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Abstract 
Cortical neurons are characterized by their variable spiking patterns. We challenge 
prevalent theories for the origin of spiking variability. We examine the specific 
hypothesis that cortical synchrony drives spiking variability in vivo. Using dynamic 
clamp, we demonstrate that intrinsic neuronal properties do not contribute substantially 
to spiking variability, but rather spiking variability emerges from weakly synchronous 
network drive. With large-scale electrophysiology we quantify the degree of synchrony 
and its time scale in cortical networks in vivo. We demonstrate that physiological levels 
of synchrony are sufficient to generate irregular responses found in vivo. Further, this 
synchrony shifts over timescales ranging from 25 to 200 ms, depending on the 
presence of external sensory input. Such shifts occur when the network moves from 
spontaneous to driven modes, leading naturally to a decline in response variability as 
observed across cortical areas. Finally, while individual neurons exhibit reliable 
responses to physiological drive, different neurons respond in a distinct fashion 
according to their intrinsic properties, contributing to stable synchrony across the neural 
network. 

Introduction 
The variability of neurons has long stood as a central and classical feature of cortical 
neurons. In sensory areas like visual cortex, distinct patterns of action potentials are 
observed in response to repeated presentations of the same sensory stimulus (1-3).  
Similarly, neurons in premotor and motor cortices variably respond when animals are 
instructed to execute the same action (4). Spiking variability could arise from noisy 
synaptic inputs that converge to individual neurons (5-8), as well as from inherently 
intrinsic stochastic cellular mechanisms (9-11).  In vitro recordings have revealed that 
neurons respond unreliably to steady input, presumably due to stochastic cellular 
processes but that large input fluctuations can overcome this stochasticity and lead to 
reliable responses, though the physiological relevance of either of these input regimes 
is unclear (12).  

Previous theoretical studies argued that excitatory drive generally fails to exhibit 
variable responses, as neurons are thought to integrate the input from large numbers of 
asynchronously spiking neurons (6, 13-16). Variable responses may emerge, however, 
from the convergence of strong excitatory and inhibitory asynchronous inputs. In this 
condition, the mean drive from these sources cancels out, but their variability remains 
(5, 6, 17, 18).  The aim of the present study was to determine experimentally the 
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physiological conditions that generate variable spiking 
in cortical neurons. 

Spiking variability is not due to intrinsic neuronal 
properties but due to network dynamics  
We first examined the relative contributions of synaptic 
and intrinsic cellular sources of noise by making whole-
cell conductance dynamic clamp recordings from pyramidal neurons in mouse and 
marmoset cortical slices. To emulate physiological input conditions, we injected  
excitatory and inhibitory conductances which we previously recorded in vivo in visual 
cortex with and without visual stimulation (19).  We initially adjusted the conductance 
gains to evoked between 3 and 21 spikes/s (mean = 11.5 spikes/s, range 3.7-21.3). 
Physiological drive evoked highly variable spiking patterns, characterized by an ISI 
coefficient of variation (CV) near 1 (CV of ISI: 1.2 ± 0.2 s.d., 12 cells, input source 1, 0.8 
± 0.2 s.d., 11 cells, input source 2) (Fig. 1A, Sup. Fig 1-1) (5, 13, 14). 

If intrinsic cellular processes contribute significantly to spiking variability, we expect to 
observe different spiking patterns across repeated presentations of the same 
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Figure 1: The reliability and 
variability of cortical neurons.  A. 
Dynamic clamp was used in vitro 
to present excitatory (red) and 
inhibitory (blue) conductances 
recorded in vivo. Membrane 
potential and spiking responses 
are shown for repeating the same 
conductances (left), or for different 
combinations of excitatory and 
inhibitory conductance (right) in 
an example cell.  B. The mean 
and variance of the spike count 
was measured in 200 ms bins for 
the same conductance condition 
(black circles) or the different 
conductance condition (green 
circles). Mean and variance of 
each bin for cell in A are shown. 
C. As in A, but the inhibitory 
conductance was set to 0.  D. 
Fano factor across neurons for 
t h e s a m e a n d d i f f e r e n t 
conductance conditions (n = 12 
cells for input source 1, 11 cells 
for input source 2, 9 cells for 
excitatory conductance only). E. 
The Fano Factors for the different 
conductance condit ions are 
shown of different time bins.
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physiological conductance drive. Contrary to this expectation, we found that repeated 
injections of the same excitatory and inhibitory conductances yielded precise patterns of 
action potentials with little difference in both marmoset and mouse neocortical neurons 
in vitro (Fig. 1A). To quantify this observation we computed the spike-count Fano factor, 
defined as the ratio of the variance and the mean of the spike count in a fixed time bin 
(Fig 1B). We found that repeatedly driving neurons in vitro with the same in vivo-
measured conductances yielded low Fano factors (Fano factor: 0.3 ± 0.1 s.d. for input 
source 1, 12 cells, 0.3 ± 0.4 s.d. for input source 2, 11 cells) indicating a low degree of 
trial-to-trial spike count variability (Fig. 1B,D). In contrast, the Fano factor is near 1 for 
visual cortical responses to visual stimuli in vivo (20-22). Because neuronal responses 
are highly consistent across repeated injections of the same physiological drive, we 
conclude that  intrinsic variability is unlikely to be a major source of cortical response 
variability and we term these responses ‘quasi-deterministic’ (23).  

As intrinsic processes contribute little to response variability across repeats, the spiking 
variability measured in vivo across multiple presentations of the same visual stimulus 
must stem from variability in synaptic drive  (Fig. 1A). To confirm this, we measured 
synaptic conductances evoked in vivo by repeated presentations of the same visual 
stimulus. We then injected these conductances in vitro to determine whether the cross-
trial synaptic input variability could account for the variability of neuronal discharges. In 
contrast to the repeatedly injecting the same conductance (Fig. 1A, left),  these cross-
trial conductances resulted in highly variable trial to trial responses for physiological 
mean spiking rates (Fig. 1A, right).  We found that the Fano factor for neurons in this 
condition is larger than 1 (Fano factor: 1.7 ± 0.8 s.d. for input source 1, 12 cells, 2.8 ± 
1.3 s.d. for input source 2, 11 cells) in both marmosets and mice (Fig. 1B, Sup. fig. 1-1), 
a result that persists when varying the bin size used to count spikes (Sup Fig. 1-1). As 
expected, emulating trial variability in the synaptic drive allowed us to recapitulate in 
vivo spiking variability in vitro.  

One caveat of our approach is the uncertainty about how to set the gain for the injected 
conductances. Measuring conductances in vivo requires blockade of voltage-gated 
channels, such as those responsible for the generation of action potentials (19, 24-27).  
Because of this alteration, our conductance measurements are only scaled versions of 
the true conductances by an unknown gain parameter. Given this uncertainty, we 
systematically varied the gain of both excitatory and inhibitory inputs and measured the 
resulting changes in firing rate and spiking variability.  Increasing excitatory and 
inhibitory conductance gain equivalently led to a consistent change in firing rate but little 
change in the Fano factor (Sup. Fig. 2).  Therefore, and perhaps surprisingly, although 
the overall firing rate changes, our measurements of spiking variability did not depend 
on the strength of the presented conductances.  
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Taken together, these results demonstrate that cortical spiking variability in vivo is not 
due to intrinsic neuronal properties but instead emerges from the network dynamics, 
which generate variations in the synaptic drive to individual neurons for the same visual 
stimulus (3). 

Excitatory conductances alone produce Poisson-like spiking  
Previous spiking network modeling studies have demonstrated that excitatory drive 
alone, generated by a large pool of neurons firing independently, leads to regular, clock-
like spiking, with  a low CV of ISI and a low Fano factor and (13). To test whether this is 
also the case for physiological drive, we presented excitatory conductances alone and 
measured the resulting Fano factor under two conditions: (1) for repeated presentations 
of the same in vivo-measured conductance traces (Fig. 1C, left), and (2) for different in 
vivo-measured conductance traces obtained in response to the same visual stimulus 
(Fig. 1C, right). With excitation alone, we found that neurons responded consistently in 
condition 1 (Fano factor: 0.1 ± 0.2 s.d., 9 cells) and variably in condition 2 (Fano factor: 
0.8± 0.5 s.d., 9 cells), with degrees of consistency and variability similar to  the 
responses observed with inhibition. Therefore in vivo excitatory conductances alone are 
sufficient to generate Poisson-like spiking variability in vitro.  

Statistics of in vivo conductances are inconsistent with asynchronous spiking  
Our observation that excitatory drive alone is sufficient to generate spiking variability 
appears to be at odds with theoretical predictions (13, 14). These predictions stemmed 
from two critical assumptions. First, that presynaptic neurons are spiking independently 
as suggested by paired extracellular recordings in which correlations between neurons 
are weak (28). Second, anatomical studies show that cortical neurons receive synaptic 
contacts from a large pool of upstream neurons (29-32), thus the number of synaptic 
inputs is also likely to be large. By the law of large numbers, these two assumptions 
imply that cortical excitation alone should be a steady drive with very weak fluctuations, 
causing cortical neurons to spike regularly, contrary to our experimental observations. 
This apparent inconsistency can be resolved when estimating the amount of synchrony 
required to account for the fluctuations observed in our in vivo recordings. 

To show that, let us assume that the activation of each connection is governed by a 
Poisson process so that the resulting conductances can be modeled as shot-noise 
traces. For simplicity, we study the impact of synchrony on the aggregate conductance 
over all the connection contributions. The temporal mean of the aggregate conductance 
is independent of the degree of synchrony and is given by  , where   is the 

typical size of a single EPSP,   is the number of inputs,   is the mean individual 
synaptic rate, and   is the synaptic time constant. In contrast the temporal fluctuations  

μg = AKr τs A
K r

τs
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of the aggregate conductance depend on synchrony. For independent firing, their 

standard deviation scales as  . On another hand, for perfect synchrony the 

standard deviation scales as  , as if the conductance changes resulted from the 
action of a single synapse of size  . More generally, one can  determine how the 
conductance variance depends on the pair-wise spiking correlation,   (see methods,

K A
K A

K A
ρ
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Figure 2: Estimates of the number of inputs onto cortical neurons.  A. A model 
demonstrating how the slope of the relationship between the aggregate input variance 
and mean-squared relates to the number of inputs a neuron receives per second. One-
second-long examples of conductance traces are shown above, with color indicating the 
rate of asynchronous inputs.  B. The relationship between input variance and mean-
squared among in vivo conductance measurements.  Each point represents 
conductance for a cell for one stimulus condition, 6 cells are used here. C. Example 
repeats for two of the points shown in B. D. Histograms of the input rate, R, for both 
excitation and inhibition.  E.  Example spike rasters and net resulting drive from a 
population of neurons with pairwise correlations = 0 (left) or 0.01 (right).  F. The 
relationship between input rate Kr in model neuronal populations relative to the Q 
estimated using the asynchronous assumption. The rate, r, is set to 1 spks/s. Color 
indicates different pair-wise correlations, symbols are based on simulated models and 
the solid line indicates the analytical prediction (see Methods).
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(33)). Following on these observations and assuming a known synaptic time constant  , 
one can use the measured   and   to form the gain-independent quantity: 

  .  (1) 

In the absence of synchrony, i.e.,   = 0,   is a measure of the aggregate input rate to a 
cell:  . Given the aggregate input rate we can then estimate the number of 
connections and compare those to the number of anatomical connections (Fig. 2A).  
Applying the same analysis to our in vivo conductance measurements yielded aggregate 
input rates that are remarkably low for both excitation and inhibition during visual 
stimulation (Excitation: median = 69, range = 10-173 Hz, Inhibition: median = 31, range 
= 1-235 Hz), and during spontaneous activity (Excitation: median = 18, range  =  5-21 
Hz, Inhibition: median = 30, range = 10-59 Hz, Fig. 2B,C). Our estimates of the 
aggregate input rate are much lower than the large number of presynaptic contacts 
observed anatomically (between 1000 and10000) and the firing rates (1-100) observed 
physiologically (30, 34-39). 

Although estimates vary between reports (28, 40), in vivo extracellular recordings have 
revealed ‘weak’ spiking correlations among pairs of neurons. We hypothesized that 
these weak correlations might have an impact that cannot be neglected when 
estimating   (41). The inclusion of input synchrony causes the measurable quantity   
to underestimate the true values of   by a factor   (see Methods). 
Moreover, these underestimates saturate in the limit of large input numbers with 
 , consistent with the fact that increasing level of spiking correlation 

leads to lower estimates of  . We next simulated drives with varying number of 
inputs and varying degree of spiking correlation, which replicated our analytical 
derivations (Fig. 2E).  These analyses and simulations reveal that even a modest level 
of spiking correlation (28, 40), e.g.,  , yields estimates of   that are consistent 
with realistic values for input numbers and synaptic rates (Fig. 2F).  

