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Abstract

This paper derives explicit convergence rates for Markov chains possessing a so-called shadowing structure.
Shadowing means that when one trajectory of the chain lies within a particular set of states, another trajectory of the
chain can be constructed that is guaranteed to lie within another set of states. Shadowing techniques accommodate
chains with contracting sample paths and stochastically ordered chains. Our methods are based on classic coupling,
drift, and minorization techniques. To illustrate the methods, two detailed examples are presented: 1) a storage
chain, which is stochastically ordered in its initial state but never returns to the minimal element in its state space,
and 2) a first-order Gaussian autoregression, where sample paths of the chain contract from different initial levels.

1. Introduction

Let {X,},", be an ergodic (aperiodic, irreducible, and positive recurrent) time-homogeneous Markov
chain on the state space (R, A), where A is the Borel measurable subsets of the real numbers R. While
extensions to R¥ are easily considered for k € {2, 3, ...}, we isolate on the univariate case for simplicity.
The chain’s n-step-ahead transition kernel will be denoted by P"(xg, A) = P[X,, € A|Xy = xo]; the
superscript is omitted when n = 1.

Proposition 6.3 of [24] shows that { X, } > is ergodic if and only if there exists an invariant probability
measure 7 on (R, A) satisfying

Tim [1P" (xo, ) = ()| =0

for all initial points Xo = xo. Here, ||P"(x0,) — 7 (:)|| = sup 4. o |P" (x0, A) — 7(A)| indicates a total
variation norm: ||X — X'|| = sup . # [P(X € A) —P(X" € A)| is the total variational distance between
the random variables X and X’. While other norms can be considered, total variational distances are
classic in Markov chain analyses.

The rate at which ||P" (xo, ) — 7(-)|| converges to zero is of considerable importance. Convergence
is called geometric at rate r € (1, co) if there exists a finite “first-constant" M (x() for each deterministic
starting point Xo = x( such that

||Pn(~x07')_ﬂ'(')|| SM(X())I"_", n€{0’172"”}' (11)

Explicitly identifying values of r and M (x¢) in (1.1) has been an active area of probabilistic research
[24, 17,22, 28, 3]. Convergence of Markov chain Monte Carlo (MCMC) generated chains, for example,
has important ramifications for the simulation community [8, 25, 31]. Indeed, some MCMC chains do
not rapidly converge (mix) at all [8, 6, 5, 4, 7].

Three texts studying Markov chain convergence on general state spaces are [24], [22], and [3]. A
tactic used there to analyze chain convergence is the splitting technique of [24]. Splitting constructs a
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so-called split chain from the original chain’s one-step-ahead dynamics. Split chains retain the marginal
distributions of the chain at each fixed time, but have an atom in their state space, which is a set of states
the chain repeatedly enters. Convergence rates for the original chain are obtained from the split chain,
which is easier to analyze due to its atom. If the chain does not have an atom, a split chain is introduced
to create one. One then shows that the first return time of the chain to the atom has a geometric tail,
from which a geometric convergence rate can be extracted. This has been classically accomplished by
establishing drift and minorization conditions for the chain [22].

Convergence rates for general chains were established in [23] using renewal recursions and the
spectral theory of bounded linear operators. The rates obtained there, while quite general, are often
poor and of little practical use. Improving these, explicit values of r in (1.1) are identified in [26] from
the probability generating function of the return times of the chain to some atom; while these rates
improve those in [23] and [28], values of M (xg) are eschewed. [28] constructs a so-called coupling
(meeting) time T of two chain trajectories, one of which is stationary, from a bivariate drift condition.
This can be used to bound P(7 > n) and extract convergence rate information for the chain. [26] and
[13] further discuss relationships between geometric convergence rates, minorization techniques, and
drift conditions. Other prominent papers studying Markov chain convergence include [2], [28], and [30].

Authors have also obtained explicit convergence rates for chains having additional structure. A
dependent sample path coupling is used in [20] to obtain convergence rates of stochastically ordered
chains taking values in [0, c0). While these chains are assumed to have an atom at the minimal state {0},
the obtained values of r are shown to be the best possible in many cases. These results are extended to
continuous time Markov processes in [19]. Having a state {0} atom implies that the chain will repeatedly
return to state zero. While this holds for many storage, queueing, and reflected random walk processes,
other chains do not naturally have any atom in their state spaces (Section 4 here gives an example).
Rates for chains having other stochastic orderings, such as new worse than used and decreasing hazard
rate states, are discussed in [16] and [21].

Reversible Markov chains are another heavily researched stochastic structure. The reference [1] is a
good treatise for rates of general reversible chains; these are improved in [10]. MCMC simulated chains,
a setting where convergence is sometime nebulous, are dominated by two types of chains: Gibbs chains
and Metropolis—Hastings chains. Geometric convergence rates of Gibbs chains, which are reversible, are
studied in [18], [28], [29], [13], [14], and [11]. Geometric convergence rates of Metropolis algorithms,
which are also reversible, are studied in [12], [9], and [23].

The rest of this paper proceeds as follows. The next section narrates technical preliminaries and
introduces shadowing chains. Section 3 proves our main results. Sections 4 and 5 consider applications
to storage model chains and first-order autoregressions, respectively. Section 6 concludes with some
remarks.

2. Background

We assume that {X,,};’ ) is an aperiodic, irreducible (¢-irreducible), and positive recurrent (Harris
recurrent) time-homogeneous Markov chain on a state space that is a subset of R. We refer the reader to
[24], [22], and [3] for general background.

