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ABSTRACT

Knowledge tracing (KT) models have been a commonly used
tool for tracking students’ knowledge status. Recent ad-
vances in deep knowledge tracing (DKT) have demonstrated
increased performance for knowledge tracing tasks in many
datasets. However, interpreting students’ states on single
knowledge components (KCs) from DKT models could be
challenging when tracking multiple KCs in one student sub-
mission attempt. In this paper, we evaluate the ability of
DKT models to track students’ knowledge using AUC scores.
We further propose two possible solutions to improve multi-
KC tracking performance: incorporating a layer that explic-
itly represents knowledge of each KC and incorporating code
features into the DKT models. In experiments, we compare
DKT to the proposed models and evaluate KC tracking per-
formance in an introductory computer science course (CS1)
dataset. Our results indicate that while all four models per-
form similarly on problem correctness predictions, incorpo-
rating KC layers may lead to limited improvement for KC
tracking performance. Through a hand-labeled dataset with
KC-specific correctness, our research shows that DKT has a
limited performance when tracking multiple skills, especially
when tracking incorrect submissions. We present potential
ways, including designing a layer or incorporating student
code information in the models, while the results show that
only the layer yielded improvements.
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1. INTRODUCTION AND BACKGROUND

Many knowledge tracing models (e.g., BKT or DKT, [3,
11]) are built to model students’ KCs (or skills; see [9]).
However, as [19] note, these models are designed for prob-
lems broken down into steps that practice just one skill at
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if (age <= 20 || age >= 10) { if (age <= 20 && age >= 10) {
Condition A; Condition B;

} else { } else {
Condition B; Condition A;

} }

Figure 1: Examples of two incorrect submissions with differ-
ent KCs incorrectly demonstrated.

a time, allowing each skill to be modeled somewhat inde-
pendently. It is more challenging to model problems that
practice multiple skills simultaneously, such as those found
in many programming practice contexts. For example, in
the problem shown in Figure 1, the student must simulta-
neously check if a variable lies between two constants (one
KC) while also sequencing conditionals correctly (a sepa-
rate KC). If a student gets this problem right, this serves
as some evidence that they understand all of the relevant
concepts; however, if a student gets this problem incorrect,
it is unclear which of these concepts they need more prac-
tice on and which they may have mastered. For example,
Figure 1 shows two hypothetical, incorrect student answers
to this problem, with two very different errors, which should
in theory lead to two very different updates to the student
model; however, existing knowledge tracing approaches gen-
erally do not differentiate these responses, simply labeling
them both as “incorrect.” This causes possible issues when
the goal is to track students’ knowledge on each KC (also
referred to as the student’s “KC state” in this work).

The need to model learning on problems where multiple
skills are practiced simultaneously has led to a number of
Bayesian models that extend BKT (e.g., [20, 8, 13]). For ex-
ample, in [20], the authors used a linear regression method
to model multiple skills at a time. In the work of [8], the
authors proposed a method to assign “fair blame” to each
KC on incorrect problem predictions, using weights derived
from prior submissions from students to determine which
KC(s) were at fault. While the work addresses our pro-
posed issue, they achieve this in conjunctive BKT models,
and it is not clear how to extend the work to modern DKT
models or interpretations of their layers. Many recent KT
models leverage deep learning methods to achieve better per-
formance [6]. However, little work has explored how to track
multiple skills at the same time. Khajah et al. commented
that DKT’s advantage of performance comes with a cost of
interpretability, and specifically designed BKT models can
result in similar accuracy with DKT [7]. Prior works suggest
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the need for building deep KT models that can effectively
model multiple skills at the same time, and, perhaps more
importantly, finding ways to evaluate how well these models
perform.

