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Abstract Two metacognitive knowledge types in deductive domains are pro-

cedural and conditional. This work presents a preliminary study on the im-

pact of metacognitive knowledge and motivation on transfer across two Intelli-

gent Tutoring Systems (ITSs), then two experiments on metacognitive knowl-

edge instruction. Throughout this work, we trained students on a logic ITS

that supports a default forward-chaining and an alternative backward-chaining

(BC) strategy, then a probability ITS that only supports BC. Students were

grouped into those with conditional knowledge who know how and when to use

each strategy (StrBoth), those with procedural knowledge who know how only

(StrHow), and the rote students who persist in the default strategy and know

neither how nor when (Rote). The online traces’ initial accuracy was used

to further split students into high- and low-motivation groups. The prelim-

inary study showed that only high-motivation StrBoth students transferred

their metacognitive knowledge across the two ITSs. The two experiments pro-

vided metacognitive knowledge instruction for StrHow and Rote students to
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catch up with their StrBoth peers. In Exp. 1, we utilized prompted nudges to

teach when to use BC, and in Exp. 2, we combined nudges with worked exam-

ples to teach how and when to use BC. Based on our findings, we propose a

Metacognitive knowledge, initial Motivation, and instructional Interventions

(MMI) framework for transfer across ITSs. The framework suggests that the

key factors for facilitating transfer are the motivation for StrBoth students,

nudges for their StrHow peers, and the combination of worked examples and

nudges for Rote students.

Keywords Metacognitive Knowledge · Motivation · Metacognitive Interven-

tions · Transfer · Intelligent Tutoring Systems

Introduction

One essential priority of education is preparing students for future learning in

that they would transfer acquired skills and problem-solving strategies across

different domains (Bransford & Schwartz, 1999). While achieving transfer can

be challenging (Detterman & Sternberg, 1993), substantial research has shown

that it can be facilitated by possessing metacognitive knowledge (Zepeda et

al., 2015; Chi & VanLehn, 2010) or motivation (Belenky & Nokes-Malach,

2013; Nokes-Malach & Belenky, 2011). Metacognitive knowledge refers to what

individuals know about themselves as cognitive processors and about different

approaches used for problem-solving and learning a particular task (Schraw &

Dennison, 1994). Our perspective of approaching motivation is defining it as

the desire to learn without concern for ulterior motives.

Considerable work has highlighted the impact of the interaction of metacog-

nitive knowledge and motivation on self-regulated learning (Azevedo et al.,

2017; Zimmerman, 2011). In this work, we focus on two metacognitive knowl-

edge types related to problem-solving strategies: procedural and conditional
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(Krathwohl, 2002). Procedural knowledge is needed to understand how to use

each strategy, while conditional knowledge relates to how and when to use

each strategy. To infer the students’ motivation, we consider their desire to

learn by leveraging the initial accuracy of their trace logs without concern

for their ulterior motives. This work operationalizes metacognitive knowledge

and motivation, which can be considered a step toward objective methods for

concepts that rely on theories and subjective self-report measures in literature.

Substantial work has demonstrated the significance of teaching how and

when to use each strategy on subject-matter knowledge transfer (de Boer

et al., 2018; Schraw & Gutierrez, 2015). We focus on two interventions for

teaching how and when to use a strategy: teaching by example (Likourezos

& Kalyuga, 2017; Glogger-Frey et al., 2015) and prompted nudges (Richey

et al., 2015; Belenky & Nokes-Malach, 2009). While prior work has used in-

terventions that included hints, feedback, nudges, and worked examples, such

interventions were provided in classroom settings by human experts and self-

guided packets, or their effectiveness on transfer was not evaluated. To the best

of our knowledge, prior work has yet to investigate the impact of instructional

interventions to teach metacognitive knowledge on transfer across intelligent

tutoring systems.

Intelligent Tutoring Systems (ITSs) are interactive e-learning environments

that provide instruction, scaffolded practice, and immediate help and feedback

to students without requiring intervention from a human teacher (Vanlehn,

2006). Throughout this work, we leveraged two ITSs: logic and probability. We

trained students first on a logic ITS that supports a default forward-chaining

and an alternative backward-chaining (BC) strategy, then on a probability

ITS six weeks later that only supports BC. Students were grouped into those

with conditional knowledge who know how and when to use each strategy

(StrBoth), those with procedural knowledge who know how only (StrHow),
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and the rote students who stick to the default strategy and know neither how

nor when (Rote). Students were further split into high- and low-motivation

groups based on the initial accuracy of their trace logs.

A preliminary study on 495 undergraduates across three semesters showed

that only high-motivation StrBoth students transferred their metacognitive

knowledge across the two ITSs. We conducted two consecutive experiments,

each in a semester, to provide metacognitive knowledge instruction for StrHow

and Rote students to catch up with their StrBoth peers. In Exp. 1, we lever-

aged prompted nudges to teach when to use BC, and in Exp. 2, we combined

nudges with worked examples to teach how and when to use BC. Based on

our findings, we propose a Metacognitive knowledge, initial Motivation, and

instructional Interventions (MMI) framework for transfer across ITSs. The

framework suggests that the key factors for facilitating transfer are the moti-

vation for StrBoth students, nudges for their StrHow peers, and the combi-

nation of worked examples and nudges for Rote students.

The main contributions of this work are:

1. Operationalizing metacognitive knowledge and motivation to promote ob-

jective rather than subjective self-report measures in educational domains.

2. Demonstrating the impact of combining metacognitive knowledge and mo-

tivation on quantifying, predicting, and capturing transfer across ITSs.

3. Showing the significance of providing metacognitive instructional interven-

tions for students with low metacognitive knowledge on transfer across

ITSs.

4. Proposing a transfer framework across ITSs based on metacognitive knowl-

edge, initial motivation, and instructional interventions.

The remaining sections are divided into the background and related work,

our research questions, the methods, the preliminary study, two sections for
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the two experiments, a post-hoc analysis by combining the two experiments’

results, the general discussion, the proposed MMI framework, and the limi-

tations and broader impacts of this work.

Background & Related Work

The term “knowledge transfer” has been considerably used in literature to refer

to broad concepts that can be summarized into two views: an algorithmic

model-based view referred to as Transfer Learning (Weiss et al., 2016) and

a human-based view known as Preparation for Future Learning (Bransford &

Schwartz, 1999). Transfer learning is a machine learning technique that adapts

a model trained on one task to perform well on a related task, which is not

in the scope of our work. We adopt the second view of knowledge transfer as

it addresses preparing individuals for future learning.

Bransford and Schwartz (1999) proposed a view of transfer as preparation

for future learning, which assumes that students continue to learn by transfer-

ring acquired skills and strategies across different domains. Much research has

shown that transfer can be accelerated by obtaining metacognitive knowledge

(Zepeda et al., 2015; Chi & VanLehn, 2010) or influenced by the students’

motivation (Belenky & Nokes-Malach, 2013; Nokes-Malach & Belenky, 2011).

Metacognitive Knowledge and Strategy Instruction

Metacognition indicates cognition about cognition and the ability to con-

ceive, monitor and regulate knowledge (Livingston, 2003; Roberts & Erdos,

1993). Two types of metacognitive knowledge are procedural and conditional

(Krathwohl, 2002). Procedural knowledge is related to the understanding of

how to use different problem-solving strategies and learning approaches with-

out conscious attention or reasoning about their rationale (Willingham et al.,
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1989; Georgeff & Lansky, 1986). Conditional knowledge is a higher form of

knowledge, as it requires understanding how and when to use each strategy

(Schraw, 1998; Schraw & Moshman, 1995).

Many studies have shown that mastering how and when to use each strat-

egy yields subject-matter knowledge transfer (Zepeda et al., 2015; Chi & Van-

Lehn, 2010; Wagster et al., 2007). Chi and VanLehn (2010) found that students

who mastered the principle-emphasis instruction on how and when to apply

each principle transferred their problem-solving strategy from a probability to

a physics ITS. Wagster et al. (2007) showed that students who knew how to

apply different strategies to construct concept maps on a biology ITS outper-

formed their peers on a transfer task. Zepeda et al. (2015) demonstrated that

students who knew how to plan outperformed their peers on a novel self-guided

control of variables learning task.

Prior research has shown the significance of metacognitive strategy instruc-

tion in regulating strategy use (de Boer et al., 2018; Schraw & Gutierrez, 2015).

Schraw and Gutierrez (2015) argued that metacognitive strategy instruction

should provide knowledge about how, when, and why to use a given strat-

egy. They suggested that such instruction should distinguish the merit of each

strategy and compare strategies according to their feasibility and familiarity

from the learner’s perspective. de Boer et al. (2018) investigated the long-term

effects of metacognitive strategy instruction on academic performance. They

found that students who were given interventions that included when, why,

how and which strategy to use outperformed their peers on a post-test task

and a far follow-up test. de Boer et al. (2018) argued that only learning how to

use each strategy in multi-strategy domains is insufficient. Rather, it is equally

important to learn when to use each.