Our notation uses P, (X| € A) = P[X,+1 € A|X, = x] := P(x, A) for the one-step-ahead transition
probabilities and P (xg, A) := P[X,, € A|Xo = x¢] for n-step-ahead transition probabilities for n > 2.
Here, P is assumed to be a probability kernel. A kernel is a nonnegative mapping K from the product
space of R and A such that for each A € A, K(-, A) is a measurable function on R and for each x € R,
K (x,-) is a measure on A. If f is a measurable mapping on R, we use the notation

Kf(x) = /R FOIK(x. dy).
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For initial condition notation, we take X (0) = xo when the chain starts at the deterministic initial level
Xo; should the initial level be random, we write X for X(0) and ux,(A) = P(Xp € A) for the initial
measure.

Two main methods have been used to obtain convergence rates: 1) renewal and regenerative techniques
[24, 23], and 2) coupling methods [28, 17, 20]. Other methods exist; for one recent example, [32]
develops iterative random functions and the so-called one-shot coupling method, but even this is based
heavily on 1) and 2).

Let 7 denote the stationary distribution of the chain and let 7¢ := inf{n > 0 : X, € C} be the first
time the chain enters the set C. Then [24] establishes an inequality of form

[|P" (x0,-) — m(-)|| € Py, (7c = n) + extra positive terms. 2.1)

While the form of the extra positive terms is unimportant here, significant work is usually required to
bound them. Coupling methods tend to work a bit more cleanly (caveat: when they work at all). The
general idea is to take two chain trajectories { X}~ , and {X],} ) having the same transition kernel P,
but with different starting conditions. Many times, X} will be random and taken to have the stationary
distribution 7. Then Xj, also has distribution 7 for each n > 1 and {X,,}~ ; is a stationary chain.

Coupling works by analyzing the time where the two chains first meet: 7 := inf{n > 0 : X,, = X/,}.
The famous coupling inequality is [17]

1P (x0,-) = w ()| < Py x; (T > n). 2.2

Our notation here places the subscripts xo and X on quantities to bookkeep initial conditions of the two
chains. Here, X is taken to have the stationary distribution rr so that {X; }> , is stationary.
Significant convergence rate information can be extracted from 7'. For example, if E  x; [#T] can

be proven finite for some » > 1, then (1.1) will hold at the geometric rate r~1 (see (2.3) below).
Complications in the above, however, arise. Foremost, on continuous state spaces, 7 may not be finite
(may never occur). It can also be difficult to calculate the distribution of 7. However, if E x; [rT] can

be proven finite for an > 1, then Markov’s inequality applied to »” and (2.2) give
IP"(x0,-) = x| < 7" E o x;[r"]. 2.3)

This identifies r as a geometric convergence rate and M (xo) = E y,, X [rT] as a first constant in (1.1).

Some additional stochastic structure, such as chain reversibility or stochastic monotonicity, is often
present in applications and may be used to obtain improved convergence rates. A stochastically ordered
chain is a chain that is higher at all times when it starts higher initially: if {X,} >, and {X;} are
copies of the chain starting with X/ stochastically larger than Xy, then X, is stochastically larger than
X, for all n > 1. Here, X is stochastically larger than X’ means that P[X > x] > P[X’ > x] for all real
x. The texts [17], [16], and [33] are good references for stochastic orderings.

Every Markov chain {X,} >, has the simple representation

Xn+1 = 8(X,, Upy1), n 20, 2.4)
for some measurable function g and initial state Xo. In this representation, {U,}’_, is independent and
identically distributed (IID) and independent of Xy. For a stochastically ordered chain, for each fixed u,
g(x, u) must be monotone non-decreasing in x (almost everywhere in x relative to 7).

Suppose that g(x,u) is non-decreasing in x for each fixed u and consider two trajectories of a
stochastically ordered chain — say {X,} and {X,,} — that are governed by (2.4) and use the same
{Un},_,- For starting conditions, we assume that Xo > X pointwise. Then for all n, X,, > Xj,. This
is essentially Straussen’s Theorem [34] that every stochastically ordered chain can be made pathwise
ordered on a different probability space.
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2.1. Shadowing Chains

The new aspect of this paper is the property of shadowing.

Definition: A Markov chain {X,,},"f:0 is said to shadow if there exist two sets of states, say C and C’,
and two trajectories of the chain, say {X, },~, and {X;,}~ ), such that X, € C implies that X; € C". A
chain is said to weakly shadow if it shadows after a random initial time; that is, the shadowing property
holds for all times n > 7, where 7 is some stopping time.

Any versions of the chains {X,} and {X, } satisfying the shadowing condition can be used; in fact,
X,, and X, can be highly dependent. The sets C and C’ are called shadowing sets.

Every stochastically ordered chain shadows. To see this, if {X,,} and {X],} are two chain copies of a
stochastically ordered chain with Xy > X(’), then X,, > X, for all n > 1; hence, when X,, € (—oo, ¢] for
any c, then X, € (—oo,c] as well and C = C’ = (—o0, c] can be used as shadowing sets.

For an example of a chain that weakly shadows but is not stochastically ordered, consider the Markov

recursion

1
Xpw1 = z Sin(Xn) +Zps1, n20.

Here, {Zn}:’:] is IID and standard normal, with Z,, taken independent of X,,, X;,_1,.... This chain
has a limit distribution (we will not investigate this limit here), but is not stochastically ordered due to
the sin component. However, this chain satisfies a weak shadowing condition with the shadowing sets
C =[-1,1] and C" = [-2,2]. To see this, note that if the same {Z,},’ , sequence is used to drive two
chains — say {X,,},"  and {X;} >, with the initial deterministic starting levels xo and x, respectively
— then

|Xn+1 - X/

n

1 1
al= 5' sin(X,,) — sin(X,)| < EIXn - X,

Hence, the two chains contract by a factor of 1/2 at each iteration. Thus, |X,, — X; | < 27| Xy — X{| and
for large n, | X, — X,,| < 1. For such n, whenever X,, € [-1,1] =C, X;, € [-2,2] = C".