Building and evaluating deep knowledge tracing models to
track multiple skills at the same time presents a few major
challenges. First, the predictions of such models are usually
next-submission correctness, and additional steps are needed
to map these correctness predictions to KC values or skills.
Unlike traditional Bayesian KT models, deep models are
mostly used to predict problem correctness [11, 10, 15] (i.e.,
there is a 70% chance the student will get Problem 3 correct)
instead of modeling knowledge of specific KCs (i.e., there is a
70% chance the student has mastered the skill of sequencing
conditionals properly). While Q-matrices [1] provide infor-
mation about which KCs are practiced in which problems,
the models are not designed to incorporate this information.
This may lead to a conceptual gap between problem correct-
ness and KC labels in the training of models. Furthermore,
mapping these correctness predictions to estimates of skill
mastery becomes more complicated when problems practice
multiple interdependent skills. The second challenge is that
deep models often lack interpretability. Deep KT models
have long been criticized for their lack of interpretability
[14]. This is partly because the structure of deep models is
much more complex than Bayesian models and not directly
mapped to learning theory. However, in computing educa-
tion, prior research observed much better modeling results
from DKT than BKT models, showing the computational
complexity of deep learning models helped the performance
[15]. Finally, there’s also an opportunity to solve these chal-
lenges by incorporating domain-specific information into the
deep learning models, such as programming code [22], as it
has been showing improvements on correctness prediction
tasks (e.g., [15]).

In this paper, to address the first challenge, we use a method
to infer KCs from DKT predictions and evaluate the perfor-
mance of DKT models in tracking multiple KCs. Rather
than evaluating the models only on their ability to pre-
dict the correctness of a problem attempt, we also evaluated
them on their ability to predict whether a student demon-
strated a particular KC correctly on that problem (regard-
less of whether the whole problem was correct). In order to
do so, we had experts label student submissions and used
adjusted AUC scores towards the goal of tracking the KCs
on incorrect submissions from problems practicing multiple
KCs. We further compare the correctness predictions to the
KC predictions to evaluate whether DKT models can track
multiple KCs at the same time, using the prediction-inferred
KCs. The challenge of mapping correctness to skill mastery
can be addressed by modifying the DKT models. We in-
troduce a possible way to improve the interpretation of the
DKT models by introducing a KC layer — a variant of DKT
models named KCDKT that incorporates Q-matrix infor-
mation as a layer into the DKT models. The layer is placed
between the recurrent structure of the DK'T models and the
correctness prediction layer to learn KC values and use the
KC values for correctness prediction. Because DKT is only
trained on correctness labels, and we are measuring its abil-
ity to predict successful demonstration of individual KCs,
the model may struggle. However, other features, such as

the program code students write may have useful informa-
tion for making these predictions. Therefore, we also explore
the model performance if code features are used in the mod-
els, creating the code version of KCDKT (CodeKCDKT)
and we evaluate the correctness and KC predictive perfor-
mance of the models. BKT models are not compared in
our experiments due to prior low performance in relevant
research [15], and our exploration in this paper is focused
on DKT models. Specifically, we answer the three research
questions:

RQ1: How well does the original DKT model students’ mas-
tery of individual KCs when practicing on multiple-KC prob-
lems?

RQ2: How does adding an explicit layer to model KC mas-
tery to DKT affect its performance on this task?

RQ3: How does adding programming code to DKT affect its
performance?

2. METHOD

In this section, to facilitate the understanding of the method,
we first introduce the measurements of KC mastery in this
paper, then introduce the models to be evaluated: how code
features are incorporated in DKT and how the KC layers
are incorporated.