Considerable work has explored many metacognitive interventions for strat-

egy instruction and highlighted their tradeoffs. We focus on two interventions:
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teaching a strategy by example (Likourezos & Kalyuga, 2017; Glogger-Frey et

al., 2015) and prompted nudges (Richey et al., 2015; Belenky & Nokes-Malach,

2009) Glogger-Frey et al. (2015) found that students receiving worked exam-

ples of journal extracts reviews outperformed their peers, who had to come

up with the reviews, on post-test performance. However, Likourezos and Ka-

lyuga (2017) reported no detectable difference between students who received

fully-guided worked examples, partially-guided ones and unguided assistance

on post-test geometry tasks. Belenky and Nokes-Malach (2009) showed that

students who were prompted with metacognitive nudges outperformed their

peers on a permutation transfer task. Conversely, Richey et al. (2015) found

no detectable difference between students who were instructed to study the

worked examples and their peers, who received the same examples with tutor-

ing nudges, on near, intermediate and far transfer electric circuit tasks.

In brief, prior work has shown that knowing how and when to use each

strategy facilitates metacognitive knowledge transfer. Hence, many interven-

tions have been investigated for strategy instructions, such as worked examples

and prompted nudges. However, as far as we know, there is no agreement on

the most effective combination of the two interventions, and no work has di-

rectly used these interventions to teach metacognitive knowledge across ITSs.

Motivation as Desire to Learn

Eccles (1983) defined motivation as a process that combines the individual’s

perception of three factors: expectations for success, subjective task value, and

intrinsic interest. Touré-Tillery and Fishbach (2014) stated that motivation

is the psychological force that enables action. The multiple definitions and

perspectives to approach motivation prompted various motivation theories,
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such as achievement goal theory (Elliot, 2005; Dweck, 1986) and expected

value theory (Eccles & Wigfield, 2020; Eccles, 1983).

The motivation theories relied on self-report measures, such as surveys and

questionnaires, to determine the ulterior motives of learners, such as interest,

mastery, or performance. For example, the achievement goal theory proposes

a 2 X 2 framework to reflect the learner’s goal orientation: {mastery, perfor-

mance} X {approach, avoidance} (Elliot, 2005; Dweck, 1986). The mastery

aims to understand and master the task, while the performance reflects the

desire to outperform others. The approach and avoidance capture approaching

success and avoiding failure, respectively. Hence, mastery-approach students

are those who stated in the questionnaire that they want to master the task

to achieve success. However, one issue in self-report measures is that they are

subjective and could be inaccurate (Fulmer & Frijters, 2009); for example,

two students reporting that they want to learn as much as possible could have

different intentions or interpretations.

In recent years, digital technologies such as ITSs made it possible to mea-

sure motivation objectively using students’ online trace logs and found con-

trasting results (Fancsali et al., 2014; Otieno et al., 2013; M. Zhou & Winne,

2012). M. Zhou and Winne (2012) compared a self-report survey and online

traces in examining achievement goals while studying a multimedia-formatted

article. Traces were collected when students applied tags to text selections or

clicked hyperlinks in the article. The tag labels were similar to the self-report

items in the survey, except that they were associated with particular text or

links. The results showed that the traces were stronger predictors of achieve-

ment than self-reports. Otieno et al. (2013) investigated whether the use of

hints and glossaries in a geometry ITS can be used as an online measure for

goal orientation. They found that the online traces differed from self-report

data, as the former was more predictive of post-test scores than the latter.
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Conversely, Fancsali et al. (2014) re-examined the use of hints and glossaries

as online measures of goal orientation. They argued against Otieno et al. (2013)

by finding that the online traces were weakly associated with self-efficacy judg-

ments measured via embedded questionnaires.

Despite the conservative opinions on the use of trace logs in learning analyt-

ics (see Winne (2020) for trace logs reliability), we believe it is worth taking an

extra step toward operationalizing motivation via objective measures; hence,

we use the online trace logs for inferring motivation across ITSs. Specifically,

we define motivation as simply the desire to learn without concern for ulterior

motives, such as interest, mastery, performance, or expected value.

Research Questions

This work addresses three research questions:

– (RQ1) How would combining metacognitive knowledge and motivation

impact transfer across ITSs?

– (RQ2) Would providing instructional interventions for low metacognitive

knowledge students facilitate their transfer across ITSs?

– (RQ3)Which factors impact transfer for metacognitive knowledge groups?

Methods

We describe the two tutors in this section. We note that two problems are

isomorphic if their solutions require the same set of rules or principles.

As the results are reported in multiple sections, we state common notes

in this paragraph. The term “learning performance” encapsulates the stu-

dents’ scores, which are measured using pre- and post-test, isomorphic scores,

and the normalized learning gain (NLG) defined as NLG = Post−Pre√
100−Pre

, where

100 is the maximum post-test score. NLG measures the improvement from pre-
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to post-test, the higher the better (Abdelshiheed, Maniktala, et al., 2022; Ab-

delshiheed et al., 2021, 2020; Hake, 1998). For reporting results conveniently,

we refer to pre-test, post-test and NLG scores as Pre, Post and NLG, respec-

tively. Results with p < α are referred to as “detectable,” where α = .05

unless Bonferroni correction is used. Finally, when reporting ANCOVA and

ANOVA results, all statistical assumptions, such as normality and homoscedas-

ticity, are satisfied but unreported to avoid redundancy and congesting the

article with more numeric results.

Logic Tutor

The logic tutor (Barnes et al., 2008) teaches students propositional logic proofs

through a standard sequence of pre-test, training and post-test. The three

phases share the same interface, but training is the only one where students

can seek and get help. The pre-test has two problems, while the post-test

is harder and has six problems; the first two are isomorphic to the pre-test

problems. Training consists of five ordered levels with an incremental degree

of difficulty, and each level consists of four problems. A problem consists of

given nodes at the top and a target node at the bottom, and one needs to derive

intermediate nodes by applying valid logic rules such as Modus Ponens and

Addition. Each level teaches a new rule for students to apply. Every problem

has a score based on students’ time, accuracy and solution length. The pre- and

post-test scores are calculated by averaging their pre- and post-test problem

scores. The problem score formula is shown in the Supplementary Materials.

Throughout the tutor, a student can solve any problem by either a forward-

chaining (FC) or a backward-chaining (BC) strategy. Students know about

the two strategies from the Discrete Mathematics lectures they take before the

tutor assignment. Figure 1a shows that for FC, one must derive the conclusion
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at the bottom from givens at the top, while Figure 1b shows that for BC,

students need to derive a contradiction from givens and the negation of the

conclusion. Problems are presented by default in FC, but students can switch

to BC by clicking a button in the tutor interface. The intelligent features of

the logic tutor are described in the Supplementary Materials.

Probability Tutor

The probability tutor (Chi & VanLehn, 2010) is a web- and text-based tutor

that teaches how to solve probability problems using 10 major principles, such

as the Complement Theorem and Bayes’ Rule. It consists of four sections:

textbook, pre-test, training on ITS, and post-test. Similar to the logic tutor,

training is the only section for students to receive and ask for hints, and the

post-test is harder than the pre-test.

In the textbook, students study the domain principles; In pre- and post-test,

students solve 14 and 20 open-ended problems, respectively, that require them

to derive an answer by writing and solving one or more equations. Each pre-test

problem has a corresponding isomorphic post-test problem. Students’ answers

are graded in a double-blind manner by experienced graders using a partial-

credit rubric, where grades are based only on accuracy. The pre- and post-

test scores are the average grades in their respective sections. The details of

grading and isomorphic problems on the probability tutor are provided in the

Supplementary Materials.

The training section interface is seen in Figure 2. It consists of 12 problems,

each of which can only be solved by BC in that it requires students to derive an

answer by writing and solving equations until the target is ultimately reduced

to the givens. For each training problem, the tutor records intelligent features

for state representation for each student, as described by G. Zhou et al. (2022).
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Preliminary Study

We collected data from an undergraduate Discrete Mathematics Computer

Science course at North Carolina State University across three semesters. A

total of 495 students finished both tutors: N = 151 for Fall 2017, N = 128 for

Spring 2018, and N = 216 for Fall 2018. The students’ demographics were as

follows: age (26.4±4.6, min: 21, max: 60), gender (82% Male, 18% Female), and

race (54%White, 15% Asian, 5% Hispanic, 4% Black or African American, 22%

Other/Multi/Unknown). We found no detectable difference in the distribution

of demographic attributes within and across groups. All students went over

the logic tutor described in the Logic Tutor section. Six weeks later, students

were trained on the probability tutor following the procedure described in the

Probability Tutor section.

Inferring Metacognitive Knowledge

As discussed in the Methods section, students can choose to switch problem-

solving strategies only on the logic tutor. Thus, we inferred students’ metacog-

nitive knowledge based on their interactions with the logic tutor alone. Each

problem can be solved by either following the default FC or switching to BC.

However, most problems, especially the higher-level ones, can be solved much

more efficiently by BC (Abdelshiheed, 2023; Abdelshiheed, Hostetter, Yang, et

al., 2022; Abdelshiheed, Hostetter, Shabrina, et al., 2022) and we expect that

effective problem solvers should switch their strategy on these problems, and

more importantly, they should switch it early when solving them. Thus, our

metacognitive knowledge measurement is a combination of how to use each

strategy (Zepeda et al., 2015; Wagster et al., 2007), and when to use each (de

Boer et al., 2018; Winne & Azevedo, 2014). After analyzing log data on the

logic tutor (shown in the Supplementary Materials), we considered two factors
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in learning when to use a strategy: one is that a student should switch in later

levels (harder training problems) where the savings will be significant, and the

other is that students should switch early (when convenient) while solving a

problem. On average, students take 210 actions to solve a problem, and the

median number of actions that a student takes before switching is 30.