Expanding the above example, in some cases, one can construct chain trajectories {X,,},";’=0 and
{X,}_, that contract in the sense that X, — X;, converges to zero. Section 5 below gives an autoregressive
example of this “contraction”. Suppose that 7 is large enough so that |X,, — X},| < b. Then for such n, if
X, € [—c, c] for some ¢ > 0, then X, € [—(c+b), (c + b)] and weakly shadowing sets are C = [—c, c]
and C’ = [—(c +b),(c +b)].

Furthering this logic, return to the simple representation in (2.4) and suppose that g(x, u) satisfies

sup |g(x + h,u) — g(x,u)| < Mh,
X

for h > 0 and M < 1. Then by driving two chain trajectories {X, } , and {X],}” ) with the same {U, }
sequence (different initial starting conditions are still allowed), |X,, — X/,| converges monotonically to
zero as n — oo and the two sample paths contract to zero.

2.2. Splitting, Drift, and Minorization

Moving to splitting techniques, suppose that a state set A exists such that for any two starting points
x,y € A, P(x, B) = P(y, B) for all Borel measurable sets B. Then A is called a proper atom of the chain.
Return times to A form a renewal process and much of the analysis for discrete state chains applies to
chains on R with an atom.

Unfortunately, many chains {X,,};’ ; on continuous state spaces do not have atoms. This said, one
can construct a new chain {X;} ; such that (i) {X],} ’ exhibits a regenerative structure, and (ii) the
marginal distribution of X, is the same as that of X,, for eachn > 1.

Atom construction can be accomplished using a so-called minorization condition (see [24], [22],
and many others). A minorization condition supposes that one can find a 6 > 0, a set of states C, and a
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probability measure v with

P(x,A) > 5lc(x)v(A) 2.5)

for all sets A. In [24], the chain’s atom is referred to as (61 ¢, v) and P—d1¢ v is a legitimate non-negative
kernel.

We will often construct a sequence {Y, }, , of Bernoulli trials from {X,} > . These “coin flips" are
usually made at times when the chain lies in C. More specifically, suppose that Xy = x¢. If xo ¢ C, the
coin is not flipped (or the coin flip has probability zero of heads) and X follows the transition probability
P(xo,-). If xg € C, we flip a coin with heads probability §. If the toss results in heads, set Yy = 1 and
choose X[ according to v. If the coin toss is tails, we set ¥p = 0 and generate X| from the probability
kernel [P(x, A) —6v(A)]/(1—6). An analogous coin flip is made at all times n > 1, depending whether
ornot X, € C. This yieldsa Y, € {0,1} foralln > 1 (if X,, ¢ C, set ¥,, = 0). It is a fundamental fact
that this construction leaves X;, with the same marginal distribution as X,, for each n > 1 [24, 22].

Many convergence analyses exploit drift to some state set C. Quantifying this, suppose that V (-) is a
measurable function. Define

PV(x) = /R V() P(x. dy) = Ex[V(X))]. 2.6)

The chain {X,}’, is said to drift to the set C if there exists a V with V(x) > 1 for all x and constants
ro > 1and 0 < b < oo satisfying

PV(x) < ry'V(x) +blc(x) 2.7

for all x. The following fundamental result was proven in [25].

Theorem 2.1. Consider a ¢-irreducible, aperiodic Markov chain {X,};, on R having the stationary
distribution nt(-). Suppose that (2.5) is satisfied for some C C R, 6 > 0, and probability measure v(-).
Suppose further that the drift condition (2.7) holds for some constant ro > 1, 0 < b < oo, and a drift
Sfunction V(x) > 1 with V(x) < oo for at least one x € R. Then the chain is geometrically ergodic in the
sense of (1.1) for some r > 1 and finite M (xg).

Although Theorem 2.1 tells us that the chain is geometrically ergodic, it does not tell us how to find
specific geometric convergence rates and first constants. Indeed, this is where the bulk of our work lies.
In general, is not true that the chain will converge at the geometric rate r; L

3. Convergence Rates for Shadowing Chains

For chains {X,};", and {X;}> , having the same transition kernel P, our construction produces a
coupling time 7T such that X,, = X,, for all n > T. By the last section, geometric convergence will be
obtained out to the radius of convergence of E X [rT] (in 7).

Suppose that there exist sets C,C’ € A, a d > 0, and a probability measure v on (R, A) for which
the minorizations

P(x,A) 2 0lc(x)v(A), P(x,A) =lc(x)v(A) 3.1

hold for all x € R and A € A. In most applications, v is concentrated on C or C’, but this need not be
the case. Our construction below makes use of the transition kernels Q and Q’ defined by

P(x,A) —61c(x)v(A)
1 —5lc(x) ’

P(x,A) —d6lc (x)v(A)
1- 61C, (x)

Q(x,A) = Q'(x,A) = (3.2)
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3.1. The coupling

Our coupling scheme is similar to that in [24]. In particular, at each n where X,, € C and X,, € C’, we
toss a coin (independently of all else) with success probability 6. Should this coin toss result in a success
(Y, = 1), the (n + 1)st values of the primed and unprimed chains are generated as the same draw from
v. This forces X,,41 = X,’1 +1» but does not change the marginal distribution of X, or X;; +1- After this
meeting time 7, all future transitions for both chains are generated from the same g and {U, } in (2.4).
This keeps Xi = X]'( for all k > T, where T is the time of the first successful coin toss (¥,, = 1).

If the coin toss is a failure (¥, = 0), then X,,,; is generated from Q and X, , is generated from Q’. In
this process, g and the same U, are used to generate both Q and Q’ in (3.2). This does not change the
marginal distributions of X,,+; or X, . Future transitions are subsequently generated from P, using the
same g and {U,, } again, until the two chain trajectories reenter C and C’, respectively. By the shadowing
property, this takes place when the unprimed chain enters C.