2.1 Measuring KC Mastery Modeling

While prior work has explored how to improve the predictive
performance of models on multi-KC problems [8, 20], our
goal is to more directly measure a model’s ability to predict
a student’s mastery of individual KCs. While this mastery
itself is unobservable, according to the KLI Framework [9],
it should correspond closely with student performance on
problems where those KCs are practiced. The fact that stu-
dents may practice multiple KCs on each problem further
complicates this challenge. The assumption is that when a
student correctly submits an attempt at a problem, this is
evidence of mastery of all KCs practiced in that problem.
However, we cannot make these assumptions when a student
gets a problem incorrect. The student may have demon-
strated mastery of one KC (e.g. creating a correct con-
ditional structure), but failed to demonstrate another (e.g.
constructing the boolean expression in the if-statement). Al-
ternatively, a student may have demonstrated mastery of
both of these skills, but "slipped” by creating a syntax er-
ror and therefore got the problem wrong. Therefore, the
only way to accurately label the demonstration of KC mas-
tery on incorrect attempts is to do so manually. This is de-
scribed in section 3.4. Once the labels are obtained, we can
evaluate the model the same way KT models are normally
evaluated; however, instead of using correctness labels, we
use these expert-authored KC-demonstration labels. Now,
instead of having one prediction instance per student per
problem (counting only first-attempts, as is customary [3]),
we have k, where k is the number of relevant KCs for that
problem. We can otherwise evaluate the model’s predic-
tive performance using traditional metrics (e.g., AUC). Note
that this evaluation approach gives extra weight to problems
with more KCs (which produces more prediction instances),
so it is also possible to weight the results to give each prob-
lem the same weight in the evaluation (e.g. a 2-KC problem
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Figure 2: CodeDKT implementation with KC layer incorpo-
rated.

has 2 KC predictions, which are each given half the weight).

This evaluation of KC correctness is a key contribution of
this work. It is different and more informative than evalu-
ating the KC states of students on overall problem correct-
ness for two main reasons. 1) While problem correctness
prediction could provide useful information for teachers and
students, for example, as feedback, the prediction on the
KC level will be more informative. Correctness predictions
can alert students when they start an attempt that is pre-
dicted to be incorrect. However, the prediction alone does
not provide any information on why students may make a
mistake. KC predictions will help students to locate the KCs
that need more practice. 2) Good performance on predict-
ing problem correctness does not necessarily mean that a
model has a meaningful internal representation of KC mas-
tery as latent variables. Deep learning models are famous
for being black boxes [18], and they could learn different
features (many of which many not be related to KCs). For
example, it may capture students’ usage of brackets (i.e.,
correct syntax) as a key feature for the prediction (as shown
in the discussion of [16]). While this may be associated with
students’ coding behavior and ultimately may predict code
correctness, it is not a KC we want to model for an assign-
ment that focuses on conditionals.

2.2 Inferring KCs from DKT and CodeDKT

Predictions
Assume that the prediction results of DKT [11]/CodeDKT
[15] models for a student is a sequence of vectors y1,ya2, ..., yr,
where y; represents the predicted correctness of next sub-
mission (¢ + 1) for the student, we infer KC values from the
vt vectors (see Figure 2). When single KCs are practiced in
each submission or practice step, the correctness predictions
could directly represent the corresponding KCs through a
Q-Matrix. However, in multi-KC scenarios, the predictive
correctness of problems is not directly associated with the
mastery of a single KC. Therefore, in our work, we infer the
model’s estimate of a student’s mastery of a given KC, k,
by averaging the model’s predictions on all problems that

practice the KC k, according to a Q-matrix. While these
problems may also practice other KCs, our assumption is
that the average across all such problems is a rough proxy
for mastery of k. This assumption comes with certain lim-
itations, as problems have convoluted and associated skills,
making some problems harder and some easier.

2.3 KC Layer Design in DKT and CodeDKT

The prior approach has a number of limitations, as discussed
above. Ideally, we should not have to infer a model’s esti-
mate of KC mastery from other outputs; we should be able
to read it directly from this model. This would not only
make the inference more direct, but it may also improve
the model’s ability to model these skills by incorporating
the process in the model training process. We further in-
troduce a layer specifically designed to represent KC states
in the DKT models. Taking the CodeDKT model as an
example, shown in Figure 2, we incorporate the KC layer
Wkc before the final prediction of problem correctness.
The input of the model has two parts, students’ code submis-
sions C1, Ca, ..., Cr and the corresponding correctness vectors
X1, X2,...,X¢ of these submissions. Code features are sepa-
rately processed by a code LSTM layer and concatenated
with the correctness LSTM layer output. Then the merged
vectors are processed by the KC layer which incorporates
the Q-matrix. The incorporation is based on a hypothe-
sis: KC states indicate students’ probability of achieving
relevant problems. We create a layer in the model that con-
denses its predictions down to I values where I is the number
of KCs. The model then uses these KC knowledge estimates
to predict student performance on all problems, where each
problem prediction is a weighted sum of the relevant KCs
for the problem, according to the Q-matrix. Assume we
have KC vectors K; at submission ¢, then the probability
of students getting relevant problems correctly practiced is
processed in the KC layer as