In vivo population measurements are consistent with cortical synchrony 
The above results suggest that synchrony in the spiking activity of pre-synaptic neurons 
which is as weak as   could account for aggregate conductance statistics 
similar to those we observed experimentally. To determine whether such spiking 
correlations are present in vivo, we made large-scale measurements of cortical 
responses using neuropixels in marmosets and mice. Our measurements revealed clear 
bouts of synchronized responses on individual trials, which significantly deviate from the 

τs
μg σg

Q =
μ2

g

2τsσ2g

ρ Q
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Kr Q
Kr 1/(1 + ρ(K − 1))
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K→∞
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mean responses across trials. It was, however, difficult to quantify the degree of 
synchrony of these responses via direct estimates of pairwise correlations because of 
the presence of population and temporal heterogeneities.  

To address these limitations, we use a population-level synchrony metric  , which we 
modified from prior work (42, 43) and defined as  

  (2) 

This  -metric has been proposed as a general measure of synchrony for large 
population recordings (42, 43).  In our case,   represents the varying spike counts of 
upstream neuron  , with  . To gain intuition about the  -metric, let us consider 
an homogeneous population of inputs which also acts independently across time bins. 
In such a case, by independence across neurons, we have  , and the 

population variance (numerator in (2)) computed over distinct time bins behaves 
additively over the neurons. As a result, we have   . By contrast, in the 
presence of synchrony, neurons tend to activate together, which leads to positive spike-
count correlations:  . Due to the inclusion of   additional cross 

terms  ,  , the population variance (numerator in (3)) no longer 

behaves additively. As a result, we have 

  

where   can be rigorously interpreted as the pairwise spiking-

correlation coefficient. One can therefore estimate input synchrony by examining the 
linear dependence of   as a function of 1/K and extract the pairwise correlation 
coefficient,  , as the  -intercept. The above arguments generalize, albeit with some 
caveats, to heterogeneous neuronal populations with time-varying firing rates (see 
Appendix). In particular, compared with classical use of the  -metric, this generalization 
computes variance estimates across trials for each time bin, and then average these 
variance estimates across time bins, thereby allowing for variable population firing rates 
across neurons and time bins. 

Applying the  -metric to our measurements in the visual cortex of awake marmosets 
and mice revealed clear evidence for synchronous spiking activity (Fig. 3A, Sup. Fig. 3). 
Specifically, we found that Eq. 2 provides an excellent linear fit to the data and that 
extrapolation to   consistently yields a  -intercept which is significantly different 

χ

χ (K ) =
Var [∑K

i=1 Xi]
K ∑K

i=1 Var [Xi]
,

χ
Xi

i 1 ≤ i ≤ K χ

Cov(Xi, Xj) = 0

χ (K ) = 1/K

Cov(Xi, Xj) > 0 K(K − 1)
Cov(Xi, Xj) 1 ≤ i ≠ j ≤ K

χ (K ) = ρ + 1 − ρ
K

,

ρ = Cov[Xi, Xj]/Var[Xi]

χ
ρ y

χ

χ

1/K → 0 y
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Figure 3: Synchrony in the large-scale extracellular records of cortical networks.  A. Raster plots of 
simultaneously recorded neurons in marmoset primary visual cortex.  Each raster shows the 
response to presentations of the same visual stimulus (shaded region). For each trial the population 
rate is computed based on the mean response across neurons for a single trial (black traces, 
bottom) or across all trials (red traces, bottom). B. Left: The population variance (χ) is plotted as a 
function of the number of cells in the population. The standard error (shaded regions) is constructed 
by randomly resampling the population for a given K (Methods).   To generate a  null distribution 
spikes were randomly assigned a trial and χ was recomputed (gray). C. χ is plotted relative to 1/K. A 
regression line was fit to estimate the synchrony in the population (43). D.  As in C, for spontaneous 
data. E. The distribution of synchrony estimated from the population variance measure across 
extracellular records for stimulus-evoked conditions (top, mean = 0.014 ± 0.014) and spontaneous 
conditions (bottom (mean = 0.027 ±0.025). F. The autocorrelation of the residual population rate 
during visual stimulation (top) or during spontaneous activity (bottom). Exponentials were fit to the 
decay of the autocorrelations (dashed lines). G. The distribution of exponential time constant for 
stimulus-evoked population responses (top) or spontaneous population responses (bottom) 
(stimulus evoked mean =28.3 ms ± 13.7, spontaneous mean  = 126.8 ms  +- 102.6).
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from zero. Since this intercepts measures the spiking synchrony at the population-level, 
this indicates that the spiking activity is significantly correlated across neurons (Fig. 
3B,C,D). We found that the degree of spiking correlations varied between recordings, 
with mean    of 0.014 ± 0.014 s.d. (n = 13 marmoset cortical populations) during visual 
stimulation and mean   of 0.027 ± 0.025 s.d. (n = 10 marmoset cortical populations) 
during spontaneous activity, when measured for 200ms-long bins in awake marmosets 
(Fig. 3E, Sup Fig 3 for mice). The synchronous responses are a feature of not just the 
cortical populations, but also of LGN population (Sup Fig 3B) which sends input to the 
visual cortex (44). The degree of correlation also increased upon selecting 
subpopulation of visually responsive cells (Sup Fig 4). To assess the significance of our 
correlation estimates  , we performed our  -metric analysis on surrogate data whereby 
spikes emitted by the same neuron and within the same time bin are shuffled across 
trials. Such shuffling erases all spiking correlations while preserving population and 
temporal rate heterogeneities. Consistently, we found that the  -metric analysis of these 
surrogate data yielded near-zero correlation estimates that were much smaller than the 
estimates we obtained on real data, confirming their significance (Fig. 3C,D,E, Sup Fig 
3). 

In vivo synchrony exhibit characteristic time scales 
When computed for short time bins (1ms), the  -metric yielded very small spiking 
correlations, indicating that population responses form of synchrony that is not 
instantaneous. Rather, populations of neurons exhibit fluctuating responses rates over 
larger time scales (22, 40, 45-50). We estimated the time scale of these fluctuations by 
performing an autocorrelation analysis of the population spiking measurements on a 
trial-by-trial basis and by measuring the time constant  of the autocorrelation decay (Fig. 
3F). During visual stimulation, the time constant of these fluctuations is broadly 
distributed with a median value of 29.3 ms (Fig. 3G,  mean τdriven=28.3 ± 13.7). We 
noticed however, that an exponential decay can be a poor fit to the autocorrelation of 
population responses. We therefore employed two additional methods to capture the 
fluctuations time scale. First, we measured the width of the autocorrelation at half-
height, which had a mean value of 42 ms ± 16 (51).  Second, as using short time 
intervals to measure these time constants can induce systematic biases, we used a 
Bayesian method to estimate the fluctuations timescales (52)(Sup Fig. 5).  All of these 
measures indicate that visually evoked fluctuations occur on a time scale  between 25 
and 50 ms. In contrast, the time scale of spontaneous fluctuations was substantially 
slower, (Fig. 3F,G bottom, mean τspontaneous = 126.8 ms  ± 102.6, width at half height = 
241 ms ± 144). Despite these changes in the time scale of population synchrony, we did 
not find a change in the amplitude of population synchrony, as measured by spiking 
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correlations, between spontaneous and visually-evoked conditions (Fig. 3E, Sup Fig. 
3D).  

Both the measurements of synchrony amplitude ( ) and time scale (τ) were similar in 
marmoset V1 and area MT. Further, records from mouse visual cortex from datasets 
collected at the Allen Institute also exhibit similar dynamics, though the amplitude of the 
synchrony measured in mouse V1 tends to be higher than marmoset V1 (Sup. Fig. 3). 
In sum, synchrony amplitude, its time scale, and the dependence of time scale on visual 
drive are common across species in the visual system.  

Weakly synchronous excitatory inputs can generate Poisson-like spiking.  
We have demonstrated that conductance and large-scale population measurements 
indicate the presence of synchrony in the network on timescales between 25 and 200 
ms. Can such input synchrony also lead to physiological output spiking variability? To 
answer this question, we generated synthetic conductance traces arising from 
presynaptic activity with a prescribed degree of spiking correlation. We injected these 
conductances into neurons in vitro (Fig. 4A) and examined the variability of the spiking 
activity they elicited for the same input rate and input correlation statistics. We found 
that the spike-count Fano factor was reliably near 1 (Fig. 4C, dark green points, mean 
Fano factor = 1.2 ± 0.4 s.d., n = 12), across our sample population, consistent with 
Poisson-like firing observed in vivo (Fig. 4D). Moreover, as observed in vivo (22), the 
Fano factor did not depend on the input firing rate (Fig. 4E) or the bin size used to 
measure spike counts (Fig. 4F). Irregularity in spiking pattern was also evident in the ISI 
distributions and CV near 1 (Supp. Fig. 6).  

To determine whether input synchrony was necessary to generate these variable 
responses, we also measured the responses of neurons in vitro in the absence of input 
synchrony (Fig. 4B-F).  As in the presence of input synchrony, the patterns of action 
potentials were variable in the absence of input synchrony (Fig. 4B). However, the spike 
count variance was considerably less than the mean in the absence of input synchrony, 
resulting in a reduced Fano factor (Mean = 0.6 ± 0.2 s.d., n = 10, Fig. 3C-D).  Further, 
and in contrast to in vivo observations (53), the resulting Fano factor was negatively 
related to the elicited firing rate (Fig. 4E) and to the bin size used for the spike count 
measurement (Fig. 4F). Low variability also resulted in more regular spiking and smaller 
CV values for cells injected with asynchronous input. (Supp. Fig. 6)  

 

ρ
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Synchrony time scales determine spiking variability in vitro 
To examine how synchrony timescales impact spiking variability, we consider a 
statistical model for input synchrony that uses two parameters: a parameter   that 
captures spiking correlations at a typical bin size and another parameter   that captures 
the time constant of the correlation decay. Concretely, we obtained this statistical model 
by considering that synchronous inputs arise from a fluctuating population-level firing 
rate, which we model as a nonnegative diffusion process with prescribed autocorrelation 
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Figure 4: Poisson spiking response emerge from weakly correlated inputs. A. Bottom plot 
shows a raster of model presynaptic excitatory (red) and inhibitory (blue) neurons 
generated using a pairwise correlation of 0.030 at a timescale of 50 ms.  Those spike trains 
are used to generate single trials of excitatory and inhibitory conductances (red and blue 
traces). Three example traces are shown, the light and dark colors are to distinguish the 
traces. The top two plots show the spike raster and the membrane potential responses of a 
neuron recorded in vitro using dynamic clamp injection of the generated conductances. The 
first trial is shown in the black trace. B. Same as A, but for conductances generated from an 
asynchronous network. C. The mean and variance of spike count per bin for the in vitro 
neuron’s responses in the example trial in black shown in A and B. A sliding 200 ms bin 
size is used. Dark green points are for the example cell in A with synchronous input and 
light green points are for example cell in B with asynchronous inputs. D. Distributions of the 
Fano factor from our set of in vitro recordings indicate that responses are slightly above 1 
(1.2+/-0.4, n = 12) for synchronous inputs shown in dark green and below 1 (0.6 +/- 0.2 
s.d., n = 10) for asynchronous inputs shown in light green.  E. The relationship between 
Fano factor and mean firing rate was not significant for synchronous input (r2 = 0.03, p = 
0.3, for asynchronous input R2 =0.5, p = 0.0003).  Two different simulated inputs were used 
for synchronous injections in dark green, one with pairwise correlation of 0.03 indicated by 
triangles, and another with pairwise correlation of 0.015 indicated by squares. F.  The bin 
size used to count spikes only weakly altered the Fano factor above 100 ms.  
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time (see Methods). This model generates similar statistics as jittering spikes over a 
given time window, but allow for an analytical treatment of the amplitudes and time 
scales of synchrony (28, 46).  