It may be helpful to think of a discrete state space chain on {0, 1, ...} with two transition probability
rows, say 7 and j, having the same one-step-ahead distribution (these two states are termed lumpable).
Should X, =7 and X,, = j, we simply move both the primed and unprimed chains to the same state
generated by P at time n + 1, forcing them to agree. Again, this does not change marginal distributions.
The chief nuance beyond lumpability is that two minorization conditions in (3.1) are invoked now since
the row distributions of states i and j may not be identical.

We now need some facts about our coupling time 7 := inf{n > 0 : Y¥,, = 1}. First, note that shadowing
gives

T=inf{n>0:X,eCnX, eC’'nY,=1}=inf(n>0:X,€CnY, =1}
To bound the generating function of 7', note that P — §1¢v satisfies
[P-61cv]"(x,A) =Px(Xn e ANT >n—1). (3.3)
It follows from (4.21) of [24] that
Pryx; (T =n) =6 ([P = 61cv]"1c) (xo) G4

for n > 0, the “extra ¢" arising from the probability of a successful coin flip. For chains that shadow,
we hence have

o)

E . r"] < Ex[r7]1 = ) r"s ([P = 61cv]™1c) (xo). (3.5)

0
r=0

Note that for shadowing chains, we only have to “track” the {X,, } chain to couple: any time X,, € C,
the shadowing property guarantees that X;, € C’. Phrased another way, for shadowing chains, the bound
in (3.5) for EXO,X(/) [rT] is uniform in x(-

3.2. Drift Relationships

If the coin toss heads probability is ¢ = 1, then {X,,} and {X], } will couple at the first coin toss; however,
when ¢ < 1, this may not be the case. By requiring that {X,,} drifts to C a bit quicker than in (2.7),
some nice rates can be achieved. Furthering these ideas, consider a kernel r[P — §1¢v]. In addition to
(2.7), suppose that V also satisfies

V(x) = 6lc(x) +r[P - 81ev]V(x) (3.6)

for some 7 € (1,ro]. Then Theorem 3.1 (iii) of [24] states that E , [r7] < V(xo) for all xo. Translating
into the terminology of [24], h =V, g(x) = 61¢(x), and K = (P — §1¢v). By the definitions of V and
g, g and & belong to Nummelin’s class E,, and £ is a superharmonic function.
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In our future examples, a useful drift function will have the form
V(x) = alx|lce (x) +a, 3.7)
where @ > 1 and a > 0. The following result provides conditions on @ and a so that such a V will
satisfy (3.6).

Lemma 3.1. Suppose that (2.7) holds for a V of form (3.7), with v being concentrated on C. Then
V(x) = aforx € C and v(V) = a. Suppose that a > (b+6)/(1+6 — ral). Then for r < min(k, rop),
where k = (a — 6)/(r61(x +b—6a), Ex,[rT] < V(xop).

Proof. Forx ¢ C, (61¢v)V(x) = 0 and (2.7) implies that one can choose r € (1,r¢] to get (3.6). For
x € C,usingr < (a—06)/(ry'a+b - da) gives
Sle(x) +r(P = 81cv)V(x) < 8 +7r(ry'V(x) +b - da)

6+r(rala+b—6a)

A

<d+(a-9)
= V(x).
Thus, (3.6) is again satisfied. In either case, Theorem 3.1 (iii) of [24] gives the result. ]

We now give our primary convergence rate result for shadowing chains.

Theorem 3.2. Let uix, and px; be the general initial measures of a shadowing Markov chain having the
trajectories { X}, and {X;}> . Assume that the drift and minorization relations in (2.6) and (3.1)
hold and that r and V satisfy (3.6). Then if V is both ux, and Hx; integrable,

1Xn = Xpll < [1x, (V) + pxy (V)| 77 (3.8)
Proof. Since X,, = X, for all n > T, the coupling inequality gives
|Px, (X, € A) — Pxé(X,; € A)| < Pxyx (T > n). (3.9
Then for an r that satisfies Lemma 3.1, Markov’s inequality gives
Px,,x; (T >n) = Ppux, T > < E,,, [FT]r " < V(Xo)r ™.

Conditioning on Xy, applying shaodwing and Lemma 1, and integrating over the distribution of X
gives
[1P" (X0, A) = n(A)|| < E[V(Xo)]r™".

Now use the triangle inequality ||X,, — X,,|| < [|X,, — «|| + ||X;, — 7|| and argue similarly to bound
|| X} — x|| and complete the proof. O

Now suppose that {X,,} has the initial measure px,, {X;} has the initial measure p x;, and that the
two chains shadow. Under the conditions of Lemma 1, Theorem 2 gives

1Xn = X, I < [uxo (V) + pxy (V)] r ", (3.10)

for r satisfying the Lemma. When g is the Dirac measure at the point x and ) is the stationary measure
7, x, (V) =V(x) and ,uX(r)(V) = (V). Integrating both sides of (2.7) with respect to & gives

x(V) = / V() < (3.11)
. =
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(both sides of the equation can be shown to be finite — see [22]). Thus,

1x, (V) + pxg (V) = V() + 1(V) < Vi(x) + (3.12)

_
1 o

giving a “clean" first-constant to the geometric rate. Inserting (3.12) into (3.10) gives the following
result.

