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Abstract
Learning to derive subgoals reduces the gap between experts and students and makes
students prepared for future problem solving. Researchers have explored subgoal-
labeled instructional materials in traditional problem solving and within tutoring
systems to help novices learn to subgoal. However, only a little research is found on
problem-solving strategies in relationship with subgoal learning. Also, these strate-
gies are under-explored within computer-based tutors and learning environments. The
backward problem-solving strategy is closely related to the process of subgoaling,
where problem solving iteratively refines the goal into a new subgoal to reduce dif-
ficulty. In this paper, we explore a training strategy for backward strategy learning
within an intelligent logic tutor that teaches logic-proof construction. The training ses-
sion involved backward worked examples (BWE) and problem solving (BPS) to help
students learn backward strategy towards improving their subgoaling and problem-
solving skills. To evaluate the training strategy, we analyzed students’ 1) experience
with and engagement in learning backward strategy, 2) performance and 3) proof con-
struction approaches in new problems that they solved independently without tutor
help after each level of training and in posttest. Our results showed that, when new
problems were given to solve without any tutor help, students who were trained with
both BWE and BPS outperformed students who received none of the treatment or only
BWE during training. Additionally, students trained with both BWE and BPS derived
subgoals during proof construction with significantly higher efficiency than the other
two groups.
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Introduction

Attaining the skill to define subgoals or ‘subgoaling’ is an important component
of learning that leads to efficient problem solving. Existing literature has defined
‘subgoaling’ in at least two different ways. According to the classic Catrambone
work (Catrambone, 1998) , ‘subgoaling’ is the process of identifying high-level fea-
tures of a problem and decomposing the problem into smaller and easier sub-problems
that conjointly achieve the overall goal. ‘Subgoaling’ is also defined as the process of
refining the goal into subgoal(s) such that the distance between the goal and the givens
of the problem is reduced and the difficulty in achieving the original goal directly
is eliminated (Laird et al., 2012; Newell, 1994; VanLehn, 1988) . Experts produce
subgoals during problem solving more efficiently and easily, and attaining the skill
to generate subgoals can induce expert-like behavior in novices (Margulieux et al.,
2016; Catrambone, 1998) . Thus, researchers from various educational domains have
explored methods to help students learn to identify subgoals and/or to improve their
subgoaling skills. These methods include subgoal-labeled examples (Catrambone,
1998, 1995) , expert explanations for subgoals, and asking students to write expla-
nations for given subgoals (Margulieux and Catrambone, 2017, 2021) , etc. These
studies demonstrated that these subgoal-infused tutoring methods helped to improve
novice performance, using test scores to measure learning.

However, existing research has scarcely investigated the relationship between
problem-solving strategies and students’ subgoal generation process or skills. The
two most common problem-solving strategies found in literature are forward and
backward strategies. The forward strategy consists of starting from the givens in the
problem description and working towards the goal at each step. On the contrary, the
backward strategy consists of starting from the goal and refining the goal at each step
until the refined goal can be justified by the givens. In other words, the backward strat-
egy can be seen as refining the goal to form subgoals at each backward step. By this
definition, the backward strategy is a subgoaling process. Also, experts often combine
backward strategy with forward strategy during problem solving (Sweller, 1988) .
While combining the strategies, they use forward strategy to identify what subgoals
to derive and refine the goal into those subgoals. Then, they use forward strategy to
derive those subgoals. Research on human cognitive processes suggests that students
may try to work backwards more to refine the goal when they have low prior knowl-
edge (Sweller, 1988) . This may be because working backwards can help them to
reduce the space of possible next steps for working forward (Heyworth, 1999) . How-
ever, the main difficulty students face while carrying out a backward step lies in the
selection of the right subgoal that will significantly reduce the distance between the
goal and givens (Trafton and Reiser, 1991; Anderson, 2014; Matsuda and VanLehn,
2005) . Despite the direct relationship between backward strategy and subgoaling, and
students’ natural tendency to try to think backwards when in need of a subgoal, no
study has been conducted investigating the impact of learning backward strategy on
students’ subgoaling skills. Matsuda and VanLehn (2005) investigated the impact of
learning backward strategy on students’ performance after they were trained with a
very small set of training problems. Their findings indicate that carrying out backward
strategy is hard for students and those who learned the strategy did not perform well.
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However, nomeasures were explored to improve the training process and help students
to learn the strategy. Also, the study did not investigate if learning the strategy had any
impact on students’ subgoaling skills. Apart from the study mentioned above, a few
additional research studies have compared expert and novice problem-solving strate-
gies (Sweller, 1988; Heyworth, 1999) , or investigated subgoal generation strategies
in general (Jensen, 1987) .

To address the gaps in prior research, in this study, we designed a training session
within an intelligent logic tutor, Deep Thought(DT), to support backward (BW) strat-
egy learning as a medium to aid subgoaling and problem-solving skills. We designed
and implemented two new types of problem within DT that engage students in under-
standing and using backward (BW) strategy. The problem types are: 1) Backward
Worked Examples (BWE) to demonstrate the strategy, and 2) Backward Problem
Solving (BPS) to allow students to practice the strategy. We exposed students to
a training session that contains these problems. The training session contained 20
problems where students observed proof construction using backward strategy (via
BWE), practiced it (via BPS), and also got additional problems to master it before
taking a posttest. Then, we investigated the impact and efficacy of our training strat-
egy based on: 1) students’ experience with and response to the training; 2) students’
score-based performance in new problems after training; and 3) student approaches to
proof constructionwherewe graphically presented student approaches usingApproach
Maps (Eagle and Barnes, 2014) and identified efficient subgoal derivation in those
maps. In this paper, a subgoal is a proposition that reduces the difficulty of a proof con-
struction problem when identified/derived and is often an output of a backward step.
The meaning of subgoal in the context of logic proof problems within Deep Thought
is detailed in “Subgoals in the Context of Logic Proof Problems in Deep Thought”.
The key finding of our evaluation suggests that, although backward strategy learning
can be difficult for students, students can overcome the difficulties when sufficient
problems are given during training. Also, learning the strategy can improve students’
subgoaling skills and lead them to more efficient problem solving.

The main contributions of this study are: 1) an effective training strategy for back-
ward strategy learning which can be easily adapted for tutors from other structured
problem-solving domains, 2) demonstration of a graph-mining-based “approach map"
analysis that revealed how the training session impacted students’ subgoaling and
problem-solving skills and approaches, and 3) important insights on the impact of
BW strategy on students’ problem-solving performance that could be helpful in prob-
lem and training session design within automated tutors.

RelatedWork

Subgoaling reduces problem-solving complexity either by breaking down a problemor
by refining the goal of a problem (Simon and Newell, 1971) and thus, is an important
skill to attain for efficient problem solving. Also, research claims that making subgoals
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available during problem solving reduces students’ cognitive load1 and helps them
perform better (Margulieux et al., 2012) . Thus, from an educational perspective,
researchers have explored subgoals in problem solving mainly in two branches: 1) by
attaching subgoals in instruction to improve students’ problem-solving performance
and 2) by exploring methods to improve students’ subgoaling skills.

Many studies explored subgoal-infused learning materials for traditional or learn-
ing environment/tutor-aided structured problem solving. For example, researchers
explored subgoal-labeled instructional materials in mathematics (Catrambone, 1998)
and programming problem solving (Margulieux et al., 2012;Margulieux and Catram-
bone, 2014) . The explored materials include subgoal attached to problem description,
subgoals attached to a group of steps in worked examples, etc. These studies showed
that subgoal-labeled materials reduced students’ cognitive load and helped them to
be better at programming problem solving. Catrambone and Holyoak (1990) found
evidence that providing subgoals during problem solving can also be helpful in the
transfer of problem-solving skills in domains like algebra and probability. Marwan
et al. (2020) and Shabrina et al. (2020) explored automatically extracted data-driven
subgoals (Zhi et al., 2018) attached to programming tasks. They found evidence
of better performance, higher task completion rate, and less idle time when subgoals
were presented in the system. Additionally, Shabrina et al. (2020) found evidence
that students closely followed the given subgoals, and tried to achieve them, which
shaped their programming approach. Cody and Mostafavi (2017) provided subgoal
hints during logic proof construction within an intelligent logic proof tutor. Contrary
to research that found positive results with subgoals, they observed that students who
received subgoal hints skipped more problems, and had a significantly higher dropout
rate. Morrison et al. (2015) explored two instructional methods in introductory pro-
gramming tasks: 1) attaching subgoal labels given with the task, and 2) requiring
students to generate their own subgoals. They observed that the second group who
generated subgoals outperformed the first group. However, they also stated that those
who generated subgoals needed to spend more time which could also be the source
of additional learning. In a later study, Margulieux and Catrambone (2017, 2021)
showed that students learned better when they were presented with subgoals and asked
to write explanations for the subgoals, when compared to generating their own sub-
goals. Overall the studies exploring subgoal-labeled instruction to improve students’
performance, found positive results. Also, the results showed that students learn better
when they generate explanations for subgoals themselves, rather than when they are
given explanations. While generating explanations, students have to think about why
some steps are subgoals and how they contribute to the solution overall which could
trigger learning.

We found only a few studies that exploredmethods to improve students’ subgoaling
skills. Richard Catrambone conducted a series of studies (Catrambone, 1995, 1996,
1998, 1994) exploring high-level abstract subgoal labels attached to groups of steps
in worked examples to aid subgoal learning. These studies showed that subgoal labels
are most effective in fueling transfer and helping students to learn subgoaling, when

1 Cognitive load refers to the load on a student’s working memory during learning through problem solv-
ing (Van Gog et al., 2010)
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they give away structural information about the problem solution rather than showing
problem-specific steps. The results of these studies also demonstrated that students
who learnedwith subgoal-labeled examplesweremore successful in test problems that
involved the same subgoals learned during training. However, achieving the subgoals
required a different procedurewithin those test problems.TheCatrambone studies used
students’ performance and the presence of the same subgoals taught during training
in the solutions of new test problems as indicators of their subgoaling skills. However,
students’ capability or efficiency in identifying and deriving subgoals in general and
the quality of the subgoals students could derive where the same subgoals may not be
involved remained unexplored.