We used the above statistical model to generate synaptic inputs with altered synchrony 
time scale and injected the resulting synthetic conductances into neurons in vitro (Fig. 
5A). As demonstrated previously, asynchronous inputs generate variable spiking, but 
with a Fano factor near 0.6. Including synchronous drive at instantaneous time scales (1 
ms) increased conductance variability relative to asynchronous drive, but the resulting 
Fano factor remained low (FF=0.7, Fig. 5A, τ = 1ms).  The lack of impact of 
instantaneous synchrony on spiking variability is due the low-pass filtering properties of 
neurons, which average out fluctuations that are faster than membrane time constant 
( ). Slower input fluctuations pass through the membrane filter, driving larger 
membrane potential variability for comparable mean level of activity. In keeping with this 
intuition, we found that longer synchrony time scales leads to systematic increases in 
the Fano factor of the spiking response of in-vitro neurons  (Fig. 5A,B). Similar results 
were obtained using numerical simulations using common electrophysiological models 

τ ≃ 25ms

Page   of  12 33

Figure 5: Synchrony timescales alter 
spiking statistics. A. Spiking activity 
and membrane potential for model and 
in vitro neurons for conductances from 
networks with varying timescale of 
synchrony are shown. Example 
conductance traces are shown in the 
bottom row, in red for excitatory and 
blue for inhibitory. The middle rows 
show membrane potential and raster 
plot upon injecting such conductances 
in vitro. The top rows show membrane 
potential and raster plot upon injecting 
same conductances in model neurons. 
From left to right, first column shows 
responses for asynchronous 
population input, population synchrony 
with a correlation of 0.015 at 1 ms 
(second column), 50 ms (third column) 
and 100 ms (fourth column). B.  
Measurements of Fano factor for the 
four conditions presented in A in all in 
vitro recorded cells. C. As in B, for five 
different neuron models, indicated by 
color.
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of cortical neurons (54, 55).Injecting synchronous drives revealed a consistent impact of 
synchrony timescale on spiking variability (Fig. 5C,D). Moreover, we found that recorded 
and model neurons exhibit similar behavior to changes in input rate, synchrony time 
scale, and the bin size dependence of the Fano factor as those recorded our 
experiments in vitro (Sup Fig 7,8). 

While cortical spiking activity is generally characterized as Poisson, because the Fano 
factor is near 1, it can also exhibit super-Poisson variability, whereby spike-count Fano 
factors substantially exceed unit value. Such super-Poisson spiking statistic are found 
across the cortex during spontaneous activity, whereas input drives tend to quench 
variability, leading to Poisson-like spiking (4). To determine if we can recover both 
variability regimes in vitro, we injected in-vivo conductances recorded during 
spontaneous (pre-stimulus period) and evoked activity (visual stimulation period). As 
expected, we found that spiking statistics shifted from super-Poisson during 
spontaneous drive to Poisson activity during stimulus-evoked drive (Fig. 6A). Our 
population recording revealed that a key distinction between spontaneous and stimulus-
evoked regimes is that the input drives shorten the time scale of synchrony. We 
hypothesized that this change in synchrony time scale is responsible for the shift  from 
super-Poisson and Poisson spiking. To validate this hypothesis in vitro, we injected 
synthetic conductances for which the synchrony time scale changed from 100 to 50 ms, 
mimicking a pre-stimulus period followed by a stimulus-driven period (Fig. 6B). To 
reproduce physiological conditions, we jointly increase the mean input rate and the 
synchrony timescale when switching from the simulated spontaneous period to the 
stimulus-driven period. We note, however, that the increase in input drive is not the 
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Figure 6: The dynamics of spiking variability. A. Dynamic clamp in vitro injections of in vivo 
recorded conductances result in systematic shifts in the Fano factor between the pre-stimulus 
period (0-750 ms) and the visually-driven period (shaded region, 750-2500 ms).  Two example 
neurons are shown.  B. Dynamic clamp in vitro injections of modeled population input in which 
the timescale of synchrony shifts from 100 to 50 ms. C. A comparison of the Fano factor 
during the spontaneous period and the visually-driven period.  Distinct in vivo conductance are 
indicated by shape (circle, example 1; square, example 2). Distinct modeled synchrony 
amplitudes are indicated by color yellow (ρ = 0.015) and purple (ρ = 0.03) diamonds.
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determinant factor as changing synchrony time-scale alone is sufficient to quench 
variability (Sup. Fig. 9).    

Spiking responses are quasi-deterministic but neuron-specific 
Our results show that achieving realistic spiking variability requires synaptic inputs with 
specific characteristics in terms of synchrony amplitude and time scales. Indeed, we 
have demonstrated that neurons reliably generate the same spiking patterns when 
driven by the same conductances (Fig. 1A,B,Fig. 7A,B). At the same time, we find that 
spiking patterns in response to the same conductances vary significantly from cell-to-
cell (Fig. 7A). This suggests that each neuron has its own set of intrinsic properties that 
sculpt responses. These diverse spiking patterns are especially noteworthy as we 
neglected the differentiating impact of dendritic integration by presenting conductances 
to the soma. To quantify the spiking variability due to the heterogeneity of neuronal 
intrinsic properties, we compared the reliability and precision of single-neuron 
responses with the responses of distinct neurons driven by the same input (12). For 
repeated injections of same conductance into the same cell, the reliability of spiking 
patterns across repeats was high (mean = 0.92 ± 0.05, n  = 10) and spike times within 
an event across repeats also showed high precision (mean = 3.9 ms ± 1.3, across  = 
10, Fig. 7C). We compared these metrics with across-cell measurements by injecting 
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Figure 7: Intrinsic process shape neuronal responses.  A. The responses of many neurons 
recorded in vitro to the same conductance input. The population raster shows the spikes of 
each cell, while the overall firing rate is computed as in Mainen and Sejnowski (1995). 
Membrane potential traces are shown for four of the neurons in the sample population. B. The 
responses of a single neuron (4) to the same stimulus presented repeatedly.  Firing rate and 
membrane potential  as in A, but for this single neuron.  C.  The reliability of population 
response (red) is always lower than individual neurons (black) and declines steadily with the 
threshold rate. D. Individual neurons are more precise than the population.
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the same conductance in different cells and treating spiking patterns of different cells as 
a repeat. In this case, the reliability of spiking was considerably lower (mean = 0.72 ± 
0.06, across 10 cells) and spike times across cells within an event also showed low 
precision (mean = 4.6 ms ± 0.6, across 10 cells).  These distinct spiking patterns 
demonstrate how intrinsic properties sculpt responses of neurons differentially.  Such 
response diversity has the impact of reducing the overall spiking synchrony in the 
population which weakens the spiking correlation of neurons receiving common drive 
(56). 

Discussion 

We have demonstrated that irregular spiking observed in single cells in vivo results from 
external synaptic drive. Our experimental and modeling results revealed that synchrony 
is an essential determinant of cortical variability, which poses several challenges to 
existing theories.  

To support this claim, we demonstrated a network-level origin for cortical variability via 
two key observations at the single-cell level. First, we showed that neurons respond 
reliably to repetition of the same  physiological synaptic inputs that were recorded in 
vivo, as suggested by previous in-vitro studies that used synthetic input (12). Second, we 
found that spiking variability is fully accounted for by the fluctuations of the synaptic 
drive that a neuron receives in response to the same sensory stimulus. This supports 
the idea that neurons faithfully respond to variable inputs, whose fluctuations originate 
from network properties rather than intrinsic sources.  Further, we have established that 
cross-trial fluctuations in the excitatory drive are sufficient to evoke variable spiking 
responses. This suggests that, at the single-cell level, balancing strong excitation and 
inhibition in the inputs is not a requirement for spiking variability to emerge.  

We argue that the physiological synchrony in networks generates input fluctuations that 
result in irregular spiking. To support such a role for synchrony, we followed four lines of 
evidence. First, statistical analyses of conductance traces recorded in vivo shows that 
the strength of their fluctuations can only be explained by some degree of synaptic input 
synchrony. Second, using a population correlation analysis of large-scale spiking 
recordings we quantified the presence of spiking correlations. Third, we developed 
models that generate inputs with various degree of synchrony. With these models, we 
showed that the level of spiking correlation measured in our experiments yields 
synthetic conductance traces with physiological levels of fluctuations. Fourth, injecting 
neurons with these synthetic conductances demonstrates that input synchrony is 
sufficient to drive physiological spiking variability in vitro. 
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Our measurements identify the time scale of synchrony as a key component controlling 
spiking variability. Shifting synchrony timescales from slow to fast, as occurs at the 
transition from spontaneous and driven states, reduces the degree of spiking variability 
from super-Poisson to Poisson, as has been observed across cortical areas. The 
distinction between super-Poisson and Poisson spiking regime is thus explained by 
frequency modulation rather than amplitude modulation (4). 

It remains unclear how such synchrony emerges within cortical networks.  We 
presented evidence that synchrony not only exists at the level of the cortex, but in the 
afferent inputs from the thalamus (Sup. Fig 3), suggesting that cortical networks may 
only need to maintain and modulate synchrony.  Correlated activity varies with internal 
state (e.g. attention), suggesting that there are multiple stable synchronous network 
states. Network models composed of multiple clusters of interconnected neurons, as 
observed in vivo (57-61), can generate metastable dynamics with slow synchronous 
network fluctuations, whose timescales are modulated by input drives (62). 
Mechanistically explaining the origins of cortical variability likely hinges on 
understanding the stable emergence and maintenance of these synchronous 
fluctuations in structured spiking networks (6, 62-64). This will probably require 
considering network models beyond classical approximations that neglect non-
Gaussian, correlation-based, correction terms (65-67). 

Methods 
All marmoset and mice experiments were conducted with the approval of The University 
of Texas at Austin and University of Nevada at Las Vegas Institutional Animal Care and 
Use Committees. 

In vivo physiology procedures:3 male and 1 female marmoset was used in the current 
study. These animals had chambers implanted over primary visual cortex or area MT. 
Surgical procedures were similar to previous descriptions (68). Custom-made headpost 
and chambers were affixed to the skull in a sterile anaesthetized procedure. Throughout 
the procedure, the body temperature was maintained at 36-37°C and the heart rate, 
SPO2 and CO2 were monitored. Animals were placed in stereotaxic frames, circular 
craniotomies were performed on the intended chamber location identified using 
stereotaxic coordinates, chambers and the headpost were placed and the dura was 
removed. An implant from dental acrylic was built around the headpost and chambers, 
covering the remaining exposed skull. The skin around the implant was affixed to the 
implant using Vetbond. The animals were then returned to the cages after recovery from 
anaesthesia. 
Chamber design: The chamber consisted of 4 parts. The outermost part of the chamber 
was a ring of height 1.6 mm and of diameters ranging from 5-7mm. This ring had 1 mm 
long thin feet that were inserted inside the skull following craniotomy. The second piece 
was a thin chamber nut (thickness 1.5 mm) that was screwed on the outside of the 
chamber ring and rested on top of the skull. This assembly was further sealed using 
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Metabond (Parkell, New York). A removable imaging well was screwed on the inside of 
the chamber ring. The well consisted of a metal insert to which a coverglass was 
attached at the bottom. A thin cap (1 mm) was screwed on top of the chamber ring to 
close it.  
Behavioral training and experimental control: After recovery from surgery, marmosets 
were habituated to head fixation and trained to fixate visual targets. Experimental 
control was provided by the Maestro software suite, which collected eye movement 
data, controlled visual stimulation, and provided juice reward (https://sites.google.com/a/
srscicomp.com/maestro/). 

Population recordings: Large scale population recordings from V1 and area MT data 
were collected using Neuropixels 1.0 probes. We used an IMEC PXIe acquisition 
module mounted on a National Instruments (NI) PXIe chassis (PXIe-1071) with NI 
PXIe-8381 and NI PCIe-8381 for remote control. Voltage signals were recorded at 30 
kHz from 384 channels using SpikeGLX. Waveforms were first automatically sorted 
using Kilosort and then manually curated using the phy software (69).  Large-scale 
population recordings in mice were downloaded from the publicly available dataset at 
the Allen Institute (70). 

In vitro physiology procedures: Mice and marmosets underwent cardiac perfusions with 
ice-cold saline consisting of (in mM): 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 0.5 CaCl2, 
7 MgCl2, 7 dextrose, 205 sucrose, 1.3 ascorbicate acid, and 3 sodium pyruvate 
(bubbled constantly with 95% O2/5% CO2 to maintain pH at ~7.4). The brain was 
removed and sliced into 300 µM sections containing V1 region of cortex or temporal 
association cortex were made using a vibrating tissue slicer (Vibratome 300, Vibratome 
Inc). The slices were placed in a chamber filled with artificial cerebral spinal fluid (aCSF) 
consisting of (in mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 2 CaCl2, 2 
MgCl2, 10 dextrose, 1.3 ascorbic acid and 3 sodium pyruvate (bubbled constantly with 
95% O2/5% CO2) for 30 minutes at 35°C and then held at room temperature until time 
of recording. 
  