Theorem 3.3. Suppose that {X,}, is a shadowing ¢-irreducible, aperiodic Markov chain with the
stationary distribution n satisfying the conditions in Theorem 2. Then

[1P" (x0,+) = ()] <

b
Vi(xp) + ; r .
l-ry

Moving to weak shadowing, a coupling works by running the two processes independently until the
stopping time 7; thereafter, we couple as in beginning of this section. This coupling occurs at the time
T =inf{n>7:Y,=1}

Theorem 3.4. Consider the setup of Theorem 3. Suppose that the initial distributions of the chains are
Hx, and px; and that both r'V(X;) and r*V(X.) are integrable. Then

1Xn = X, || < 7 "Exyx; [r7 (V(X2) +V(X3))]

Proof. The coupling inequality is || X, — X;|| < Px, x; (T > n) and Markov’s inequality applied to
rT" provides PXO,X(/)(T* >n) < r"Ex,x; [#T"]. Conditioning on (X, X%), using the strong Markov
property, and applying Lemma 1 gives the result. O

Lemma 3.5. Suppose that {X,}_, is a chain satisfying the drift condition in (2.7). Then

PV (x) < rg™V(x) +b(1—ry™) /(1 =ry") (3.13)
Jorallm > 1.
Proof. Use (2.7) for m = 1 and inductively apply the inequality. O
Our next task is to bound E [r" (V(X;)+V(X}))]. For this, let Ay = {z

7 = k when X = x¢ and X(’) = z}. Then

e8]

E ™ (V(X2) +V(X))] =/ E . [r" (V(Xe) + V(X7)) 7 (d2)

o)

- / Eo [ V(Xo)|n(d2)
k=0 ¥ Axq.k
+ ; /A E . [r V(X)]n(dz).

0 ¢ “xg.k
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Simplifying further and applying (3.13) gives

Eopnlr™ (VX0 4 V(XD)] < Z PPEY (xo) (A, k>+z / PPV (ym(d2)

(o) k

< V('XO) + b JT(AX() k)
k=0

+ Z/ (V(z)+b )ﬂ(dz)

X0,TT r _1
V(xo) + / V(z)n<dz>+2b%

IA

0

IA

b
V(xo) +2———Ex, z[rg]
1- r0

after the strong Markov property and our bound for 77(V) in (3.11) are applied.
Let M(x) =V (x)+2b/(1 - r(;l)Ex,,r [rg]- If Ex z[rj] < oo, then M (x) < oo and we arrive at the
following result.

Corollary 3.1. Suppose that {X,},, is a ¢-irreducible, aperiodic Markov chain with the stationary
distribution 7 (-) satisfying (2.5) for some set C and 6 € (0, 1). If the weak shadowing condition holds,
r € (1,rg], and (2.7) and (3.6) apply, then the rate in (1.1) holds with rate r and the above M (x).

4. A Storage Chain Example

Our first example considers a discrete-time storage chain constructed as follows. The inputs to the store
arrive via a Poisson process {7, }, with arrival rate A > 0. At the time of the nth input, /,, is added to
the store’s content. The I,,s are IID positive random variables, independent of the Poisson process. The
release rate of the store is x when the store’s content is x. Let X,, be the storage level just prior to the
nth input, with x being the initial level. Then

Xprt = (X + I)e” ™,

where 7,41 = Tp41 — T, (take Ty = 0). Then U,, := e~ ™ are IID beta variates with parameters A and 1.
When A = 1, the U,s are uniform [0, 1]. The above recursion becomes X1 = (X, + I,,)U,.+1, which
constitutes a Markov chain on [0, c0).

To proceed further, we suppose that 2 = 1 and that the I,;s are uniform [0, 8] for some parameter
B > 0. The cumulative transition distribution is then

-0 Ly x+f3 )
PoX) <y =P((r+ Uy <3)={ B TF In sy ) 1+ B <y : @1
1, x+B>y
where x* = max(x, 0).
Differentiating (4.1) yields the transition density
1 e
P(x,dy)={ B In (max{x y})dy’ X+psy 4.2)
0, xX+B>y

We leave it to the reader to show that the chain is ¢—irreducible, where ¢ is the Lebesgue measure.
Below, it is shown that this chain satisfies a drift condition. From this, it follows that {X},}* . is Harris
positive recurrent [24].

n=0
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The moment generating function of the limit distribution of the chain exists for all arguments and
can be shown to have form

B _1—
E[e¢'*=] := lim E[e'*"] = exp{ / %dg}
n—o00 0

When x > y, it is easy to check that P, (X; > z) > P, (X; > z). Thus, {X,,} is stochastically ordered
in its initial state. However, this chain may not be reversible. To see this, let y = x + 2. Then if
dy € [x+2B-0.01,x+28+0.01], P(x,dy) = 0 and P(y,dx) > 0, implying that 7(dx)P(x, dy) #
n(dy)P(y, dx). While this chain is stochastically ordered on [0, c0), it will never enter the minimal state
space element of {0}; hence, the rate results in [20] do not apply.

To identify minorization and drift conditions for the chain, our first step is to find a probability
measure v and § > 0 such that P(x, A) > 61¢(x)v(A) for x € R and all sets A for some set C of form
C = [0, c], where ¢ > 0. Our ¢ and v will depend on c.

Lemma 4.1. Define yo = c/(B+c), 6 = B/(B+c), and

@) = 5 |10 0151 (L) w1005 10 (B .

Then, for 0 < x < ¢, 6 and v satisfy the minorization condition P(x,dy) > 6v(dy).

Proof. To prove the lemma, it is sufficient to establish that

1 1
P(x,dy) = 10,y (y)ﬁ In (C +ﬁ) dy + 1y, 8] (y),E In (g) dy 4.3)

forall y > 0 and x € C. We do this by cases. First, suppose that yp < x. Our work is partitioned into
four further subcases. First, when y < yq, y is also smaller than x and (4.2) gives

P(x, dy) = éln(xi’g)dy > éln(#)dy

Since 1(y, 81(¥) = 0, (4.3) holds. In our second subcase, which is when yg < y < x, the indicator
1(0,y,1 (¥) is zero and the choice of yq gives

P(x, dy)>ﬁln( Z'B) ly = ;ln(f)dy>%ln(€)dy,

implying (4.3) again. Our third subcase moves to y € (x, 8]. Then (4.2) gives

P(x, dy)—El (“ﬁ)d >'[—31n(€)dy,

implying (4.3) again. Finally, when y > B, (4.3) trivially holds since the right hand side of (4.3) is zero.
Our second case considers yg > x. Again, we partition our work into four subcases. When y < x,
(4.2) gives

1 1
Pedy) = ~in (2B ) ay > Lin[<FE) ay,
B X B c
implying (4.3). When, y € (x, yo], we have

P(x,dy) = él (x+,8) y >

y
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Since the indicator 1y, g1(y) = 0, (4.3) holds. When y € (yo, 8], our bound is

P(x,dy) = %ln(x;ﬁ)dy > %ln(g)dy,

implying (4.3) again. Finally, when y > 3, (4.3) holds with a right hand side of zero. O

Corollary 4.1. Under the assumptions in Lemma (4.1), yo — S and 6 — 0as ¢ — oo.