Although researchers have shown interest in exploring methods to improve stu-
dents’ subgoaling skills, there is little research that links thiswork to backward strategy
learning. There are two primary problem-solving strategies: forward and backward
strategy or chaining. Forward strategy learning involves starting from the information
given in the problem description (premises) and applying domain principles to these
premises to derive new statements (Al-Ajlan, 2015) . Ideally, these statements should
be reducing the difference between the given premises and the desired problem con-
clusion or goal. In backward strategy, also called backward chaining, problem solving
is carried out starting from the goal, and in each step, the goal is refined to a new
subgoal until the initial problem state is reached (Al-Ajlan, 2015) . Due to low prior
knowledge, novices tend to use backward strategy to figure out subgoals of a problem.
This is because the backward strategy possibly helps them to identify a reduced space
of possible next steps, whereas the forward strategy requires them to have knowledge
of all possible rules/actions and take a plausible step using that knowledge (Hey-
worth, 1999) . On the other hand, experts can even form subgoals while working in
the forward direction due to their high prior knowledge in a domain (Sweller, 1988;
Heyworth, 1999; Larkin et al., 1980; Chi et al., 1981) . However, experts often com-
bine forward and backward strategies during problem solving, i.e. they work forwards
while implicitly keeping backward subgoals in mind (Sweller et al., 1983) . Combin-
ing the strategies enable the experts to focus on narrowing the gap between the goal
and the givens without explicitly working backward. Backward strategy is also used
to derive subgoals in another problem-solving strategy called the means-ends anal-
ysis (Newell et al., 1972) . In means-ends analysis, backward strategy or steps are
used to identify subgoals that will best help to reduce the differences between givens
and the goal of a problem. Then, the backward steps are followed by a sequence of
forward steps to derive those subgoals. Matsuda and Vanlehn (2004) while construct-
ing GRAMY, a geometry tutor capable of constructing proofs, used backward strategy
(within the proof construction mechanism of the tutor) to deduce subgoals. These uses
of BW strategy, specifically, the adoption of this strategy by experts and within the
problem-solving mechanism of automated tutors, signify that this strategy can help in
subgoaling.

Despite these uses of backward strategy for subgoaling and students’ natural incli-
nation to try to work backward to identify subgoals, we found very little on the impact
of learning backward strategy on students’ problem-solving or subgoaling skills in
the existing literature. To the best of our knowledge, the only relevant study in this
regard was conducted byMatsuda and VanLehn (2005). They trained students to learn
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forward and backward strategy with a geometry-theorem-proving tutor and observed
that students who learned forward strategy performed better than those who learned
backward strategy. They also observed that students faced difficulties while construct-
ing proofs using backward strategy due to the need of coming up with unjustified
statements (subgoals) that are to be proven next. In this study, students were trained
with only 6 proof-writing problems and other non-proof problems. Since the training
session contained only a few proof-writing problems, it is not clear if students’ diffi-
culties with backward strategy could be overcomewith additional training or the usage
of more training problems. Also, the posttest contained three problems that came from
two different sets with isomorphic superficial features. I.e. all students did not get the
same posttest problems. But the differences among the problems and the impact of
those differences on the performance of students learning different strategies are not
discussed. Note that the differences in posttest problems can impact students’ posttest
performance and thus, the performance may not exclusively represent the impact of
learning forward or backward strategy. Moreover, although using backward strategy
involves iterative subgoaling, an analysis of what subgoals students derived or how
their subgoaling skills were impacted after training is also missing. Overall, the exist-
ing literature does not give sufficient insights into how students can be trained to learn
the backward strategy and how learning the strategy impacts their problem-solving
and subgoaling skills.

Thus, in this study, we aimed to aid subgoal learning by training students to learn
backward strategy through demonstration (using backward worked examples, BWE),
and practice (using backward problem solving, BPS) within Deep Thought. The train-
ingphasewas long, involving20 logic-proof construction problems that should provide
studentswith enough time andpractice tomaster the strategy.Weevaluated our training
procedure based on students’ experience with and responses to the training. Specif-
ically, we focused on if their difficulties with the strategy reduced over time and if
they were able to efficiently use the strategy as training progressed. We also analyzed
students’ test score-based performance on the same posttest problems. Additionally,
unlike prior studies, we investigated efficiency in subgoal derivation using approach
map analysis of problems independently solved by students without tutor help.

Method

Deep Thought, The Logic Proof Tutor

We conducted our study using an intelligent logic tutor, Deep Thought (DT) [Fig. 1].
In DT, students are given logic-proof construction problems where the premises and
the conclusion to be proved are given as visual nodes. A list of logic rules is provided
from where students can select rules to apply on the given premises to derive new
propositions to reach the conclusion. Deep Thought is organized into 7 levels. Level 1
starts with a worked example (WE) that shows how a problem is solved in the interface
step by step. Then, two problem-solving (PS) type problems are given as a pretest.
Levels 2-6 are training levels, each with 3 training problems of type PS or WE and
ending with a training level posttest problem in PS mode. During training problems in
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PS mode, students can request on-demand step-level hints. Level 7 is a posttest level
with 6 PS-type problems. The tutor does not offer any hint or support duringWEs, the
last problem of the training levels, or the posttest problems.

Problem Solving (PS): In PS [Fig. 1], students are required to construct all the
steps of a proof themselves. In PS, students can choose to use forward, backward, or
both strategies at their discretion. Construction of a step in the forward (FW) direction
involves selecting one or two premises and applying a rule on them to produce a new
justified proposition. For example, in Fig. 1, Simplification rule is applied twice on
node 2 to derive nodes 5 and 7.During training problems in PS, students can request on-
demand hints which suggest a statement or node to derive in the hint box at the bottom
of the work area. If another hint is requested, DT tells the student what nodes can be
used to derive the suggested statement. If a further hint is requested, the rule needed is
also suggested. On the other hand, carrying out a step in the backward direction [Fig.
3b] starts from the unjustified conclusion node. First, the students have to click the
‘?’ button [backward derivation button] to indicate their intention to derive unjustified
propositions backwards. Then, they have to select a rule and input the propositions
they want to generate. For example, in Fig. 3b, nodes 6 and 7 are generated using
Modus Ponens rule, since this rule can derive the conclusion (node 5) from the two
nodes. There are no backward hints in DT. Note that an incorrect rule application
either in forward or backward direction does not generate any new node.

Worked Example (WE): Figure 2 shows an example of WE where the tutor con-
structs a proof step by step as the students click on the ‘>’ button, i.e. the next step
button. During the construction of a step, the tutor also provides a textual explanation
for the step in the text box shown in the figure. Using the ‘<’ button, i.e. the revert

Fig. 1 Deep thought interface containing a Problem-Solving (PS) problem with a few steps derived in the
forward direction
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Fig. 2 Demonstration of Worked Example (WE)

button, the students can remove previously constructed steps and replay the construc-
tion of each step as many times as they want. Note that WEs are always constructed in
the forward direction by the tutor starting from the given premises and moving toward
the goal as shown in Fig. 2. Hints are not available for WE problems, as all steps are
already worked out by the tutor for students in this problem type.

New Proof types: For this study, we designed and implemented two new proof
types within DT:

Fig. 3 New Proof Types within DT: (a) Backward Worked Example (BWE); and (b) Backward Problem
Solving (BPS)
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1. BackwardWorkedExample (BWE): Figure 3a shows the interface forBWEswhich
is similar toWEs. However, in BWEs, the tutor constructs an entire proof by using
BW derivation only as students click on the > button. For example, in Fig. 3a,
the tutor has derived two backward steps. The first BW step shows that H can be
proved from given premise 1 and F ∨ G (node 4) using the ‘Modus Ponens’ rule.
And, the second step shows that F ∨G can be proved from F using the ‘Addition’
rule. Eventually, a justification for F from the given premises is established by the
tutor in backward direction to complete the proof.

2. Backward Problem Solving: The interface for BPS is shown in Fig. 3b which is
similar to PS. However, forward derivations are disabled in a BPS. In the figure,
first, nodes 6 and 7 are generated as unjustified propositions from the conclusion
(node 5) using the ‘Modus Ponens’ rule. Then, P is generated since given premise
4 and P can justify node 6 using the ‘Modus Ponens’ rule. Similarly, ¬G ⇒ A is
also generated as an unjustified predecessor of node 7. Eventually, all unjustified
nodes need to be connected to the given premises in the backward direction to
complete the proof. Each of these steps where a new set of unjustified nodes is
generated to move towards the given premises is referred to as ‘refining the goal
into a new set of goals or subgoals’ in this paper.

Subgoals in the Context of Logic Proof Problems in Deep Thought

In DT, all logic-proof problem solutions need to be sequentially constructed either in
the forward (FW) or the backward (BW) direction. When constructing logic proofs,
as in any problem-solving domain, there are some natural subgoals experts typically
identify to optimally shorten the distance between the given problem parameters and
the conclusion of the proof.

For example, for the problem shown in Fig. 2, the problem conclusion, or goal, ‘H’
needs to be proved from the given premises. Since only node 1 (F∨G ⇒ H ) contains
the variable ‘H’, deriving facts that could be combined with node 1 to derive H is a
natural, expert subgoal. Given the structure of node 1 and the domain principles, an
expert would determine that ‘Modus Ponens’, could be used to derive H if node 1’s
hypothesis, the proposition F∨G, were true. Therefore, an expert would set F∨G as a
subgoal. DT was designed to allow students to explicitly set such subgoals by working
backward by pressing the ‘?’ button above the conclusion ‘H’. Similarly, since none
of the other premises contain the variable ‘G’, proving ‘F’ becomes another subgoal
that can be used to derive F ∨ G later using the ‘Addition’ rule. In this proof, experts
identified F ∨ G and F as subgoals, since identifying and deriving these propositions
make the rest of the proof straightforward.