In vitro Electrophysiology 
Slices were placed in a submerged, heated (32-34 C°) recording chamber and 
continually perfused at 1-2 ml/min with aCSF (in mM): 125 NaCl, 3 KCl, 1.25 NaH2PO4, 
25 NaHCO3, 2 CaCl2, 1 MgCl2, 10 dextrose, and 3 sodium pyruvate (bubbled 
constantly with 95% O2/5% CO2). Ionotropic glutamatergic and GABAergic synaptic 
transmission were blocked with 20 µM DNQX, 25 µM D-AP5, and 2 µM gabazine. 
Neurons were visualized with a Zeiss AxioExaminer under 60x magnification. All drugs 
were obtained from Tocris, Abcam pharmaceutical, or Sigma and prepared from a 
1000x stock solution in water. 

  
Whole cell recordings were made using a Dagan BVC-700 amplifier and custom written 
acquisition software using Igor Pro (WaveMetrics) or Axograph X (Axograph). Data were 
sampled at 20-50 kHz, filtered at 3 kHz, and then digitized by an InstruTECH ITC-18 
interface (HEKA). The internal recording solution consisted of (in mM): 135 K-gluconate, 
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10 HEPES, 7 NaCl, 7 K2-phosphocreatine, 0.3 Na-GTP, 4 Mg-ATP (pH corrected to 7.3 
with KOH). Recording electrodes were pulled using Flaming/Brown puller (Model P-97, 
Sutter Instruments) from borosilicate glass (outer diameter 1.65 mm, World Precision 
Instruments) and had an open tip resistance of 4-6 MΩ. Series resistance was 
compensated using the bridge balance circuit and was monitored throughout the 
experiment.   Experiments were discarded in series resistance exceeded 35MΩ. 

Dynamic clamp experiments were performed using a Teensy 3.6 microcontroller that 
converted excitatory and inhibitory conductance commands with the records of 
membrane potential into current at a high rate (100 kHz) (Desai et al. 2017).  Excitatory 
and inhibitory reversal potentials were set to 0 and -80 mV, respectively.  Action 
potentials were identified by extracting the times at which membrane potential exceeded 
a threshold voltage. 

Conductance commands:  Conductances injected in vitro were either from 
measurements made in vivo (Tan et al.) or using generated synthetically at a timescale 
of 8kHz. The gain of the in vivo conductances was adjusted equally during experiments 
to generate approximately 7 spikes/sec, except for those experiments in which the 
conductance gain was systematically adjusted (Sup. Fig. 2).  The relative gain of 
excitatory and inhibitory conductances was not varied, apart from those experiments in 
which inhibitory conductance was set to 0. Baseline holding currents at either the 
reversal potential for excitation or inhibition were computed from the bottom fifth 
percentile of the distribution of current values.  These baseline currents were subtracted 
from the current traces and converted into conductance traces, which were used as 
commands to the dynamic clamp system. 
Synthetic conductances were generated as shot-noise traces by exponentially filtering 
the spiking patterns of 500 excitatory neurons and 200 inhibitory neurons characterized 
by a rate, correlation, and correlation time scale. We simulated synchronous spiking 
activity via as a doubly-stochastic procedure, whereby the common neuronal spiking 
rate   is prescribed as a random Cox-Ingersoll-Ross (CIR) process. Such a process is 
governed by 

  (3) 

where   is the mean firing rate,   is the correlation time,   is the noise coefficient, and 
  is a Brownian motion.  Then, to simulate spiking inputs from   inputs, we sample the 
number of active inputs in each time bin of duration   by sampling a Poisson random 
variable with parameter  , where   refers to the (average) value of the fluctuating 
rate in that time bin. Given   and  , we choose   to achieve the level of experimentally 
measured level of spiking correlations  (the larger  , the larger the spiking correlation 
 ). In our simulations,  , while  ,  and   were varied. The spiking 
correlation   was varied by choosing   when measured in time bins of 15 ms duration.  
The degree of correlation between excitatory and inhibitory inputs was also varied by 
considering that each type of inputs were driven by two separate CIR processes   and 
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 . This varying degree of correlation was obtained by allowing for   and   to be driven 

by a shared noise component in equation (3):   and 

  where   denotes the fraction of shared noise,   denotes a 
shared Brownian motion drive and where   and   denote independent private 
Brownian motion drives. Input spikes were passed through exponential decays of either 
5 ms (excitatory neurons) or 10 ms (inhibitory neurons).  The overall gain of inhibitory 
drive was set to twice the excitatory gains, which matches the difference in conductance 
gain measured between excitatory and inhibitory conductances. 
Neuron simulations: We used the single compartment models of regular-spiking 
pyramidal cell, bursting pyramidal cell, repetitive bursting pyramidal cell, and low-
threshold spiking (LTS) pyramidal cell from Pospischil et al. 2008 (55) as well as the 
model of interneuron of Wang-Buszaki (54).  We downloaded these five models from 
the ModelDB repository and used the simulation environment Neuron (71, 72).  The 
parameters were not adjusted.  Simulations were either performed at 8 kHz, for the 
neurons from Pospichil et al., or at 160 kHz for the Wang-Buzsaki neuron. The 
conductance of the external inputs was  generated using the same method for those 
cells recorded in vitro. As for in vitro experiments, action potentials were extracted by 
identify the time at which membrane potential exceeded a voltage threshold.  

Population variance: Measurements of   were made from simultaneously recorded 
populations of neurons.  The number of neurons included in the   measurement was 
systematically varied from K= 2 to the total number of neurons (Ktot)in the recorded 
population. For each K, K neurons were selected randomly and the population variance 
was computed by measuring the variance of the population rate across trials relative to 
the summed variance of the individual neurons (equation 2).    

For each subpopulation size K, K neurons were selected 50 times randomly. Both the 
mean and 95% confidence intervals of   were computed from mean and standard 
deviation of this distribution.  We then shuffled the spikes randomly between the trials, 
to disrupt any trial-by-trial covariance, and performed the same analysis (51).  To 
measure the population variance as K approaches infinity was extracted from the y-
intercept of the linear regression using the log-transformed   values from the 1/Ktot to 1/
(Ktot*0.5).  

Synchrony time course: Estimates of the timescale of population synchrony were made 
using two different procedures.  First, we estimated the synchrony time course from the 
decay in the autocorrelation of the residual population response.  We measured by the 
population response from the summed activity of neurons in a given trial, and computed 
the residuals from the difference in the individual trial populations from the population 
responses averaged across all repeats of the same stimulus.  The autocorrelations of 
these residual responses from each trial and across conditions were averaged and an 
exponential time constant was fit to the average autocorrelation. The second method we 
used to estimate synchrony time scale was to employ the method described in Zeraati 
et al 2022, which uses a generative model based on Ornstein-Uhlenbeck processes.   

ri re ri
We = sWs + 1 − s2W′ e

Wi = sWs + 1 − s2W′ i s Ws
W′ e W′ i

χ
χ

χ

χ
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Measurements of precision and reliability were based on the procedure outlined in 
Mainen and Sejnowski, 1995 (12). PSTHs were generated either for neuronal 
populations, by integrating the responses of distinct neurons to the same conductance 
injection, or by integrating the responses of a single neuron to injection of the same 
conductance. An adaptive filter was applied to the average responses which was 
centered on each time bin and widened until half of the responses contained a spike or 
the bin width reached 100 ms.  Events were then identified as by firing rate crossing a 
threshold level of firing rate, which was varied systematically in steps of 10 from 10 to 
50 spikes/s.  Reliability is defined as the fraction of spikes that occur within these 
events, whereas precision is defined as the standard deviation of spike times within an 
event. 
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Supplementary material: 

Supp. Fig. 1: CV and bin size dependence of Fano factors.  
A and B.Distributions of the inter-spike interval are shown for the example cell in Fig. 1A 
and C respectively. The cell in A is injected with gE + gI, while cell in B is injected with gE 

alone. Left and right columns are output from same g and different g injections 
respectively. C  A comparison of CV of the ISI distribution for all cells which input 
conductance is the same or different. D. A comparison of the Fano factor using different 
bin sizes. Markers are same as in C.  
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Supp. Fig. 2: Effect of changes in gain on Fano factor and firing rate.  
A.The Fano factor for changes in excitatory and inhibitory conductance gains 
example cells. Each column is a separate cell. Green points are output from 
different g injections and gray points are output from same g injections. B. The 
changes in spike rate as a function of gain for the cells in A, for same g 
injections. C. The changes in spike rate as a function of gain for cells in A, for 
different g injections.  
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Supp. Fig. 3: Synchrony in large scale extracellular recordings from mouse 
cortex and visual thalamus (LGN).  
A. Shows population variance as a function of number of cells during stimulus-
evoked (top) and spontaneous (bottom) conditions for an example session. B. 
Show autocorrelation of population activity for the session in A. The dotted line 
shows the fitted exponential decay. C. Distribution of population activity timescale 
(tau) across all sessions. D. Distribution of synchrony across all sessions. E-H, 
as for A-B, but for thalamic recordings.  Data is from Allen Institute (70).  

Page   of  23 33

1/K
0 0.1 0.2 0.3

P
op

ul
at

io
n 

va
ria

nc
e

0

0.1

0.2

0.3
0 0.1 0.2 0.3

0

0.1

0.2

0.3

Activity timescale (tau in ms)
0 50 100

P
ro

po
rti

on

0

0.2

0.4
0 50 100

0
0.2
0.4
0.6
0.8

Population synchrony
0 0.1 0.2

P
ro

po
rti

on

0

0.3

0.6
0 0.1 0.2

0

0.3

0.6

Time (in ms)

1/K

P
op

ul
at

io
n 

va
ria

nc
e

Activity timescale (tau in ms) Population synchronyTime (in ms)

-300 0 300

A
ut

oc
or

re
la

tio
n

P
ro

po
rti

on

P
ro

po
rti

on

A
ut

oc
or

re
la

tio
n

0

0.1

0.2

0.3
-300 0 300

0

0.1

0.2

0.3

0 0.1 0.2

0

0.2

0.4

0.6
0 100 200

0

0.25

0.5

0 100 200

0

0.15

0.3
0 0.1 0.2

0

0.2

0.4

0.6

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0 0.1 0.2 0.3

0

0.1

0.2

0.3
-300 0 300

0

0.05

0.1

-300 0 300

0

0.05

0.1

V1

LGN

A

E

B

F

D

H

C

G

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618398doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618398


 
Supp. Fig. 4: Synchrony comparison for sub-population of visually responsive 
cells.  
A and B. Show how population synchrony changes for marmoset cortical 
populations upon only including the visually responsive cells. A shows data for 
stimulus-evoked synchrony and B is for spontaneous synchrony.  
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Supp. Fig. 5: Estimation of activity timescales using abcTau method. 
A. Shows distribution of timescales (tau) for marmoset cortical populations using 
the abcTau method. Top row is stimulus evoked timescale, bottom row is 
spontaneous timescale. B. Same as A, for mouse cortical populations.  
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Supp. Fig. 6: ISI distribution and CV for synchronous vs asynchronous input. A. 
Shows ISI distributions for synchronous (top) and asynchronous (bottom) 
injections in example cells shown in Fig. 4 A and B. B. Distribution of CV across 
all cells recorded with synchronous (dark green) and asynchronous (light green) 
inputs. 
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Supp. Fig. 7: Dependence of the Fano factor on output firing rate and input rate 
under varying input correlation timescale conditions.  
Each point is the Fano factor of a cell injected with input with synchrony at 
specified time-scale (panel titles) and is color coded by the input rate used for 
that point. Same cells were injected with multiple input rates.  
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Supp. Fig. 8: Variations in Fano factor and output firing rate with synchrony 
timescale, input rate, and correlation in simulations. A. The firing rate (top) and 
fano factor (bottom) are shown for the 5 types of model neurons. The synchrony 
time constant and input firing rate were systematically altered for a pair-wise 
correlation of 0.02.  B. As in A, but the synchrony time constant and pair-wise 
correlation were systematically varied.  The input firing rate was set to 7.5 Hz. 
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Supp. Fig. 9: Variability quenching in simulated neurons. A. Top row shows raster 
for an example simulated neuron. Gray shaded region is when time-scale of 
simulated input shifts from 100 ms to 50 ms (same as in Fig. 6B). Bottom row 
shows the Fano factor of the model cell in 200 ms bins. The left column is when 
firing rate is allowed to change from simulated spontaneous (1 spk/s) to stimulus 
evoked (7.5 spks/s) period. Right column is when firing rate is held constant 
through the 2 s trial (7.5 spks/s). B) Shows spontaneous and stimulus evoked 
fano factor comparisons for 5 types of neuron simulation models. Black points 
are for input with firing rate changes, gray points are for constant firing rate.B. 
The mean Fano factor for each model cell in the driven (synchrony time scale = 
50 ms) and spontaneous periods (synchrony time scale = 100 ms) for each 
model cell. Changes in Fano factor were measured when the input firing changed 
from 1 to 7.5 spks/s (gray symbols) or when the input firing rate was fixed (black 
symbols). 
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1 ω-metric estimates for spiking correlations

In this section, the scaling behavior the ω-metric with respect to the number of considered neurons K. To

do so, we consider a series of spiking statistical models under increasingly realistic assumptions.

