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ABSTRACT
Poisson autoregressive count models have evolved into a time series staple for cor-
related count data. This paper proposes an alternative to Poisson autoregressions:
count echo state networks. Echo state networks can be statistically analyzed in fre-
quentist manners via optimizing penalized likelihoods, or in Bayesian manners via
MCMC sampling. This paper develops Poisson echo state techniques for count data
and applies them to a count data set containing the number of graduate students
from 1,758 United States universities during the years 1972-2021 inclusive. Negative
binomial models are also implemented and generally better handle the overdisper-
sion in the counts. Performance of the proposed models are compared via their
forecasting performance as judged by several methods. In the end, a hierarchical
negative binomial based echo state network is judged as the superior model.
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1. Introduction

Correlated count models are often used to describe positive integer-valued data, such
as infectious disease counts (Agosto and Giudici 2020), bank failures (Schoenmaker
1996), storm frequencies (Robbins et al. 2011), hospital visits (Neelon et al. 2013;
Matteson et al. 2011), and crime incidents (Kim et al. 2021). Standard Gaussian time
series models may not describe discrete counts well, especially when the counts are
small (Davis et al. 2016). As such, a discrete distribution is often adopted for the
marginal distribution of the counts; Poisson, generalized Poisson, Conway-Maxwell
Poisson, binomial, and negative binomial are common choices. The objective then
becomes building correlated but non-Gaussian models for the counts.

Classical approaches to the count problem include integer autoregression and gen-
eral thinning approaches (Jin-Guan and Yuan 1991; Jung and Tremayne 2006; Weiß
2008; Zhu and Joe 2010) and Joe (2016), generalized linear autoregressive moving-
average (GLARMA) techniques where model parameters evolve in a stationary but
random fashion (Dunsmuir 2015), Poisson autoregressive methods (Fokianos et al.
2009), generalized linear mixed models (McCulloch and Searle 2004), and Gaussian
transformations (Jia et al. 2023). Recently, Kong and Lund (2024) have written exclu-
sively on count series having marginal Poisson distributions. The above papers mostly
consider univariate series; literature considering multivariate counts is sparser, but
includes Ord et al. (1993); Heinen and Rengifo (2007); Brandt and Sandler (2012);
Serhiyenko et al. (2015); Karlis (2016), and Fokianos (2021). Our setting, which con-
tains over 1,700 count time series, lies in the high-dimensional realm where work is
almost non-existent. The only papers we are aware of that study high-dimensional
counts are Bradley et al. (2018); Pan and Pan (2024), and Düker et al. (2024).

This paper studies modeling of high-dimensional count time series data with echo
state networks (ESNs) (see McDermott and Wikle (2017) for more on ESNs). The
weights in our recurrent neural network are “pre-generated” and fixed throughout
training. Our count modeling tactics are similar to the GLARMA methods of Dun-
smuir (2015). Penalized likelihood methods in frequentist settings and regression mod-
els with multivariate log-gamma priors in the Bayesian setting (Bradley et al. 2018)
are developed for estimation. For the negative binomial case, a Pólya-gamma aug-
mentation method is used to improve MCMC computational efficiency. Literature on
count ESNs is sparse except for Schafer (2020). Another innovation of this paper in-
cludes a count ESN model with a Bayesian hierarchical structure. Computationally
efficient MCMC routines for Bayesian estimation are developed for both the Poisson
and negative binomial models.

Our interest is motivated by graduate student enrollment counts from the Sur-
vey of Graduate Students and Postdoctorates in Science and Engineering, which is
sponsored by the National Center for Science and Engineering Statistics, a federal
statistical agency tasked with the measurement and reporting of the U.S. science and
engineering enterprise. Modeling graduate student counts at individual schools across
the United States helps us understand higher education data, facilitating a deeper
understanding of enrollment dynamics and providing insight into evidence-based pol-
icy making, resource allocation, and institutional evaluation. This aligns with general
official statistics objectives, which strive to ensure accurate, transparent, and action-
able information for various stakeholders. Our methodology may also interest other
statistical agencies that deal with count data over time; for example, the American
Community Survey examines counts containing the number of residents in a household
(Parker et al. 2020).
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The rest of this paper proceeds as follows. Section 2 describes the graduate student
counts motivating this study. Section 3 narrates the count time series and spatio-
temporal modeling background needed to develop our methods. Our ESN approach
is developed in Section 4 and some competing models and scoring rules are given in
Section 5. Section 6 fits the ESN model to our graduate student counts, comparing to
several other modelling techniques. Section 7 summarizes our findings and proposes
several directions for future work.

2. Graduation Count Series

The data in this paper were extracted from the Survey of Graduate Stu-
dents and Postdocs in Science and Engineering (GSS), an annual census
of all academic institutions in the United States that grant research-based
graduate degrees. The data is available at https://ncses.nsf.gov/surveys/

graduate-students-postdoctorates-s-e/2023#data. This comprehensive dataset
spans 1972-2021 inclusive and contains 1,758 schools. The GSS is a key source of in-
formation on demographics, study fields, support sources, and post-graduate plans of
graduate students and postdoctoral researchers in selected fields of science, engineer-
ing, and health. The data are annual and allow us to examine time trends, patterns,
and differences among institutions.

The data collected in the GSS includes the number of graduate students and post-
doctoral researchers by field of study, gender, citizenship status, and race/ethnicity.
The survey also contains information on the primary sources of financial support for
these individuals, such as federal agencies, universities, and private industry. Herein,
we focus solely on the number of graduate students in each program. Different pro-
grams may come from the same institution/university.

From the longitudinal nature of our data, it is possible to explore time changes
in graduate student compositions. Model fitting methods could allow for trends or
forecast counts in future years. The cross-sectional component of our data enables
comparisons between institutions, providing insight into how different universities train
and support our next generation of scientists and engineers.