As described above, experts use BW strategy to identify subgoals by comparing
the goal and givens of the problem backward. And, in prior research, using backward
derivations to refine the goal while reducing the goal-givens distance has been referred
to as subgoaling (Gick, 1986; Laird et al., 2012; Newell, 1994; VanLehn, 1988) .
Thus, throughout the remainder of the paper, we refer to the process of working
backward within DT from the problem-solving goal to derive a new subgoal as explicit
subgoaling. For example, if in the problem shown in Fig. 2, H is refined to subgoal
F ∨ G and then to F by working backwards, the process is called subgoaling, and the
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result(s) of the refinement (F ∨G or F) is called a subgoal. The backward refinements
or subgoaling can be visualized in Fig. 3a.

Within DT, we also considered the case of implicit subgoaling where students
identify subgoals using BW thinking. In this case, students work backward inmind but
derive subgoals using only forward derivation. To identify possible cases of implicit
subgoaling, we analyzed students’ efficiency in deriving expert-identified subgoals
during their proof construction attempts (Detailed in “Approach Map Analysis”).
Overall, efficient subgoaling regardless of the visible direction of subgoal derivation
can lead to efficient proof construction.

Note that although the term ‘subgoaling’ is used analogously to carrying out a step
using ‘BWstrategy’, there is a difference between the efficiency in using ‘BWstrategy’
and efficiency in ‘subgoaling’. In the context of DT, a student can be called efficient
in ‘BW strategy’ if they can quickly derive a BW step. However, the efficiency in
subgoaling lies in ‘what propositions or subgoals students derived using BW strategy’
and ‘how they derived it’ (for example, in less time, with fewer propositions, etc.)
while constructing a proof. For example, in the problem in Fig. 3a, a student can
BW derive H ∨ F from the conclusion ‘H’ with the ‘Addition’ rule. However, the
subgoal H ∨ F will lead them in the wrong direction and thus, this subgoaling step is
inefficient and incorrect. As explained earlier, experts use BW strategy to identify the
propositions or subgoals that could optimally reduce the distance between the givens
and the goal. Thus, to analyze subgoaling efficiency, we identified expert-identified
subgoals in student approaches and analyzed how efficiently students derived those
subgoals. The expert-identified subgoals are used as a baseline to evaluate subgoaling
efficiency. The experts identified the subgoals for each problem independently without
looking at student data ahead of time.

Research Questions

As discussed in “Related Work”, prior literature showed that experts often use BW
strategy for subgoaling. On the other hand, students may try to use it but they find it
difficult. Thus, in this study, we first train students to learn and practice the backward
(BW) strategy while they construct logic proofs in a training session within DT. Then,
we investigated the impact of learningBWstrategy on problem-solving and subgoaling
skills. Also, to understand students’ problem-solving experience during training, we
investigated trends in students’ difficulties with and adoption of BW strategy over the
period of training and posttest. We measured student difficulties by multiple metrics
like problem-solving time, step time, step count, etc. during problem solving usingBW
strategy.We also analyzed students’ responses to the training in terms of their adoption
of BW strategy during independent problem solving. Overall, our investigation on the
efficacy and impact of backward strategy learning within DT was focused on the
following three research questions:

• RQ1 (Students’ Experience, and Response): How does the backward strategy
training impact students’ experience in DT, and how do they respond to the train-
ing?
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• RQ2 (Impact on Performance): How does learning backward strategy impact
students’ performance in new problems?

• RQ3 (Impact on Subgoaling Skills):How does learning backward strategy impact
students’ subgoaling skills?

Experiment Design

Training Treatments:We implemented three training treatments for our experiment:
1) Control (C): this treatment group received only WEs and PSs, 2) Treatment 1 -
BWE (T1): this treatment group received BWEs in addition to WEs and PSs, and 3)
Treatment 2 - BWE+BPS (T2): this treatment group received both BWEs and BPSs
along with WEs and PSs. Note that the control (C) [baseline] group was never shown
BW strategy using examples and they were never prompted by the tutor to use BW
strategy. However, they had the option to use BW strategy in PS if they want. The tutor
showed the T1 group BW strategy using BWEs but never prompted them to use it. But
like the C group, they had the option to use it in PS. On the other hand, BW strategy
was shown to the T2 group using BWEs and they were prompted to use BW strategy
mandatorily in BPSs. The reason for creating two separate treatments (T1 and T2) for
BW strategy learning was to identify the appropriate level of engagement (BWE vs.
BWE+BPS) necessary for the students to learn the strategy.

Problem Organization: The problem organization in the training levels is shown
in Fig. 4. The blue squares indicate the problems where BWEs were given to T1 and T2
and the green squares indicate the problems where BPSs were given to T2. Notice that
we distributed BPSs only in the first half of the training. This was done to ensure that
T2 gets the opportunity to independently use and master BW strategy in the second
half of the training phase. However, the tutor continued to give BWEs till Level 5 to
remind the students that BW strategy could be useful during proof construction.

Fig. 4 Problem Organization in Training Levels for C, T1, and T2. Note: [PS/WE] notation refers to a
random selection between PS and WE
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Note that the problem organization shown in Fig. 4 ensures that all conditions have
nearly equal numbers of examples (WE/BWE) and problem-solving (PS/BPS) type
problems. Students get PSorBPS in the last twoproblemsof each training level. For the
first two problems in each training level, our problem assignment strategy ensures that
the students get at least one example (WE/BWE) and one problem-solving problem
(PS/BPS). If the first problem in a level is WE or BWE, the next one will be PS
or BPS, and vice-versa. The only exception is level 2 where both of the first two
problems for groups T1 and T2 are of type BWE. This was done so that groups T1 and
T2 are exposed equally to backward strategy as the control (C) students are exposed
to forward strategy through WEs. Recall that, in all conditions, one introductory WE
problem is shown before the pretest PS problems, but no BWEs are shown. Overall,
at most, T1 and T2 groups have one more example and one less problem solving than
the control, C.

Deployment and Data Collection

We deployed DT with our three training treatments in a Discrete Mathematics course
for computer science majors offered in a public research university in the United
States. The students used DT for a take-home assignment and they were instructed to
do the assignment without any collaboration with others. Each student participating in
the course was assigned to one of the three conditions after they completed the pretest
level. 61 students were assigned to C, 61 to T1, and 62 to T2. The assignment algorithm
distributes students equally across the treatment groups while ensuring that the pretest
scores of the three groups come from the same distribution. The possibility that the
students violated the instruction by identifying those in the same training condition
and collaborating with them was assumed to be low.

At the end of the experiment, 168 students completed all 7 levels of the tutor with 59
students coming from group C, 55 from T1, and 54 from T2. The students spent around
6 hrs on average in the training phase with each level requiring a different amount of
time: level 2: 1.58 hrs; level 3: 1.16 hrs; level 4: 1.34 hrs; level 5: 0.97 hrs; and
level 6: 1.24 hrs. While students worked in DT, our system collected all information
required to replay and reconstruct their proof construction attempts for all problems.
The data collected from the DT system are described in Table 1. Note that step counts
also include steps derived in previous attempts, i.e. consider restarts. Also, note that
‘Actions’ [Table 1] are very granular interactions with the system, and carrying out
an action requires a small amount of time (milliseconds to a few seconds). On the
other hand, constructing a ‘Step’, or deriving a node takes much longer (10 seconds
to several minutes), involves multiple actions, and actions can be even reverted in the
process. For example, a student can click on the backward derivation button and then
can deselect the button to derive a forward step. Thus, ‘Action Count’ can have a much
higher value than ‘Step Count’ and ‘Problem Time’. Certain actions are representative
of students’ intention to adopt a particular approach. For example, a click on the
Backward Derivation Button is considered a backward (BW) action since it shows the
intention to derive a step Backward. Thus, we also collected the direction (BW/FW)
of each action and corresponding counts for our analysis. Note that a BW action may
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Table 1 Description of collected data from deep thought

Collected data Description

Interactions with the interface Click, selection/deselection of
rules/nodes, etc. These inter-
actions are also referred to as
Actions

.

Proof Steps Derivation/deletion record of
nodes with associated prede-
cessors and rules, direction of
derivation[FW/BW].

Step count # of derived nodes during the construction of a proof

Action count # of total actions taken during the con-
struction of a proof. Action count is
always greater than step count since
each step involves multiple actions
(selecting nodes/rules, BW derivation
button etc. ).

Step time Time to derive each step.

Problem time Time to complete the proof of a problem.

Restart count # of restarts during the construction of a proof.

Session Count # of sessions observed during the con-
struction of proof.Anewsession starts
if the student logs out of the system
and logs in again later.

Problem Score (1/3)*Accuracy + (1/3)*Time Function +(1/3)*Size

not lead to a successfully derived BW step. Students might start with a BW action but
can switch strategy during independent problem solving due to difficulties. Thus, BW
action counts can also be much higher than the count of BW steps.

For each PS problem completed by the students, they were assigned a Problem
Score that is an equally weighted sum of Accuracy, Time Function [a function of
Problem-solving Time], and Size [a function of Step Count] of the solution as shown
in the last row of Table 1,
where

Accuracy = #correct rule applications/#total rule applications (1)

Time Function = 1−((Problem-solving Time−T ime25)/(T ime75−T ime25)) (2)

T ime75 = 25th percentile of the time taken to solve the problem (3)

T ime25 = 25th percentile of the time taken to solve the problem (4)

and,
Size (Solution X of Problem Y) = exp(Normalized Length of X) (5)

Normalized Length of X = (Step Count(X) − C1)/C2 (6)

C1 = Optimal Solution Length(Y) (7)

C2 = Difference between Longest and Optimal Solution Lengths(Y) (8)
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According to this formula, shorter solutions constructed with higher correct rule
applications and in less time get higher scores. Application of this score function can
also be found in prior research (Abdelshiheed et al., 2020, 2021; Sanz Ausin et al.,
2020; Cody et al., 2018) .