vyt = 0(KiWke), (1)

where o(-) represents the sigmoid function. We consider
Wke € RPN as the weight of each of the KCs specific
to problems, where I represents the number of KCs and N
represents the number of problems. To learn KC states,
the KC layer Wi is designed to employ two properties:
(1) on irrelevant problems, the weight is set to 0, and (2),
the weight is normalized to a range of 0 to 1. I introduce
the Q-matrix Q € {0,1}**" in this process for the filter
purpose and use SoftMax to normalize among relevant KCs.
Specifically, the KC layer weights are calculated as

W ke = normalize(c(Wxe) © Q), (2)

where © is an operator for element-wise multiplication, and
W' denotes the original KC layer weight before applying
the filtered SoftMax process. The goal is to use this layer to
represent the relationship between KC states and predicted
problem correctness. For example, if a problem has two
relevant KCs, students’ corresponding KC states should be
used to calculate the probability of the submissions’ correct-
ness. The training of the model still follows DKT, where we
use the next problem correctness (y sequences) to train the
model but evaluate the interpreted KCs on the K vectors.

The way we chose to incorporate a Q-matrix into the KCDKT
model is based on the defining properties of KCs. When stu-



dents practice KCs in problems, their knowledge of relevant
KCs should indicate their probability of successfully achiev-
ing the problem. This relationship can be represented with
a Q-matrix. In this project, the KC layer serves to achieve
two goals. First, it allows the weights to be filtered by the
Q-matrix. In the model forward pass, only relevant KCs are
multiplied with a weight learned in the KC layer, while all ir-
relevant KCs are multiplied with zero. In the backward pass,
only the gradients related to the relevant KCs are updated,
forcing the designed dimensions of the recurrent layer output
to be updated using information of relevant KCs. Our goal
is to model KCs (skills), rather than misconceptions (which
we leave for future work). Therefore, to make weights more
interpretable, we constrained them to be positive. To do so,
we filtered the weight of the KC layer to be positive, and
the sum of the weights for a problem was normalized as one.
The design of the KC layer serves the goal of incorporating
the KC properties into the DKT model when tracking KCs.

3. EXPERIMENTS

3.1 Dataset Processing and Experiment Setup
In this work, we employ a public dataset from the 2nd
CSEDM data challenge!, which is collected from the Spring
and Fall 2019 semesters at Virginia Tech in an introduc-
tory programming class. Students are required to practice
their Java programming in the CodeWorkout online plat-
form [4], and they receive test case feedback from the plat-
form. During the analysis, no demographic information is
made available for the researchers, nor does it bring ethical
concerns. There are 410 students practicing in the dataset,
and every submission averages less than 20 lines of code.
Students practiced in five assignments, each comprising ten
problems for students to practice certain topics. For exam-
ple, we only use data from the first assignment, and the
problems practice mainly concepts related to if conditions.
In all submissions of the first assignment, 26.14% pass all
test cases. We used the Q-matrix and KC labels introduced
in Sections 3.4. In the raw data processing process, we fol-
lowed the process described in recent work (e.g., [16]) to
filter out potential cheating students in the dataset. Some
students started trying multiple times, struggling with ear-
lier and easier problems, but succeeded in one submission
for every harder problem after a certain point. We filtered
such students to avoid possible noises in the dataset with a
threshold. Students who struggled first and achieved quickly
in the more difficult problems later are filtered out and not
analyzed in this work. After the filtering process, 351 stu-
dents were analyzed in our experiments. For running the
deep learning models, we used Intel(R) Core(TM) i7-9700K
CPU @ 3.60GHz and GeForce RTX 2080 Ti as the CPU and
GPU for computing, with 64G RAM. The rough amount of
time training a model is less than 10 minutes for one run.?