Figure 1 plots time count trajectories for four randomly chosen schools in our study:
The University of Florida (School of Chemistry), The University of Rochester (School
of Electrical, Electronics, and Communications Engineering), The Georgia Institute of
Technology (School of Chemical Engineering), and Oklahoma State University (School
of Geological and Earth Sciences). The counts have varying scales; some schools have
hundreds of students, while others report in teens. Sample autocorrelations for these
four schools are shown in Figure 2 and exhibit positive but non-negligible temporal
associations. The scales for these schools are significantly different from each other.
Figure 1 suggests that some schools have counts close to zero, making it inappropriate
to base inferences on Gaussian-based analyses. For added feel, Figure 3 shows sample
time series for 100 randomly sampled schools.

3. Background

This section reviews count time series and neural network methods. Conjugacy ap-
proaches for our Bayesian methods are also discussed.
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Figure 1.: Time series plots of graduate student counts for four randomly selected
example schools in our study.

Figure 2.: Sample autocorrelations for four randomly selected schools. The dashed
lines are pointwise 95% confidence thresholds for a zero correlation.
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Figure 3.: Time series plots for 100 randomly sampled schools. Significant scale differ-
ences exist in these series.

3.1. Count Time Series

The classical way to model count time series is through integer autoregressions, which
are based on thinning operations. An integer autoregression of order one (INAR(1))
for the counts {Yt}Tt=1 obeys

Yt = δ ◦ Yt−1 + εt,

where {εt} is an IID positive integer-valued random sequence. The thinning operator
◦ operates on the integer-valued random variable N via

δ ◦N =

N∑
i=1

Bi,

where {Bi} are IID Bernoulli trials having success probability δ ∈ [0, 1]. One often
selects {εt} to produce a specific count marginal distribution for Yt. For example,
selecting εt to be Poisson with mean λ(1−δ) will produce a Poisson series with mean λ
for every t. See Joe (2016) for quantification about the marginal distributions that can
be constructed. INAR models cannot have any negative autocorrelations, which does
not appear to be relevant here given the plots in Figure 2. Prominent INAR references
include Jin-Guan and Yuan (1991); Jung and Tremayne (2006); Weiß (2008), and Zhu
and Joe (2010).

A more general count modeling approach was recently introduced in Jia et al. (2023).
This approach transforms a standardized Gaussian series into the desired count series
and can accommodate any marginal distribution. Suppose that we want the marginal
cumulative distribution function (CDF) FY (·) for the observation Yt. If {Zt} is a
standard Gaussian series with E[Zt] ≡ 0, Var(Zt) ≡ 1, and Corr(Zt, Zt+h) = ρZ(h),
then set

Yt = F−1
Y (Φ(Zt)), (1)
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where Φ(·) denotes the CDF of a standard normal distribution and F−1
Y (·) is the

quantile function

F−1
Y (u) = inf{x : FY (x) ≥ u}.

The probability integral transformation theorem shows that Φ(Zt) has a uniform[0,1]
distribution. A second application of the same result shows that Yt has the desired
marginal distribution FY (·). The autocovariances of {Yt} in (1) can be computed
through Hermite expansions as in Jia et al. (2023). Kong and Lund (2024) focuses
exclusively on Poisson distributed series.

State-space models are yet another popular count modeling technique. A hierarchi-
cal model with Poisson dynamics, for example, takes

Yt|θt ∼ Poisson(eθt),

where {θt} is a process to be clarified and a log link is used to keep the Poisson param-
eter positive. When {θt} has autoregressive moving-average (ARMA) dynamics, these
structures belong to the generalized linear autoregressive moving-average (GLARMA)
model class. A Gaussian autoregressive structure is often placed on {θt}:

θt = ϕ0 +

p∑
i=1

ϕiθt−i + εt.

Here, {εt} is an IID Gaussian noise process with zero mean and ϕ1, . . . , ϕp are the p
autoregressive coefficients that are assumed to produce a causal autoregression. While
these and other models are discussed in Fokianos et al. (2009); Dunsmuir (2015) and
Davis et al. (2021), a useful tactic allows θt to depend on the past counts. Models
that recurse on past counts are called integer generalized autoregressive conditional
heteroskedastic (INGARCH) models, but do not generate white noise like ordinary
GARCH series. For example, in the first-order case, one could posit that

θt = ϕ0 + aθt−1 + bYt−1.

See Gamerman et al. (2015); Dunsmuir (2015) and Holan and Wikle (2016) for addi-
tional work.

3.2. Echo State Networks

Neural networks are combinations of linear and nonlinear transformations, which of-
ten capably describe nonlinear features in sequential data. Neural networks that are
based on the common recursions governing sequential data are called recurrent neural
networks (RNNs) and were introduced in (Rumelhart et al. 1986). Thereafter, Hochre-
iter and Schmidhuber (1997) developed long short-term memory (LSTM) networks by
adding additional structure that makes dependencies decay more slowly in lag. Dey
and Salem (2017) simplified LSTMs while retaining similar model performance.

Analysis of neural networks can be computationally intensive with gradient descent
techniques over a large parameter space, especially with RNNs. ESNs, proposed by
Jaeger and Haas (2004), are RNN variants that allow for more efficient parameter
estimation. Hidden weights in the ESNs are randomly generated from a symmetric
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distribution centered about zero; the only parameters requiring estimation reside in
the output layer.

McDermott and Wikle (2017) introduce a quadratic ESN (QESN) for spatio-
temporal data. Uncertainty quantification is done via ensembling, i.e., randomly gen-
erating the hidden layer weights multiple times. A dimension reduction layer such as a
principal component analysis is added to the QESN in McDermott and Wikle (2019),
making it a deep-ensembled ESN; the model is implemented in both frequentist and
Bayesian frameworks. Furthering this work, Schafer (2020) generalize ESNs to expo-
nential families. Wang et al. (2024) integrate graph convolutional neural networks and
ESNs to capture areal-level spatial dependence.