In the subsequent sections, we describe our analyses to address the three research
questions and the corresponding results. Throughout this study, we used Kruskal-
Wallis tests to find significant differences across the training groups and performed
post hoc pairwise Mann-Whitney U tests with appropriate Bonferroni Correction to
find an ordering of the groups.
Note:To report the results of statistical analyses, we showmeans as ameasure for cen-
tral tendency, and p-values from pairwise posthoc tests as evidence while comparing
the three training groups. For details check out the supplementary materials attached
at the end of the manuscript.

RQ1: Students’ Experience and Response

Training Phase Statistics

To understand students’ experience with the training treatments, we calculated step
time, problem time, step count, and restart/session counts for the PS andBPS problems
given in the first three problems of each training level. These metrics are defined in
Table 1. Note that higher step time, problem time, and step counts indicate higher
difficulties. Also, restart counts indicate how many times the students started over the
construction of a proof. Thus, a higher number of restarts indicates that the students
were potentially uncertain about the correct approach to construct the proof, i.e. they
were finding the construction difficult. Similarly, session counts indicate how many
times the students paused or logged out and logged in before finally completing the
proof of a given problem.And thus, a higher number of session counts is also indicative
of difficulties.

Table 2 shows the training phase metrics values for PS/BPS problems. WE/BWEs
are not included in the metric values. One limitation of this analysis is that the PS or
BPS problems assigned to each student during training can be different due to random
assignment. However, the problem pool for each level contains 4-6 problems and they
are of similar difficulty. Thus, this analysis assumes that the problems do not introduce
significant differences, but that any relative difficulties students faced were due only
to different strategies (forward or backward).

We did not find any differences across the groups during pretest in these metrics.
However, during the training phase, we observed significant differences in the metrics
when performedKruskal-Wallis tests with subsequent pairwiseMann-WhitneyU tests
with Bonferroni correction. The corrected α=0.05/3=0.017, since, for each metric,
each data point was used in three pairwise tests (C:T1, C:T2, and T1:T2) to compare
the groups. Recall that T1, and T2 both were given BWE. Groups C and T1 received
only PS to solve themselves, while T2 additionally received BPS.

We found significant differences in the averageof time-relatedmetrics in the training
problems. Both step time and overall problem time were significantly higher for T2
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Table 2 Metric Values (avg.) during Training across C, T1, and T2 (for T2, metric values are shown
separately for BPS, and PS)

Group Step Time (min) Prob. Time (min) Step Ct. Restarts Sessions

C 3.3 36.6 10 0.38 4.2

T1 3.7 33.1 8 0.30 4.1

T2 PS: 2.8 PS: 39.3 PS: 9 PS: 0.32 PS: 7.2

BPS: 5.7 BPS: 49.8 BPS: 8 BPS: 0.69 BPS: 6

than C and T1. In the case of problem time, PMW (T2 > C)2=0.006, and PMW (T2 >

T1) < 0.0001. In the case of step time, PMW (T2 > C)=0.004, and PMW (T2 >

T1)=0.0001. This trend in average step and problem time of T2 students during training
was due to BPS problems [Notice BPS metrics in Table 2]. This implies that carrying
out BW steps was difficult for students which required more time during training.
Interestingly, T1 and T2 had significantly fewer step counts than C: PMW < 0.0001,
and PMW=0.001 respectively for the two cases. These statistics suggest exposure to
BWstrategy possibly pushed T1 and T2 students towards shorter solution attempts. I.e.,
thinking/working BW potentially encouraged students to take better steps to reduce
the distance between the goal, and given premises.

Additionally, we observed that T2 students required significantly more sessions
than C and T1 students to complete training problems: PMW < 0.0001 in both cases.
T2 students also had a significantly higher restart count than T1 (PMW = 0.0006) and
marginally higher than C (PMW=0.02). These statistics suggest T2 students struggled
during training due to BPS problems. Since BPS problems are restrictive by design,
requiring students to construct proofs entirely in backward direction, it indirectly
encourages the need for taking the best action at each step.

Student Engagement in Backward(BW) Strategy

As a measure of students’ response to the training, we used their independent engage-
ment in BW strategy in terms of BW action count which is representative of student
intention or attempts to work backwards. We calculated the counts across the three
training groups for the 4th problem of each training level (level 2-6), and the 6 posttest
problems in level 7. Since no training treatment or tutor help is given in these prob-
lems, this selection of problems ensures that we can understand the impact of the
training interventions on students’ approaches in independently solved problems. The
first three problems in each training level are not specifically included in this analysis,
since the students might get hints or training interventions in these problems where
they do not have the opportunity to independently act. Also, note that each of these
analyzed test problems is characteristically different and designed to test students’
knowledge of the application of a variety of rules. According to experts, the prob-
lems are equally solvable by forward and backward strategies. Thus, we assumed any

2 This notation indicates the p-value obtained from Mann-Whitney U test while testing the hypothesis that
T2 has a significantly higher value than C.
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differences found in student approaches and performance in any of these problems
only represent the impact of the training treatment they received and the skills they
acquired. Sample solutions and expert subgoals for each of the problems can (Figs. 1
and 2).

In Table 3, we report mean BW action counts for each of the 11 problems across the
three training groups and the p-values of the statistical tests. Note that the counts for the
problems are not cumulative. Thus, tests for one problem are considered independent
of the tests for all other problems. The reason for analyzing the counts of each problem
separatelywas to investigate the trendover the periodof training andposttest.As shown
in Table 3, T2 students carried out significantly more BW actions than group C and
T1 in most of the problems under consideration. The group that received backward
examples, T1, behaved similarly to C in terms of lower explicit usage of BW strategy.
Also, in the earlier phases of training 2.4-4.4, T2 students took too many BW actions
(∼31 - ∼59 actions) [Table 3, column 4; rows 2-4]. However, in the later phases of
training, and in the posttest problems, they possibly became calculative in carrying

Table 3 BWAction Counts and % of BWActions Among Total Actions across the Three Training Groups
while Solving Pretest Problems, Training PS Problems (fourth Problem of Level 2-6), and posttest PS
Problems

Prob. C T1 T2 p-val

Pretest (avg.) 3.9 (2.2%) 3.2 (2.4%) 4.7 (1.8%) -

2.4 2.5 (1.3%) 8.7 (5.6%) 58.5 (17.6%) T2 > C(< 0.0001);

T2 > T1(< 0.0001)

3.4 1.6 (0.9%) 4.1 (2.4%) 26.4 (13.6%) T2 > C(< 0.0001);

T2 > T1(< 0.0001)

4.4 1.0 (0.7%) 2.1 (1.8%) 31.1 (12.3%) T2 > C(< 0.0001);

T2 > T1(< 0.0001)

5.4 0.7 (1.2%) 1.2 (1.2%) 3.3 (4.4%) T2 > C(0.015)

6.4 1.3 (1.2%) 0.9 (1.0%) 3.3 (3.9%) T2 > C(0.0004) ;

T2 > T1(0.015)

7.1 0.2 (0.4%) 0.3 (0.43%) 0.6 (0.9%) T2 > C(0.23) ;

T2 > T1(0.09)

7.2 0.2 (0.6%) 0.1 (0.4%) 0.3 (1.3%) T2 > C(0.48) ;

T2 > T1(0.06)

7.3 0.3 (0.4%) 0.8 (0.9%) 3.4 (5.3%) T2 > C(0.003) ;

T2 > T1(0.02)

7.4 0.6 (0.6%) 0.8 (0.7%) 4.5 (4.8%) T2 > C(0.011);

T2 > T1(0.006)

7.5 2.6 (1.9%) 1.2 (1.7%) 4.0 (5.7%) T2 > C(0.010);

T2 > T1(0.015)

7.6 1.8 (0.7%) 6.3 (2.6%) 11.2 (5.8%) T2 > C(0.001)

Interpreting p-val column: Read T2 > T1 (< 0.0001) as T2 has significantly higher value than T1 with p
< 0.0001. T2 > T1 (0.0001) means p=0.0001 for the hypothesis. Bold-faced p-values indicate significant
differences
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out a BW action as indicated by the reduced count (∼3 - ∼11). Our later approach
analyses (“Approach Map Analysis”) confirmed that in the early phases of training,
students used BW strategy inefficiently, with too many BW actions. However, with
time T2 possibly adapted to the new skill and was able to use it efficiently (fewer but
correct BW steps) to refine goals to subgoals leading to better performance.

Fromour analysis of training phasemetrics, and students’ BWstrategy engagement,
it is evident that BPS problems posed T2 students a significant amount of struggle.
They neededmore time,more sessions, andmore restarts while solvingBPS problems.
Although T2 students practiced BPS only in three problems, they had to do all the
steps in those problems backward which were heavy-load from a cognitive point of
view since students find backward derivations difficult during training (Matsuda and
VanLehn, 2005) . However, when given new problems, this group voluntarily engaged
in BW actions when using the strategy was not even a requirement. On the other
hand, group T1 did not seem to face many struggles. But, in terms of BW strategy
usage, they behaved similarly to control C. The statistics described above suggest that
only BWE may not be motivating or educational enough for students to attempt to
derive propositions in the backward direction. Thus, we conclude that to successfully
motivate students to engage in BW strategy, both examples (BWE), and practice (BPS)
are necessary.Additionally, recall that the training phasewas long as it had 20 problems
altogether distributed across 5 levels, and students spent around 6 hours completing
the training. And, the T2 students did not show improved performance immediately,
rather they improved gradually throughout the training levels. Thus, a training session
as received by T2 containing enough problems allowing students to sufficiently engage
with the strategy might be necessary to allow students time to adapt and become
efficient in using the strategy.

