).

2.2.2 The Poisson-CIR process model

Given a sequence of M time bins of duration At, let us consider that the common spiking rate in each time
bin follows a stationary CIR rate process Z;. Then, the probability of time-dependent spike-count trajectory
{N1,... Ny} is given by

M
Kz At)" ™ _
]P’[Nl—m,...,NM—nM]—/.../H u& KZmAth[ZmAtSZm], (105)

T,
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whereas the population vector { Ny, ,,,}, 1 < k < K, 1 <m < M, with fozl Nim = Ny, satisfies

(zmAt) _
P{Nkm = nem}] = / /H H (mAD)" e A AP [ Ziat < Zm] - (106)

n
m=1 k=1 bm!

In order to compute the spike-count correlation over bins of size M At, we first consider the covariance

M M
C ZNk,m,ZNl,n] Z Z [Nt Nin] = E [Nion] B[N ]) - (107)
m=1 n=1

m=1n=1

For (k,m) # (I,n), the individual covariance terms above evaluate to
E [N Nin] = E[E [NemNiwl | Zins Zn) = ACE (20 Zy] | (108)
whereas for (k,m) = (I,n), we have
E [Nk Nim) = E [E [NZ | Zm]] = APE [Z2)] + AE [Z,)] - (109)

Thus, the spike-count correlation py; between neurons & and [ is given in term of the underlying CIR process
Z as

B @[Zﬁlek,m,ZﬁilNun} (110)
p = V[ZMf Nkm} ’

_ S oot Sonl ) C [ Zm, Zon) | a1

i, (S clzm 2 + 2

Exploiting the temporal correlation structure of the CIR process, we further obtain

Z Z(C Ty Zn) Z Z —lm=nlAT — [ Z) (M, At), (112)

m=1n=1 m=1n=1

where the auxiliary function h captures the bin-size dependence via

1+ e*At/T efAt/T 1— efMAt/T
One can check that at fixed At, the function f is monotonically increasing with
. h(M,At) 1
h(1,At) =1 d 1 = . 114
(1, A¢) M T M tanh(At/(27)) (14
This leads to the bin-size-dependent spike-count correlation
M -1
1EZ
p o= [1+ 2= N Zn] : (115)
At Y1 Xonit ClZin, Z,)
M 1\
= |1 116
(1+ (v amar) 7121) o
M~ -t
= 1+ —Fc . 117
( T, At)At) 1
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The above results also allow us to compute the Fano factor

M
h(M, At)At h(M, At)At
F Nem| =1 — | FZ] =14+ ——+——. 118
LZlk] +(M>H+M,y (118)
Similar calculations about the total spiking count yield
M
Kh(M, At)At
F Np|l =14+ ——-—7"—. 11
] e "

Observe that the above results differs from those obtained from the Poisson-gamma model in two ways:
First, the presence of temporal correlations implies the occurrence of the multiplicative term M /h(M, At),
which consistently tends to one when the correlation time vanishes, i.e., M/h(M,At) — 1 when 7 — 0.
Second, when 7 — 0, the spike-count correlation for an homogeneous population reads p = 1/(1 +
~/At), indicating that /At plays the role of the dimensionless parameter (3 in the Poisson-gamma model.
In particular, this shows that one expect instantaneous spike-count correlations to vanish in the limit of
infinitesimal bin size: At — 0.

2.2.3 Continuous-time limit for the CIR-process model

In the continuous-time limit, the discrete spiking model naturally converges toward a doubly-stochastic
process, whereby all neurons share the common stochastic CIR rate Z(¢). One can derive the associated
spiking correlation and Fano factor at time scale 7" by setting At = T'/M and taking the limit M — oo.
One then finds the limiting behavior

g(t,7) = lim

h(M,At)At 1—e T
R VA (1_ ot/

=F(t t 120
7 ) (7))t (120)
where the newly introduced function g is increasing with respect to ¢ over R™ with g(0,7) = 0, 9;9(0,7) =
1, and limy_,~ (¢, 7) = 27. Thus, in the continuous-time limit, one can evaluate the spike-count correlation
between inputs k£ and [ and for bin size T as

1
p(T,7) = 15797 (121)

as well as the associated Fano factors for the individual spike count Vi and for the total spike count N =
ZkK:1 Ny:
t Kg(T
FveT) =1+ 257 ana Fivm) =14 Z9ED (122)
v Y