The ESN in our paper resembles the structure described by McDermott and Wikle
(2017). As an example, consider a single GSS school and let {Yt}Tt=1 denote the obser-
vations from the school. The observation for the school at time t, Yt, has the conditional
mean

E[Yt|Y1, . . . , Yt−1] = h
′
tη, (2)

where the nh × 1 vector ht denotes output from a fixed-weight recurrent layer with
nh hidden nodes (which may depend on previous counts for this school as elaborated
upon below). Also, η is a length nh vector of regression coefficients. The parameters
in η are the only quantities that need to be estimated; this can be done by optimizing
a likelihood-based loss function, or by Bayesian MCMC.

We have a length-r covariate xt, which is school specific, at time t. An ESN with
nh hidden nodes can be built to fit this data. To begin, the length-nh vector h1 is
initialized from the covariate x1. Thereafter, for each t ∈ {2, 3, . . . , T}, the hidden
unit ht in our echo state network hidden layer is calculated via

ht = g

(
ν

|λW |
W ′ht−1 +U

′
yY(t−p):(t−1) +U

′
xxt

)
, (3)

where the length-p vector Y(t−p):(t−1) contains the past p observations for this school;
i.e., (Yt−1, Yt−2, . . . , Yt−p)

′. Here and in the rest of this paper, we use p = 1 exclusively.
The scalar λW is the largest eigenvalue of W , an nh × nh weight matrix, and ν
is a regularization parameter, lying between zero and unity, used to ensure that ht
does not explode/overflow. Here, g(·) is a predetermined activation function, typically
a sigmoid or hyperbolic tangent function. Moreover, UY is a p × nh matrix, where
p is the autoregressive order (larger p’s typically induce longer temporal memory).
Similarly, UX is an r × nh matrix. The parameters W , UY , and UX are randomly
generated from some specified distribution, but thereafter are fixed and not estimated
in the model fitting procedure. An example of the calculation of ht in a hidden layer
without autoregressive component is graphically illustrated in Figure 4.
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Figure 4.: An example of a recurrent layer for sequentially calculating nodes.

In further detail, Wi,j , (UY )i,j , and (UX)i,j , for 1 ≤ i, j ≤ nh, are independently
generated from the following spike and slab distributions:

(W )i,j = γWi,jUnif(−aw, aw) + (1− γWi,j )δ0,

(UY )i,j = γUY

i,j Unif(−auY
, auY

) + (1− γUY

i,j )δ0,

(UX)i,j = γUX

i,j Unif(−auX
, auX

) + (1− γUX

i,j )δ0,

γWi,j ∼ Bern(πw), γ
UY

i,j ∼ Bern(πuY
), γUX

i,j ∼ Bern(πuX
).

(4)

These choices were made following McDermott and Wikle (2017); however, other zero-
centered weight distributions could also be used. Here, δ0 denotes a unit point mass at
zero. The elements γWi,j are IID, as are γUY

i,j and γUX

i,j . This model contains hyperparam-
eters that can be chosen via cross-validation. In other words, the uniform distribution’s
parameters a(·) and the Bernoulli distribution parameter π(·) in (4) are not estimated.
Here, the notation a(·) denotes a generic aw, auY

, or auX
, and π(·) denotes a generic

πw, πuY
, or πuX

. After fixing these hyperparameters, the weight matrices W , UY , and
UX are generated.

The only parameter estimated in (2) is η. This setup can be interpreted as first
feeding information into the ESN and using the hidden layer output as explanatory
variables in a regression fit. McDermott and Wikle (2017) use a ridge penalty to
avoid overfitting when estimating η. One may also add empirical orthogonal functions
(EOFs) or other spatial basis functions as covariates in (3), enabling one to capture
cross-sample or spatial dependence as in McDermott and Wikle (2017). The ESN
parameters were chosen via cross-validation: we select a ∈ {0.01, 0.1, 1} and π ∈
{0.1, 0.3, 0.5}. Candidate values for nh are {30, 50, 100, 120}; values of ν considered
lie in {0.1, 0.5, 0.7, 0.9}.

3.3. Multivariate log-Gamma Priors

This subsection introduces the multivariate log-Gamma (MLG) distribution from
Bradley et al. (2018) and Bradley et al. (2020). This distribution’s conjugacy proper-
ties make Bayesian Poisson count modeling computationally convenient. To simulate
from this distribution, an m-dimensional random vector w = (w1, . . . , wm)

′ is first
generated with mutually independent components: wi ∼ LG(αi, κi). Here, LG(α, κ)
denotes the log-Gamma distribution, which is the logarithm of a Gamma draw with
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shape parameter α and scale parameter κ. Then set

q = µ+ V w,

where V ∈ Rm×Rm and µ = (µ1, . . . , µm)
′ are deterministic (hierarchical structures

will be placed on these parameters later). We call q a multivariate log-gamma random
vector and write q ∼ MLG(µ,V ,α,κ). Here, q can be shown to have the probability
density

f(q|µ,V ,α,κ) = 1

det(V V ′)1/2

(
m∏
i=1

καi

i

Γ(αi)

)
exp[α′V −1(q−µ)−κ′ exp{V −1(q−µ)}]

over q ∈ Rm.
Bradley et al. (2018) show that a multivariate log-Gamma random variable with

parameters (c, α1/2V , α1, α1) converges in distribution to a multivariate normal distri-
bution with mean c and covariance matrix V V ′ as α→ ∞, noting also that α = 1, 000
is typically sufficiently large for this convergence to “kick in”. Accordingly, we set
α = 1, 000 throughout.

One can also partition a MLG variate q with parameters (µ,V ,α,κ) into an r-
dimensional vector q1 and an (n − r)-dimensional vector q2 via q = (q′1, q

′
2)

′. Here,
V −1 can also be partitioned into [H|B], where H is an n× r dimensional matrix and
B is an n× n− r matrix.

Our notation uses q1|q2 as a conditional multivariate log-gamma distribution:

q1|q2 ∼ cMLG(H,α,κ∗),

which can be shown to have the probability density

f(q1|q2) =M exp{α′Hq2 − κ∗′ exp(Hq1},

over q1 ∈ Rr. Here, κ∗ = exp{Bq2 − V −1µ − ln(κ)} and M is some normalizing
constant.