Proof. The limit for yq follows from its definition in the previous Lemma. For the result on J, to make
v a probability measure, we must have

6:[)yo%ln(czﬁ)dy+/yﬁéln(€)dy:ﬂfc, (4.4)

0

from which the limit claim about ¢ follows. ]

We next establish a drift condition for the storage chain. Define V.(x) = @ + 3x1(c ) (x), Where
c>0and a > 1.

Lemma 4.2. Ifx > c, then

Ex[Ve(X)]=a+3

_62/2ln(1+é)+1(x+é) .
B x 2

If0 < x <c, then

Ex[Vc(Xl)] =a+3 1[x+,6>c](x)~

—c? x+p ct-xr 1 B
o)1

Proof. When x > c, (4.2) gives

(o)

E.[Ve(X)] = /0 aP(x.dy) + /0 3yP(x, dy) - /O 3yP(x. dy)

:a+3Ex[X1]—3/Cylln(x+ﬁ)dy
o B X

l(x+ E) + /2 In (ﬂ)
2 2 B X

establishing the first claim. For the case where x < ¢, use (4.2) to get

=a+3

>

[e9)

E.[Vo(X))] = /O " aP(x.dy) + / 3yP(x, dy)

C

B X+
:a/+1[x+ﬁ>c](x)/ 3yﬁln( y'B)dy

x+B x+B
/ yln(X+B)dy—/ yln(y)dy]~

3
=a+ B 1 [x+B>c] (x)

Integration by parts on the rightmost integral and algebraic simplifications now establish the second
claim. O
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We will need an analysis of the function /. defined by

-3¢%/21In (1 + B/x) N 1 N a/2+3B/4
B a+3x 2 a+3x

he(x) =

In fact, convergence rates will be linked to extremums of /..

Lemma 4.3. Define K(c) = sup,.. . he(x). Then

1 a/2+pB/4
K(C)<§+—a,+3c .

Proof. Note that In(1 + x/8)/x is decreasing on x > ¢ and approaches zero as x — co. Hence,

-3¢2/21In (1 + B/x) _
,chlz{ B a+3x }_O'

The above give

-3¢%/21n(1 1 2 4
K(c) < sup c/2In(1+p/x) + sup _+—a/ A/
x>c B a+3x xsc |2 a +3x
1 «a/2+B/4
=0+ -
,SCEIZ{Z @+ 3x
1 N al2+ B4
2 a+3c
O
Corollary 4.2. Under the assumptions of Lemma 4.3, K(c) < 1 for all ¢ > /6.
Proof. When 8 < 6¢, Lemma 4.3 gives
1 a/2+B/4 1 a/2+3c/2
K Sst——— — <s;t+t——— =1
(e) < 2+ a+3c < 2+ a+3c
When 8 > 4 and ¢ > /2, ¢ > 2 and similar reasoning provides the result. O

Lemma 4.4. Choose c to satisfy K(c) < 1 and b = sup, . h(x) — rala, where

—c? x+f 2-x* 1 B
() s )

h(x)=a+3

c 48 5 1[x+,8>c] (x)

andrg = 1/K(c). Then V. satisfies the drift condition (2.7) with contraction parameter r; ! and constant
b.

Proof. When x > ¢, Lemma 4.2 and the definition of A, (x) give

—*/2 BY, 1( . B
7 ln(1+—)+§(x+§)

E.[V.(X1))]=a+3 = (@ +3x)h.(x).

X

To identify a drift condition, use Lemma 4.3 to get
E,[Vo(X1)] = (@+3x)he(x) < (@+3x0)K(c) =1y Ve (x).

For x < ¢, Ve(x) = @ and Lemma 4.2 give PV.(x) = h(x) = h(x) — ary' + ary'. Taking b =

Sup, <. h(x) — ozr(;l gives PV, (x) < r;'V,.(x) + bl¢(x) and finishes our work. O
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By the definition of ry, if @ is fixed, lim._,« 79 = 2. Unfortunately, if c¢ is fixed, limy—,o 79 = 1. We
will need to balance these quantities to get good rates. We now numerically illustrate our convergence
rates when xg = 10. Here, C = [0, c], Ve (x) = @ +3x1(¢,00)(x), and M (x) = Vo (x) + b /(1 - ral). For a
fixed B, we want to select a ¢ that gives good convergence rates. While this choice is not optimized, we
consider ¢ = ﬁ\/b_’ and a € (1,200] for the B values in {1, 3, 6, 16}. Our choices of §, ¢, and « satisfy
éa > b and v(V) = a. Hence, Lemma 3.1 and Theorem 3.3 give geometric convergence at the rate
r = max{l, min{(a — 6)/(r510/ +b-6a),r}}.

Table displays our geometric convergence rates and first-constants for different 8. These are better
than the convergence rates in [27], which are labeled as “RT convergence rates" and are provided for
comparison’s sake. The first constants are always reasonable. Our rates increase as 3 increases.