These results can be directly derived from considering the doubly-stochastic processes Ni, 1 < k < K
governed by the common rate Z(t). Specifically, for such processes, one has the infinitesimal covariance

C[dNk(t),dNi(s)] = E[C[dNg(t), dNi(s)] | Zx, Zi] + C[E [dNk(t) | Zk] , E[dNi(s) | Z1]] ,(123)
= CI[E[dNk(t) | Zk] , E[dNi(s)| Z]] (124)
— C[Zi(s), Z(t)] dids, (125)
and the infinitesimal variance
CldNg(t),dNk(s)] = E[C[dNk(t), dNk(s)] | Zk, Z1] + C[E [dNk(t) [ Zi] , E [dNk(s) | Z1]] (126)
= E[Zx(t)]d(t — s)dtds + C[Zk(s), Zx(t)] dtds . (127)
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Assuming that E [Z ()] = a/v and C [Zy(s), Zi(t)] = (o/7?) e*=*I/T and using that

T T 9 e~ T/m -1
F(t,7) =/0 C[Z(s), Zi(1)] dtds://o elt=sl/m dtds = 27 <1+T/T> , (128)

we find that

C [Nu(T / C(2u(). 211)) deds = 5 F(T. )—‘gg(T,T), (129)
V [Nk(T)] —/0 E [Zk(t)] dt +/ C[Zk(s), Zx(t)] dtds = O;T + gg(T, T). (130)
As expected, this leads to
_ CINk(T), Ni(T)] _ 1 _ VN 9(T7)
PN ==gNE)] . ~ irafemn M FNOI= g =t T @30

3 Shot-noise model for conductances

In this section, we discuss various conductance shot-noise models derived from considering synaptic inputs
with synchrony. The focus is on deriving a parametric form for a measurable quantity, called @, that can
serve to assess the degree of synchrony compatible with a conductance measurement.

3.1 Asynchronous input drive

We consider that the activation of K asynchronous synapses is governed by independent Poisson processes
with rate ». We further assume that synaptic activations elicit conductance changes of typical amplitude A
with synaptic time constant 75. Accordingly, the overall conductance is modeled as a shot noise and in the
stationary regime, we have

0
G= A/ e/ AN (1), (132)

where the governing Poisson process N has overall input rate K. The mean stationary conductance can be
computed as

0 0
g = E[G] = A / M E[AN(H)] = A / /7K dt = AKrr, (133)
whereas the stationary conductance variance is given by
0. = E[G’] -E[G]?, (134)
0 0
= A’E {/ et/ dN(t)/ /™ dN(s)] — (AK7rTy)?, (135)
0 _Ooo -
= A2 / / e/ BIAN(£)dN (s)] — (AKrm)2. (136)

Using that for a Poisson process with rate Kr, we have E [dN (¢)dN(s)] = [(Kr)? + Kré(t — s)]dtds, we
obtain:

0 0 0
= (AKr)? / / et/ dtds + A2Kr / 2 dt — (AKrr)? = A’Krry/2,  (137)
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which implies that we can form the amplitude-independent quantity

2 2
Hg (AKrTs)
Q =K 138
21502 275 (A2Kr7/2) " (138)

which happens to e equal to the overall input rate K'r in the asynchronous regime.

3.2 Input drive with instantaneous synchrony

We simulate instantaneous synchrony by allowing for several synaptic inputs to activate at the exact same
time. This corresponds to modeling the synaptic drive via a compound Poisson process rather than a Poisson
process. In our case, we consider a compound Poisson process Y defined as

N(t)
Y(t)=) kn with 1<k, <K, (139)
n=1

where k,, are independent, identically distributed, integer-valued jumpsin {1, ..., K}. The jumps k,,, which
we will refer to as £ when it is not ambiguous, represents the possibly fluctuating numbers of coactivating
synaptic inputs. Specifically, one can show that the spiking correlation coefficient p is independent of the
bin size and satisfies

Ek(k—1)]

T (K-1DEX’ (140

where E [-] denotes expectation with respect to the jump distribution py. As usual, the rate of the governing
Poisson process N, which we denote b, is chosen so that the overall input rate is preserved, independent of
synchrony. This implies that one must choose b such that bE [k] = K.