Bradley et al. (2018) and Bradley et al. (2020) describe an efficient data augmen-
tation strategy to sample from this distribution, which is an important step when
building Bayesian hierarchical models with a Poisson conditional distribution. This
will be discussed in more detail later.

4. Methods

This section proposes several ESN models for count data having various structures.
We begin by describing a general count ESN model. For school i, we posit the model

Yi,t|θi,t
ind∼ Fθi,t

, (5)

where F is some count marginal distribution that depends on the parameter θi,t.
Depending on the choice of F , θi,t may be multivariate. For example, θi,t is univariate
when F is Poisson and bivariate when F is negative binomial. Our models allow θi,t
to evolve recursively in time t according to an ESN. One example has θi,t = h′

i,tη,
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where hi,t evolves in t as in (3). Negative binomial based models are also discussed to
handle overdispersion.

4.1. Poisson Echo State Networks

Suppose that Yi,t|θi,t is Poisson with mean exp(θi,t), and θi,t is a linear combination
of the output from an ESN:

Yi,t|θi,t ∼ Poisson(eθi,t),

θi,t = h
′
i,tηi,

where {hi,t} evolves in time via an ESN. A first-order autoregressive example employ-
ing the logarithm of past observations posits

hi,t = g

(
ν

|λW |
W ′hi,t−1 + ln(Yi,t−1 + 1)U ′

y +U
′
xxi,t

)
, t = 2, . . . , T,

hi,1 = g
(
U ′
xxi,1

)
.

(6)

In the above, the activation function g(·) is applied coordinate-wise to the quantities in
parentheses, and unity is added to all observations to avoid taking a logarithm of zero.
Here, g(·) is the hyperbolic tangent function, chosen to avoid overflow and introduce
nonlinearity. Also, the elements of Ux, Uy, and W are randomly generated from (4)
and fixed throughout. The only unknown parameter for the ith school is ηi.

Assuming conditional independence of Yi,t|θi,t in t, the likelihood for the ith school,
denoted by Li(ηi), is

Li(ηi) =
T∏
t=1

exp(−eθi,t)eθi,tYi,t

Yi,t!
.

Based on this likelihood, two frequentist models and two Bayesian models are now
developed.

4.1.1. Single and Ensemble Poisson ESN

The parameter ηi can be estimated by maximizing the LASSO-based penalized log
likelihood L∗

i :

L∗
i (ηi) =

T∑
t=1

[
Yi,tθi,t − eθi,t

]
− τ

nh∑
j=1

|ηi,j |,

where τ is a penalty parameter typically chosen by cross-validation. The weights in
the ESN need only be generated once to fit the model, which we call a “Single Poisson
ESN.” Alternatively, the ESN parameters can be generated multiple times, and the
model fitted to each realization used to construct an “Ensemble ESN.” In penalized
models like LASSO regression, uncertainty quantification usually follows from a boot-
strap. However, ensembling provides another source of uncertainty quantification. The
regularization parameter τ is chosen as 1.0 via cross-validation among {0.5, 1.0, 1.5}.
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Note, similar to McDermott and Wikle (2017), a small grid of candidate values was
used here and predictive performance was generally strong; however, in some cases,
it may be worthwhile to use a finer grid of candidates to further optimize prediction
accuracy.

4.1.2. Bayesian Poisson ESN

This model can also be implemented using a Bayesian framework. Conjugacy is ensured
with the multivariate log-gamma (MLG) prior above for ηi:

ηi ∼ MLG(0nh
, α1/2σηInh

, α1nh
, α1nh

),

where the distributional notation follows Bradley et al. (2018), Ik denotes the k × k
identity matrix, 1k denotes the k-dimensional vector containing all unit entries, and 0k
is the k-dimensional vector containing all zeros. The variance parameter ση is chosen
to be 0.1 to induce shrinkage. Note that ση can also be random, an aspect discussed
later. In this case, the joint density can be shown to have form

p(Yi,ηi) ∝
T∏
t=1

[exp(θi,tYi,t − exp(θi,t))]×

exp

(
α1′nh

α−1/2 1

ση
Inh
ηi − α1′nh

exp

[
α−1/2 1

ση
Inh
ηi

])
.

Consequently, the posterior distribution p(ηi|Yi) has the conditional MLG form

p(ηi|Yi) ∝ exp

{( T∑
t=1

Yi,th
′
i,t + α1′nh

α−1/2 1

ση
Inh

)
ηi −

exp

[
T∑
t=1

h′
i,tηi

]
− α1′nh

exp

[
α−1/2 1

ση
Inh
ηi

]}
.

To induce simplicity, define the notations Hi = (h′
i,1, . . . ,h

′
i,T )

′ and

Li =

[
Hi

α−1/2 1
ση
Inh

]
, ξi =

[
Y ′
i α1′nh

]′
, ψi =

[
1′T α1′nh

]′
.

Under this formulation, the posterior distribution is

ηi|Yi ∼ cMLG(Li, ξi,ψi).

Bradley et al. (2018) and Bradley et al. (2020) develop a computationally efficient
procedure to sample from a cMLG distribution via a “data augmentation” approach.
The full model is a latent conjugate multivariate process (LCM) model (Bradley et al.
2020). In this case, the model can be partitioned into two stages:

11



• Data stage:

Yi,t|ηi, qi
ind∼ Poisson(eh

′
i,tηi+b′

iqi)

• Parameter stage:

ηi|V ,αη,κη, qi ∼ MLG(−V Bqi,V ,αη,κη)
f(qi) ∝ 1

where

V = α1/2σηInh
,

αη = α1nh
,κη = α1nh

.

Here, bi is a pre-specified T -dimensional vector, and the nh×T matrix B is also
pre-specified. The T -dimensional qi has an improper flat prior. Conditional on
qi = 0T , the likelihood is proportional to the original model.

Therefore, to sample η from the posterior distribution, one can perform the following
two steps:

• First, sample η̃i as a draw from the MLG(0, Inh
, ξi,ψi) distribution.

• Next, affinely transform η̃i via

(L′
iLi)

−1L′
iη̃i (7)

as a data augmented sample of ηi|Yi.