As stated in the Logic Tutor section, training has an incremental degree

of difficulty, as each level introduces a new logic rule. Since the rate of change

of rules is constant, the tutor difficulty is assumed to be linear in terms of the

levels, and therefore, we weighted the how and when components of learning

each strategy by the corresponding level number. Therefore, the metacognitive

score (MetaScore) for a student i was calculated1 as:

MetaScorei =
5∑

L=1

[

4∑
p=1

[L ∗Howip ∗Whenip]] (1)

where Howip = 1 indicates that student i sustained a switch to use BC

when solving problem p at level L, while 0 means unsustained or no switch;

Whenip = 1 if the student i switched early on problem p (≤ median [30 ac-

tions]) and Whenip = −1 for late switch (> median [30 actions]). Based on

this formula, MetaScorei > 0 indicates that student i knows how and when

to use each strategy; if MetaScorei < 0, it indicates that student i knows how

but not good at knowing when; finally, if MetaScorei = 0, this suggests that

student i knows neither how nor when by persisting in the default FC settings.

Categorizing Metacognitive Knowledge in the Preliminary Study:

Based on MetaScores, students are divided into three groups: those who pos-

sess conditional knowledge by knowing how and when (MetaScore > 0) are

referred to as the StrBoth group (N = 145); those who possess procedural

1 See the Supplementary Material for the rationale of defining the MetaScore using this approach.
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knowledge by knowing how only (MetaScore < 0) as StrHow (N = 166);

and the rote students (MetaScore = 0) as Rote (N = 184).

Inferring Motivation

Inspired by prior research on behavioral measures of motivation (Touré-Tillery

& Fishbach, 2014), we inferred students’ motivation by tracking the accu-

racy of applying principles in their online trace logs. By doing so, we fac-

tor in the fact that students often have various ulterior motives. Similar to

prior work (Vollmeyer & Rheinberg, 2006; Rheinberg et al., 2000), the mo-

tivation in this work is defined based on the initial interactions in the early

stages of each tutor. In other words, our measured students’ initial motiva-

tion does not consider the fact that students’ motivation may change over

time. We found that the percentage of correct rule applications in the first

two problem-solving questions resulted in a bimodal distribution of students

on each tutor —described in the Supplementary Materials— and hence was

used as the behavioral measure of inferring motivation on each tutor. Due to

the bimodal distribution, students were divided into high- and low-motivation

groups through a median split; for logic: HMLogic (N = 248) and LMLogic

(N = 247) and for probability: HMProb (N = 249) and LMProb (N = 246).

A chi-square test showed no detectable evidence on students staying at the

same motivation level across the two tutors: χ2(1, N = 495) = 1.26, p = 0.26.

In other words, students’ motivation levels may change over a semester or

change based on subjective domains. Additionally, our motivation definition

differs from students’ incoming competence in that one-way ANOVA showed

no detectable difference on Pre between high- and low-motivation students:

F (1, 493) = 0.7, p = .17 for logic and F (1, 493) = 0.001, p = .98 for probabil-

ity.



The Impact of Metacognitive Knowledge Instruction and Motivation on Transfer 15

Results (Prelim. Study)

We examine the impact of 1) metacognitive knowledge alone, 2) motivation

alone, and 3) the interactions of the two on students’ learning on both tutors.

Metacognitive Knowledge Results (Prelim. Study)

Table 1 illustrates the metacognitive groups’ learning performance on the logic

and probability tutors. It shows the mean and standard deviation of Pre, Post,

NLG and isomorphic scores (Iso. Post and Iso.NLG). For the logic tutor,

while no detectable difference was found among the three groups on Pre, a one-

way ANCOVA analysis using Pre as covariate and metacognitive group as fac-

tor showed a detectable difference on Post: F (2, 491) = 17.3, p < .001, η2 =

.3. Subsequent contrast analyses with Bonferroni2 adjustment (α = .05/3 =

.016) showed that StrBoth scored detectably higher than Rote: t(327) =

3.8, p < .001, d = 2.9 and StrHow: t(309) = 5.8, p < .0001, d = 4.5. Ad-

ditionally, Rote scored higher than StrHow: t(348) = 2.2, p = .03, d = 1.6.

While a one-way ANOVA showed no detectable difference among the three

groups on NLG, subsequent contrast analyses showed that StrBoth scored

higher than StrHow: t(309) = 2.4, p = .02, d = 3.6. For the probability tu-

tor, however, no detectable difference was found between any pair of the three

groups on any scores.

To summarize, our results suggest that knowing how to use each strat-

egy alone can not lead students to learn better on logic; students need to

know when to use each strategy as well. Additionally, while StrBoth learns

detectably better than the other two groups on logic, they did not outperform

other groups on probability.

2 Bonferroni Correction was used for conservative results.
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Motivation Level Results (Prelim. Study)

Table 2 compares the high- and low-motivation groups’ learning performance

across the two tutors. As stated in the Inferring Motivation section, no

detectable difference was found between high- and low-motivation groups on

Pre on each tutor. As expected, a one-way ANCOVA with Pre as covariate

and motivation as factor showed that on both tutors, high-motivation stu-

dents detectably outperformed their low peers on Post: F (1, 492) = 15.8, p <

.001, η2 = .17 for logic and F (1, 492) = 24.5, p < .001, η2 = .17 for prob-

ability. While we found no detectable difference between their NLG on the

logic tutor, a one-way ANOVA showed that highly motivated students had de-

tectably higher NLG than their low peers on the probability tutor: F (1, 493) =

7.6, p < .01, η2 = .12.

In short, these results suggest that our motivation measure is reasonable

in that the highly motivated students indeed outperformed their low peers on

the post-test of each tutor. The former also had detectably higher NLG than

the latter on the probability tutor.

Results of Interaction Between Metacognition and Motivation (Prelim. Study)

Logic Tutor:

Combining the metacognitive groups {Rote, StrHow, StrBoth} with the

logic motivation {HMLogic, LMLogic} resulted in six groups. A chi-square

test showed that students’ motivation did not differ detectably across the

three metacognitive groups: χ2(2, N = 495) = 2.87, p = 0.24. Addition-

ally, no detectable difference was found among the six groups on logic Pre:

F (2, 489) = 0.69, p = .49.
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Figure 3a shows the groups’ performance on logic Post. A two-way AN-

COVA using Pre as covariate, and metacognitive group and motivation as

factors, showed no detectable interaction effect. However, there was a main

effect of metacognitive group: F (2, 488) = 16.6, p < .0001 and motivation:

F (1, 488) = 16.7, p < .0001. Particularly, in each metacognitive group, the

HMLogic group outperformed (Bonferroni-corrected (α = .05/15 = .003))

the corresponding LMLogic group: t(182) = 2.1, p = .03, d = 1.4 for Rote,

t(164) = 3.1, p = .002, d = 2.4 for StrHow and t(143) = 2, p = .04, d = 1.4

for StrBoth. Among the three HMLogic groups, high-motivation StrBoth out-

performed (Bonferroni-corrected (α = .05/15 = .003)) their peers: t(165) =

2.8, p = .006, d = 2.1 against high-motivation Rote and t(160) = 3.8, p <

.001, d = 3 against high-motivation StrHow. Among the three LMLogic groups,

the same pattern persisted, as the low-motivation StrBoth surpassed their two

low-motivation peer groups.

Similarly, for logic NLG (Figure 3b), a two-way ANOVA using the same

two factors found no detectable interaction or main effect. However, among the

HMLogic groups, high-motivation StrBoth outperformed (Bonferroni-corrected

(α = .05/15 = .003)) high-motivation Rote: t(165) = 2.2, p = .03, d = 3.5

and high-motivation StrHow: t(160) = 2.3, p = .03, d = 5.4. We found no

detectable difference among the LMLogic groups. In short, our results sug-

gest that the high-motivation StrBoth group performs the best among the six

groups in terms of Post and NLG on the logic tutor.

Probability Tutor:

Similarly, the metacognitive groups {Rote, StrHow, StrBoth} were combined

with the probability motivation {HMProb, LMProb} resulting in six groups.

A chi-square test showed that students’ motivation on probability did not

detectably differ across the three metacognitive groups: χ2(2, N = 495) =
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0.53, p = 0.76. Moreover, no detectable difference was found among the six

groups on probability Pre: F (2, 489) = 0.5, p = .63. Figures 4a and 4b illus-

trate the groups’ probability Post and NLG, respectively.

Starting by Figure 4a, a two-way ANCOVA with metacognitive knowledge

and motivation as factors, and Pre as covariate, showed a detectable interac-

tion effect on Post: F (2, 488) = 3.8, p = .02, η2 = .09. Additionally, there was

a main effect of motivation in that high-motivation students detectably outper-

formed their low-motivation peers: F (1, 488) = 24.4, p < .0001. Among the

HMProb groups, StrHow and StrBoth outperformed (Bonferroni-corrected

(α = .05/15 = .003)) Rote: t(171) = 2.4, p = .02, d = 1.7 and t(163) =

2.4, p = .02, d = 1.9, respectively. However, no detectable difference was

found among the LMProb groups.

Regarding NLG, seen in Figure 4b, a two-way ANOVA using the same two

factors showed a detectable interaction effect: F (2, 489) = 6.4, p < .01, η2 =

.16. Subsequent contrast analyses with Bonferroni adjustment (α = .05/15 =

.003) showed that, within StrHow and StrBoth, high-motivation students sur-

passed their low peers: t(164) = 2.2, p = .03, d = 2.9 and t(143) = 3.8, p <

.001, d = 4.4, respectively. Across the HMProb groups, both StrHow and

StrBoth had higher NLG than their Rote peers: t(171) = 2, p = .04, d = 2.5

and t(163) = 3, p = .003, d = 4.2, respectively. In brief, on the probability tu-

tor, the high-motivation StrHow and StrBoth groups outperform their peers

on Post and NLG.