RQ2: Impact on Performance

In this section,we investigate students’ performance in relationshipwith their exposure
to BW strategy through BWE (T1), or both BWE and BPS (T2), or none (control
group C). Again, we focus on the student scores in the problems where no training
treatment or tutor help was given, and students solved them independently: training
level test PS problems: 2.4-6.4, and posttest problems 7.1-7.6. Additionally, we looked
at rule application accuracy, problem-solving time, and step count for each problem to
investigate the source of higher and lower scores, since these factors impact problem
scores. Note that we looked at these metrics for each problem separately to understand
the trend in the metric values over the period of training and posttest. Here, we discuss
the observed trends in thesemetrics across the three training groups using plots. Results
of statistical tests to explain significant differences in each problem across the groups
are reported in supplementary materials as follows: Problem Scores(Table 4), Rule
Application Accuracy(Table 5), Step Counts(Table 6), and Problem Time(Table 7).
The test results include the average and standard deviation of the metric values across
the training groups and p-values fromKruskalWalis tests and pairwiseMann-Whitney
U tests with Bonferroni Corrected α=0.017.
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Problem Scores: In Fig. 5, we plot the average scores for each problem across the
three training groups. As shown in the figure, problem scores across the groups in the
pretest were very similar and our statistical tests found no significant differences in
this phase. However, in the earlier phases of training, T2 received significantly lower
scores (in prob. 2.4), or lower scores on average (in prob. 3.4 and 4.4) than the other
two groups. As the training progressed, T2 outperformed both C, and T1 (in prob.
5.4), or performed at least as well as them (in prob. 6.4). For the scores of prob. 2.4-
6.4, notice the ‘Training Level Tests’ segment in Fig. 5. Since, problem score is our
main performance metric, to reduce the chances of false positives, on top of statistical
tests reported in the supplementary material, we performed a unified mixed-effect
regression analysis (West et al., 2006; Harrison et al., 2018) for all the training level
test problems to further verify the association between given training treatment (C,
T1, or T2) and the problem scores. In the analysis, we used problem ids as a random
effect variable so that the impact of the problems being different and that they were
given in different training levels are eliminated.We used the treatment type as the fixed
effect and problem score as the dependent variable. The result of the analysis gave
a p-value=0.0563 which indicates that students’ problem scores in training level test
problems were marginally impacted by the type of training treatment they received.
Notice in Fig. 5 that the differences in the problem scores across the training conditions
became more prominent as the students progressed from training toward posttest.

Subsequently, when we performed a similar mixed-effect regression analysis for
the posttest problems, the p-value was 0.02 demonstrating a significant association
between training treatment and posttest scores. In the posttest phase [notice the
‘Posttest’ segment in Fig. 5], T2 consistently outperformed the other training groups in
all problems. They received higher average scores in 7.1-7.2 and significantly higher
average scores in 7.3-7.6.

The results of this analysis on the problem scores suggest T2 became better at
problem solving over the period of training. However, in the early phases of training
(2.4-4.4), T2 received lower scores than the other two groups. Recall that, in problems
2.4-4.4, T2 students were observed to engage in toomanyBWactions [Table 3, column
4; row 2-4]. Note that, the solution to each problem in DT is 5-15 steps long, and too
many backward actions indicate unnecessary propositions or actions were explored
by the students. However, in the later levels, they engaged in fewer and possibly only
the correct BW actions leading them toward higher scores. This trend suggests that T2
students improved their efficiency over time in using the BW strategy. On the other
hand, T1 who only received BWE during training received insignificant higher average
scores than C in problems 3.4-5.4. In all other cases, T1 performed similarly to C and
did not show consistent signs of improvement. To better understand this trend, notice
the closely coupled blue and yellow curves representing the scores of C and T1 in Fig.
5.

Ratio of Correct Rule Applications or Accuracy: As the first factor that impacts
problem scores, we analyzed the rule application accuracy4 during students’ proof
construction attempts. We did not find any significant differences in this accuracy

3 p-value<0.05 indicates significant difference
4 # of correct rule applications/ # of total rule applications
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Fig. 5 Trends in Problem Scores in Pretest, Training Level Tests (2.4-6.4), and Posttest (7.1-7.6) PS Prob-
lems across the Three Training Groups. [Error bar represents min and max.]

across the three groups for any of the training-level test and posttest problems. Note
that accuracy depends on students’ knowledge of the logic rules and not on what
strategy they learn. Thus, all the training groups were expected to improve similarly
in terms of rule application accuracy over the period of training.

Problem-solving Time: To investigate the source of higher and lower scores, we
also analyzed problem-solving times across the three training groups. Problem-solving
times [Fig. 6a] showed a similar pattern as problem scores [Fig. 5]. In 2.4 and 4.4,
T2 took significantly more time than C and T1 which resulted in their lower scores
in these problems as shown in Fig. 5. In 2.4, the higher problem-solving times of
T2 were due to higher step times and in some cases, were due to higher unnecessary
proposition counts [detailed in “Scenario 1 (Early in Training: Poor Performance of
T2 Co-occurring with Many BW actions): Training Prob. 2.4”]. In 4.4, the higher
problem time of T2 was due to higher average step time (average step time in Problem
4.4: C: 2.25 Mins.; T1: 2.07 Mins.; T2: 2.71 Mins.). However, as students progressed
in DT, problem-solving time for T2 decreased on average. Notice this trend in the
problem time for 5.4-7.2 in Fig. 6a. For problems 7.3-7.6, T2 took significantly lower
time than T1 and C while constructing the proofs. From the patterns in T2 students’
problem-solving time and scores, we concluded that learning BW strategy could help
students to construct proofs faster and improve their scores.

Step Count: Logic-proof problems within DT can have multiple solutions with
different lengths. However, possibly due to having the same level of prior knowledge
measured by pretest scores, for most problems, students were observed to construct
proofs with similar lengths. The details on step counts are discussed in “Approach

843



123

Int J Artif Intell Educ (2024) 34:825–861

Fig. 6 Trends in (a) Problem-Solving Time; and (b) Step Counts in Pretest, Training Level Tests (2.4-6.4),
and Posttest (7.1-7.6) PS Problems across the Three Training Groups
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Map Analysis” using Approach Maps. As shown in Fig. 6b, in most of the training,
and posttest problems, step counts were similar, and no significant differences were
found across the three groups. However, we observed, in problems 7.3, and 7.5, T2 had
significantly fewer steps than C and T1. Our later approach map analysis (“Scenario
3(Final: Improved Performance of T2 (Less Time and Shorter Solution) with Fewer
Effective BW Steps): Posttest Prob. 7.3”, Fig. 10) showed that, in these two problems,
% of T2 students adopting the shortest possible solutions is higher than the other two
training groups. These results suggest that learning BW strategy can potentially help
students identify shorter optimal solutions. However, this trait could be dependent on
the specific problem a student is working on since this pattern was only observed in
two posttest problems.

The results of our score-based performance analysis suggest that the combination of
BWE andBPS improved students’ problem-solving skills, and helped them to perform
better in the posttest. T2 students obtained higher scores by constructing posttest proofs
faster, or by constructing shorter posttest proofs in some cases. On the other hand, T1
students who only received BWE, behaved and performed mostly like the control
group C, who were not introduced to the backward strategy at all. In the next section,
we investigate in more detail student solution approaches to identify the source of
students’ improved problem-solving performance as demonstrated by the test scores.

RQ3: Impact on Subgoal Learning

ApproachMap Analysis

The performance analysis in “RQ2: Impact on Performance” showed that T2 students
who received both BWE and BPS during training had significant differences with
C and T1 students in performance. Control (C) group received none of BWE and
BPS and T2 group received only BWE during training. Over the period of training
and posttest, T2 eventually outperformed both C and T1. On the contrary, T1 showed
mostly similar values as C in performancemetrics. From the results of the performance
analysis, we concluded that the combination of BWE and BPS helped students to learn
efficient proof construction over time and achieve higher performance. To investigate
how T2 students achieved higher performance, we generated graphical representations
of students’ proof construction attempts using Approach Maps (Eagle and Barnes,
2014) for problems 2.4-6.4 (training level tests) and 7.1-7.6 (posttests). We analyzed
the derivation of each proposition using statistical tests5 to identify the instances
where one training group was more efficient than another. We gave special attention to
propositions that were identified as subgoals by experts for each problem to understand
if there were differences in the efficiency or approach to derive these subgoals across
the groups.

From our analyses of approachmaps, and BW action counts (“Student Engagement
in Backward(BW) Strategy”), we identified four scenarios: 1) Poor performance of
T2 co-occurring with a lot of BW actions in the earlier phases of training (2.4-4.4); 2)

5 Kruskal Wallis test followed by Mann-Whitney U test with Bonferroni correction, corrected α=0.017
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Better performance of T2 with a few BW steps in the later phases of training (Prob.
5.4); 3) Significant higher performance of T2 due to less problem-solving time (7.3-
7.6), or 4) shorter solutions co-occurring with comparatively more BW actions during
posttest (7.3, and 7.5). In the subsequent subsections, we first describe the construction
method of approachmaps and then, analyze approachmaps of representative problems
for each of the scenarios mentioned above.

From the approach maps, we highlight significant differences in 1) the adopted
proof construction approach: to understand if knowing backward strategy influenced
students’ proof construction approach, 2) step counts: to understand if knowing back-
ward strategy helped students to identify required steps with less exploration through
unnecessary steps, and 3) step and problem time: to understand if knowing back-
ward strategy helped students to identify subgoals or the overall approach faster.
While analyzing the approachmaps, we analyzed both forward and backward-directed
approaches of students. The reason for analyzing the forward-directed approach is two-
fold: 1) to identify where or when students tried to use BW strategy but failed and
then, adopted FW strategy, and 2) to identify potential cases of Backward Thinking
for implicit subgoaling. Backward Thinking refers to the event when students identify
required steps or subgoals using BW strategy but carry out the steps in the forward
direction in the tutor. Thus, any observed efficiency of the treatment group students
(T1 or T2) in identifying subgoals or proof construction even in the forward direction
could be the result of learning the BW strategy. On the other hand, analysis of the
backward-directed approach helps to understand the explicit use of BW strategy or
steps for subgoaling and the associated efficiency.

Approach Map Generation Method

An approach map, proposed by Eagle and Barnes (2014), is a graphical representation
of students’ problem-solving approaches. The steps to construct approach maps are
briefly described below. Figures to illustrate these steps can be found in the supple-
mentary materials attached at the end of this manuscript.