3.2 Hyperparameter Tuning

We fine-tuned two hyperparameters in the DKT and Cod-
eDKT models, the epochs ep of running and the learning
rate Ir, and selected the best hyperparameters with grid
search in 4-fold cross-validation. The grid search space is
defined that: for the DKT and CodeDKT models, we search

Mhttps://sites.google.com /ncsu.edu/csedm-de-2021/
2Code and data can be found in
https://github.com/YangAzure/KC-Attribution-Tracking.

the space of Ir = {0.0004,0.0005,0.0006,0.0007} and ep =
{40, 60, 80, 100, 120}; for the KCDKT and CodeKCDKT mod-
els, the search space of hyperparameters are {r = {0.004, 0.006,
0.008,0.01} and ep = {80,100, 120,140, 160}. We explored
the space of hyperparameters before the search and ensured
that optimal correctness prediction performance are achieved
through models trained in this space in cross-validation. The
final hyperparameter we arrived at is ir = 0.0007, ep = 80
for DKT, Ir = 0.0004, ep = 40 for CodeDKT, Ir = 0.01,
ep = 100 for DKT, Ir = 0.01, ep = 120 for DKT. In testing,
we ran each model 5 times to calculate and report the aver-
age result for correctness prediction and KC interpretation
in the next section.

3.3 Evaluation Metrics

We evaluate models’ predictive performance in AUC scores
[2] and show the results in the first column of Table 1. The
metric we use to evaluate the models’ ability to track mul-
tiple KCs. The most direct evaluation would be to evaluate
the AUC scores of KC values, as we have the KC labels for
the testing dataset. We report the overall AUC scores for
all KCs in the second column of the table. Besides the over-
all AUC scores, we further adjusted the weight of each of
the KCs in the calculation of AUC scores, since for submis-
sions with multiple KCs practiced, every practiced KCs are
counted once for the AUC score. We proportionally weight
the submissions of KCs such that every submission is equally
considered in calculating AUC scores. The results of this ad-
justment are in the third column of Table 1. Finally, also
calculated AUC for a subset of predictions, which fit two cri-
teria we are specifically interested in: 1) Our ultimate goal
is to help students when they need help, mainly when they
make an incorrect submission. Therefore, the first criterion
is to select incorrect submissions to evaluate the models’
ability to track KCs. 2) The goal of multi-KC tracking also
focuses on submissions practicing multiple KCs. This is be-
cause the correctness prediction represents KC directly for
the single KC problems. We further filtered incorrect sub-
missions practicing multiple KCs to evaluate AUC scores for
the models. The results are in the last column of Table 1.

3.4 Q-matrix Definition and KC Labeling

The Q-matrix is defined by two experienced authors who
have teaching experience in introductory programming classes
for more than two semesters. We first familiarized our-
selves with the dataset by checking the problem require-
ments and random incorrect submissions. Then, we summa-
rized phrases to describe possible KCs practiced in the ten
problems and determined which KCs were meaningful for
students. For example, students need to know how to write
return statements to generate the results for functions, as
this is not a key practiced concept for the ten problems. We
go through the ten problems and label the Q-matrix with a
standard that no KCs are practiced in less than three prob-
lems or more than eight problems since KCs practiced in
only two problems may be too specific, and KCs practiced
in many problems may be too general. Too specific KCs
would be irrelevant for this specific assignment (or the set
of problems), and too general KCs are likely already prac-
ticed well in previous problems and now are frequently used.
The definition of KCs are:

Between: Construct a boolean expression to determine if a



Table 1: Correctness and KC predictive performance of DKT
models with/without incorporating KC layers. Results are
presented in AUC score (standard deviation) +- standard er-
ror. Explanations of each column are detailed in Section 3.3.