From a Preliminary Study to Two Experiments

Based on the preliminary study results, we aimed to boost the performance

of Rote and StrHow students so they can catch up with their StrBoth peers.

Hence, we conducted two experiments to investigate the impact of providing
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interventions on the logic tutor to Rote and StrHow students. In Experiment

1, we provided prompted nudges to recommend switching to BC when proper,

and in Experiment 2, we combined nudges with worked examples to teach how

and when to use BC. StrBoth students received no interventions throughout

the experiments, as we feared an expertise reversal effect (Kalyuga, 2009). This

effect is based on the finding that instructional guidance may have negative

consequences on experienced learners.

We aimed to balance the metacognitive groups {Rote, StrHow, StrBoth}

across the conditions {Experimental, Control}. While assigning students to

the two conditions at the beginning of the logic tutor is desired, a student’s

metacognitive group can be determined only at the end of the logic train-

ing (see Eqn. 1) when it becomes too late to intervene. Hence, we had to

find a method to early predict the metacognitive group before the condition

assignment.

Early Prediction of Metacognitive Group

We performed a 75−25 train-test split on students from the preliminary study

and trained a random forest classifier (RFC), which takes the mean feature

vector collected during the logic pre-test for a student3 and returns a predicted

metacognitive group. In order to avoid overfitting, pruning was performed to

limit the excessive use of features within any branch. Moreover, semester-

based cross-validation was performed, in which we trained the classifier on

two semesters and validated its performance on the third semester. Overall,

the RFC achieved a 96.7% accuracy on the testing dataset, as shown in the

confusion matrix in Table 3. The RFC was used for early prediction of the

metacognitive group in Experiments 1 and 2.

3 For each problem, we record 152 features per student, as described in the Supplementary Materials.



20 Mark Abdelshiheed, Tiffany Barnes and Min Chi

Experiment 1: Prompted Nudges (Exp.1: Nudge)

Consider the number of times you flag an email as spam after seeing the

prompt “Report as Spam” or when you remember to buy a grocery item after

your spouse’s reminder. There are countless similar situations where a nudge

influences your decision-making, even when individuals are unaware of such

influence, such as the 2016 US elections.

The nudge theory defines a nudge as any factor that alters behavior in a

predictable manner without excluding alternatives (Thaler et al., 2013; Thaler

& Sunstein, 2008). The theory suggests that nudges have an essential role in

behavioral economics (Simon & Tagliabue, 2018) and influence individuals’

social and cognitive behaviors (Smith et al., 2013). Thaler wrote in an article

for the New York Times that nudging should be guided by three principles:

transparency, ease of opting out, and improving the welfare of the individuals

being nudged (Thaler, 2015). Considerable research has accommodated the

nudge theory in educational research to promote concepts, recommendations,

and strategies (Zepeda et al., 2015; Belenky & Nokes-Malach, 2009).

The preliminary study showed that the early switch from forward- to

Backward-Chaining (BC) is a desired behavior on the logic tutor. We aimed to

boost the performance of Rote and StrHow students by leveraging the nudge

theory for its non-confrontational indirect suggestions. Hence, we conducted

an experiment to investigate the impact of showing Rote and StrHow students

prompted nudges that recommend switching to BC when proper to do so.

We first describe the participants, followed by instructional intervention on

the logic tutor, procedure and results.
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Participants (Exp.1: Nudge)

Similar to the preliminary study, our participants were students from the same

undergraduate course at the same university in Spring 2020. The students’ de-

mographics were as follows: age (24 ± 4.1, min: 20, max: 58), gender (80%

Male, 20% Female), and race (52% White, 16% Asian, 6% Hispanic, 3% Black

or African American, 23% Other/Multi/Unknown). We found no detectable

difference in the distribution of demographic attributes within and across con-

ditions and groups.

A total of 64 students completed both tutors and was divided by the RFC

into 27 Rote, 29 StrHow and 8 StrBoth students who were excluded due to

their small sample size. For Rote and StrHow students, they were randomly

assigned to two conditions: N = 28 for Experimental —Nudge— (13 RoteNud

+ 15 StrHowNud) and N = 28 for Control (14 RoteCtrl + 14 StrHowCtrl).

A chi-square test showed no detectable difference in the distribution of Rote

and StrHow students across the conditions: χ2(1, N = 56) = 0.07, p = .79.

To measure the quality of the early metacognitive group predictions, the RFC

performance was evaluated on Control students, who received no intervention,

yielding a 96.4% accuracy.

Instructional Intervention and Procedure (Exp.1: Nudge)

For this experiment, we modified our logic tutor by offering prompted nudges

(the text in the black box in Figure 5) that recommend switching to the

BC strategy when it is proper to do so. We adhered to the three principles

suggested by Thaler (2015) in designing the nudges: transparency, ease of

opting out, and improving the welfare of the individuals being nudged. To

satisfy transparency, we ensured the text within the nudge was straightforward

and explicit, such as “It will save you time if you switch to BC” and “The
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tutor thinks switching to BC is an easier option.” The nudge box was small

in size and placed on the bottom of the interface with a “Close(X)” button

to ensure the ease of opting out. We aimed to make the nudges improve the

welfare of students being nudged by adopting a data-driven approach to decide

when to provide a nudge.

Figure 6 shows in green the six problems in which the nudges could be

displayed. These problems were determined to be “proper” to be solved by

BC; we followed a data-driven approach to select these problems rather than

using expert rules or providing nudges based on the student’s demands. We

analyzed the strategy switch behavior from our preliminary study to guide

us which “proper” problems to display the nudges in by picking the most

frequently switched problems, and when to display them, by learning a proba-

bility distribution of the duration lengths that students take before switching.

More specifically, 55% of the time, the tutor would wait for 1.5 minutes before

displaying the nudge, 35% for 3 minutes, and only 10% for 6 minutes. For the

remaining problems (colored in white in Figure 6), the tutor behaves the same

as the original tutor.

Our goal is to investigate whether recommending students to switch to BC

would boost the performance of Rote and StrHow students, allowing them to

catch up with the StrBoth group. Therefore, only the Experimental condition

(RoteNud and StrHowNud) were trained on the modified logic tutor (shown

in Fig. 6), while the Control (RoteCtrl and StrHowCtrl) students received no

such intervention. Table 4 summarizes our procedure, which is similar to the

preliminary study, except for adding the gray section to distinguish the two

conditions.
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Results (Exp.1: Nudge)

The results are discussed from two perspectives: the learning performance,

where scores on each tutor are reported for different conditions, metacogni-

tive and motivation groups, and the strategy switch behavior, where the

students’ choices of switching strategy on the logic tutor are analyzed.

Learning Performance (Exp.1: Nudge):

Table 5 compares the learning performance of the four groups on each tutor. A

two-way ANOVA using condition {Experimental, Control} and metacogni-

tive group {Rote, StrHow} as factors showed no detectable difference on Pre

on each tutor: F (1, 52) = 0.1, p = .71 for logic and F (1, 52) = 0.7, p = .41 for

probability. Next, the scores are analyzed on each tutor separately.

Starting with logic, a two-way ANCOVA using Pre as covariate, and con-

dition as well as metacognitive group as factors, found a detectable interaction

effect on Post: F (1, 51) = 6.4, p = .01, η2 = .14. Subsequent contrast analyses

with Bonferroni adjustment (α = .05/6 = .008) showed that StrHowNud had

higher Post than their Control peers StrHowCtrl: t(27) = 2.4, p = .02, d =

2.5 and Experimental peers RoteNud: t(26) = 2.3, p = .03, d = 1.9. An-

alyzing logic NLG, a two-way ANOVA using the same two factors showed

a detectable interaction effect: F (1, 52) = 9.4, p < .01, η2 = .23. Follow-up

Bonferroni-corrected analyses (α = .05/6 = .008) revealed that StrHowNud

outperformed StrHowCtrl and RoteNud: t(27) = 2.7, p = .01, d = 1.4 and

t(26) = 2.4, p = .02, d = 1.8, respectively.

Similar patterns were found on probability but with more detectable re-

sults. A two-way ANCOVA using the same two factors with Pre as covariate

found a detectable interaction effect on Post: F (1, 51) = 10.3, p < .01, η2 =

.37, in that StrHowNud had detectably higher (Bonferroni-corrected (α =
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.05/6 = .008)) Post than StrHowCtrl: t(27) = 3.2, p = .003, d = 2.2 and

RoteNud: t(26) = 3.1, p = .004, d = 1.9. For NLG, we observed a detectable

interaction effect after carrying out a two-way ANOVA using the same fac-

tors: F (1, 52) = 11.2, p = .001, η2 = .4, as StrHowNud detectably surpassed

(Bonferroni-corrected (α = .05/6 = .008)) StrHowCtrl: t(27) = 4.6, p <

.0001, d = 2 and RoteNud: t(26) = 3, p = .006, d = 1.7. On both tutors, no

detectable difference was found between RoteNud and RoteCtrl in any of the

measures shown in Table 5.

To sum up, StrHowNud students detectably outperformed their peers on

Post and NLG scores on both tutors, while RoteNud did not benefit from

our intervention, as they did not show any detectable advantage over their

Control peers.