B=1 B=3 B=6 B =16
c 1.732051 5.196152 10.3923 27.71281
5 0.3660254 | 0.3660254 | 0.3660254 | 0.3660254
@ 11.7 33 65 171.7
70 1.298798 1.315168 1.319311 1.321902
b 3.983865 11.78474 23.5095 62.55994
Our Convergence Rate 1.298798 1.315168 1.319311 1.321902
RT Convergence Rate 1.169257 1.127226 1.107116 1.086219
M (x) 39.01684 92.17664 172.1353 438.6049
M (x)r~ 100 2.1581e-112 | 9.8407e-118 | 5.6552e-119 | 1.4677e-119

Table 1. A convergence rate comparison for our storage chain.

5. A First-order Autoregression

This section considers a first-order causal autoregressive (AR(1)) chain on the state space R. Such a
process obeys the stochastic difference equation
n >0,

Xn+1 = ()DXn + Zn+la (51)

where ¢ € (=1,1) \ {0} and {Z,,} | are IID random variables with zero mean and variance o> 0.1t
is easy to check that {X,} > is a Markov chain.

As with the last example, two simplifying assumptions are made up front to inject tractability into
the calculations. First, we work with a normally distributed process, which is achieved by positing that
{Z,} is IID normal noise. This chain is reversible; hence, the results in [1] apply. Second, to scale the
process, we take ol=1.

When ¢ € (0, 1) the chain is stochastically ordered in its initial state. Such a ¢ results in a positively
correlated { X, } . For ¢ € (-1, 0), the chain is no longer stochastically ordered. To handle this general
case, we use a weak shadowing with shadowing sets C = [—c, ¢] and C’ = [-2¢, 2¢] for some ¢ > 0.

When Xy = x¢, X; is normally distributed with mean ¢x( and unit variance:

1 2
P(xo, dy) = ——e~07¥%0)" /2y, (5.2)
V2
This chain is easily shown to be ¢—irreducible, where ¢ is the Lebesgue measure. The stationary
distribution of {X,} is normal with mean zero and variance 1/(1 — ¢?), which has a finite moment

generating function of all orders: E[e**~] = es'/12(1-¢")] Below, a drift condition is established for
the chain. From this, it follows that {X"}:;o is Harris positive recurrent [24].
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Recursing (5.1) provides
n-1
Xy =¢"Xo+ > 917, ;, (5.3)
j=0

showing that the chain is pathwise (and hence stochastically) ordered in its initial state when ¢ € [0, 1).
However, more can be extracted from (5.3): if {X,} and {X],} are two chains driven by the same {Z,}
but starting at xo and x;, respectively, then |X,, — X} | < [¢|"|xo — x(|. We exploit this sample path
contraction to invoke weak shadowing.

To find a probability measure v and § > 0 satisfying (2.5), let ¢ > O and C = [—c¢, c].

Lemma 5.1. Define

0 c
1 2 1 2

s= [ L ~G-lelo) /2dy+/ _L-Oeleler g, (5.4)

-c V21 0 V2«
and
1 1 2 1 2
v(dy) = - [1 ey () =TI 2y 4 110 o) (v) e~ DIl gy | (5.5)
5|10 = 0.0) (V) =

Then, for x € C, the chain satisfies the minorization condition in (2.5).

Proof. We proceed in cases. First, when y < 0, by (5.2), (5.4), and (5.5), it is enough to show that for
allx € C,

L mmenringy s L —omieierng,

V2r V2r

which follows from |px| < |@p|c. Similar arguments handle the case where y > 0. O

To establish a drift condition, define V.. (x) = 2|x|1[¢,c0)(|x]) + @, where & > 1. As in the preceding
section, convergence rates will be linked to the extrema of a function /., which in this case is /. (x) =
E[Ve(XD]/Q2lx] + a).

Lemma 5.2. Define K(c) = sup|y|s. he(x). Then

(1-leha+242/n
+ ¢l

2c+a

K(c) < (5.6)

Proof. When Xy = x¢ and |X1| > ¢, V. (X1) < 2(|¢||xo] +]Z1]) +@; when | X| < ¢, V.(X]1) < a. Hence,
Ve (X1) < 2(lellxo| +1Z1]) + @. Standard normality gives E[|Z;|] = 4/2/n, implying

(1-lgha+2+2/n

2)x| +

he(x) < + ol

from which (5.6) follows. m|

It is easy to see that K(c) < 1 for all ¢ > +/2/7/(1 — |¢|). Hence, there exists a ¢ > 1 such that
K(c) < 1.

Lemma 5.3. Choose ¢ > 1 to satisfy K(c) < 1 and b = sup|y <. [hc(x)(2[x[ + @)] - ar(;], where
ro = 1/K(c). Then V. (x) satisfies (2.7) with the contraction parameter r U and constant b.

Proof. The definition of h.(x) gives E[V.(X1)] = (2]x| + @)k (x). To identify a drift condition, when
|x| > ¢, use Lemma 5.2 to get

E [Ve(X1)] = Qlx] + @)he(x) < 2lx| + @)K (¢) = rg ' Ve(x).
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When |x| < ¢,V.(x) =aand E ;1 [V.(X])] = PV.(x) = he(x) 2|x|+a) = hc(x)(2|x|+a)—ar61+ar51.
Taking b = sup| (<. [he (x) (2|x| + @)] - ro_la gives the required drift. O

To obtain convergence rates, set Fy(y) = F(x,y) = Q(x, (=0, y]), where Q is as in (3.2). Since F is
continuously differentiable on R? and F(x, -) is strictly increasing for each x € R, the implicit function
theorem implies that for each x, F(x,-) has an inverse H,(-) = H(x,-). Lemma 3.22 of [15] shows
that if 6 is a uniformly distributed random variable, H, () has distribution Fy. Since F, and H, are
inverses, Fyy(Hy(0)) = 6. Fix § = u as in the implicit function theorem and set g(x) = Hy(u). Then g
is differentiable and F(x, g(x)) = u. Taking a derivative with respect to x with the chain rule gives

—Fi(x, g(x))

8’0 = F e

where F; denotes the partial derivative with respect to the ith component of F. To generate X; and X/,
generate 6 and if 6 = u, set X; = Hy, () = g(xo) and X| = Hx[r)(u) = g(x(). Thus, when [xo — x| < c,

X0

X — X[ = |g(xo) - g(xp)| =/ 1/ (Dldi < xo—x) <

’
*o

if we can show that |g’(x)| < 1. The following Lemma with g’(x) = ¢P(x,dy)/(P(x,dy) — §'v(dy))
establishes this.