Adjusted Filtered
Model Correctness | Relevant Relevant multi-KC
AUC KC AUC KC AUC "Incorrect”
AUC
0.6853 0.6478 0.6625 0.5148
CodeKCDKT | (0.0121) (0.0095) (0.0132) (0.0215)
+-0.0060 +-0.0047 | +-0.0066 | +-0.0107
0.7054 0.6823 0.6960 0.5050
CodeDKT (0.0088) (0.0179) (0.0137) (0.0351)
+-0.0044 +-0.0089 | +-0.0068 | +-0.0175
0.6922 0.7489 0.7563 0.5348
KCDKT (0.0055) (0.0190) (0.0180) (0.0250)
+-0.0027 +-0.0095 | +-0.0090 | +-0.0125
0.7144 0.7152 0.7235 0.5183
DKT (0.0020) (0.0078) | (0.0080) | (0.0060)
+-0.0010 +-0.0039 | +-0.0040 | +-0.0030

variable is between (two) constants.

N Way Sequential Conditions: Order if-statements to reflect
mutually exclusive outcomes based on a problem prompt.

2xN: Interacting Conditions: Nest if-statements (or create
complex expressions in non-nested if-statements) to reflect
outcomes at the intersection of 2 decisions.

After defining the Q-matrix, we continued to label the test-
ing dataset of KCs. We sampled 48 students and labeled
the errors to the KCs we defined in the Q-matrix. Two au-
thors independently labeled ten students’ submissions first
and found that our labeling has been consistent with Co-
hen’s Kappa value of 0.765, reaching excellent agreement
[5]. Then, one author labeled all the rest students in the
testing dataset.

4. RESULTS

4.1 Correctness Prediction

Interpretability doesn’t matter if the models aren’t predic-
tive, so we need first to verify that they are all compara-
ble to past data [15]. The results of correctness predictions
are shown in the first column of Table 1. The results show
that DKT and CodeDKT have slightly higher AUC scores
on predictive performance compared to the KCDKT and
CodeKCDKT models, while the correctness predictive per-
formance of KCDKT and CodeKCDKT models with the in-
corporation of KC layers are only about 1 percentage point
lower on AUC scores than the respective DKT models, show-
ing that the four models perform similarly in predicting the
next submission correctness on first submissions. The result
shown here is lower than reported in [15], not only because
we use a different implementation of the models but also be-
cause we filtered out all non-first submissions in the train-
ing data to keep consistent with the prior KT models, and
because we only created KC labels for first attempts; this
allowed us to use the same test dataset in Table 1. We also
filtered out submissions from potential cheating students to
reduce noise, as done in [16] as well.

4.2 KC Interpretation

The KC interpretation results in Table 1 show that the DKT
model has a relatively good AUC score on interpreting KCs
compared to CodeDKT and CodeKCDKT. Each metric in
the table is explained in Section 3.3. The best performance
comes from KCDKT, showing that the incorporation of KC
layer to the DKT model may help it to track KCs bet-
ter. However, the incorporation of code information does
not seem to improve the KC prediction performance of the
models across the two models using code features. With
both the KC layer and code features leveraged in the model,
CodeKCDKT achieves the lowest KC interpretation and cor-
rectness prediction performance, showing that incorporating
both information won’t help either correctness or KC predic-
tions. The last column of this table shows that when only
evaluating incorrect submissions practicing multiple KCs,
all models experience low AUC scores. However, KCDKT
is still the highest among the models. It shows that DKT
models cannot distinguish the difference among KCs when
multiple KCs are practiced in one submission, presenting
a significant limitation of DKT models when tracking mul-
tiple KCs. One observation is that incorporating the KC
layer still improves the performance by a little (1.55 per-
centage point on AUC score). However, none of the scores
are enough to be considered to work. We do see that at least
the improvement of the KC layer holds for the KCDKT com-
pared with the DKT model, though it does not work well
when the KC layer is incorporated into CodeDKT.