Strategy Switch Behavior (Exp.1: Nudge)

To investigate whether the instructional intervention impacted the students’

strategic behaviors, we analyzed such behaviors on the logic tutor. Figure 7

shows the strategy switch behaviors of the four groups (from FC to BC); we

compared their decisions during the logic tutor Training, where only RoteNud

and StrHowNud were offered nudges, and Post (post-test), where no student

got nudges. By following the definitions described after Eqn. 1, we display the

percentage of No Switches (sticking to the default strategy), Early Switches

(switching within the first 30 actions), and Late Switches (switching after the

first 30 actions). In Figure 7, the four groups are ordered by the percentage of

Early Switches, the most desired behavior.

A two-way ANOVA using condition and metacognitive group as factors

showed a detectable interaction effect on Early Switches : F (1, 52) = 14.1, p <

.001, η2 = .26 for Training and F (1, 52) = 12.6, p < .001, η2 = .19 for

Post. Subsequent Bonferroni-corrected analyses (α = .05/6 = .008) showed
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that StrHowNud made early strategy switches detectably more than the other

three groups; for instance, they detectably surpassed RoteNud on Training

and Post: t(26) = 5.4, p < .0001, d = 1.4 and t(26) = 4.9, p < .0001, d = 1.3,

respectively. On the other hand, no detectable differences were found between

the two Control groups, or between the two Rote groups.

In other words, StrHowNud students showed substantial compliance with

the nudges and were able to switch strategy early throughout the tutor, even

on post-test questions, where no nudges were given. However, their peers failed

to switch strategy due to the lack of knowledge about BC (RoteNud), lack of

nudges (StrHowCtrl), or lack of both (RoteCtrl).

Experiment 2: Worked Examples & Nudges (Exp.2: Instruction)

Our findings from Experiment 1 suggest that recommending students to switch

to BC might not help all students, as Rote students lack knowledge about the

BC strategy. Therefore, we reinforced our intervention by adding worked ex-

amples (WE) to teach students how to solve problems using BC. In cognitive

load theory, the worked-example effect refers to the observed learning outcome

from teaching with worked examples compared to other approaches, such as

problem-solving (Renkl, 2005). A Worked Example (WE) is a step-by-step

solution that solves a problem or completes a task. Renkl (2005) stated that

WEs are designed to support metacognitive skills acquisition by introducing a

problem, its solution steps, and the final solution. Substantial work has lever-

aged WEs to enhance students’ problem-solving skills and prepare them for

explicit instruction (Likourezos & Kalyuga, 2017; Glogger-Frey et al., 2015).

In Experiment 2, we investigated how explicit instruction on how (WE) and

when (nudges) to use BC would impact students’ learning across the two tutors
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and, more importantly, whether such instruction would further eliminate the

gap among different learners.

Participants (Exp.2: Instruction)

The participants were from the same undergraduate course at the same uni-

versity in Fall 2020. The demographics were as follows: age (23.9±4.7, min: 20,

max: 56), gender (82% Male, 18% Female), and race (54% White, 22% Asian,

5% Hispanic, 3% Black or African American, 16% Other/Multi/Unknown). No

detectable difference was found in the distribution of demographic attributes

within and across conditions and groups.

A total of 128 students completed both tutors, and our RFC divided them

into 60 Rote, 42 StrHow and 26 StrBoth students. Like Experiment 1, Rote

and StrHow students were randomly assigned to two conditions4: N = 61 for

Experimental —Instruction— (35 RoteIns + 26 StrHowIns) and N = 41 for

Control (25 RoteCtrl + 16 StrHowCtrl). No detectable difference was found

in the distribution of Rote and StrHow students across the two conditions:

χ2(1, N = 102) = 0.13, p = .72. Regarding StrBoth students, they used

the original logic tutor without any intervention. The accuracy of the RFC is

further evaluated on the Control and StrBoth students since they received

no intervention. Our results showed that the RFC achieved 95.5% accuracy,

similar to its performance in the preliminary study and Experiment 1.

Instructional Intervention and Procedure (Exp.2: Instruction)

Compared to Experiment 1, we modified our logic tutor by adding two WEs

on explicit BC strategy instruction as the first problem in the first two levels,

4 The difference in size is due to the fact that we prioritized having a sufficient number of
Experimental students to perform a meaningful analysis of our intervention.
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as shown in Figure 8. Our goal is to investigate whether explicit BC strategy

instruction using WEs combined with nudges would make Rote and StrHow

catch up with StrBoth. We expect that the former two groups would benefit

from our intervention designed to scaffold the metacognitive knowledge that

they lack. On the other hand, for StrBoth students, we expect that providing

them with additional scaffolding could interfere with their existing metacogni-

tive knowledge. Therefore, only the Experimental Rote and StrHow groups

will get the treatment shown in Figure 8, while the Control Rote and StrHow

groups and the StrBoth group will get no treatment. Experiment 2 procedure

is similar to Experiment 1 (Table 4), except that for Experiment 2, the inter-

ventions are shown in Figure 8 and StrBoth students are included and receive

the original tutor, like their Control peers.

Results (Exp.2: Instruction)

The results are organized into two sections similar to Experiment 1: learning

performance and strategy switch behavior. The first section is divided

into several parts; first, we compare the Experimental and Control conditions.

Then we break down the conditions into metacognitive groups and compare

them with each other and the StrBoth group. Next, the motivation distri-

bution is shown for all groups, and finally, the impact of motivation on the

groups’ performance is discussed.

Learning Performance (Exp.2: Instruction):

Experimental vs Control

Table 6 compares the two conditions across the tutors showing various metrics’

mean and standard deviation. The last column shows the one-way ANOVA
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comparisons between the two conditions, including the effect size η2. As shown

in the table, while no detectable difference was found between the two condi-

tions on Pre: F (1, 100) = 0.8, p = .38 for logic and F (1, 100) = 2.7, p = .11

for probability, Experimental detectably outperformed Control in all other

aspects.

Comparing Metacognitive Groups within Conditions

To investigate whether Rote and StrHow students benefited from our inter-

vention, we compared their performance across the two conditions, as shown

in the first five columns in Table 7.

Regarding the logic tutor performance, A two-way ANOVA using condi-

tion {Experimental, Control} and metacognitive group {Rote, StrHow} as

factors showed no detectable difference on Pre: F (1, 98) = 0.28, p = .6. A two-

way ANCOVA using the same factors with Pre as covariate found a detectable

interaction effect on Post: F (1, 97) = 17.3, p < .0001, η2 = .06. Follow-up

contrast analyses with Bonferroni adjustment (α = .05/6 = .008) revealed

that while no detectable difference was found between the Control groups, a

detectable difference was found between the Experimental groups: RoteIns >

StrHowIns (t(59) = 2.9, p = .005, d = 4.3). Additionally, each Experimental

group detectably surpassed its respective Control. These findings show that

RoteIns > StrHowIns > RoteCtrl, StrHowCtrl. A two-way ANOVA using the

same factors showed similar patterns on NLG, except that StrHowIns learned

no different from the Control groups —RoteCtrl and StrHowCtrl.

On the probability tutor, a two-way ANOVA using condition and metacog-

nitive group as factors showed no detectable difference on Pre: F (1, 98) =

0.05, p = .82. Additionally, a two-way ANCOVA using the same factors with

Pre as covariate showed no detectable interaction effect on Post. Subsequent

contrast analyses showed that no detectable difference was found between
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the Experimental groups, or between the Control groups. However, each

Experimental group detectably outperformed its respective Control, suggest-

ing that RoteIns, StrHowIns > RoteCtrl, StrHowCtrl. Similar findings were

observed on NLG.

Comparing with StrBoth Group

The last column in Table 7 shows the performance of StrBoth across all mea-

sures. We further explored the effectiveness of our intervention from two as-

pects: 1) whether it would make Rote and StrHow students in the Experimental

condition catch up with StrBoth, and 2) whether, without such intervention,

the students in the Control condition would perform worse than StrBoth.

As for the first aspect, our results show that the Experimental condition

performed as well as or better than StrBoth in that no detectable differ-

ence was found between the two on all measures on logic and probability.

Next, we individually compared the two Experimental groups, RoteIns and

StrHowIns, against StrBoth. We found no detectable difference between the

three groups on logic and probability Pre, as shown in Table 7. While no

detectable difference was found between StrBoth and StrHowIns on logic,

RoteIns outperformed (Bonferroni-corrected (α = .05/3 = .016)) StrBoth on

logic Post: t(59) = 3.2, p = .002, d = 2. For probability, no detectable differ-

ence was found among RoteIns, StrHowIns, and StrBoth across all measures.

As for the second aspect, as expected, StrBoth outperformed Control on

Post on both tutors: t(65) = 2.4, p = .02 for logic and t(65) = 3.8, p <

.001 on probability. After individually comparing the two Control groups

against StrBoth, we found no detectable difference between the three groups

on logic and probability Pre, as shown in Table 7. However, StrBoth de-

tectably outperformed (Bonferroni-corrected (α = .05/3 = .016)) the two

Control groups on logic Post: t(49) = 3, p = .004, d = 1.7 for RoteCtrl
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and t(40) = 3.9, p < .001, d = 1.1 for StrHowCtrl and probability Post:

t(49) = 4.7, p < .0001, d = 3.1 forRoteCtrl and t(40) = 3.5, p < .001, d = 2.2

for StrHowCtrl.