Given these preliminary remarks, the conductance process resulting from synaptic inputs with instanta-
neous synchrony is specified as the compound-Poisson-process shot noise

0
G = A/ e dY (). (141)
—0o0
For a fixed overall input rate, the stationary mean conductance is independent of synchrony as
0 0
1y =E[G] = A/ e/ RAY (1)) = A/ ' Krdt = AKrs . (142)
—00 —00

In turn, the stationary conductance variance in the presence of synchrony can be evaluated as

o2 = E[G’] -E[G]?, (143)
0 0
= A’E [ / et/ dY () / e/ dY(s)] — (AKr7y)?, (144)
0 0
= A2 / / e/ R [AY (£)dY (s)] — (AKrT)?. (145)

For a compound Poisson process Y with jumps k and rate b, we have E [dY (£)dY (s)] = [(bE [k])* +
bE [k?] 6(t — s)]dtds. Consequently, using that bE [k] = K'r, we obtain:

g

0 0 0
= (AKr)? / / /7 dtds + A?DE [k?] / s At — (AKrTy)? . (146)

o0

2
g
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This implies that
or = A*E [k*] 75/2 = A’b (E[k] + E [k(k — 1)]) 75/2 = A*b (E[k] + p(K — DE[k)]) /2, (147)
where the last equality follows from definition (140). Using once more that bE [k] = Kr, we have
op = APE[K] (1+ p(K — 1)) 15/2 = A’Kr (14 p(K — 1)) 75/2, (148)

which shows that spiking correlations impact conductance variability whenever p is large or of order 1/ K.
This also shows that in the presence of instantaneous input synchrony, the amplitude-independent quantity
() becomes correlation-independent:

po (AK7r7y)? B Kr
21502 21 (A2Kr (1+p(K —1))715/2)  1+p(K—1)"

Qp) = (149)

3.3 Input drive with temporally-structured synchrony

We simulate temporally-structured synchrony by considering a doubly-stochastic model for synaptic input
drive. In this model, the activation of individual synapses follow independent inhomogeneous Poisson
processes with common rate given as a stationary CIR process Z satisfying:

1 [27
AdZ; = = (r — Z,) dt + tth, (150)
T

As before, the conductance process resulting from a doubly-stochastic synaptic-input model is specified as
the inhomogeneous shot noise

0
G= A/ e /AN (1) (151)

where the overall inhomogeneous Poisson process N has rate K Z(t). The mean stationary conductance can
be computed as

0 0

1y —E[G] = A / T EE[AN() | Z()] = A / TR [KZ(1) = AKrr, . (152)
The stationary conductance variance can be evaluated as
o2 = E[G?] -E[G]?, (153)
0 0
= A%E [ / et/ AN (t) / e’/ dN(s)] — (AKr1y)?, (154)
0 _OO() -
= A2 / / e/ BIAN(£)AN (s)] — (AKr7)2. (155)

For a doubly-stochastic processes with common rate Z, we have

E[AN(t)dN(s)] = E[E [dN(t) N(s)| Z(t)Z(s)]] , (156)
= E[K*Z(t)Z(s) + KZ(t)5(t — s)] dtds, (157)
= K2C[Z(t), Z(s)] + [ 2 [2]? +KE[Z}5(75—3)} dtds, (158)
= ere_t_S'/T—l- [(Kr)?+ Kré(t — s)] dtds. (159)
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Injecting the above relation in expression (155) yields

0 40 . TK2 .
03 = A2/ / e [ Tl +KT’(5<1§—S>:| dtds, (160)
2 0 t
— A2 [K / / / en dt] , (161)
2
— A2 [K r_TT +KTTS/2] . (162)
Y Ts+T

Thus, we obtain the amplitude-independent quantity as a function of the correlation time scale 7 as

2
2 Kr
Q(7) 20} 1+ K2nz (163)

Suppose one measure a biophysically realistic correlation coefficient of p(oco) = 0.1 in large time bins
T — oo. Then one deduce from... that 7v/(27) ~ 10. At the same time, we have 7, /(7 + 75) ~ 1/3 so that
on can estimate:

Kr

O = Km0

(164)

showing that even for moderately large number of synaptic contacts, () can drastically underestimate the
overall input rate Kr in the presence of temporally-structured synchrony.
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