5. DISCUSSION

5.1 Research Questions

RQ1: KC from Correctness Predictions Inferring KC values
from correctness predictions may work, but it may not. On
the one hand, one might think that DKT shouldn’t be able
to predict KCs at all, since it’s not given this information.
We trained it on one set of labels and evaluated it on a dif-
ferent set. On the other hand, one might reasonably expect
that correctness should be a byproduct of KCs, so predict-
ing correctness might make for good KC predictions. What
we find is that both are true in their own way. DKT is
good at predicting KCs in some situations, and terrible in
others. The AUC score of correctness prediction (0.714) is
close to the adjusted relevant KC (0.723), meaning that the
model is able to perform KC prediction as well as correct-
ness prediction overall, however, we also see contradictive
results. Two main differences exist between adjusted rele-
vant KC AUC and correctness prediction AUC values. 1)
The model predictions averages across problems (dictated
by the Qmatrix) instead of single-problem predictions. 2)
In the test data, some Os were changed to 1s where the stu-
dent got some or all of the relevant KCs correct. While the
result could be due to either, these results at least suggest
that, these changes in the test dataset overall did not harm
DKT’s performance. When comparing the KC AUC on in-
correct submissions practicing multiple KCs (about a quar-
ter of the total amount of testing data), the performance of
DKT model, along with all other compared models, is much
worse and close to 0.50. It means that when making KC pre-
dictions, DKT models do no better than random guessing
when the submission is incorrect, and it practices multiple
KCs. The results show that all models are not able to distin-
guish KCs practiced for multi-KC problems, despite the fact
that they perform well in other scenarios. The DKT mod-



els work significantly worse on tracking multiple KCs when
students make mistakes and unfortunately, it is the scenario
when we need accurate KC tracing most to facilitate edu-
cational applications such as problem recommendation [21]
and automated formative feedback [12]. This project di-
rectly evaluates the DKT models’ ability to predict multiple
KCs at the same time, and reveals the low performance of
tracking multiple KCs. The results show that a model being
good at predicting problem correctness might correlate with
predicting when a student will get a problem right but not
with predicting why a student got a problem wrong.

RQ2: The Incorporation of a KC Layer While none of our
models had access to our KC demonstration labels, we do
see some evidence (with caveats) that it may be possible to
improve a model’s ability to predict these labels by incorpo-
rating the Q-matrix into the model design. From Table 1,
the KC interpretation performance of KCDKT is highest
among all models. The result suggest that incorporating
KC layers may serve as a method to improve the KC track-
ing performance on multiple skills. One further observation
is that the layer does not lower the correct prediction perfor-
mance much by itself. Compared with other DKT models,
it has about 1 percentage point less AUC score on problem
correctness prediction but brings at least 3.47 percentage
point improvement on relevant KC AUC scores compared
with other models. The tradeoff between correctness pre-
diction and KC prediction pays when the goal is to track
KCs instead of predicting student correctness. However,
this result comes with an important caveat. When only
comparing the performance on incorrect multi-KC submis-
sions, even though KCDKT performs better than DKT, it
still performs quite low (0.535 AUC) to the point where it
clearly would not be helpful for predicting which KC is incor-
rect — one of the major goals of this evaluation. Addition-
ally, when incorporating the KC layer into the CodeDKT
model, the model KC prediction drops over 4 percentage
points, showing that the improvement may not apply when
more complicated features such as code are present. This
may be because the KC variants condense the model’s pre-
dictions down into just 3 activations (one per KC), before
using them for problem performance prediction. For a more
complex model like CodeDKT (with at least twice as many
parameters), this condensing might be particularly harmful.
This result could also simply be an indicator that the im-
provements are not robust, and may not work on all models
and datasets.

RQ3: Incorporating Structural Code Features In order for
a model to explain why a student got a problem wrong,
and which KC(s) were responsible, it is reasonable to ex-
pect that having some representation of a student’s code
might help, as prior work suggests it can for performance
prediction [15]. However, our experimental results show
that incorporating code features may not improve (or may
have a negative impact on) both correctness and KC pre-
dictions. This contradicts the results from [15], and there
are several possible reasons behind this. One is that the
implementation and the data processing procedures are dif-
ferent. In the model implemented in this project, we only
included students’ first attempts on every problem and fil-
tered possible cheating students. The processing procedure
follows the KT problem settings [3, 9], and the removal

of possible student cheating is due to a closer look at the
dataset. A lack of data in the training process may cause
CodeDKT to have a low performance. Compared with [15],
the training dataset in this work is significantly smaller, and
the model may not be able to learn the features present in
students’ repeated submissions. Furthermore, when lever-
aging code features in KCDKT, the performance is worse
compared with other models. The low performance of Cod-
eDKT and CodeKCDKT may also be attributed to the over-
complicated structure of models, as the dataset for training
is low. While our results show negative impacts for code-
fused models in multi-KC tracking, future work may still ex-
plore the possibility of leveraging code features when more
data is available.