Sampling via this approach will not require a Metropolis-Hastings step, making the
scheme computationally efficient.

4.1.3. Bayesian Hierarchical Poisson ESN

We now develop a Bayesian hierarchical model that incorporates similarities among
schools within the same geographic state, which are likely to be subject to the same
regulations and hence behave similarly. Our model specification is

Yi,t|θi,t
ind∼ Poisson(eθi,t),

θi,t = h
′
i,tηs(i) + δs(i),

where the hi,t evolves via (6).
Here, the subscript s(i) denotes which state (within the United States) contains

the ith school. The shared parameters η and δ for schools within the same state
account inject our hierarchical dependence. Accordingly, a hierarchical model structure
is imposed on both ηs(i) and δs(i) as follows:

ηj ∼ MLG(0nh
, α1/2σηInh

, α1nh
, α1nh

), j = 1, . . . , ns

δ ∼ MLG(0ns
, α1/2σδIns

, α1ns
, α1ns

),

12



where ns = 49 is the number of states with schools in the GSS data, and the hy-
perparameters ση and σδ follow half-Cauchy priors with the fixed scale parameter
υ:

ση ∼ Half-Cauchy(0, υ), σδ ∼ Half-Cauchy(0, υ).

A vague prior distribution is implemented by choosing υ = 100. Let S′
i denote a

length-ns vector containing only zeroes and ones, where the s(i)th element is unity
(and all other entries are zero). Then θi,t = h̃

′
i,tη̃, where

h̃i,t := (0′(s(i)−1)·nh
,h′

i,t,0
′
(ns−s(i)−1)·nh

,S′
i), and, η̃ = (η′1, . . . ,η

′
ns
, δ′)′. (8)

The prior distribution of η̃ is

η̃ ∼ MLG

(
0(nh+1)×ns

,

[
σηI(nh·ns) 0(nh·ns)×ns

0ns×(nh·ns) σδIns

]
, α1(nh+1)·ns

, α1(nh+1)·ns

)
.

The joint density π(Y , η̃, ση, σδ) can be expressed as

π(Y , η̃,ση, σδ) ∝
N∏
i=1

T∏
t=1

exp
(
h̃′
i,tη̃iyi,t − exp

(
h̃′
i,tη̃i

))
×

1{σδ>0}

1 + (σδ/υ)2
×

1{ση>0}

1 + (ση/υ)2

×
∣∣∣∣ σ−1

η I(nh·ns) 0(nh·ns)×ns

0ns×(nh·ns) σ−1
δ Ins

∣∣∣∣× exp

(
α1′(nh+1)·ns

· α−1/2

[
σ−1
η I(nh·ns) 0(nh·ns)×ns

0ns×(nh·ns) σ−1
δ Ins

]
η̃

)
× exp

(
−α1′(nh+1)·ns

exp

(
α−1/2

[
σ−1
η I(nh·ns) 0(nh·ns)×ns

0ns×(nh·ns) σ−1
δ Ins

]
η̃

))
.

With the definitions

H = (h̃′
1,1, . . . , h̃

′
1,T , . . . , h̃

′
S,1, . . . , h̃

′
S,T )

′,

Y = (y1,1, . . . , y1,T , . . . , yS,1, yS,T )
′,

the full conditional distribution of η̃ is still a conditional MLG:

η̃|· ∼ cMLG(L, ξ,ψ),

where

L =

 H

α−1/2

[
σ−1
η I(nh·ns) 0(nh·ns)×ns

0ns×(nh·ns) σ−1
δ Ins

] ,
ξ = (Y ′, α1′(nh+1)·ns

),

ψη = (1′NT , α1(nh+1)·ns
).

Note that H is an (nS · nT )× ((nh + 1) · ns) matrix; therefore, direct inversion of the
matrices in (7) can be computationally intensive when sampling from the posterior
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distribution. One way to increase posterior sampling efficiency exploits the sparsity in
L.

For ση and σδ, the full conditional distributions are

p(ση|·) ∝
1{ση>0}

1 + (ση/υ)2
× σ−(nh×ns)

η × exp(α1/2σ−1
η 1′nh×ns

η̃[1:(nh×ns)])

× exp(−α1′nh·ns
exp(α−1/2σ−1

η η̃[1:(nh×ns)]))

and

p(σδ|·) ∝
1{σδ>0}

1 + (σδ/υ)2
× σ−ns

δ × exp(α1/21′ns
σ−1
δ Ins

ξ − α1′ns
exp(α−1/2σ−1

δ ξ)),

where ξ contains the last ns elements in η̃.

4.2. Negative Binomial Echo State Networks

This subsection proposes a negative binomial model as a Poisson alternative, account-
ing for possible over-dispersion in our conditional marginal distributions. Our setup
utilizes the negative binomial distributional specification

Yi,t|ri, pi,t
ind∼ NB(ri, pi,t),

with the probability mass function

P (Yi,t = yi,t) =
Γ(yi,t + ri)

Γ(ri)Γ(yi,t + 1)
(pi,t)

ri (1− pi,t)
yi,t .

We model pi,t via the logit transformation

ln

(
pi,t

1− pi,t

)
= h′

i,tηs(i) + δs(i),

where hi,t again generated by Equation 6. While an alternative parametrization of the
negative binomial distribution would allow one to model the mean directly rather than
indirectly through the probabilities, however, our parametrization choice here permits
a computationally convenient data augmentation approach to model fitting. Lastly,
although one could fit a negative Binomial model without the hierarchical structure
(similar to the Poisson model from Section 4.1.2), we do not explore this here. The
hierarchical structure and the negative binomial likelihood are two different aspects
(dependence structure vs. over-dispersion); as we demonstrate in Section 6, both are
important.