To summarize, these findings show that with our instructional interven-

tion, Experimental indeed caught up with StrBoth as the former performed

at least as well as StrBoth on both tutors. On the other hand, without the in-

tervention, StrBoth outperformed Control on the two tutors. Specifically, our

results showed that the intervention was most beneficial to Rote students as

RoteIns surpassed all other groups, including StrBoth, on logic and continued

to perform well on probability.

Impact of Motivation on Performance

Figure 9 shows the Pre and Post scores for the two conditions (on left) and

the StrBoth group (on right). For the logic tutor (Fig. 9a), we analyzed the

left subfigure by performing a two-way repeated measures ANOVA on the

scores using condition {Ins, Ctrl} and logic motivation {HMLogic, LMLogic}

as factors. While we found no detectable interaction effect, there was a main

effect of condition: F (1, 98) = 8.08, p < .01, in that the two Experimental

groups detectably outperformed their Control peers on logic Post. Regarding

StrBoth, shown on right, we carried out a one-way repeated measures ANOVA

on the scores using logic motivation as factor. The results showed that the

high-motivation StrBoth detectably outperformed their low-motivation peers

on logic Post: F (1, 24) = 6, p = .02.

Analyzing the probability scores (Fig. 9b), we found similar patterns to

those observed on logic (Fig. 9a). For the left subfigure, a two-way repeated

measures ANOVA on the scores, using condition {Ins, Ctrl} and probability

motivation {HMProb, LMProb} as factors, showed no detectable interaction

effect. However, similar to Figure 9a, there was a main effect of condition in
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favor of the two Experimental groups in their Post: F (1, 98) = 5.6, p =

.02. Regarding the right subfigure, a one-way repeated measures ANOVA

on the scores, using probability motivation as factor, showed that the high-

motivation StrBoth group had a detectably higher probability Post than their

low-motivation peers: F (1, 24) = 19.3, p < .01.

To sum up, it seems that motivation played an important role in distin-

guishing high and low learners in the StrBoth group. On the other hand, for

Experimental and Control conditions, no detectable difference was observed

in the learning performance between high- and low-motivation students.

Strategy Switch Behavior (Exp.2: Instruction)

Figure 10 shows the strategy switch behavior of the five groups. The groups

are ordered by the percentage of Early Switches, and StrBoth is highlighted

in bold as the gold standard. A one-way ANOVA found that the switch be-

haviors differed detectably among the five groups: F (4, 123) = 71.2, p <

.0001, η2 = .7 for Training and F (4, 123) = 62.6, p < .0001, η2 = .67

for Post. More importantly, the behaviors of each group were very simi-

lar between Training and Post. Subsequent contrast analyses showed that

while no detectable difference was observed between RoteIns and StrBoth

on their switch behaviors, both groups switched early detectably more than

the other three groups: StrHowIns, StrHowCtrl and RoteCtrl. For example,

StrBoth switched early detectably (Bonferroni-corrected (α = .05/10 = .005))

more than StrHowIns: t(50) = 5.4, p < .0001, d = 1.4 for Training and

t(50) = 4.9, p < .0001, d = 1.3 for Post.

In short, analyzing strategy switch behaviors confirms that RoteIns indeed

caught up with StrBoth, as the former showed very similar behaviors to the

latter during the training when the intervention was available and, more im-

portantly, during the post-test when such intervention was not present. On the



32 Mark Abdelshiheed, Tiffany Barnes and Min Chi

other hand, much to our surprise, the strategy switch behaviors of StrHowIns

stayed similar to their Control peers, StrHowCtrl.

Post-hoc Analysis

We present a post-hoc analysis by combining the two experiments’ results.

Table 8 summarizes the logic and probability scores for seven groups: two

from Experiment 1 (RoteNud, StrHowNud), two from Experiment 2 (RoteIns,

StrHowIns), two for Control (RoteCtrl, StrHowCtrl) and the StrBoth group.

For the Control groups, we combined the data from the two experiments, and

for StrBoth, we added the eight students excluded from Experiment 1 due to

their small sample size.

A one-way ANOVA using group as factor found no detectable difference

between all groups on Pre: F (6, 185) = 1.1, p = .36 for logic and F (6, 185) =

0.8, p = .57 for probability. Next, we compare the conditions then we compare

the metacognitive groups. We will refer to experimental students in Experi-

ments 1 and 2 as Nud and Ins, respectively.

Comparing Conditions: Nud vs Ins vs Control

We performed a series of pairwise contrast analyses (Bonferroni-corrected (α =

.05/3 = .016)) to compare Post and NLG for the three conditions {Nud,

Ins, Control} on the two tutors. Starting with the logic tutor, we found that

Ins > Nud > Control on Post and NLG; specifically, Ins > Nud (t(87) =

2.4, p = .02 for Post and t(87) = 2.5, p = .01 for NLG) and Nud > Control

(t(95) = 2.1, p = .03 for Post and t(95) = 2.2, p = .02 for NLG).

For the probability tutor, we found that Ins,Nud > Control, as no

detectable difference was found between Nud and Ins on Post or NLG, while
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both conditions outperformed Control: Ins > Control (t(128) = 3.3, p < .01

for Post and t(128) = 3.1, p < .01 for NLG) and Nud > Control (t(95) =

2.2, p = .03 for Post and t(95) = 2.3, p = .02 for NLG).

Comparing Metacognitive Groups

We conducted a series of pairwise contrast analyses to compare Post and

NLG for the three Rote groups alone {RoteNud, RoteIns, RoteCtrl}, the three

StrHow groups alone {StrHowNud, StrHowIns, StrHowCtrl}, and then com-

pare all groups with StrBoth. Similar patterns between Post and NLG were

found, which will be summarized next.

Regarding the Rote groups, the comparisons revealed that RoteIns >

RoteNud, RoteCtrl on logic and RoteIns > RoteNud > RoteCtrl on

probability. In other words, RoteIns detectably outperformed RoteNud on

both tutors. For the StrHow groups, the analyses showed that StrHowNud,

StrHowIns > StrHowCtrl on both tutors, as no detectable difference was

found between StrHowNud and StrHowIns.

Comparing with StrBoth, we found RoteIns > StrBoth, StrHowNud,

StrHowIns >RoteNud,RoteCtrl, StrHowCtrl on logic, while StrBoth,

RoteNud, StrHowNud,RoteIns, StrHowIns > RoteCtrl, StrHowCtrl

on probability. In brief, StrBoth detectably outperformed the Control groups

on both tutors as expected. While the experimental Rote and StrHow groups

caught up with StrBoth on probability, RoteIns surprisingly outperformed

StrBoth on logic.

General Discussion, Our MMI Framework, and Broader Impacts

We summarize our findings by addressing the research questions of this work.



34 Mark Abdelshiheed, Tiffany Barnes and Min Chi

RQ1 (Combining Metacognitive Knowledge and Motivation):

The preliminary study confirms the importance of motivation in that on both

tutors, the impact of metacognitive knowledge on student learning appeared

only among the highly motivated students. In contrast, for low-motivation

students, no detectable difference was found within the three metacognitive

groups. These findings confirm that our choice of using the accuracy of online

traces on the first two questions is a reasonable way to measure students’

initial motivation levels.

Our results demonstrate the distinction between knowing how and when

to use each strategy. Students who knew both (StrBoth) transferred their

conditional knowledge across the two tutors, which confirms our MetaScore

definition of measuring metacognitive knowledge (see Equation 1). Finally,

we emphasize the impact of combining metacognitive knowledge and motiva-

tion on facilitating transfer. We found that high-motivation StrBoth students

consistently performed best on both tutors despite receiving no interventions.

RQ2 (Providing Instructional Interventions for Students with Low

Metacognitive Knowledge):

The two experiments aimed to provide instructional interventions for StrHow

and Rote students based on the metacognitive knowledge they lack. StrHow

students leveraged the nudges on both experiments, which taught them when

to use backward chaining. Meanwhile, Rote students benefited most from Ex-

periment 1 due to the combination of worked examples and nudges, which

taught them how and when to use backward chaining, respectively. However,

Rote students did not perform well in Experiment 2, as the nudges alone would

not teach both the how and when.

RQ3 (Factors Impacting Transfer for Metacognitive Groups):
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We discuss our findings for each metacognitive knowledge group, then present

a framework that summarizes these results.

StrBoth: Although StrBoth and Control students received no interventions

on both experiments, the former detectably outperformed the latter on both

tutors. This finding supports the belief that some students learn regardless of

the environment (Kanfer & Ackerman, 1989), and we argue that metacognitive

knowledge plays a vital role in this outcome. Additionally, motivation was a

decisive factor among StrBoth students, as highly motivated StrBoth students

consistently outperformed their low-motivation peers in the preliminary study

and Experiment 2 on both tutors.

Rote: Their best performance occurred in Experiment 2 due to receiving

prompted nudges and worked examples; RoteIns detectably outperformed all

groups on logic, including StrBoth —the gold standard— and caught up with

StrBoth on probability. Therefore, it is evident that Rote students benefited

from the combination of worked examples and prompted nudges that taught

them how and when to use the backward-chaining strategy and, as a result,

encouraged them to try a strategy other than the default forward chaining.

However, when the worked examples disappeared —as in Experiment 1— the

students’ performance deteriorated, as the nudges only recommended the strat-

egy switch, which is irrelevant without knowing such a strategy.