Step 1 (Construct InteractionNetworks fromStudents’ Action Logs):An inter-
action network (Eagle et al., 2012) for a problem is essentially a graph consisting of
nodes and edges representing all students’ problem-solving states and steps. For DT
problems, a state is the set of all propositions a student has at any point of the con-
struction of a proof. A state includes both justified and backward-derived unjustified
propositions. A step is the addition or deletion of a proposition through the applica-
tion of a logic rule. Note that the propositions in a state are lexicographically ordered
and the order of their derivation is ignored. Considering the order of derivation could
increase the number of states exponentially and no complex computation would be
feasible on the interaction network.

As students progress in the construction of a proof, they move from state to state via
steps. For example, if at state S0(¬(K ∧M), J ⇒ (K ∧L), L ⇒ M), the DeMorgan’s
rule on ¬(K ∧ M) is applied, the new state will be S1(¬(K ∧ M),¬K ∨ ¬M, J ⇒
(K ∧ L), L ⇒ M). An incorrect rule application can result in the previous state and
the next state being the same. The tuple (current state, step, next state) is called an
interaction. So, a student’s solution attempt for a logic-proof problem is a directed
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graph of interactions. Our code implementation generates an interaction network for a
problemby conjoining all the interactions from all student attempts to construct a proof
for the problem. There is a single start node in the interaction network containing the
given premises. Since there are multiple solutions for a problem, there can be multiple
end states in an interaction network where each end state contains the justified goal
statement. Additionally, to facilitate statistical analyses on the network, the interaction
network includes data on the frequency of node and edge visits, time spent on or before
each interaction, and step counts before each interaction across the three training
groups.

Step 2 (Girvan-Newman Clustering Algorithm): Students do not have expert-
like prior knowledge. Thus, they often require exploration leading to the derivation
and deletion of unnecessary/incorrect propositions along with correct propositions
during a proof construction attempt. These derivations and deletions form visible
clusters or regions in the interaction networkwhere themajor outcome of these regions
are the proposition(s) contributing to the final proof. Also, different approaches to
solving the same problem can result in different regions. To identify these regions, the
approachmap technique applies the Girvan-Newman community clustering algorithm
(Girvan and Newman, 2002) on interaction networks. The clustering algorithm takes
as input an interaction network with start node, end nodes, and self-loops6 removed.
Additionally, edge weights are assigned based on the cumulative visit frequency of the
corresponding interaction. At each iteration of the algorithm, the edge with the highest
edge-betweenness is removed from the network. Edge betweenness (Cuzzocrea et al.,
2012) of an edge is calculated by calculating the shortest paths between all pairs of
nodes and counting the number of shortest paths that go through that edge. Then, the
connectivity of the resulting graph is calculated using modularity score (Newman,
2010) . Each connected component of the resulting graph is marked as a region.
This process is continued till there is no edge left to be removed. The output of the
algorithm is the graph with the highest modularity score and the clusters/regions are
the connected components within that graph.

Step 3 (Approach Map Generation from Clustered Network): The clustered
interaction network for any logic proof problem is a fairly large graph where student
approaches to solve the problem cannot be visually detected. Thus, we simplified the
clustered networks to approach maps using the method adopted by Eagle et al. (2012).
First, we added the start and end nodes back to the clustered interaction network
and then applied the following steps: 1) Represent each region with a single node.
These regional nodes are labeled with the proposition(s) with the highest number of
incoming and outgoing edges from and to other regions, and all propositions derived
to generate the latter from the former. This step filters out unnecessary propositions
derived by the students and keeps only the ones contributing to the proof. However, we
kept a record of the counts of unnecessary propositions; 2) Combine parallel edges,
and actions between regions to a single edge with a composite action label; and 3)
Keep only unique paths between the start and goal nodes. These three steps convert
a clustered interaction network to a pseudo-graph called an approach map, where the
start node is connected to the goal node via region nodes. A path from the start node

6 Edges originating and ending at the same node
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to a goal node represents a solution approach, where the propositions contributing
to the solution can be visually identified from the labels of the regional nodes in
between.

Approach Map Presentation: In the approach maps presented in this paper, we
only showed the most common student solution approaches for simplicity and used
them to discuss differences found across the training groups. Different aspects of
approach maps are shown in the approach map for problem 2.4 in Fig. 7. Each path
that connects the start and goal nodes contains a unique set of derived correct propo-
sitions (shown within the region nodes, R1, R2, etc). These propositions contribute
to an approach (labeled as A1, A2, etc.). Nodes are connected through edges with
arrows showing the derivation direction (FW or BW) with BW arrows colored red.
Edge thickness and color are based on frequency. Frequent edges are thicker and col-
ored blue and non-frequent edges are colored black and of unit thickness. Note that
students derived a wide variety of unnecessary propositions during proof construction.
Since they are novices, most students had at least one unnecessary proposition in all
problems. We did not show those unnecessary propositions in the approach maps to
keep them simple. However, we recorded counts of unnecessary propositions across
different groups to identify themore efficient training group. In the subsequent section,
we explain approach maps for problems representing different scenarios.

Fig. 7 ApproachMap for Problem 2.4 [Note: Bold-faced propositions have significant differences in deriva-
tion efficiency across the training groups. The last node of any region with incoming BW-directed red edges
is BW derived. Ex., A⇒J was BW derived by students in this problem. The green square highlights the
area with BW derivations.]
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Scenario 1 (Early in Training: Poor Performance of T2 Co-occurring with Many BW
actions): Training Prob. 2.4

Problem 2.4 asks students to derive the goal A ⇒ ¬C from the given premises:
B ∨ (A ⇒ ¬C), B ⇒ (A ⇒ J ), D ∧ ¬(A ⇒ ¬C), and J ⇒ ¬C . In the approach
map of this problem [Fig. 7], we show the most common three-proposition solu-
tion approach for this problem. This solution was adopted by 96% of the students
and labeled as A1 in the figure [Start → R1(¬(A ⇒ ¬C)) → R2 (B, A ⇒ J )
→ Goal]. Note that in this approach, A ⇒ J was identified as a subgoal by
experts and is marked blue in Fig. 7. As explained in “Approach Map Analysis”,
we analyzed how each student group used forward and backward approaches for this
problem.

Approach with Forward Steps: Most students in the three training groups (with
57, 51, and 28 students in groups C, T1, and T2, respectively) worked forward (FW)
to derive all 3 propositions. The FW derivations are shown by the blue edges in Fig.
7. In this problem, T2 group tried to work backward more and had more BW actions
[Table 3], but 14 of them were able to successfully derive backward steps – these
students are discussed in the next paragraph. Students in the T2 group who worked
forward also derived more unnecessary propositions before deriving the correct steps
[before ¬(A ⇒ ¬C), mean unnecessary proposition count (C, T1, T2)= ∼1,∼1, and
∼4; PMW (T2 > C)=0.001; PMW (T2 > T1)=0.002]; and before B, mean (C, T2)= ∼4,
and∼6; PMW (T2 > C)=0.009]. Because of these extra steps and BWactions, students
in the T2 group who worked forward also took almost twice as long to derive each
of the three propositions [¬(A ⇒ ¬C) [mean(C, T1, T2)= 4.98, 5.77, and 9.36 mins.;
PMW (T2 > C)=0.0005; PMW (T2 > T1)=0.0008], B [mean(C, T1, T2)= 4.33, 4.37,
and 9 mins.; PMW (T2 > C)=0.003; PMW (T2 > T1)=0.011], andA ⇒ J [mean(C, T1,
T2)= 6.98, 5.77, and 12.36 mins.; PMW (T2 > C)=0.006; PMW (T2 > T1)=0.015]. We
concluded that in the early levels of training, these T2 students were still adapting to the
BW skill, as shown by failing to derive BW steps from BW actions. They also derived
extra unnecessary propositions and took extra time to derive the correct propositions
needed to solve the problem. In the instances of failed BW derivation attempts, group
T2 switched to a forward strategy.

Approach with Backward Steps: In problem 2.4, 0, 2, and 14 students had suc-
cessful backward derived steps across C, T1, and T2 respectively. As shown by the
backward-directed edge from the conclusion to region R2 in Fig. 7, these students
only backward derived A ⇒ J which is an expert-identified subgoal for this prob-
lem. They derived the other 2 propositions, ¬(A ⇒ ¬C) and B, forward. The 2 T1
students who had BW steps had an average step count of 7.15 and problem time of
35.1 minutes. Since only a few students in C and T1 derived BW steps, a valid statis-
tical comparison between them and T2 students with BW steps could not be carried
out. Therefore, we compare the backward T2 approaches with the forward C and T1
approaches. The 14 T2 studentswho derived A ⇒ J backwards had significantly fewer
unnecessary steps than C and T1 [mean unnecessary step counts(C, T1, T2)= 7, 6, and
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4; PMW (T2 < C)=0.0005; PMW (T2 < T1)=0.011]. But, T2 students still needed more
time to construct the proof with BW steps than what C and T1 groups took to derive
the proof in the forward direction [mean BW derivation time for T2BW = 38.9 mins.;
PMW (T2 > C)=0.001; PMW (T2 > T1)=0.006]. These comparisons between T2BW
students’ approaches and C or T1 students’ forward-directed approaches emphasized
that those who successfully learned BW strategy with BWE+BPS and were successful
in applying it required less exploration before figuring out the right subgoal than those
who did not learn the strategy. However, this problem was only given after the first
level of training and thus, most T2 students were still not efficient enough in using
the BW strategy. Also, T2 students used BW derivation only to derive the subgoal
and derived the rest of the steps using FW derivation, unlike the training BPS/BWE
where all steps are done backward. Recall that combining strategies in this way is
often observed in expert problem-solving approaches as mentioned in prior literature.
Note that in this analysis, overall, no significant differences were found between the
solution attempts of T1 and C.