For estimation, the likelihood function for this model is

L(Ỹi,t|η̃, ri) ∝
Γ(yi,t + ri)

Γ(ri)Γ(yi,t + 1)

exp(h̃′
i,tη̃)

ri(
1 + exp(th̃′

i,tη̃)
)yi,t+ri , (9)
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where h̃i,t and η̃ are as in (8). In a Bayesian framework, Pólya-Gamma data augmen-
tation can be employed to aid in posterior sampling. By Equation (2) in Polson et al.
(2013), the second fraction in (9) is

2−beκi,tψi,t

∫ ∞

0
e−ωi,tψ2

i,t/2p(ωi,t)dωi,t,

where bi,t = Yi,t + ri, κi,t = ri − (yi,t + ri)/2, and ω follows a Pólya-Gamma(bi,t, 0)

distribution with ψ = h̃′
i,tη̃. Therefore, the likelihood is

Γ(yi,t + ri)

Γ(ri)Γ(yi,t + 1)
2−(yi,t+ri) exp(κi,th̃′

i,tη̃)

∫ ∞

0
exp(−ωi,tψ2

i,t/2)p(ωi,t)dωi,t.

Given a prior π(η̃), the full conditional for η̃ can be calculated via

p(η̃|·) ∝ π(η̃) exp

{
−1

2
(Hη̃ − ζ)′Ω(Hη̃ − ζ)

}
,

where H is the combined h̃i,t by row, Ω is a diagonal matrix with diagonal elements
(ω1,1, . . . , ω1,T ; . . . ;ωN,1, . . . , ωN,T ), and

ζ =

(
κ1,1

ω1,1
, . . . ,

κN,T
ωN,T

)
.

If a multivariate normal prior with mean µη and covariance matrix Ση is assumed for
η̃, then

η̃|· ∼ MVN(µ∗
η,Σ

∗
η),

where

Σ∗
η = (H ′ΩH +Σ−1

η )−1,

µ∗
η = Σ∗

η(H
′κκκ +Σ−1

η µη).

On the other hand,

ωi,t|· ∼ PG(bi,t, h̃
′
i,tη̃),

where PG denotes a Pólya-Gamma distribution, and κκκ is a vector of stacked κi,t. A
zero vector is chosen for µη to shrink the parameters towards zero, and Ση is the
diagonal matrix [

σ2ηI(nh·ns) 0(nh·ns)×ns

0ns×(nh·ns) σ2δIns

]
.

The prior distributions for σ2η and σ2δ are inverse Gammas using the rate parameter-

izations σ2η ∼ IG(αη, βη) and σ2δ ∼ IG(αδ, βδ). In this paper, αη = αδ = 0.001 and
βη = βδ = 0.001 are chosen to yield vague priors. Finally, the inverse of the dispersion
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parameter ri follows the half-Cauchy distribution

1

ri
∼ Half-Cauchy(0, 1).

The joint distribution now follows as

p(Y , η̃,ω, ση, σδ, ri) ∝
N∏
i=1

T∏
t=1

{
Γ(yi,t + ri)

Γ(ri)Γ(yi,t + 1)
2−(yi,t+ri)

}
exp

{
−1

2
(Hη̃ − ζ)′Ω(Hη̃ − ζ)

}
×

|Ση|−1/2 exp

(
−1

2
η̃′Σ−1

η η̃

)
×

N∏
i=1

T∏
t=1

PG(ωi,t|bi,t, 0)×

IG(ση|αη, βη)× IG(σδ|αδ, βδ)×Half-Cauchy(1/ri|0, 1).

When sampling ri, Metropolis-Hastings is used. The proposal distribution is chosen
as uniform having a mean of the current value and range 2(min{10, ri}).

5. Model Comparisons and Scoring Procedures

This section discusses how we evaluate model fits (scoring criteria). One of the most
commonly used scoring criteria involves the one-step-ahead mean squared prediction
errors (MSPE), defined at time t by

MSPEt =
1

nS

nS∑
i=1

(Ŷi,t − Yi,t)
2,

where Ŷi,t denotes the one-step-ahead prediction of the number of graduate students
in school i at time t. As discussed above, the type of one-step-ahead prediction used
depends on the model type fitted. In a few cases, schools experience a large shift in
their year-to-year graduate student counts. The MSPE is not robust to such outliers.
To address this limitation, the mean squared logarithmic prediction error (MSLPE),
defined as

MSLPEt =
1

N

N∑
i=1

(ln(Ŷi,t + 1)− ln(Yi,t + 1))2,

can be used. Here, unity is added to observed and predicted counts to avoid taking a
logarithm of zero. Smaller MSPEs and MSLPEs indicate better-fitting models.

A measurement of the quality of the uncertainty quantification is the interval score
(IS), defined as

ISt(α) =
1

N

N∑
i=1

{
(ui,t − li,t) +

2

1− α
(li,t − Yi,t)I[Yi,t<li,t] +

2

1− α
(Yi,t − ui,t)I[Yi,t>li,t]

}
,
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where li,t and ui,t are the lower and upper bounds of the α prediction interval for
school i at time t, respectively. Here, the 95% prediction interval α = 0.95 is used. A
lower interval score indicates a more favorable predictive distribution.

Another uncertainty metric is the interval coverage rate (ICR), which measures the
proportion of observations that fall in the α× 100% prediction interval:

ICR(α) =
1

N

N∑
i=1

I[li,t<Yi,t<ui,t].

ICR values close to α are indicative of a well-calibrated predictive distribution.

6. Analysis of the GSS Series

This section fits the proposed models to the GSS data and compares their performance.
As a baseline, an intercept-only model for each school, which describes the scenario
where the counts are modeled through mean effects only, is fitted. We also fit a “per-
sistence model” where the observation for the previous year is used as the prediction
for the current year for each school (separately). Although simple, this prediction is
often competitive with state of the art statistical and machine learning models (Bonas
et al. 2025) and makes for a natural point of comparison. Next, a Poisson INGARCH
model (Ferland et al. 2006; Fokianos et al. 2009) is fitted via the R package tscount

(Liboschik et al. 2017). The remaining fitted models are variants of ESNs. First, a
Single Poisson ESN is fitted. Only point estimate for this model are considered (no
bootstrapping); hence, uncertainty quantification is not considered. Thereafter, an En-
semble Poisson ESN is fitted, which allows for both point estimation and uncertainty
quantification. A Bayesian Poisson ESN is also fitted. Finally, Bayesian hierarchical
ESNs, which take into account dependence between schools residing within the same
US state, are considered for both Poisson and negative binomial marginal distribu-
tions. For all ESN models, a lag-one autoregressive component is added to the output
layer.