StrHow: Unlike their Rote peers, StrHow students benefited equally from

the two experiments; StrHowNud and StrHowIns detectably surpassed their

respective control peers and caught up with StrBoth on both tutors, while

there was no detectable difference between StrHowNud and StrHowIns on ei-

ther tutor. Hence, StrHow students leveraged the prompted nudges in both

experiments that taught them when to switch to BC, which is the conditional

metacognitive knowledge that they lacked before.
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Based on these findings, we propose a Metacognitive knowledge, initial

Motivation, and instructional Interventions (MMI) framework for transfer

across ITSs. Table 9 summarizes our framework by highlighting which fac-

tors in each metacognitive knowledge group will likely facilitate transfer. The

factors include the students’ motivation level and the provided interventions

in the two experiments. Note that the logic and probability motivation were

combined into one row, as this framework makes the same claim about them.

The green and red table entries claim whether students within a metacognitive

group will likely transfer their knowledge by possessing high motivation or re-

ceiving intervention(s). The gray entries are empty to reflect that no claim can

be made due to the absence of experimentation. In other words, no interven-

tions were provided to StrBoth students, as we prioritized treating them as the

gold standard to compare them to our experimental students. Our framework

can be summarized as follows:

1. Possessing high motivation is a detectable measure of transfer only among

StrBoth. However, this is not the case for their Rote and StrHow peers

regardless of receiving interventions (in the two experiments) or not (in the

preliminary study).

2. StrHow students show signs of transfer when receiving prompted nudges

about when to switch strategy, while Rote students require the combination

of nudges (when) and worked examples (how) to achieve transfer. These

outcomes are observed regardless of the motivation level on both tutors.

Limitations and Broader Impacts

Despite these findings, we emphasize that our work had at least four caveats.

First, our measurement of the students’ motivation used the first two prob-

lems on each tutor and did not consider that students’ motivation may vary
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during the training. Second, splitting students into experimental and control

conditions resulted in small sample sizes in Experiment 1. Third, the logic

tutor offered a default strategy, and the probability tutor supported only one

strategy. A more convincing testbed would be having the tutors support both

strategies, where students are asked to choose the default strategy. Finally,

our framework is based on our definitions of metacognitive knowledge and

motivation, the provided interventions, and the two ITSs.

The future work involves utilizing adaptive methodologies (Abdelshiheed

et al., 2023a, 2023b; Hostetter et al., 2023) to determine when to prompt a

nudge. We believe our work has broader impacts that can be summarized

as follows:

1. Our operationalization of motivation was based on the initial accuracy of

trace logs, which contributed to predicting and quantifying transfer across

ITSs. On the other hand, motivation theories, such as Achievement Goal

Theory (AGT), rely on self-report measures that are subjective and hard to

generalize. We speculate that initial accuracy could, with further research,

be used to measure achievement goals and hence substitute self-report mea-

sures. We believe that AGT is the most explicit theory in relating motiva-

tion to performance , whether performing the task extremely well (known

as mastery in AGT) or performing the task better than other individuals

(known as performance in AGT). We believe AGT and initial accuracy

would likely align, especially since students with high mastery or perfor-

mance approach would likely be cautious (accurate) in applying each step

during the initial phases of learning. The remaining motivation theories are

less explicit about performance; instead, they measure other dimensions of

motivation, like the expected value, fulfillment, or satisfaction (Eccles &

Wigfield, 2020; Eccles, 1983).
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2. Our work showed a significant distinction between knowing how and when

to use each strategy, which highlights the need for careful consideration in

designing interventions and ITSs. Considering the nudge intervention as an

example, it is cognitive if it tells a student to apply or undo a rule, but what

makes it metacognitive in our work is that it tells students to reconsider

their thinking of the strategy from the root, and it fulfills the realization

of when to tell them so. Despite being non-confrontational, a nudge will

likely prompt a set of meta-questions that are not limited to the current

strategy but whether picking that strategy from the beginning was the

right choice. Examples of such questions include “Why did the tutor ask

me to reconsider my strategy instead of helping with my current solution?

Does this mean the default strategy is the wrong one from the beginning?”,

“Why did this nudge appear exactly now? Why not ten seconds ago or one

minute later? Was there a certain behavior I did wrong with the current

strategy?”, and “My current progress in the default (FC) strategy looks

like this. If I switch to the alternative (BC) strategy, I think it will look

like that. What makes the new strategy easier?” Several interventions and

ITSs are designed to teach how to apply or memorize a procedure without

making students question the rationale and timing of using each procedure

and subroutine.
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Glogger-Frey, I., Fleischer, C., Grüny, L., Kappich, J., & Renkl, A. (2015).



42 Mark Abdelshiheed, Tiffany Barnes and Min Chi

Inventing a solution and studying a worked solution prepare differently for

learning from direct instruction. Learning and Instruction , 39 , 72–87.

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A

six-thousand-student survey of mechanics test data for introductory physics

courses. American journal of Physics , 66 (1), 64–74.

Hostetter, J. W., Abdelshiheed, M., Barnes, T., & Chi, M. (2023). A self-

organizing neuro-fuzzy q-network: Systematic design with offline hybrid

learning. In Proceedings of the 22nd international conference on autonomous

agents and multiagent systems (aamas) (pp. 1248–1257).

Kalyuga, S. (2009). The expertise reversal effect. In Managing cognitive load

in adaptive multimedia learning (pp. 58–80). IGI Global.

Kanfer, R., & Ackerman, P. L. (1989). Motivation and cognitive abilities:

An integrative/aptitude-treatment interaction approach to skill acquisition.

Journal of applied psychology , 74 (4), 657. doi: 10.1037/0021-9010.74.4.657

Krathwohl, D. R. (2002). A revision of bloom’s taxonomy: An overview.

Theory into practice, 41 (4), 212–218.

Likourezos, V., & Kalyuga, S. (2017). Instruction-first and problem-solving-

first approaches: alternative pathways to learning complex tasks. Instr. Sci.,

45 , 195–219. doi: 10.1007/s11251-016-9399-4

Livingston, J. A. (2003). Metacognition: An overview. ERIC.

Nokes-Malach, T., & Belenky, D. (2011). Incorporating motivation into a

theoretical framework for knowledge transfer. Cognition in Education, 109.

doi: 10.1016/B978-0-12-387691-1.00004-1

Otieno, C., Schwonke, R., Salden, R., & Renkl, A. (2013). Can help seeking

behavior in intelligent tutoring systems be used as online measure for goal

orientation? In Proceedings of the annual meeting of the cognitive science

society (Vol. 35).

Renkl, A. (2005). The worked-out-example principle in multimedia learning.



The Impact of Metacognitive Knowledge Instruction and Motivation on Transfer 43

The Cambridge handbook of multimedia learning , 229–245.

Rheinberg, F., Vollmeyer, R., & Rollett, W. (2000). Motivation and action in

self-regulated learning. In Handbook of self-regulation (pp. 503–529). Else-

vier. doi: 10.1016/B978-012109890-2/50044-5

Richey, J. E., Zepeda, C. D., & Nokes-Malach, T. (2015). Transfer effects of

prompted and self-reported analogical comparison and self-explanation. In

Proceedings of the annual meeting of the cognitive science society (Vol. 37).

Roberts, M. J., & Erdos, G. (1993). Strategy selection and metacognition.

Educational Psychology , 13 , 259–266. doi: 10.1080/0144341930130304

Schraw, G. (1998). Promoting general metacognitive awareness. Instructional

science, 26 (1-2), 113–125.

Schraw, G., & Dennison, R. S. (1994). Assessing metacognitive awareness.

Contemporary educational psychology , 19 (4), 460–475.

Schraw, G., & Gutierrez, A. P. (2015). Metacognitive strategy instruction that

highlights the role of monitoring and control processes. In Metacognition:

Fundaments, applications, and trends (pp. 3–16). Springer.

Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational

psychology review , 7 , 351–371.

Simon, C., & Tagliabue, M. (2018). Feeding the behavioral revolution: Contri-

butions of behavior analysis to nudging and vice versa. Journal of Behavioral

Economics for Policy , 2 (1), 91–97.

Smith, N. C., et al. (2013). Choice without awareness: Ethical and policy

implications of defaults. Journal of Public Policy & Marketing , 32 (2), 159–

172.

Thaler, R. (2015). The power of nudges, for good and bad. The New York

Times . (Available at: https://www.nytimes.com/2015/11/01/upshot/

the-power-of-nudges-for-good-and-bad.html)

Thaler, R., & Sunstein, C. R. (2008). Nudge: Improving decisions about health,

https://www.nytimes.com/2015/11/01/upshot/the-power-of-nudges-for-good-and-bad.html
https://www.nytimes.com/2015/11/01/upshot/the-power-of-nudges-for-good-and-bad.html


44 Mark Abdelshiheed, Tiffany Barnes and Min Chi

wealth, and happiness. HeinOnline.