1.1 Temporally independent, homogeneous case

1.1.1 Bernoulli counts

Consider some spike train data Xi,m, 1 → i → K, where i is the neuron index and m the time index.

Assuming stationarity, we can neglect time dependence and disregard t. We also assume exchangeability
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and allow for nontrivial correlation. Let us define

p = E [Xi] = P [Xi = 1] = r!t and q = E [XiXj ] = P [Xi = Xj = 1] , (1)

where p is the probability to find a spike in a bin, where r denotes the spiking rate, and where q = p2 in the

absence of correlations. The spike correlation is defined as

ε =
E [XiXj ]↑ E [Xi]E [Xj ]√(

E
[
X2

i

]
↑ E [Xi]

2
)(

E
[
X2

j

]
↑ E [Xj ]

2
) =

q ↑ p2

p(1↑ p)
, (2)

so that we have q = p2 + εp(1↑ p). In this context, the ω-metric can be computed as

V
[
1

K

K∑

i=1

Xi

]
=

1

K2



E




(

K∑

i=1

Xi

2


↑
(
E
[

K∑

i=1

Xi

]2


 , (3)

=
1

K2




K∑

i=1

E
[
X2

i

]
+

∑

1→i ↑=j→K

E [XiXj ]↑
(

K∑

i=1

E [Xi]

2


 , (4)

=
1

K2


Kp+K(K ↑ 1)q ↑ (Kp)2


, (5)

= q ↑ p2 +
p↑ q

K
, (6)

= p(1↑ p)


ε+

1↑ ε

K


, (7)

where the last line is obtained by expressing q in term of the spike correlation ε. For spiking data, we

commonly have p = r!t ↓ 1, so that p(1↑ p) ↔ p = r!t, leading to the rate normalized ω-metric

1

p(1↑ p)
V
[
1

K

K∑

i=1

Xi

]
= ε+

1↑ ε

K
↔ 1

r!t
V
[
1

K

K∑

i=1

Xi

]
. (8)

The above relation demonstrates that for the Bernoulli homogeneous case, studying the (1/K)-dependence

of the ω-metric allows one to rigorously infer the shared spiking correlation.

1.1.2 Binomial counts

Assuming no temporal correlations, the above result generalizes to the spike counts observed in many time

bins. Specifically, for an integer bin size M , we have Yi =
M

m=1Xi,m, where {X1,m, . . . , XK,m}1→m→M ,

are independent samples across time. This corresponds to taking:

p↓ = E [Yi] = E
[M

m=1Xi,m

]
=

M
m=1 P [Xi,m = 1] = Mp , (9)

q↓ = E [YiYj ] =
M

m=1

M
n=1 E [Xi,mXj,n] =

M
m=1

M
n=1 P [Xi,m = Xj,n = 1] . (10)

Separating the contributions of coincidental time bins and noncoincidental (independent) time bins yields

q↓ =
M∑

m=1

P [Xi,m = Xj,m = 1] +
∑

1→m ↑=n→M

P [Xi,m = 1]P [Xj,n = 1] = Mq +M(M ↑ 1)p2 . (11)

2
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Similarly, we have

s↓ = E
[
Y 2
i

]
=

M∑

m=1

M∑

n=1

P [Xi,m = Xi,n = 1] = Mp+M(M ↑ 1)p2 . (12)

Using the same calculation as for the Bernoulli case, this allows one to evaluate the new normalized ω-metric

V
[
1

K

K∑

i=1

Yi

]
=

1

K2




K∑

i=1

E
[
Y 2
i

]
+

∑

1→i ↑=j→K

E [YiYj ]↑
(

K∑

i=1

E [Yi]

2


 , (13)

=
1

K2


Ks↓ +K(K ↑ 1)q↓ ↑ (Kp↓)2


, (14)

= q↓ ↑ p↓2 +
s↓ ↑ q↓

K
. (15)

Expressing p↓, q↓, and s↓ in terms of p and q, we get

V
[
1

K

K∑

i=1

Yi

]
= q↓ ↑ p↓2 +

p↓ ↑ q↓

K
, (16)

= M(q ↑ p2) +
M(p↑ q)

K
, (17)

= Mp(1↑ p)


ε+

1↑ ε

K


. (18)

Thus, after proper rate normalization, larger bin sizes do not affect the (1/K)-dependence.

1.1.3 Poisson counts

From there, another generalization is to consider Poisson distributed spike counts, given a common spiking

rate r, this classically corresponds to considering

YM,i(T ) =
M∑

m=1

XM,i,m , (19)

in the limit M ↗ ↘, where {XM,1,m, . . . , XM,K,m}1→m→M is the spiking activity in a time bin of size

T/M so that we have E [XM,i,m] = pM = rT/M = p/M . Assuming that the pairwise correlation persists

at small timescale is equivalent to assuming that the scaling qM = E [XM,i,mXM,j,m] = q/M holds as

well. This scaling corresponds to an instantaneous form of synchrony, which we discuss in more detailed in

Section 2.1. This instantaneous form of synchrony follows from the fact that under the considered scaling,

one obtains limit Poisson processes Ni(T ) = limM↔↗ YM,i which can jump synchronously. One can derive

the corresponding limit ω-metric by first observing that

p↓M = E [YM,i(T )] = MpM = p , (20)

q↓M = E [YM,i(T )YM,j(T )] = MqM +M(M ↑ 1)p2M = q + p2(1↑ 1/M) , (21)

s↓M = E
[
YM,i(T )2

]
= MpM +M(M ↑ 1)p2M = p+ p2(1↑ 1/M) . (22)

This leads to the limit pairwise spiking correlation

εM =
qM ↑ p2M

pM (1↑ pM )
=

q/M ↑ (p/M)2

(p/M)(1↑ p/M)
M↔↗↑↑↑↑↗ ε =

q

p
. (23)
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Using the above results, we have

V



 1

K

∑

i↘SK

Ni(T )



 = lim
M↔↗

V



 1

K

∑

i↘SK

YM,i(T )



 , (24)

= lim
M↔↗


q↓M ↑ p↓2M +

s↓M ↑ q↓M
K


, (25)

= q +
p↑ q

K
+ lim

M↔↗
p2/M , (26)

= p


ε+

1↑ ε

K


, (27)

where the last equality follows from substituting q = εp. This leads to the instantaneous Poisson version of

the ω-metric

1

T
V



 1

K

∑

i↘SK

Ni(T )



 =
p

T


ε+

1↑ ε

K


= r


ε+

1↑ ε

K


, (28)

which exhibits a similar (1/K)-dependence as for the binomial case.

1.2 Population heterogeneity

1.2.1 Discrete-time model

Let us consider the more realistic case of heterogeneous spiking rates and heterogeneous correlations, which

we parametrized via

pi = E [Xi] = P [Xi = 1] = ri!t and qij = E [XiXj ] = P [Xi = Xj = 1] . (29)

For an integer bin size M , the quantities of interest are the spike counts Yi =
M

m=1Xi,m, where the vectors

{X1,m, . . . , XK,m}1→m→M , are independent samples across times. Similarly to the homogeneous case, we

introduce the following useful quantities:

p↓i = E [Yi] = E
[M

m=1Xi,m

]
=

M
m=1 P [Xi,m = 1] = Mpi , (30)

q↓ij = E [YiYj ] =
M

m=1

M
n=1 P [Xi,m = Xj,n = 1] = Mqij +M(M ↑ 1)pipj , (31)

s↓i = E
[
Y 2
i

]
=

M
m=1

M
n=1 P [Xi,m = Xi,n = 1] = Mpi +M(M ↑ 1)p2i . (32)

It is also convenient to compute the binned covariance as

c↓ij = q↓ij ↑ p↓ip
↓
j = Mqij +M(M ↑ 1)pipj ↑M2pipj = M(qij ↑ pipj) = Mcij , (33)

where cij is the single-bin covariance. Taking into account heterogeneities causes the ω-metric to depend

on the set of K neurons under consideration, which we denote by SK ≃ {1, . . . ,K}. With this in mind, we

4
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can evaluate

V



 1

K

∑

i↘SK

Yi



 =
1

K2




∑

i↘SK

E
[
Y 2
i

]
+

∑

i ↑=j↘SK

E [YiYj ]↑




∑

i↘SK

E [Yi]




2

 , (34)

=
1

K2




∑

i↘SK

s↓i +
∑

i ↑=j↘SK

q↓ij ↑




∑

i↘SK

p↓i




2

 , (35)

=
1

K
⇐s↓i⇒i↘SK +

(K ↑ 1)

K
⇐q↓ij⇒i ↑=j↘SK ↑ ⇐p↓i⇒2i↘SK

, (36)

= ⇐q↓ij⇒i ↑=j↘SK ↑ ⇐p↓i⇒2i↘SK
+

⇐s↓i⇒i↘SK ↑ ⇐q↓ij⇒i ↑=j↘SK

K
. (37)

Due to heterogeneities, there are actually (1/K)-correction terms in the inhomogeneous term:

⇐q↓ij⇒i ↑=j↘SK ↑ ⇐p↓i⇒2i↘Sk
=

1

K(K ↑ 1)




∑

i ↑=j↘SK

p↓ip
↓
j + c↓ij



↑ 1

K2

∑

i,j↘SK

p↓ip
↓
j , (38)

=


1

K2
+

1

K2(K ↑ 1)




∑

i ↑=j↘SK

p↓ip
↓
j



 (39)

+
1

K(K ↑ 1)

∑

i ↑=j↘SK

c↓ij ↑
1

K2

∑

i,j↘SK

p↓ip
↓
j , (40)

=
1

K



 1

K(K ↑ 1)




∑

i ↑=j↘SK

p↓ip
↓
j



↑ 1

K

∑

i↘Sk

p↓2i



 (41)

+
1

K(K ↑ 1)

∑

i ↑=j↘SK

c↓ij , (42)

=
1

K


⇐p↓ip↓j⇒i ↑=j↘SK ↑ ⇐p↓2i ⇒i↘SK


+ ⇐c↓ij⇒i ↑=j↘SK . (43)

Thus, we have the following overall (1/K)-dependence for the ω-metric

V



 1

K

∑

i↘SK

Yi



 = ⇐c↓ij⇒i ↑=j↘SK +
⇐p↓ip↓j⇒i ↑=j↘SK ↑ ⇐p↓2i ⇒i↘SK + ⇐s↓i⇒i↘SK ↑ ⇐q↓ij⇒i ↑=j↘SK

K
, (44)

= M


⇐cij⇒i ↑=j↘SK +

⇐pi(1↑ pi)⇒i↘SK ↑ ⇐cij⇒i ↑=j↘SK

K


, (45)

where the last equality follows from observing that

s↓i ↑ p↓2i = Mpi +M(M ↑ 1)p2i ↑M2p2i = Mpi(1↑ pi) . (46)

In the presence of population heterogeneity, one thus obtain the (1/K)-dependence for the ω-metric by

merely performing the population averages of the involved statistics.