Scenario 2 (Later in Training: Improved performance of T2 with only a Few BW
Steps): Training Prob. 5.4

Problem 5.4 asks students to derive the goal ¬J from the given premises: ¬(K ∧
M), J ⇒ (K ∧ L), and L ⇒ M . From the approach map shown in Fig. 8, we
identified 6 solution approaches, labeled A1 - A6. The approaches and associated
expert-identified subgoals are shown in the figure.

Approach with Forward Steps: Among the 6 approaches, A2 and A4 are the
two most common strategies that cover 71% of all students. For exact student counts
across different training groups who followed these approaches notice the frequen-

Fig. 8 Approach Map for Problem 5.4. [On the top-left, contributing regions for different approaches or
paths are shown. Edges that are missing frequencies have the same frequencies as the edges immediately
above them. For example, R3⇒R7 and R7⇒Goal have the same frequencies across training groups]
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cies attached to the edges. In these two approaches, the common expert subgoal is
to derive ¬(K ∧ L) using Modus Ponens on ¬K ∨ ¬L . The subgoal is marked
blue in region R3 in the figure. When we analyzed student approaches where all
steps used forward derivations, we observed that group T2 derived both of these
propositions in significantly fewer steps than group C [¬K ∨ ¬L: mean(C, T2)=
9.16, and 7.42; PMW (T2 < C)=0.011; ¬(K ∧ L): mean(C, T2)= 10.44, and 8.17;
PMW (T2 < C)=0.003]. This suggests that group C required more exploration than
T2, as measured by unnecessary steps before figuring out what to derive to achieve
the final goal. We did not find any significant differences in the step counts of T1 and
T2 while deriving these two subgoal propositions. The third most frequent approach
is A5. In the final step of approach A5, Modus Tollens is applied on ¬(L ∧ K ), and
J ⇒ (L ∧ K ) to derive the final goal (¬J ). Experts identified ¬(L ∧ K ) [in region
R8] as a subgoal in this approach. Group T2 outperformed both C, and T1 in deriving
¬(L∧K ) in terms of problem-solving time [mean(C, T1, T2)= 26.07, 20.97, and 15.48
mins.; PMW (T2 < C)=0.002; PMW (T2 < T1)=0.014].

Approach with Backward Steps:We found only 2 T1 students and 8 T2 students
derived expert-identified subgoals using BW derivation. Here, the subgoals are (¬K ∨
¬L,¬K ∨ ¬L ⇒ ¬J ) in A1, or ¬(K ∧ L) in A2, or (¬(K ∧ L),¬J ∨ (K ∧ L))
in A4. The BW derivations are shown by the BW-directed edges and corresponding
frequencies in A1, A2, and A4 in Fig. 8. In this problem, T2 again used BW derivation
to only derive the subgoals. They derived the rest of the steps in the forward direction.
T2 students who derived these subgoals using BW derivation outperformed C in terms
of both step count, and problem-solving time [Step Count: mean(C, T2)=11.2, and
8.5; PMW (T2 < C)=0.0001; Problem-Solving Time: mean(C, T2)= 31.1, and 25.85
mins.; PMW (T2 < C)= 0.008]. However, the 2 T1 students who used the backward
strategy had average step counts (10.9) and times (29.7 mins.) that are similar to C but
higher than T2.

Overall, our approach analysis of problem 5.4 showed that most T2 students did
not explicitly derive BW steps. However, they were efficient in deriving the subgoal
propositions even when they only used FW steps. This improvement was mostly
observed for T2 studentswho receivedBWE+BPSduring training. Thus,we concluded
that possiblyT2 students used their improved skills onbackward strategy implicitly (i.e.
BW Thinking) to identify subgoals and outline the entire proof. Then, they constructed
the proof using forward steps in less time and with fewer unnecessary steps. Also, the
few students who explicitly derived subgoals using BW steps were more successful
than they were in the previous problem (prob. 2.4) where they needed more time to
work backward. In this problem, T2 students with BW steps had fewer unnecessary
propositions and less time. We concluded that by the 5th level of training, T2 students
who received bothBWEandBPS,were better adapted to usingBWstrategy for explicit
or implicit subgoaling. However, in this problem, although T1 received higher average
scores than C [Fig. 5], the difference in the scores of C and T1 was not significant
according to statistical tests. This suggests that BWE is not as effective as BWE+BPS
in helping students effectively learn BW strategy by level 5.
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Scenario 3(Final: Improved Performance of T2 (Less Time and Shorter Solution)
with Fewer Effective BW Steps): Posttest Prob. 7.3

In the final posttest level, problem 7.3 asks students to derive the goal ¬H from the
given premises: ¬(K ∧ E), A ⇒ E, and H ⇒ (K ∧ A). The approach map for this
problem [Fig. 9] shows the three most commonly adopted solution approaches labeled
A1, A2, and A3. The blue-colored propositions refer to the expert-identified subgoals.
These approaches cover 96% of all students.

Approach with Forward Steps: The common expert-identified subgoal in the
approaches A1, A2, and A3 is ¬(K ∧ A) or ¬(A ∧ K ) in region R4. And, while
constructing proofs with only forward steps, T2 derived ¬(K ∧ A) or ¬(A ∧ K ) with
significantly fewer unnecessary steps than group C and T1 [for ¬(K ∧ A), mean(C,
T1, T2)= 9.45, 9.46, and 7.38; PMW (T2 < C)=7.91e-05; PMW (T2 < T1)=0.007; for
¬(A ∧ K), mean(C, T2)= 9.19, and 7.64; PMW (T2 < C)=0.01662]. Moreover, T2
derived ¬A ∨ E significantly earlier in their solution attempt than C [mean(C, T2)=
9.60, and 4.53 mins.; PMW (T2 < C)=0.009]. From the approach map, we can see
that ¬(K ∧ A) comes from ¬K ⇒ ¬A which is derived by applying Hypothetical

Fig. 9 Approach Map for Problem 7.3.
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Syllogism on K ⇒ ¬E and ¬E ⇒ ¬A. And, early derivation of ¬A ∨ E suggests
that T2 students also figured out the approach to derive ¬(K ∧ A) quicker than other
groups. These statistics show that as in later phases of training (prob. 5.4), T2 students
derived subgoals in problem 7.3 efficiently while working in the forward direction.
This efficiency could be the result of implicit subgoaling using a BW strategy.

Approach with Backward Steps: We identified 22 T2 students (∼ 41% of T2
students) who explicitly backward-derived ¬(K ∧ A) defining it as a subgoal. For this
derivation, they used Modus Ponens with ¬(K ∧ A) ⇒ ¬H , Modus Tollens with
H ⇒ (K ∧ A) given, or Disjunctive Syllogism with ¬H ∨ (K ∧ A). T2 students
who derived subgoals using BW steps had significantly less step count and spent less
time than the average of groups T1 and C [step count: mean(C, T1, T2)= 10.5, 11.0,
and 7.62; PMW (T2 < C)=1.28e-05; PMW (T2 < T1)=0.0006; problem time:mean(C,
T1, T2)= 24.9, 25.5, and 15.6 mins.; PMW (T2 < C)=0.0001, PMW (T2 < T1)=0.009].
We did not find any significant differences in step counts and problem-solving time
between T2 students who used BW derivation (problem time: 15.6 mins., step count:
7.62) and thosewho did not (problem time: 13.9mins., step count: 9.6). These statistics
suggest that there are no significant differences between the efficiency of T2 students
who used BW steps explicitly and those who did not use the strategy or might be
using it implicitly. However, C and T1 students had significantly higher step count and
time than those of T2 indicating their lower efficiency in proof construction. We found
one group C student and three T1 students who derived ¬(K ∧ A) in the backward
direction. However, we observed these 4 students had an average step count of 16.20
and a problem-solving time of 31.7 mins. which is a lot higher than T2 students using
BW derivation. This indicates that group C or T1 was not efficient in BW derivation.

Apart from the efficient subgoaling in both forward and backward-directed
approaches, as shown in Fig. 10, most T2 students adopted the shortest 8-step approach
A3 while solving this problem. A similar pattern was observed for problem 7.5 where
65% T2 students adopted the shortest 6-step solution, whereas the percentages for C,
and T1 were only 35%, and 41% respectively.

Fig. 10 Percentage of Students across the Three Training Groups Adopting Different Approaches
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Overall, in this problem, T2 students engaged in BW derivations comparatively
more than C and T1, and they did so efficiently. They also continued to show improved
subgoaling behavior both in forward and backward-directed approaches. In addition
to fewer unnecessary steps and less time, in this problem, we observed T2 students be
more driven toward the shortest solution. However, none of the students constructed
the entire proof backward. They used backward steps to derive the subgoals only.

Scenario 4(Final: Improved Performance of T2 (Less Time) with Fewer Effective BW
Steps): Posttest Prob. 7.6

Problem 7.6 asks to derive D ⇒ C from A ∨ ¬D, A ⇒ (B ⇒ C), and B. The
approach map for this problem [Fig. 11] shows the two most commonly adopted
solution approaches, A1 and A2, adopted by ∼ 79% of all students.

Approach with Forward Steps: The common expert-identified subgoal in both
A1 and A2 is D ⇒ A (from region R1), which is only two steps away from the start
point. We did not find any differences in the derivation of this subgoal across our
training groups. The other expert subgoal for A1 is ¬D ∨ C (from region R3). When
students only used forward steps, T2 students required significantly less time than the
other two groups to derive ¬D ∨ C [mean(C, T1, T2)= 21.7, 26.2, and 14.2 mins.;
PMW (T2 < C)=0.003; PMW (T2 < T1)=0.008;]. Also, T2 students adopting approach
A2, derived A ⇒ C , the expert-identified subgoal for this approach, in significantly
less time than the other two groups [mean(C, T1, T2)= 22.5, 24.9, and 17.1 mins.;
PMW (T2 < C)=0.001; PMW (T2 < T1)=0.004].

Approach with Backward Steps: Twelve (12) T2 students who adopted approach
A1derived the subgoal¬D∨C inBWdirection.Weobserved that groupT2 derived this

Fig. 11 Approach Map for Problem 7.6.