Thaler, R., Sunstein, C. R., & Balz, J. P. (2013). Choice architecture. The

behavioral foundations of public policy , 25 , 428–439.
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Fig. 1: Logic Tutor Problem-Solving Strategies
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Fig. 2: Probability Tutor Training Interface

Table 1: Comparing the Metacognitive Groups (Prelim. Study)

Group Pre Iso. Post Iso.NLG Post NLG

Logic Tutor

Rote
(N = 184)

75.5 (2.8) 69.8 (1.91) 0.14 (.31) 70.9 (1.68) 0.19 (.393)

StrHow
(N = 166)

74.9 (3) 67.7 (1.96) -0.49 (.42) 68.2 (1.67) -0.46 (.39)

StrBoth
(N = 145)

78.4 (3.2) 76.2 (1.9) 0.96 (.43) 75.8 (1.7) 0.94 (.395)

Probability Tutor

Rote 71.8 (2.6) 73.7 (2.8) 0.002 (.06) 73.4 (2.6) -0.007 (.05)

StrHow 72.1 (2.5) 73.9 (3.2) 0.008 (.07) 74 (2.8) 0.01 (.05)

StrBoth 72.3 (2.8) 75.1 (3.4) 0.01 (.07) 75.5 (3) 0.02 (.06)

Table 2: Comparing the Motivation Level (Prelim. Study)

Group Pre Iso. Post Iso.NLG Post NLG

Logic Tutor

HMLogic

(N = 248)
78.9 (5.3) 73.8 (1.6) 0.27 (.09) 73.6 (1.4) 0.25 (.06)

LMLogic

(N = 247)
73.4 (5.5) 70.2 (1.8) 0.17 (.1) 69.2 (1.4) 0.14 (.07)

Probability Tutor

HMProb

(N = 249)
81.7 (4.2) 79.6 (2.3) 0.08 (.05) 79 (1.8) 0.05 (.04)

LMProb

(N = 246)
77 (4.4) 68.7 (2.9) -0.05 (.04) 69 (2.5) -0.03 (.04)
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(a) Post

(b) NLG

Fig. 3: Metacognitive Knowledge and Motivation on Logic (Prelim. Study)

Table 3: Confusion Matrix of Testing Dataset

Prediction
Truth

Rote StrHow StrBoth

Rote 45 1 0

StrHow 2 40 0

StrBoth 0 1 35
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(a) Post

(b) NLG

Fig. 4: Metacognitive Knowledge and Motivation on Prob. (Prelim. Study)

Fig. 5: Prompted Nudge
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Fig. 6: Training on the Modified Logic Tutor (Exp.1: Nudge)

Table 4: Overview of Procedure (Exp.1: Nudge)

Logic

Pre-test (2 problems)

Training (20 problems):

Nudge (Experimental) =⇒ Intervention (Fig. 6)

Control =⇒ Original

Post-test (6 problems, including 2 isomorphic)

Six weeks later

Prob.

Textbook

Pre-test (14 problems)

Training (12 problems)

Post-test (20 problems, including 14 isomorphic)

Fig. 7: Strategy Switch Behavior on Logic (Exp.1: Nudge)
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Table 5: Comparing The Groups’ Scores (Exp.1: Nudge)

Nudge (Experimental) Control

RoteNud

(N = 13)
StrHowNud

(N = 15)
RoteCtrl

(N = 14)
StrHowCtrl

(N = 14)

Logic Tutor

Pre 66.5 (17) 65.6 (19) 64.1 (21) 63.9 (20)

Iso. Post 66.9 (5.6) 74.7 (6.1) 65.6 (5.2) 61.8 (4.7)

Iso.NLG 0.02 (.1) 0.12 (.07) 0.05 (.08) -0.04 (.1)

Post 67.3 (5.1) 76.8 (4.9) 64.5 (4.3) 65.4 (4.2)

NLG 0.03 (.08) 0.18 (.09) -0.01 (.16) 0.02 (.13)

Probability Tutor

Pre 75.3 (13) 74.9 (15) 75.3 (17) 76.1 (14)

Iso. Post 81.1 (7.1) 92.9 (5.7) 79.1 (6.5) 80.3 (6.8)

Iso.NLG 0.1 (.18) 0.33 (.18) 0.07 (.17) 0.09 (.2)

Post 79.7 (5.9) 90.5 (5.4) 76.2 (6.1) 78.5 (5.6)

NLG 0.07 (.16) 0.29 (.08) 0.04 (.13) 0.05 (.15)

Fig. 8: Training on the Modified Logic Tutor (Exp.2: Instruction)
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Table 6: Comparing the Conditions across Tutors (Exp.2: Instruction)

Experimental
(N = 61)

Control
(N = 41)

1-way ANOVA

Logic Tutor

Pre 62.8 (19.6) 59.4 (18.4) p = .38

Iso. Post 75.9 (2.5) 62.4 (4) F (1, 100) = 15.3, p < .001, η2 = .13

Iso.NLG 0.19 (.03) 0.03 (.06) F (1, 100) = 8.2, p = .005, η2 = .08

Post 77.4 (3.6) 65.4 (5.2) F (1, 100) = 38.9, p < .001, η2 = .28

NLG 0.2 (.05) 0.05 (.06) F (1, 100) = 10.6, p = .002, η2 = .1

Probability Tutor

Pre 69.6 (18.6) 74.9 (15.1) p = .13

Iso. Post 92.9 (2.8) 84.4 (4.1) F (1, 100) = 18.5, p < .001, η2 = .16

Iso.NLG 0.4 (.05) 0.11 (.08) F (1, 100) = 24.3, p < .001, η2 = .2

Post 88.9 (5) 72.2 (6.1) F (1, 100) = 58.2, p < .001, η2 = .37

NLG 0.33 (.06) -0.18 (.21) F (1, 100) = 51.4, p < .001, η2 = .34

Table 7: Comparing The Groups’ Scores (Exp.2: Instruction)

Instruction (Experimental) Control

RoteIns

(N = 35)
StrHowIns

(N = 26)
RoteCtrl

(N = 25)
StrHowCtrl

(N = 16)
StrBoth
(N = 26)

Logic Tutor

Pre 61.8 (23) 64.2 (14) 60.1 (20) 58.3 (16) 62.3 (21)

Iso. Post 78.9 (1.9) 71.9 (1.6) 64.2 (3.8) 59.4 (4.2) 73.1 (5.3)

Iso.NLG 0.25 (.04) 0.1 (.04) 0.05 (.05) -0.02 (.06) 0.08 (.05)

Post 80.3 (1.7) 73.4 (1.5) 64.3 (3.5) 67.2 (2.9) 72.3 (5.5)

NLG 0.25 (.03) 0.13 (.03) 0.02 (.04) 0.09 (.07) 0.11 (.06)

Probability Tutor

Pre 67 (20) 73.1 (16) 73.2 (15) 77.7 (15) 70.6 (19)

Iso. Post 92.5 (3.4) 93.5 (3.3) 82.5 (3.9) 87.4 (5.8) 91.7 (6.2)

Iso.NLG 0.43 (.06) 0.37 (.12) 0.09 (.21) 0.14 (.23) 0.37 (.16)

Post 88 (3.1) 90.2 (3.1) 71.3 (3.5) 73.5 (5.5) 85.8 (5.7)

NLG 0.35 (.05) 0.3 (.08) -0.16 (.23) -0.21 (.21) 0.24 (.15)
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(a) On Logic

(b) On Probability

Fig. 9: The performance of Motivation Groups (Exp.2: Instruction)

Fig. 10: Strategy Switch Behavior on Logic (Exp.2: Instruction)
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Table 8: Comparing The Groups’ Scores (Post-hoc Analysis)

Group Pre Iso. Post Iso.NLG Post NLG

Logic Tutor

Exp.1:
RoteNud

(N = 13)
66.5 (17) 66.9 (5.6) 0.02 (.1) 67.3 (5.1) 0.03 (.08)

Nud. StrHowNud

(N = 15)
65.6 (19) 74.7 (6.1) 0.12 (.07) 76.8 (4.9) 0.18 (.09)

Exp.2:
RoteIns

(N = 35)
61.8 (23) 78.9 (1.9) 0.25 (.04) 80.3 (1.7) 0.25 (.03)

Ins. StrHowIns

(N = 26)
64.2 (14) 71.9 (1.6) 0.1 (.04) 73.4 (1.5) 0.13 (.03)

Control
RoteCtrl

(N = 39)
61.5 (20) 64.7 (4.2) 0.05 (.06) 64.4 (3.7) 0.01 (.07)

StrHowCtrl

(N = 30)
60.9 (17) 60.5 (4.4) -0.03 (.07) 66.4 (3.7) 0.06 (.1)

StrBoth
(N = 34)

62.7 (20) 73.6 (5.1) 0.1 (.05) 72.9 (5.2) 0.14 (.05)

Probability Tutor

Exp.1:
RoteNud 75.3 (13) 81.1 (7.1) 0.1 (.18) 79.7 (5.9) 0.07 (.16)

Nud. StrHowNud 74.9 (15) 92.9 (5.7) 0.33 (.18) 90.5 (5.4) 0.29 (.08)

Exp.2:
RoteIns 67 (20) 92.5 (3.4) 0.43 (.06) 88 (3.1) 0.35 (.05)

Ins. StrHowIns 73.1 (16) 93.5 (3.3) 0.37 (.12) 90.2 (3.1) 0.3 (.08)

Control
RoteCtrl 74 (15) 81.3 (4.8) 0.08 (.2) 73.1 (4.9) -0.09 (.19)

StrHowCtrl 77 (15) 84.1 (6.2) 0.12 (.22) 75.8 (5.5) -0.09 (.18)

StrBoth 70.4 (20) 92.1 (5.9) 0.38 (.14) 86.4 (5.7) 0.27 (.15)

Table 9: MMI Framework for Transfer

Metacognitive
Knowledge

Rote
(Neither)

Procedural
(How)

Conditional
(How & When)

Motivation No No Yes

Intervention
Nudges
(When)

No Yes -

WE & Nudges
(How & When)

Yes Yes -

Red/Green cells answer this: “Would possessing high motivation or receiving
interventions facilitate transfer for a metacognitive knowledge group?”
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