1.2.2 Continuous-time model

Obtaining the continuous-time model amounts to taking the Poissonian limit of the discrete model, which

involves considering time bins of duration !t = T/M with M ↗ ↘. Taking such a Poissonian limit yields

5
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instantaneously synchronous Poisson processes Ni, whereby each process register the spiking activity of

neuron i. Moreover, one can check that in the Poissonian limit, the ω-metric satisfies

1

T
V



 1

K

∑

i↘SK

Ni(T )



 = ⇐ϑij⇒i ↑=j↘SK +
⇐ri⇒i↘SK ↑ ⇐ϑij⇒i ↑=j↘SK

K
, (47)

where the instantaneous covariance coefficients ϑij = Mcij/T = cij/!t satisfy C [dNi(t)dNj(t)] =
E [dNi(t)dNj(t)] = ϑijdt. Finally, the ω-metric can be written as

1

T
V



 1

K

∑

i↘SK

Ni(T )



 = ⇐ri⇒i↘SK


ε̄SK +

1↑ ε̄SK

K


, (48)

where we have defined the correlation-like coefficient ε̄SK as the ratio of the average instantaneous co-

variance with respect to the average instantaneous variance: ε̄SK = ⇐ϑij⇒i ↑=j↘SK/⇐ri⇒i↘SK . Note that the

latter quantity is distinct from the average correlation. For instance, consider the case of a constant pair-

wise spiking correlation ε so that we have ϑij = ε
⇑
rirj . Then, ε̄SK = ε⇐⇑rirj⇒i ↑=j↘SK/⇐ri⇒i↘SK , which

differs from ε in general. Note also that we have assumed the set of neurons SK fixed throughout the

calculation. Numerical estimation of ω-metric actually benefits from evaluating the (1/K)-dependence via

sample-average variance estimate obtained by randomly sampling SK for intermediate K. This corresponds

to altering the results by performing an additional average over SK , but should not change the essence of

the result.

1.3 Temporal correlations

1.3.1 Discrete-time model

Finally, we consider a spiking correlation model that also includes temporal correlations. For simplicity, we

consider that these temporal correlations are homogeneous in time and identical across neuronal pairs. For

a Bernoulli model, this corresponds to considering for all 1 → i → K, 1 → m → M

pi = E [Xi,m] = P [Xi,m = 1] = ri!t , (49)

and for all 1 → i, j → K, 1 → m,n → M with (i,m) ⇓= (j,m)

qij,mn = E [Xi,mXj,n] = P [Xi,m = Xj,n = 1] = qijf(m↑ n) + (1↑ f(m↑ n))pipj , (50)

where the function f quantifies temporal correlations and is such that 0 → f → 1 with f(0) = 1. Observe

that by definition qii,mm = E [Xi,mXi,m] = E [Xi,m] = pi. A typical example of such functions that

involves a single time scale ϖ is given by f(n) = exp (↑|n|!t/ϖ), where !t denotes the duration of a bin.

Similarly to the temporally independent case, we introduce the following useful quantities:

p↓i = E [Yi] =
M

m=1 P [Xi,m = 1] = Mpi , (51)

q↓ij = E [YiYj ] =
M

m=1

M
n=1 P [Xi,m = Xj,n = 1] = FMqij +


M2 ↑ FM


pipj , (52)

s↓i = E
[
Y 2
i

]
=

M
m=1

M
n=1 P [Xi,m = Xi,n = 1] = Mpi + (FM ↑M)qii +


M2 ↑ FM


p2i , (53)

where we have defined

FM =
M∑

m=1

M∑

n=1

f(m↑ n) with M → FM → M2 . (54)
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Observe that using (50), FM can be interpreted as

FM =
M∑

m=1

M∑

n=1

qij,mn ↑ pipj
qij ↑ pipj

=
1

cij

M∑

m=1

M∑

n=1

C [Xi,m, Xj,m] =
C [Yi, Yj ]

cij
. (55)

where cij is the single-bin covariance. It is also convenient to compute the binned covariance as

c↓ij = q↓ij ↑ p↓ip
↓
j = FMqij +


M2 ↑ FM


pipj ↑M2pipj = FM (qij ↑ pipj) = FMcij . (56)

Following the same calculations as for the case without temporal correlations, we find overall (1/K)-
dependence for the ω-metric to be

V



 1

K

∑

i↘SK

Yi



 = ⇐c↓ij⇒i ↑=j↘SK +
⇐p↓ip↓j⇒i ↑=j↘SK ↑ ⇐p↓2i ⇒i↘SK + ⇐s↓i⇒i↘SK ↑ ⇐q↓ij⇒i ↑=j↘SK

K
, (57)

= FM ⇐cij⇒i ↑=j↘SK + (58)

M⇐pi(1↑ pi)⇒i↘SK + (FM ↑M)⇐qii ↑ p2i ⇒i↘SK ↑ FM ⇐cij⇒i ↑=j↘SK

K
, (59)

where the last equality follows from observing that

s↓i ↑ p↓2i = Mpi + (FM ↑M)qii +

M2 ↑ FM


p2i ↑M2p2i , (60)

= Mpi(1↑ pi) + (FM ↑M)(qii ↑ p2i ) . (61)

Thus, we still obtain the characteristic (1/K)-dependence of the ω-metric observed in the absence of tem-

poral correlation, albeit with a scaling factor FM that depends on the duration of the bin as well as on the

time scale of the correlations.

1.3.2 Continuous-time model

As before, obtaining the continuous-time model amounts to taking the Poissonian limit of the discrete model,

which involves considering time bins of duration !t = T/M with M ↗ ↘. By contrast with the temporally

independent case, the corresponding limit counting processes specified by Ni(T ) = limM↔↗ Yi are Poisson

processes with stochastic rates, which are commonly referred to as doubly-stochastic processes. Moreover,

in the presence of temporal correlations, one expects that FM scales as M2
. For instance, one can check

that for f(n) = exp (↑|n|T/Mϖ), we have

F (T, ϖ) = T 2 lim
M↔↗

FM/M2 = 2ϖ2
(
e≃T/ω ↑ 1 + T/ϖ

)
. (62)

This is by contrast with the temporally independent case for which FM ⇔ M and suggests that we consider

a different form of scaling for the parameters qij , which are assumed to satisfy qij ⇔ !t ⇔ 1/M when

modeling instantaneous synchrony. Clearly, one has to assume that qij ⇔ !t2 ⇔ 1/M2
, a scaling that is

naturally achieved for doubly stochastic models. To see why, let us consider that neuron i and neuron j
spike according to two conditionally independent Poisson processes with correlated stochastic rates denoted

by Zi(t) and Zj(t), respectively. Given that we have E [Zi] = ri, and denoting Zi,m = Zi(m!t) and

Zj,n = Zj(n!t), we model Xi,m and Xj,n as conditional independent Bernoulli variables with parameters

Zi,m!t and Zj,n!t, respectively. Then, one can check that as expected, we have

qij,mn = E [Xi,mXj,n] = E [E [Xi,mXj,n |Zi, Zj ]] = E [Zi,mZj,n]!t2 , (63)
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The above scaling, achieved for doubly-stochastic models, corresponds to a more realistic form of synchrony

that does not assume instantaneously synchronous spiking and which we discuss in Section 2.2. To connect

the doubly-stochastic model with our discrete model, observe that

qij,mn = (C [Zi,mZj,n] + E [Zi,m]E [Zj,n])!t2 = (C [Zi,mZj,n] + rirj)!t2 . (64)

Then, comparing the above expression with (50) shows that doubly-stochastic models correspond to choos-

ing f such that

C [Zi,mZj,n]!t2 = f(m↑ n)(qij ↑ pipj) = f(m↑ n)cij . (65)

In particular, we have the limit behaviors

lim
!t↔0

cij
!t2

=
1

T 2
lim
!t↔0

M2cij(!t) = C [Zi,n, Zj,n] , (66)

In turn, denoting ϱij = C [Zi,n, Zj,n], we obtain the Poissonian limit for the ω-metric as

V



 1

K

∑

i↘SK

Ni(T )



 = F (T, ϖ)


⇐ϱij⇒i ↑=j↘SK +

⇐ϱii⇒i↘SK ↑ ⇐ϱij⇒i ↑=j↘SK

K


+

⇐ri⇒i↘SKT

K
, (67)

which again exhibits the characteristic (1/K)-dependence but where the scaling factor T 2F (T, ϖ) depends

on the bin duration T and the correlation time scale ϖ . Tellingly, one can interpret the scaling factor

T 2F (T, ϖ) in term of the doubly-stochastic processes Ni(t) by observing that

F (T/ϖ) = lim
M↔↗

T 2FM

M2
= lim

M↔↗

T 2C [Yi, Yj ]

M2cij
= lim

M↔↗

!t2

cij
C [Yi, Yj ] =

1

ϱij
C [Ni(T ), Nj(T )] . (68)

One can further deduce the expression of F (T, ϖ) from the rate crosscorrelations C [Zi(s), Zj(t)] (see Sec-

tion 2.2.3) by evaluating

C [Ni(T ), Nj(T )] =

 T

0
C [Zi(s), Zj(t)] dtds . (69)

For instance, one can check that the limit expression (62) consistently corresponds to choosing C [Zi(s), Zj(t)] =
ϱije≃|t≃s|/ω

. Finally, the above remarks allows one to check that as expected, expression (67) for the ω-

metric is indeed equivalent to

V
[

i↘SK
Ni(T )

]

K


i↘SK
V [Ni(T )]

= ε̃SK +
1↑ ε̃SK

K
, (70)

where we have defined the correlation-like coefficient ε̃SK as the ratio of the average covariance with respect

to the average variance: ε̃SK = ⇐C [Ni(T ), Nj(T )]⇒i ↑=j↘SK/⇐V [Ni(T )]⇒i↘SK . Note that as for ε̄SK , the

quantity ε̃SK is again distinct from the average correlation in the presence of population heterogeneities.

In the presence of temporal correlation, the main difference is that the normalization of the ω-metric must

involved the variance rather than the rate alone as: V [Ni(T )] = E [Z]T + V [Z]T 2 = riT + ϱiiT 2 > riT
(see Section 2.2.3).
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2 Synchronous spiking input models

In this section, we discuss spiking population models exhibiting two distinct form of synchrony. The first

class exhibits instantaneous synchrony, whereby neurons’ spiking activity are governed by Poisson processes

which can jump simultaneously. The second class exhibits a looser but more realistic form of synchrony,

whereby neurons are governed by Poisson processes with fluctuating, correlated rates. The focus is one

deriving parametric forms for the correlation coefficients and for the Fano factors of the neuronal spike

counts.

2.1 Instantaneous synchrony

For simplicity, we consider exchangeable models for which neurons are assumed to be pooled from a large

(infinite-size) reservoir of identically acting neurons. In this context, instantaneous-synchrony models corre-

spond to assuming that synchrony arises from an independently fluctuating mean spiking count across time

bins. When this probability is high, neurons tend to coactivate; when this probability is low, neurons tend to

remain collectively silent. Such mean count fluctuations thereby lead to overall spiking synchrony.

2.1.1 The Poisson-gamma model

The Poisson-gamma model is defined by assuming that the common mean spiking count of K exchangeable

Poisson neurons follows a gamma distribution µε,ϑ . Specifically, given a time bin of duration !t, we

consider µε,ϑ = Gamma(ς,φ) with parameter ς/φ = r!t for some r > 0 and φ > 0. Then, the

spike-count vector N1, . . . , NK is given by

P [N1 = n1, . . . , NK = nK ] =

 K

k=1


znk

nk!
e≃z


dµε,ϑ(z) , (71)

For exchangeable neurons, the spike-count correlation is defined as

ε =
C [Nk, Nl]

V [Nk]
. (72)

For an exchangeable Poisson model with directing mean count probability µε,ϑ , we have

E [NkNl] =
↗∑

k=0

↗∑

l=0

nknl


znk

nk!

znl

nl!
e≃2zdµε,ϑ(z) , (73)

=

 ↗∑

k=1

↗∑

l=1

znk

(nk ↑ 1)!

znl

(nl ↑ 1)!
e≃2zdµε,ϑ(z) , (74)

=


z2 dµε,ϑ(z) , (75)

(76)
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so that we have C [Nk, Nl] = E [NkNl] ↑ E [Nk]
2 = E

[
Z2

]
↑ E [Z]2 = V [Z]. At the same time, we also

have

E
[
N2

k

]
=

↗∑

k=0

n2
k


znk

nk!
e≃zdµε,ϑ(z) , (77)

=

 ( ↗∑

k=2

znk

(nk ↑ 2)!
+

↗∑

k=1

znk

(nk ↑ 1)!


e≃zdµε,ϑ(z) , (78)

=

 
z2 + z


dµε,ϑ(z) , (79)

so that we have V [Nk] = E
[
N2

k

]
↑ E [Nk]

2 = E
[
Z2

]
+ E [Z] ↑ E [Z]2 = V [Z] + E [Z]. Thus the

instantaneous spike-count correlation is specified for an exchangeable Poisson model as

ε =
V [Z]

V [Z] + E [Z]
=


1 +

1

F [Z]

≃1

, (80)

where F [Z] denotes the Fano factor of the underlying mean count Z. This can further be specified for the

Poisson-gamma model by using the fact that 1/F [Z] = φ to obtain ε = 1/(1 + φ), so that φ parametrizes

spike-count correlations.