Lemma 5.4. For &’ with0 < 6 < 6(1 - |¢|),

P(x,d

lplP(x /y) <1, 5.7)
P(x,dy) —6"v(dy)
where ¢ is given in (5.4) and v(dy) is given in (5.5).
Proof. Since ¢’ < §(1 — ¢), Lemma 5.1 provides
P(x,dy) 2 ov(dy) 2 - |V(dy),
— ¥
proving (5.7). O
Next, we bound M (x) to get our first-constant. Define

T=inf{n >20:|X, - X,| < c}. (5.8)
Given Xo = x and X = z with x > z, there exist a 7 depending on x and z such that [X,. — X[, | <

lo|T|x — z|; thus, if ¢ |x — z| < ¢, Lemma 5.4 implies that for all n > 7, if X,, € C, then X,, € C’. This
is our weak shadowing. For AR(1) chains, T < 7 + T¢. Corollary 3.1 implies that we need to bound
/_ o:o r;m(dz) to get good convergence rates.

To bound [~ rim(dz), (5.8) and 0 < |¢| < 1 provide,

In(c) —In(Jx —z[) _ In(c)

N In(c) -1
In(|gl) ~In(leD)  In(lel)

—_t ——|x -7l 5.9
n(e) Tinjg T G

The last inequality follows from In(|x — z|) < |x — z| and |¢| < 1. Equation (5.9) gives

(In(lx —z]) <

In(c) —1 In(c) -1
o [ x—z] e 1 X2l
rT< rlﬂ(|¢\) In(J¢]) — r]"(|¢P\) rln(\‘PU . (510)

0 =70 0 0
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¢=0.1 ¢ =0.25 ¢=0.5 ¢ =0.75
c 2.853 2.18 1.655 1.39
a 3.585 7.111 15.518 39.21
0 0.773715 0.5793234 0.3949073 0.2821849
0 =6(1-¢) 0.6963435 0.4344925 0.1974537 0.07054623
ro 2.564616 1.551767 1.144701 1.030529
b 2.224894 2.809701 2.891592 2.69765
Our Convergence Rate | 2.564565 1.551759 1.144701 1.030529
Bax Convergence Rate 2.4885 1.442 1.1214 1.0354
M (x) 520.9311 845.0045 1782.097 8730.82
M (x)r 1000 0 1.266852e-188 | 3.621976e-56 | 7.602448e-10

Table 2. A convergence rate comparison for AR(1) chains..

Now set -~ /MU¢D _ ot Thent = — In(ro)/In(]¢|) and

0
web (=In(ro)
g < r(n)w exp( (o) |x — zl) .

Applying this and splitting the absolute value into cases gives

In(c)

S ©
/_ rgn(dz) ré"”“’”/_ exp( ln?lglo)) Ix—zl)ﬂ(dz)

(o] (o)

IA

In(c)

el —1In(ro) ¥ In(ro)
roreD (exp ( x) / exp ( z)n'(dz)
0 In(lel) /J-w In(le])
( In(ro) ) /"" (—ln(ro) ) d ))
exp | ———=x exp | ————z|n(dz
In(lel) / Jx In(le])
In(e) —1In(rp) In(rg) In(rg) —1In(rp)
(el 0 0 0 0
exp( x)‘l‘ ( )+exp( x)‘P ( ) ,
0 [ In(lel) */ " "\n(lg)) In(le)™/ " "V in(lg))
where the last inequality follows from ¥, (s) = E[e’X~] = ¢5"/20-1¢/)) and the facts that
W (In(ro)/In(|p])) and ¥ (-In(ro)/In(|¢|)) are finite. Hence, Ex r[rj] < oo and M(xg) < oo for
all xo. Corollary 3.1 now gives our convergence rates.

For each ¢ € {0.1,0.25,0.5,0.75}, we take xo = 10 and select a c to yield the good convergence rate
ro = 1/K(c). For numerical purposes, ¢ € (1.5,4] and a € (2,20] values are chosen for each ¢. Our
choices of 4, ¢, and @ imply that S > b and v(V) = @. Lemma 3.1 and Corollary 3.1 give the geometric
rate r = max{l, min{(a—05)/(r, la+b—6a), ro}}. Table 2 numerically displays our convergence results.
Here, we compare to convergence rates in [1], which are labeled as “Bax Rates". Our convergence rates

are often better than those in [1], although not strikingly so. For AR(1) convergence rates obtained by
completely different methods, see [32].

IA
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6. Discussion

This paper derived some “clean" total variational geometric convergence rate bounds for Markov chains
satisfying a so-called shadowing property. The results were applied to storage chains and a first order
autoregressive chain. While we do not know of ways to get better rates than those obtained here for our
storage chain, alternative techniques exist to get first-order autoregression rates; see [32] for example.
Another simple way to obtain first-order autoregressive chain rates proceeds from first principles, using
Xy = X, +¢"(Xo — X{) and a total variational distance between two univariate Gaussian variables when
the same Gaussian errors are used to drive both chains.
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Additional research is also needed. While we did not do so here, a broader definition of shadowing
would allow for the possibility of X,, € C’ implying that X; € C. The same minorizing issues could
then be invoked. Presumedly, one would arrive at improved convergence rates, especially in cases where
C and C’ are not proper subsets of one and other. Extension to chains on R¥ also merit consideration.
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