The ESN hyperparameters nh, ν, a(·), τ , and π(·) were chosen via cross valida-
tion. For the Bayesian Poisson ESN, no burn-in or thinning was used since sampling
was done directly from the posterior without MCMC. For the Bayesian Hierarchi-
cal NB ESN, 1,000 samples were used for burn in and every other sample in the
generated Markov chain was used therefter. For the Bayesian Hierarchical Poisson
ESN, the first 500 samples are burned in, and every other sample is again saved.
Since the posterior distribution of ση and σδ do not have a closed form, a Metropolis-
Hastings step is needed. Due to the positivity of ση and σδ, the proposal distribution

is taken as uniform centered at the current value and having range 2min{0.5, σ(t−1)
δ }

and 2min{0.5, σ(t−1)
η }, respectively. Here, σ

(t−1)
δ and σ

(t)
η represents the t-th posterior

sample for σ
(t−1)
δ and σ

(t)
η , respectively. Each Bayesian MCMC was run until 1,000

prediction samples were generated.
One-step-ahead predictions for the number of graduate students from 2017 to 2021

were made. These predictions use all data up to the previous year analyzed. Specifically,
data from 1972-2016 is used to predict the 2017 counts; data from 1972-2020 are used
to predict the 2021 counts. The models are refit each year for a new prediction year.

The GSS data are generally overdispersed. To see this, the mean of the sample mean
counts over all 1,758 schools is 63.48 and the mean of the sample variances (a denom-
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2017 2018 2019 2020 2021 5 Year Mean(SD)
Intercept 3351 3110 3014 1886 2431 2758(594)
Persistence 887 223 241 1192 290 566(445)
INGARCH(1,1) 1129 612 512 960 587 760(269)
Single ESN 846 261 422 1222 295 609(414)
Ensemble ESN 843 286 415 1232 291 614(414)
Bayesian Poisson ESN 915 279 278 1240 263 595(455)
Bayesian Hierarchical NB ESN 822 250 243 968 289 514(352)
Bayesian Hierarchical Poisson ESN 878 224 275 1021 246 529(388)

Table 1.: Mean squared one-step-ahead prediction errors for all fitted models. The best
score in each column is bolded.

2017 2018 2019 2020 2021 5 Year Mean(SD)
Intercept 0.405 0.393 0.401 0.457 0.490 0.429(0.042)
Persistence 0.209 0.079 0.085 0.159 0.099 0.126(0.056)
INGARCH(1,1) 0.215 0.109 0.110 0.193 0.144 0.154(0.048)
Single ESN 0.217 0.099 0.122 0.194 0.138 0.154(0.050)
Ensemble ESN 0.217 0.106 0.122 0.200 0.139 0.157(0.049)
Bayesian Poisson ESN 0.210 0.073 0.085 0.161 0.097 0.125(0.058)
Bayesian Hierarchical NB ESN 0.205 0.090 0.099 0.172 0.122 0.138(0.049)
Bayesian Hierarchical Poisson ESN 0.208 0.073 0.088 0.169 0.100 0.128(0.058)

Table 2.: Mean squared log prediction errors for all fitted models to three significant
digits. The best score in each column is bolded.

inator of n − 1 is used) is 1320.28, significantly more than the mean. Hence, Poisson
marginal distributions, which have a unit dispersion, will be inadequate. Because of
this, a hierarchical negative binomial setup, which permits more overdispersion than
a hierarchical Poisson setup, is considered.

6.1. One-step-ahead Predictions

MSPE and MSLPE scores for various model fits are shown in Table 1 and 2. For
MSPE scores, the Bayesian Hierarchical NB ESN performs best on average, followed
by the Bayesian Hierarchical Poisson ESN, which also has a relatively small MSE.
The INGARCH(1,1) model and the frequentist ESNs, including the Single ESN and
Ensemble ESN, exhibit similar performance. For MSEs, the NB ESN model does not
perform uniformly best. However, it was able to better capture 2020’s volatility (while
other models suffer), producing a smaller average.

For MSLPE scores, the Bayesian Poisson ESN performs best, although the MSLPE
is very similar to that of the Bayesian Hierarchical Poisson ESN. Note the similarity
between the frequentist ESNs and INGARCH scores: on a logarithmic scale, frequentist
ESNs and INGARCH models perform similarly.

For model fits with uncertainty quantification, Tables 3 and 4 present IS(0.95) and
ICR(0.95) scores. The INGARCH(1,1) model has the best five-year average IS(0.95).
For ICR(0.95) scores, the Bayesian Hierarchical NB ESN model has an overall ICR
closer to 0.95, suggesting that the Bayesian Hierarchical NB and the Bayesian Hier-
archical Poisson ESNs intervals are wider. This could be due to the ESN’s sensitivity
to changepoint-type shifts in some of the series. Although the prediction intervals are
capable of covering such shifts, this comes at the cost of widening the intervals in
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other regions. It is useful to note here that the ensemble ESN and the Bayesian ESNs
take two different views of uncertainty quantification. The ensemble ESN allows for
the construction of an interval that reflects variability in the model estimates based
on the underlying distribution of the hidden layer weights. However, for the Bayesian
ESNs, intervals are constructed based on the posterior predictive distribution, which
is intended to capture uncertainty in the prediction itself. This is reflected in the
results, where the Bayesian Poisson ESN has better average interval score and cover-
age rate compared to the ensemble ESN. As the data are overdispersed, the superior
uncertainty quantification for the negative Binomial model is expected.