2.1.2 Independent Poisson-gamma process

Given a sequence of M time bin of duration !t, let us consider that the spiking activity in each time bin

follows an independent Poisson-gamma model. For a K-neuron model, this means that the probability of the

time-indexed population vector {Nk,m}, 1 → k → K, 1 → m → M , with
K

k=1Nk,m = Nm, is specified

by

P [{Nk,m = nk,m}] =
M

m=1


. . .

 K

k=1

z
nk,m
m

nk,m!
e≃zm dµε,ϑ(zm) =

M

m=1

pn1,m,...,nK,m . (81)

As we consider exchangeable models for which every inputs play the same role, it is actually enough to

track the total spike count Nm =
K

k=1Nk,m in each time bin. The corresponding time-indexed population

vector {Nm}, 1 → m → M , satisfies

P [N1 = n1, . . . , NM = nM ] =
M

m=1


(Kzm)nm

nm!
e≃Kzm dµε,ϑ(zm) =

M

m=1

pnm , (82)

A nice feature of the independent Poisson-gamma process is that it enjoys divisibility in the sense that the

functional form of its probability law is stable under dividing and merging bins. For fixed correlation ε, i.e.,

for fixed φ, this follows from the additivity of Poisson and gamma random variables. For instance, one can
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check that upon merging M bins, one has

P
[

M∑

m=1

Nm = y

]
=

∑

n1+...+nM=y

M

m=1


(Kzm)nm

nm!
e≃Kzm dµε,ϑ(zm)


, (83)

=


. . .

 (
∑

n1+...+nM=y

y!

n1! . . . nm!

M

m=1

(Kzm)nm

(
e≃K

∑M
m=1 zm

y!


M

m=1

dµε,ϑ(zm) ,(84)

=


. . .

 (
K

M∑

m=1

zm

y (
e≃K

∑M
m=1 zm

y!


M

m=1

dµε,ϑ(zm) , (85)

=


(Kz)n

n!
e≃Kz dµMε,ϑ(z) . (86)

The above observation implies that the spike-count correlation ε is independent of the bin size M!t. Simi-

larly, the cell-specific Fano factor is also independent of the bin size M!t as one can check that

F
[

M∑

m=1

Nk,m

]
=

M
k=1V [Nk,m]

M
k=1 E [Nk,m]

= F [Nk,m] = 1 + F [Z] = 1 +
1

φ
=

1

1↑ ε
. (87)

Accordingly, the spike-count correlation ε is also independent of the number of bins M :

ε =
C
[M

m=1Nk,m,
M

n=1Nl,n

]

V
[M

m=1Nk,m

] =

M
m=1C [Nk,m, Nl,m]
M

m=1V [Nk,m]
=

C [Nk,m, Nl,m]

V [Nk,m]
=

1

1 + φ
. (88)

Finally, denoting by ZM a gamma random variable with parameter (Mς,φ), we can check that the popula-

tion Fano factor is given by

F
[

M∑

m=1

Nm

]
=

V [Nm]

E [Nm]
= F [Nm] = 1 + F [ZM ] = 1 +

K

φ
. (89)

2.1.3 Continuous-time limit for the independent Poisson-gamma process

The continuous-time limit is obtained by considering the discrete spiking model for time bins of duration

!t = T/M with M ↗ ↘. By exchangeability of the discrete model, it is enough to keep track of time-

indexed the total spike count Nm =
K

k=1Nk,m in each time bins. Given our additional assumption that

N1, . . . , Nm are i.i.d., let us denote by N a generic total spike count. By additivity of Poisson random

variables, the distribution of Y over {0, 1, . . . ,K} is given by

Pn = P [N = n] =


(Kz)n

n!
e≃Kz dµε,ϑ(z) . (90)

Evaluating the above integral yields the distribution of the counting variable N as

Pn =
1

”(ς)


φ

K + φ

ε K

K + φ

n ”(ς+ n)

n!
, (91)

which is always summable as

”(ς+ n)

n!
⇔ (n+ 1)1≃ε . (92)
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It is then convenient to think of the discrete process NM =
M

n=1Nm as an integer-valued random walk

with i.i.d. positive jumps, denoted by k. By construction, these jumps have distribution Pk/(1↑P0) on
ϖ
.

In the discrete model, the mean spiking count is given by E [Z] = ς/φ = rT/M , so that one can achieve

the continuous-time limit M ↗ ↘ by considering ς ↗ 0. In this continuous-time limit, by independence

across time bins, one can then show that the random walk YM tends to a compound Poisson process Y (t)
such that for all t > 0

lim
M↔0

Y⇐Mt/T ⇒ = Y (t) with Y (t) =

N(t)∑

n=1

kn , (93)

where N is a Poisson process with rate b and kn are i.i.d. with common distribution

pk = lim
M↔↗

Pk

1↑ P0
= ln


1 +

K

φ


1

k


1 +

φ

K

≃k

. (94)

The rate b of the driving Poisson process N is specified by the conservation of the overall spiking rate, which

imposes that bE [k] = Kr so that:

b = Kr/E [k] = rφ ln


1 +

K

φ


. (95)

Observe that continuous-time limit ς ↗ 0 leaves the correlation coefficients and the Fano factor unchanged

as these only depend on the parameter φ and K. In turn, these parameters entirely specify the common

jump distribution pk, which explain the emergence of perfect synchrony in the presence of nonzero spiking

correlations. In the absence of correlations (ε = 0 and φ = ↘), synapses spike asynchronously so that only

one synapse activates at a time: k = 1 with probability one, i.e., p1 = 1. In the presence of correlations

(ε > 0 and φ < ↘), synapses act synchronously so that many synapses activate at the same time: k > 1
with nonzero probability, i.e., p1 < 1.

2.2 Loose synchrony

For simplicity, we still consider exchangeable models for which neurons are assumed to be pooled from a

large (infinite-size) reservoir of identically acting neurons. In this context, we model a loose form of spiking

synchrony by assuming that this synchrony arises from a collective fluctuating spiking rate (as opposed to

a mean spiking count) across time bins. Such models belong to the class of doubly-stochastic models and

allow for the introduction of temporal correlations across time bins. This is by contrast with instantaneous

models, which rely on the assumption of temporal independence. Synchrony is established by stochastically

alternating periods of elevated and depleted spiking rate. This form of synchrony is more realistic for not

relying on exactly synchronous spiking across neurons.

2.2.1 Basic facts about the CIR process

We model synchrony with finite temporal correlation by assuming that the underlying firing rate follows a

Cox-Ingersoll-Ross (CIR) dynamics. Specifically, we consider that the joint firing rate Zt of an exchange-

able sequence of K Poisson neurons follows the stochastic equation

dZt =
1

ϖ


ς

ϑ
↑ Zt


dt+


2Zt

ϖϑ
dWt , (96)

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618398doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618398


where Wt denotes the canonical Brownian motion. In the above equation, ς is a positive dimensionless

parameter, ϑ is a positive time scale, both of which are to be discussed later, and ϖ is the correlation time of

the dynamics. Denoting ϱ = e≃t/ω
, the CIR Markov transition kernel is known analytically as

p(y|z; t) =
ϑεyε≃1e≃

ω(y+εz)
1→ε

(1↑ ϱ)ε

↗∑

k=0

ϑ2kϱkzkyk

k!”(ς+ k)(1↑ ϱ)2k
, (97)

=
ϑε

”(ς)
yε≃1e≃ϱy



”(ς)
e≃

ϑε(z+y)
1→ε

(1↑ ϱ)ε

↗∑

k=0

ϑ2kϱkzkyk

k!”(ς+ k)(1↑ ϱ)2k



 , (98)

= µε,ϱ(y)”(ς)



e≃
ωε(z+y)

1→ε

(1↑ ϱ)ε


ϑ
⇑
ϱzy

1↑ ϱ

1≃ε

Iε≃1


2ϑ

⇑
ϱzy

1↑ ϱ



 , (99)

where Iε≃1 denotes the modified Bessel function of the first kind with parameter ς ↑ 1. Moreover, the

moment-generating function of the transition kernel is also known as

Lz,t = (u) = E
[
euZz,t

]
= E

[
euZt |N0 = z

]
=

exp


zuϱ

1↑ u(1↑ ϱ)/ϑ



(1↑ u(1↑ ϱ)/ϑ)ε
. (100)

From there, one can compute that

E [Zz,t] = E [Zt |Z0 = z] =
ς

ϑ
(1↑ ϱ) + zϱ , (101)

V [Zz,t] = V [Zt |Z0 = z] =
1

ϑ2
(1↑ ϱ) (ς (1↑ ϱ) + ϑzϱ) . (102)

The above CIR dynamics admits a stationary distribution given as the gamma distribution

µε,ϱ(z) =
ϑε

”(ς)
zε≃1e≃ϱz . (103)

Considering a CIR process with initial condition N0 distributed as µε,ϱ specifies the stationary CIR process,

simply denoted as Zt, for which we have

E [Zt] =
ς

ϑ
, V [Zt] =

ς

ϑ2
, and C [Zt, Z0] = V [Z0] ϱ =

ς

ϑ2
e≃t/ω , (104)

confirming that ϖ as a correlation time constant, whereas ϑ can be interpreted as the inverse stationary Fano

factor ϑ = E [Zt] /V [Zt] = 1/F [Zt]. The later quantity must have unit of a time, since Zt will be interpreted

as a rate in the following (as opposed to being spike counts as for the Poisson-gamma model).

2.2.2 The Poisson-CIR process model

Given a sequence of M time bins of duration !t, let us consider that the common spiking rate in each time

bin follows a stationary CIR rate process Zt. Then, the probability of time-dependent spike-count trajectory

{N1, . . . NM} is given by

P [N1 = n1, . . . , NM = nM ] =


. . .

 M

m=1

(Kzm!t)nm

nm!
e≃Kzm!t dP [Zm!t → zm] , (105)
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whereas the population vector {Nk,m}, 1 → k → K, 1 → m → M , with
K

k=1Nk,m = Nm, satisfies

P [{Nk,m = nk,m}] =


. . .

 M

m=1

K

k=1

(zm!t)nk,m

nk,m!
e≃zm!t dP [Zm!t → zm] . (106)

In order to compute the spike-count correlation over bins of size M!t, we first consider the covariance

C
[

M∑

m=1

Nk,m,
M∑

n=1

Nl,n

]
=

M∑

m=1

M∑

n=1

(E [Nk,mNl,n]↑ E [Nk,m]E [Nl,n]) . (107)

For (k,m) ⇓= (l, n), the individual covariance terms above evaluate to

E [Nk,mNl,n] = E [E [Nk,mNl,n] |Zm, Zn] = !t2E [ZmZn] , (108)

whereas for (k,m) = (l, n), we have

E [Nk,mNk,m] = E
[
E
[
N2

k,m |Zm
]]

= !t2E
[
Z2
m

]
+!tE [Zm] . (109)

Thus, the spike-count correlation εkl between neurons k and l is given in term of the underlying CIR process

Z as

ε =
C
[M

m=1Nk,m,
M

n=1Nl,n

]

V
[M

m=1Nk,m

] , (110)

=

M
m=1

M
n=1C [Zm, Zn]

M
m=1

M
n=1C [Zm, Zn] +

E [Zm]

!t

 . (111)

Exploiting the temporal correlation structure of the CIR process, we further obtain

M∑

m=1

M∑

n=1

C [Zm, Zn] = V [Z]
M∑

m=1

M∑

n=1

e≃|m≃n|!t/ω = V [Z]h(M,!t) , (112)

where the auxiliary function h captures the bin-size dependence via

h(M,!t) = M

(
1 + e≃!t/ω

1↑ e≃!t/ω


↑ 2

(
e≃!t/ω

1↑ e≃!t/ω

(
1↑ e≃M!t/ω

1↑ e≃!t/ω


. (113)

One can check that at fixed !t, the function f is monotonically increasing with

h(1,!t) = 1 and lim
M↔↗

h(M,!t)

M
=

1

tanh(!t/(2ϖ))
. (114)

This leads to the bin-size-dependent spike-count correlation

ε =

(
1 +

M
m=1 E [Zm]

!t
M

m=1

M
n=1C [Zm, Zn]

≃1

, (115)

=


1 +


M

h(M,!t)!t


1

F [Z]

≃1

, (116)

=


1 +

Mϑ

h(M,!t)!t

≃1

. (117)
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The above results also allow us to compute the Fano factor

F
[

M∑

m=1

Nk,m

]
= 1 +


h(M,!t)!t

M


F [Z] = 1 +

h(M,!t)!t

Mϑ
. (118)

Similar calculations about the total spiking count yield

F
[

M∑

m=1

Nm

]
= 1 +

Kh(M,!t)!t

Mϑ
. (119)

Observe that the above results differs from those obtained from the Poisson-gamma model in two ways:

First, the presence of temporal correlations implies the occurrence of the multiplicative term M/h(M,!t),
which consistently tends to one when the correlation time vanishes, i.e., M/h(M,!t) ↗ 1 when ϖ ↗ 0.