854



123

Int J Artif Intell Educ (2024) 34:825–861

subgoal with significantly fewer steps than C, and T1 [mean(C, T1, T2)= 16.8, 17.62,
and 10.4; PMW (T2 < C)=0.001; PMW (T2 < T1)=0.002]. They were also observed to
derive propositions required to derive ¬D ∨ C significantly earlier in their solution
attempt than T1 andC [Ex., for¬D ∨ (C ∨ ¬B), mean(C, T1, T2)= 22.6, 25.2, and 15.3
mins.; PMW (T2 < C)=0.009; PMW (T2 < T1)=0.007; for (¬D ∨ C) ∨ ¬B, mean(C,
T1, T2)= 23.0, 25.6, and 18.08 mins.; PMW (T2 < C)=0.009; PMW (T2 < T1)=0.005].
Additionally, T2 had significantly less time gap in between consecutive steps than C
[for example, between ¬D ∨ (C ∨ ¬B) and its preceding step, mean(C, T2)= 7.10,
and 3.25 mins.; PMW (T2 < C)=0.012]. Seven (7) T2 students adopting approach
A2 explicitly derived subgoal A ⇒ C backwards. Overall, when approach A2 was
adopted, T2 students discovered subgoal A ⇒ C with significantly fewer unnecessary
proposition derivations than that of C [mean unnecessary proposition count before
deriving A ⇒ C : for C, and T2 = 14.90, and 11.25; PMW (T2 < C)=0.001].

These analyses of students’ forward and backward-directed approaches in problem
7.6 show that like previously described problems, T2 students using only FW steps
continued to show improvement in subgoaling. When using BW steps, T2 students
identified complex subgoals early in their solution attempts with fewer unnecessary
propositions, and in less time. They were also able to figure out a plan to derive those
subgoals as indicated by early derivation of prerequisite propositions and quicker
consecutive steps. We concluded that having the BW skill motivated implicit or
explicit subgoaling, and helped to identify an outline of the solution to the prob-
lems in less time. However, explicit BW derivations were still low and observed only
in some steps in 19 out of 54 (∼ 35%) T2 students’ solutions. Since it is common for
experts to work forward with implicit BW thinking, we consider this a success for T2
learning.

Summary of Approaches in Posttest Problems

Overall, in the posttest problems, more T2 students (17-41% students per problem)
used explicit backward steps in their final solution than the other two groups. Only
a few students in group C (0-3 students per problem) and T1 (0-4 students per prob-
lem) had backward steps in the posttest. Figure 12a shows the counts of students
across the three training groups who had at least one BW-derived step in their final
solutions of the posttest problems. However, T2 students with and without explicit
BW steps were more efficient than C and T1 in the posttest. Overall, in all posttest
problems, T2 outperformed the other two groups. They constructed the proofs with sig-
nificantly less average step time (T2:2.04, T1:2.91, andC: 3.08mins.; PKW=0.014) and
marginally less unnecessary proposition count (T2:3.3, T1:3.9, and C:4; PKW=0.045)
than the other two groups during posttest [Fig. 12b]. Thus,we conclude that T2 students
trained with BWE+BPSwere able to identify required subgoals and outline the correct
approach to construct proofs faster by using BW strategy implicitly (i.e. BW thinking)
or explicitly. They also required less exploration through incorrect propositions, which
also contributed to their improved performance.
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Fig. 12 Histograms for (a) Student Counts with Explicit BW Derivation, and (b) Average Step Time
(minutes) and Unnecessary Proposition Counts in Posttest Problems across C, T1, and T2

Discussion

In this study, we explored BWE and BPS within an intelligent logic tutoring system to
help students adapt to backward strategy usewith an aim of improving their subgoaling
and problem-solving skills. Our results showed the effectiveness of training students
with a combination of BWE and BPS for backward strategy learning and revealed
important insights on how backward strategy learning impact students’ competence
in problem solving. We have summarized the major findings below.

RQ1 (Training Struggle and Increased BWStrategyUsage):Our results showed
that to solve BPS problems during training T2 students showed signs of struggle
- needing more time, sessions, and restarts especially in the earlier training levels.
T1 students who were simply shown BWE but were not required to perform BPS,
avoided these struggles and therefore did not learn the BW strategy by the end of
the tutor. Note that prior studies showed that backward derivations are difficult for
students during training, or when they are still learning (Matsuda and VanLehn,
2005) . And, BPS problems required backward derivations in all the steps. Thus, the
increased time, session, and restart counts in BPS problems given during training
conform to the results of prior research. However, the performance of T2 over the
period of training and posttest indicates that they eventually overcome the difficulties
associated with BW derivation and were able to use it for efficient proof construction.
Also, note that our ultimate goal of the training was to improve students’ subgoaling
and problem-solving skills so that they can efficiently solve new problems. And,
T2 students who learned backward strategy using both BWE and BPS performed
better in posttest than those who received only BWE (T1) and those who were not
exposed to BW startegy at all (control C). Thus, we concluded that although BPSs
were time-consuming and difficult for students during training, they had a key role in
improving T2 students’ skills to solve new problems. Matsuda and VanLehn (2005)
taught students the BW strategy using only 6 training proof-construction problems
and other non-proof problems and then, explored its impact using posttest problems.
In our study, the problem organization for T2 had 4 differences from the training
session shown in the Matsuda and VanLehn study: 1) the training session contained
20 training proof-construction problems, 2) example proofs (BWEs) solved using
backward strategy were shown before having T2 students solve BPSs, 3) then, three
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BPSs were given in the first half of the training, each of which engaged the T2 students
in backward strategy in all the steps, and 4) in the second half of the training, T2
students were given the opportunity to use any strategy during proof construction at
their own discretion. No BPS were given in this phase and the students got a chance to
adapt the BW strategy independently. However, BW action counts across the training
groups demonstrated that, when T2 students solved problems independently in the test
problems, they voluntarily engaged in backward derivations comparatively more than
the other two groups and eventually outperformed the other groups. Thus, we also
conclude that the combination of demonstration through examples (BWEs), practice
(through BPSs), and opportunity to adapt to the strategy might be necessary before
students could use backward strategy to solve problems efficiently.

RQ2 (Improved Problem Solving Achieved Over Time): The results from our
performance analyses showed that the combination of demonstration (BWE), practice
(BPS), and additional problems in the second half of the training to use backward strat-
egy independently helped students to learn the strategy better. This training strategy
helped students to adapt with the strategy and use it to improve their problem-solving
performance. The improved performance was observed in higher scores, decreased
problem-solving time, and step counts. However, improved performance was not
observed immediately after students were exposed to the BW strategy. In the ear-
lier phases of training (2.4-4.4), we observed T2 to spend significantly more time
while solving simple problems leading to lower scores. As training progressed, T2
increasingly became more efficient in problem solving and outperformed C, and T1.
Recall that BWE/BPSs were given to students mostly during the first half of training
[Fig. 4]. However, T2 students continued to improve throughout later phases of train-
ing, and posttests. This pattern suggests that to be efficient in using the BW strategy,
students may need additional problem solving during training where they can explore
the BW strategy independently. The additional training could help them to become
proficient with the strategy and successfully incorporate it into their problem-solving
method.

RQ3 (Improved Subgoaling Skill): Our approach map analysis revealed that T2
students derived expert-identified subgoal propositions more efficiently. They derived
subgoals with less time and fewer unnecessary derivations than the other two groups.
On the other hand, T1 did not show any significant or consistent evidence of improved
subgoaling, possibly due to superficial exposure to BW strategy through BWEs
only.

We observed, although T2 students engage in BW derivations more than control
C, and T1, they never constructed entire proofs backward. Rather, they used explicit
BW derivations to subgoal only and FW steps to derive those subgoals. Also, not all
T2 students derived explicit BW steps. The majority of T2 students demonstrated only
FW derivations. However, we have demonstrated that T2 showed efficient subgoaling
even when they used only forward derivations. This suggests that these students are
potentially applying an implicit BW strategy, forming subgoals using BW thinking,
but generating nodes only in the forward direction, much like experts often do. But,
one major limitation of this analysis is that we can not verify the implicit use of BW
strategy from logdata collected from the tutor.However, since the improved subgoaling
behavior was only observed for T2 students and not for the other two training groups,
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we conclude that backward strategy learning through a training session as the one T2
received may help improve students’ problem-solving and subgoaling skills.

Conclusion and FutureWorks

In this paper, we explored backward strategy learning as a way to improve students’
subgoaling and problem-solving skills. From our results, we conclude that a com-
bination of examples, practice through problem solving, and enough training with
additional independent problem solving is necessary to help and motivate students to
learn to use backward strategy. Students who learned backward strategy in this fash-
ion (i.e. the T2 students) demonstrated efficiency in deriving subgoals. They identified
and derived subgoals in less time, and less exploration through unnecessary propo-
sitions which led to an improved problem-solving performance. Thus, this training
strategy can be adopted by tutors for structural problem solving like logic, mathemat-
ics, geometry, etc. However, in this study, most T2 students showed hints of implicit
BW strategy use rather than carrying out explicit BW derivations. To validate the rea-
soning that the implicit use of backward strategy led to efficient subgoaling, future
studies are required that involve interviewing students or a talk-aloud protocol where
students explain their process of deriving subgoals after learning backward strategy.
Also, as a future work, mixed FW/BW problems where students need to carry out
some steps backward instead of all backward steps can be explored for backward
strategy learning. Mixing FW and BW strategies might ensure an appropriate level
of cognitive engagement and complexity promoting learning while reducing training
struggles.

Supplementary information Details of statistical analyses results and Approach map generation pro-
cedure can be found in this link: https://1drv.ms/b/s!AiFP3IlZKTk2gQCFUDDcqxdmkiH4?e=jMp3DF.
Demonstration videos for BWE and BPS can be found in the following links: BWE (https://1drv.ms/v/s!
AiFP3IlZKTk2cG3tMr0XCm9CnCY); BPS (https://1drv.ms/v/s!AiFP3IlZKTk2cWNBVuCfzmaEdsE)
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