2017 2018 2019 2020 2021 5 Year Mean(SD)
INGARCH(1,1) 309 165 148 237 176 207(66)
Ensemble ESN 499 305 304 461 308 376(96)
Bayesian Poisson ESN 471 238 245 410 246 322(110)
Bayesian Hierarchical NB ESN 401 189 195 351 226 272(97)
Bayesian Hierarchical Poisson ESN 519 282 278 432 286 360(110)

Table 3.: Rounded interval scores (0.95) for models with uncertainty quantification.
The best score in each column is bolded.

2017 2018 2019 2020 2021 5 Year Mean(SD)
INGARCH(1,1) 0.720 0.811 0.795 0.769 0.766 0.772(0.035)
Ensemble ESN 0.742 0.815 0.821 0.779 0.820 0.796(0.034)
Bayesian Poisson ESN 0.771 0.874 0.865 0.825 0.862 0.839(0.044)
Bayesian Hierarchical NB ESN 0.879 0.958 0.956 0.909 0.938 0.928(0.034)
Bayesian Hierarchical Poisson ESN 0.761 0.880 0.856 0.825 0.849 0.834(0.046)

Table 4.: Rounded interval coverage rates (0.95) for models with uncertainty quantifi-
cation. The best score in each column is bolded.

6.2. In-sample Model Adequacy Checking

To further assess the model fits, the conditional standardized Pearson residuals intro-
duced by Weiß et al. (2020) were computed. These residuals are

Rt(θ̂) :=
Yt − E(Yt|Yt−1, Yt−2, . . . , Y1; θ̂)√

Var(Yt|Yt−1, Yt−2, . . . , Y1; θ̂)

at time t. Since these residuals are centered and scaled, if the fitted model is adequate,
the computed Rt’s should have a sample mean close to zero and a unit variance. In
other words, if the residuals have a sample mean far from zero, this is an indication of
bias. A sample variance that deviates from unity indicates a lack of fit for the variance
of data distribution. Boxplots of the sample variance of the residuals from each of the
1,728 schools is shown in Figure 5 for the Bayesian hierarchical NB ESN and Bayesian
Hierarchical Poisson ESN fits. The solid lines in the boxes depict the sample median.
The Bayesian Hierarchical NB ESN has a sample variance that is close to unity for
most schools, and is seen to significantly outperform the Poisson model. This said,
two major outliers exist (sample variances above 50) for the Bayesian Hierarchical NB
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model. Series for these two schools are plotted in Figure 6, where significant “jumps”
during several years are evident. These changepoint-type features may merit further
“localized” investigation.

Figure 5.: Boxplot of sample variances of the residuals over all 1,728 schools. Due to
two extreme outlying series, the y-axis is truncated to 5. The sample mean residual
variance for the Poisson and negative binomial models are 3.39 and 1.18, respectively.
Sample medians are indicated by a solid horizontal line in the box.

Figure 6.: Time series plots for our two outlying series.

These residuals were further scrutinized in Figures 7 and 8, which show time series
plots and sample autocorrelations for the same four schools in Figure 1. The resid-
ual series have minimal autocorrelation overall, suggesting that the ESNs effectively
capture temporal autocorrelations. However, for the University of Rochester, a few
autocorrelations appear significantly different from zero. Given the number of schools
and lags considered, this anomaly is not particularly concerning. Moreover, a residual
trace plot including 100 randomly selected schools is shown in Figure 9 for reference.
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Again, there is no clear autocorrelation present in these residuals.

Figure 7.: Model residuals of four randomly selected schools over the period 1973-2021.

Figure 8.: Residual autocorrelations. The dashed lines are pointwise 95% confidence
thresholds for a zero autocorrelation.

7. Discussion

This work developed extensions of ESNs to model graduate student enrollment counts.
Parameters were estimated in both frequentist and Bayesian frameworks. Hierarchical
structures were introduced to account for correlations from schools within the same
geographic state of the US. Both Poisson and negative Binomial data models were
considered. One-step-ahead prediction residuals were assessed from 2017 to 2021 us-
ing various scoring metrics to compare methods. Our enrollment count series were
best modeled by a Bayesian hierarchical model with negative binomial dynamics. In
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Figure 9.: In-sample standardized residuals ({Rt(θ̂)}) for the Bayesian hierarchical
negative binomial ESN across 100 randomly selected schools.

particular, the use of the negative binomial data model accounts for overdispersion
in the data, while the hierarchical structure accounts for dependencies across schools
within the same state.

Although our goal here was forecasting and not inference, ESNs inherit the general
criticisms of neural networks as being uninterpretable “black-box” models. A grow-
ing body of work attempts to address this gap (e.g., see Wikle et al. (2023) for an
overview). For example, one straightforward approach is to “feature shuffle” or ran-
domly perturb features and then compare model errors. In policy relevant situations
where models need to be interpretable, such methods may allow the use of machine
learning approaches such as ESNs.

Future work aims to explore methods for capturing spatial effects in ways not con-
sidered here. Wang et al. (2025) propose using spatial radial basis functions in a
convolutional neural network to incorporate “spatial effects” at different scales. One
potential approach is to apply a spatial deep convolutional neural network (SDCNN)
in an extreme learning machine framework (Huang et al. 2006). Here, the outputs
from the SDCNN could be used as covariates. By combining SDCNN with ESNs, non-
separable and non-stationary spatial covariances (in either count or continuous cases)
could possibly be handled. Another area where research is needed lies with marginal
distribution types. Although only Poisson and negative binomial structures were con-
sidered here, research into an unspecified count family via nonparametric techniques
could prove useful. One more avenue of future work involves modeling dependence
structures within institutions and across disciplines. One primary challenge here is
that universities often group departments within colleges or divisions in very different
ways; for example, statistics departments can reside in Engineering, Natural Sciences,
or Mathematics clusters. Finally, the strong predictive performance of the persistence
approach indicates that it may be worth pursuing models on the difference in counts
{Yt−Yt−1} rather than the counts themselves. Although this would induce challenges,
recent literature involving distributions supported on all integers are being developed
(Kang et al. 2025). Model in this way may result in improved predictions (similar to
the persistence approach), while still being model-based and allowing for uncertainty
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quantification.
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