Second, when ϖ ↗ 0, the spike-count correlation for an homogeneous population reads ε = 1/(1 +
ϑ/!t), indicating that ϑ/!t plays the role of the dimensionless parameter φ in the Poisson-gamma model.

In particular, this shows that one expect instantaneous spike-count correlations to vanish in the limit of

infinitesimal bin size: !t ↗ 0.

2.2.3 Continuous-time limit for the CIR-process model

In the continuous-time limit, the discrete spiking model naturally converges toward a doubly-stochastic

process, whereby all neurons share the common stochastic CIR rate Z(t). One can derive the associated

spiking correlation and Fano factor at time scale T by setting !t = T/M and taking the limit M ↗ ↘.

One then finds the limiting behavior

g(t, ϖ) = lim
!t↔0

h(M,!t)!t

M
= 2ϖ

(
1↑ 1↑ e≃t/ω

t/ϖ


= F (t, ϖ)/t , (120)

where the newly introduced function g is increasing with respect to t over
+

with g(0, ϖ) = 0, ↼tg(0, ϖ) =
1, and limt↔↗ g(t, ϖ) = 2ϖ . Thus, in the continuous-time limit, one can evaluate the spike-count correlation

between inputs k and l and for bin size T as

ε(T, ϖ) =
1

1 + ϑ/g(T, ϖ)
, (121)

as well as the associated Fano factors for the individual spike count Nk and for the total spike count N =K
k=1Nk:

F [Nk(T )] = 1 +
g(t, ϖ)

ϑ
and F [N(T )] = 1 +

Kg(T, ϖ)

ϑ
. (122)

These results can be directly derived from considering the doubly-stochastic processes Nk, 1 → k → K
governed by the common rate Z(t). Specifically, for such processes, one has the infinitesimal covariance

C [dNk(t), dNl(s)] = E [C [dNk(t), dNl(s)] |Zk, Zl] + C [E [dNk(t) |Zk] ,E [dNl(s) |Zl]] ,(123)

= C [E [dNk(t) |Zk] ,E [dNl(s) |Zl]] , (124)

= C [Zk(s), Zl(t)] dtds , (125)

and the infinitesimal variance

C [dNk(t), dNk(s)] = E [C [dNk(t), dNk(s)] |Zk, Zl] + C [E [dNk(t) |Zk] ,E [dNk(s) |Zl]] ,(126)

= E [Zk(t)] ↽(t↑ s) dtds+ C [Zk(s), Zk(t)] dtds . (127)
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Assuming that E [Zk(t)] = ς/ϑ and C [Zk(s), Zl(t)] = (ς/ϑ2) e|t≃s|/ω
and using that

F (t, ϖ) =

 T

0
C [Zk(s), Zl(t)] dtds =

 T

0
e|t≃s|/ω dtds = 2ϖ2

(
1 +

e≃T/ω ↑ 1

T/ϖ


, (128)

we find that

C [Nk(T ), Nl(T )] =

 T

0
C [Zk(s), Zl(t)] dtds =

ς

ϑ2
F (T, ϖ) =

ςT

ϑ2
g(T, ϖ) , (129)

V [Nk(T )] =

 T

0
E [Zk(t)] dt+

 T

0
C [Zk(s), Zk(t)] dtds =

ςT

ϑ
+

ςT

ϑ2
g(T, ϖ) . (130)

As expected, this leads to

ε(T, ϖ) =
C [Nk(T ), Nl(T )]

V [Nk(T )]
=

1

1 + ϑ/g(T, ϖ)
and F [Nk(T )] =

V [Nk(T )]

E [Nk(T )]
= 1 +

g(T, ϖ)

ϑ
. (131)

3 Shot-noise model for conductances

In this section, we discuss various conductance shot-noise models derived from considering synaptic inputs

with synchrony. The focus is on deriving a parametric form for a measurable quantity, called Q, that can

serve to assess the degree of synchrony compatible with a conductance measurement.

3.1 Asynchronous input drive

We consider that the activation of K asynchronous synapses is governed by independent Poisson processes

with rate r. We further assume that synaptic activations elicit conductance changes of typical amplitude A
with synaptic time constant ϖs. Accordingly, the overall conductance is modeled as a shot noise and in the

stationary regime, we have

G = A

 0

≃↗
et/ωs dN(t) , (132)

where the governing Poisson process N has overall input rate Kr. The mean stationary conductance can be

computed as

µg = E [G] = A

 0

≃↗
et/ωs E [dN(t)] = A

 0

≃↗
et/ωsKr dt = AKrϖs , (133)

whereas the stationary conductance variance is given by

⇀2
g = E

[
G2

]
↑ E [G]2 , (134)

= A2E
 0

≃↗
et/ωs dN(t)

 0

≃↗
es/ωs dN(s)


↑ (AKrϖs)

2 , (135)

= A2
 0

≃↗

 0

≃↗
e(t+s)/ωs E [dN(t)dN(s)]↑ (AKrϖs)

2 . (136)

Using that for a Poisson process with rate Kr, we have E [dN(t)dN(s)] =
[
(Kr)2+Kr↽(t↑ s)

]
dtds, we

obtain:

⇀2
g = (AKr)2

 0

≃↗

 0

≃↗
e(t+s)/ωs dtds+A2Kr

 0

≃↗
e2t/ωs dt↑ (AKrϖs)

2 = A2Krϖs/2 , (137)
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which implies that we can form the amplitude-independent quantity

Q =
µ2
g

2ϖs⇀2
g
=

(AKrϖs)2

2ϖs (A2Krϖs/2)
= Kr , (138)

which happens to e equal to the overall input rate Kr in the asynchronous regime.

3.2 Input drive with instantaneous synchrony

We simulate instantaneous synchrony by allowing for several synaptic inputs to activate at the exact same

time. This corresponds to modeling the synaptic drive via a compound Poisson process rather than a Poisson

process. In our case, we consider a compound Poisson process Y defined as

Y (t) =

N(t)∑

n=1

kn with 1 → kn → K , (139)

where kn are independent, identically distributed, integer-valued jumps in {1, . . . ,K}. The jumps kn, which

we will refer to as k when it is not ambiguous, represents the possibly fluctuating numbers of coactivating

synaptic inputs. Specifically, one can show that the spiking correlation coefficient ε is independent of the

bin size and satisfies

ε =
E [k(k ↑ 1)]

(K ↑ 1)E [k]
, (140)

where E [·] denotes expectation with respect to the jump distribution pk. As usual, the rate of the governing

Poisson process N , which we denote b, is chosen so that the overall input rate is preserved, independent of

synchrony. This implies that one must choose b such that bE [k] = Kr.

Given these preliminary remarks, the conductance process resulting from synaptic inputs with instanta-

neous synchrony is specified as the compound-Poisson-process shot noise

G = A

 0

≃↗
et/ωs dY (t) . (141)

For a fixed overall input rate, the stationary mean conductance is independent of synchrony as

µg = E [G] = A

 0

≃↗
et/ωs E [dY (t)] = A

 0

≃↗
et/ωsKr dt = AKrϖs . (142)

In turn, the stationary conductance variance in the presence of synchrony can be evaluated as

⇀2
g = E

[
G2

]
↑ E [G]2 , (143)

= A2E
 0

≃↗
et/ωs dY (t)

 0

≃↗
es/ωs dY (s)


↑ (AKrϖs)

2 , (144)

= A2
 0

≃↗

 0

≃↗
e(t+s)/ωs E [dY (t)dY (s)]↑ (AKrϖs)

2 . (145)

For a compound Poisson process Y with jumps k and rate b, we have E [dY (t)dY (s)] =
[
(bE [k])2 +

bE
[
k2
]
↽(t↑ s)

]
dtds. Consequently, using that bE [k] = Kr, we obtain:

⇀2
g = (AKr)2

 0

≃↗

 0

≃↗
e(t+s)/ωs dtds+A2bE

[
k2
]  0

≃↗
e2t/ωs dt↑ (AKrϖs)

2 . (146)
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This implies that

⇀2
g = A2bE

[
k2
]
ϖs/2 = A2b (E [k] + E [k(k ↑ 1)]) ϖs/2 = A2b (E [k] + ε(K ↑ 1)E [k)]) ϖs/2 , (147)

where the last equality follows from definition (140). Using once more that bE [k] = Kr, we have

⇀2
g = A2bE [k] (1 + ε(K ↑ 1)) ϖs/2 = A2Kr (1 + ε(K ↑ 1)) ϖs/2 , (148)

which shows that spiking correlations impact conductance variability whenever ε is large or of order 1/K.

This also shows that in the presence of instantaneous input synchrony, the amplitude-independent quantity

Q becomes correlation-independent:

Q(ε) =
µ2
g

2ϖs⇀2
g
=

(AKrϖs)2

2ϖs (A2Kr (1 + ε(K ↑ 1)) ϖs/2)
=

Kr

1 + ε(K ↑ 1)
. (149)

3.3 Input drive with temporally-structured synchrony

We simulate temporally-structured synchrony by considering a doubly-stochastic model for synaptic input

drive. In this model, the activation of individual synapses follow independent inhomogeneous Poisson

processes with common rate given as a stationary CIR process Z satisfying:

dZt =
1

ϖ
(r ↑ Zt) dt+


2Zt

ϖϑ
dWt , (150)

As before, the conductance process resulting from a doubly-stochastic synaptic-input model is specified as

the inhomogeneous shot noise

G = A

 0

≃↗
e≃t/ωs dN(t) . (151)

where the overall inhomogeneous Poisson process N has rate KZ(t). The mean stationary conductance can

be computed as

µg = E [G] = A

 0

≃↗
et/ωs E [E [dN(t) |Z(t)]] = A

 0

≃↗
et/ωs E [KZ(t)] = AKrϖs . (152)

The stationary conductance variance can be evaluated as

⇀2
g = E

[
G2

]
↑ E [G]2 , (153)

= A2E
 0

≃↗
et/ωs dN(t)

 0

≃↗
es/ωs dN(s)


↑ (AKrϖs)

2 , (154)

= A2
 0

≃↗

 0

≃↗
e(t+s)/ωs E [dN(t)dN(s)]↑ (AKrϖs)

2 . (155)

For a doubly-stochastic processes with common rate Z, we have

E [dN(t)dN(s)] = E [E [dN(t)dN(s) |Z(t)Z(s)]] , (156)

= E
[
K2Z(t)Z(s) +KZ(t)↽(t↑ s)

]
dtds , (157)

= K2C [Z(t), Z(s)] +
[
K2E [Z]2 +KE [Z] ↽(t↑ s)

]
dtds , (158)

=
K2r

ϑ
e≃|t≃s|/ω +

[
(Kr)2 +Kr↽(t↑ s)

]
dtds . (159)
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Injecting the above relation in expression (155) yields

⇀2
g = A2

 0

≃↗

 0

≃↗
e

t+s
ϖs


K2r

ϑ
e≃

|t→s|
ϖ +Kr↽(t↑ s)


dtds , (160)

= A2


K2r

ϑ

 0

≃↗

 0

≃↗
e

t+s
ϖs

≃ |t→s|
ϖ dtds+Kr

 0

≃↗
e

2t
ϖs dt


, (161)

= A2


K2r

ϑ

ϖ2s ϖ

ϖs + ϖ
+Krϖs/2


. (162)

Thus, we obtain the amplitude-independent quantity as a function of the correlation time scale ϖ as

Q(ϖ) =
µ2
g

2ϖs⇀2
g
=

Kr

1 + K
ϱ

2ωsω
ωs+ω

. (163)

Suppose one measure a biophysically realistic correlation coefficient of ε(↘) = 0.1 in large time bins

T ↗ ↘. Then one deduce from... that ϑ/(2ϖ) ↔ 10. At the same time, we have ϖs/(ϖ + ϖs) ↔ 1/3 so that

on can estimate:

Q(ϖ) ↔ Kr

1 +K/30
. (164)

showing that even for moderately large number of synaptic contacts, Q can drastically underestimate the

overall input rate Kr in the presence of temporally-structured synchrony.
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