5.2 Educational and Research Implications
The research implication of this work is twofold. This work
contributes to a method for using expert labels of success
at demonstrating particular KCs to evaluate a model’s abil-
ity to predict those values, which hasn’t been done in prior
work. While it could still be further improved with future
work, it shows how KT models perform on multi-KC track-
ing scenarios. By introducing the evaluation procedure, our
research shows the important gap of the current DKT model,
which lacks the ability to track multiple skills on students’
incorrect submissions. Furthermore, the design of the KC
layer incorporates the Q-matrix into the DKT model, and
the performance of such incorporation shows improvements.
The result indicates the potential of methods similar to these
in future research. Finally, the results of incorporating code
features negatively affect the predictions. It calls for more
investigations in this discipline as the results contradict prior
research [17], which a lack of training data could cause. For
teaching, this project is a stepping stone to enabling intel-
ligent tutoring systems for educational applications such as
automated feedback [23] and problem recommendation. It
shows that the learning systems are not tutoring systems,
as the data collected from a learning system [4] has a long
way to go before enabling intelligent applications such as for-
mative feedback and automated problem recommendation.
Enabling the tracking of multiple KCs will benefit students’
learning through these applications, but it is not yet ready
due to relatively low performance on KC detection for com-
puting education.

5.3 Limitations

The work has limitations that could be further addressed
in future research. One limitation in this work could come
from the Q-matrix. The Q-matrix we use in this project is
relatively simple, as it only contains three KCs, and some
(4/10) problems only practice one KC that we track. With
a Q-matrix created focusing on all possible KCs, the per-
formance of the models could be improved, however, it is
difficult to create one covering all. Furthermore, the set-
ting of KCs also has gaps in the KC properties in theory.
Practically, given a set of problems, we only focus on cer-
tain KCs when students practice. However, students may
still experience difficulty with KCs out of the scope, espe-
cially in open-ended practices such as open programming.
This leads to the incompleteness of the Q-matrix we model
and incorporate into the model, and further improvement
may be achieved with a more complete Q-matrix. Never-
theless, creating a high-quality Q-matrix is time-consuming



and difficult, even for experts in domains such as computer
science. A second caveat of the work is that the model design
is still relatively simple in incorporating educational theory
but may be overly complicated in the programming features.
For example, the training data may not support the learning
of so many parameters in the model for code feature extrac-
tion; however, a better-designed KC layer may improve the
model more. It is a research task to balance these two con-
siderations in model design better. A third limitation of
the work is that we only present the results for one dataset,
and they could apply to another dataset, but they may not.
Further research should focus on exploring the model perfor-
mance on other datasets. However, multi-KC datasets are
scarce in the computing education context. Finally, one ob-
servation of the data is that there may be cheating students
in the set, which can cost the models their performance. We
have used simple methods to filter potential cheating stu-
dents, but it relies on future data collection work to collect
high-quality data that filters cheating students out. In ad-
dition, there is room to investigate further the code features
that caused the negative impact on performance. We will
include a comparison in future work to discuss the code fea-
tures. Finally, Bayesian Knowledge Tracing (BKT) models
are not compared in this work. While prior work (e.g., [15])
cites a much lower performance of BKT models in program-
ming knowledge tracing, further work could be focused on
comparing performance between BKT and DKT models to
evaluate multi-KC knowledge tracing performance on more
models. In conclusion, this work is an exploration of DKT
models on their ability to track multiple KCs at the same
time. While the results show limited ability of DKT models,
future work should be further investigated for more datasets
and other methods on the task.
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