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Abstract

In this paper, we use tensor models to analyze the Covid-19 pandemic data. First, we use tensor models,
canonical polyadic, and higher-order Tucker decompositions to extract patterns over multiple modes.
Second, we implement a tensor completion algorithm using canonical polyadic tensor decomposition to
predict spatiotemporal data from multiple spatial sources and to identify Covid-19 hotspots. We apply a
regularized iterative tensor completion technique with a practical regularization parameter estimator to
predict the spread of Covid-19 cases and to find and identify hotspots. Our method can predict weekly, and
quarterly Covid-19 spreads with high accuracy. Third, we analyze Covid-19 data in the US using a novel
sampling method for alternating least-squares. Moreover, we compare the algorithms with standard tensor
decompositions concerning their interpretability, visualization, and cost analysis. Finally, we demonstrate
the e�cacy of the methods by applying the techniques to the New Jersey Covid-19 case tensor data.
Keywords: tensor, tensor completion, tensor decomposition, Covid-19, spatiotemporal data

1|Introduction
Tensor decomposition is a powerful tool in data analysis, computer vision, scientific computing, machine learning,
and many other fields. Tensor models for dimensionality reduction have been highly influential in machine
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learning applications like classification and regression. Tensor decomposition has succeeded in many modern big
data analyses [9, 7, 21, 29], Neuro-Science [4].

In this work, we focus on analyzing Covid-19 pandemic data [25, 1] by using tensor decomposition models. Our
goals are to predict future infection and locate and identify hotspots from data-set coming from multiple sources
across di�erent spatial regions over time. One is interested in determining where and when changes occur in the
pattern. The strategy is set up with an optimization that separates the data as follows: let Y = L + S where Y

is the given tensor, L is a low-rank reconstructed tensor of Y and S is the sparse tensor. In video processing, the
original video is separated into its background and foreground subspace to detect anomalous activities [9, 29].
The tensor L is the background, and S is the foreground. The sparse tensor S can provide anomalous activities.
Similarly, S will contain the occurrence of hotspots. To achieve this separation, we formulate the following:

min
ar,br,cr,–r

ÎC ≠ LÎ
2
F + ‡Î–Î¸1 (1)

where L =
qR

r=1 –rar ¶ br ¶ cr, Î · ÎF is the tensor Frobenius norm, and Î · Î¸1 is the vector one norm. The
optimization problem (1) is neither convex nor di�erentiable [10]. In addition, this formulation is amenable to
tensor completion problems where missing data can be found. To show the e�cacy of our methods for forcasting
Covid-19 infections, we use the Covid-19 database in [25].

Most of the algorithms suggested for solving (1) are based on ALS (alternating least squares) [10]. ALS is fast,
easy to program, and e�ective. However, ALS has some drawbacks [18]. There is a need for more e�cient and
accurate methods, especially in higher order tensors with high modal dimennsions. Thus, we propose a sampling
method for ALS to maximize its e�ciency of ALS (especially for the time-cost minimization ) and to allow more
considerable tensor data.

1.1|Previous Work on Covid-19 Data Analysis
Previous Work on Covid-19 Data Analysis. Here, we mention a non-exhaustive collection of literature on
Covid-19 analysis. The work varies from PDE models to machine learning methods for predicting Covid-19
hotspots, patterns, and outbreaks. A parabolic PDE-based predictive model with parameters learned from
training data from previous Covid-19 cases has been proposed to predict Covid-19 infections in Arizona [27]. A
global optimization of the tensor train is used to explore the parameter space to locate the starting points. The
Nelder-Mead simplex, local optimization algorithm is used to optimize the covid-19 modeling problem locally.
Eventually, the Runge-Kutta method was applied to solve the PDE for one-step forward prediction. There are
several machine learning methods. In supervised machine learning, time series forecasting via Holt’s Winter
model was used to analyze global Covid-19 data and predict the sum of global Covid-19 cases compared to linear
regression and support vector algorithms. Dictionary learning [17] through nonnegative matrix factorization to
identify the pattern and predict future covid-19 outbreaks. In addition, machine learning has been applied to a
susceptible exposed-infected-removed (SEIR) model with SARS 2003 training data to predict covid-19 outbreaks
[30]. Deep learning models such as the attention-based encoder-decoder model [19] have been implemented to
forecast the epidemic of covid-19. There needs to be more work on mathematical modeling to detect Covid-19
hotspots; however, a tensor-based anomaly detection method for spatial-temporal data [31] has been proposed
to determine hotspots based on an anomaly in pattern.

1.2|Contributions
In this work, we focus on analyzing Covid-19 infection data [25, 1] from New Jersey period 04/01/2020 to
12/26/2021 (NJ-Covid-19). The state of New Jersey was initially chosen since we would like to study the spread
of the disease in the most densely populated state. The raw data collected by the New York Times [25, 1]
were the cumulative data daily. Preprocessing techniques were applied to the raw spatio-temporal data, and
formatting the data in a tensor structure. Standard low-rank tensor decomposition models such as canonical
polyadic (CP), Higher Order Orthogonal Iteration (HOOI), as well as tensor rank revealing methods such as the
tensor rank approximation method called low-rank approximation of tensor (LRAT) [7] and LRAT with flexible
Golub-Kahan [29] are used to approximate the pattern and flow of covid infections. A new sampling method for
ALS (SMALS) was applied to the NJ-Covid-19 data. Some of the other contributions are the following:
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• Converted each entry of the Covid-19 tensor into the increment rate each week, applied the CP-ALS
algorithm, and plotted error with practical threshold using standard deviation and mean. The spike
above the threshold line replicates the original spike in Covid-19 infections.

• Tensor completion optimization was formulated to predict future Covid-19 infections up to the next
week and quarter using LRAT with flexible Golub-Kahan.

• The proposed SMALS was implemented on the NJ-Covid-19 data. We compare its numerical results
with the standard CP decomposition model via the alternating least-squares method to see its e�cacy.
We tested our spatiotemporal data tensor and other image data of di�erent sizes.

1.3|Outline of the paper
The paper is organized as follows. Section 2 provides some tensor backgrounds, standard tensor decompositions,
CP, and well-known numerical techniques like Alternating Least-Squares and Higher-Order Orthogonal Iteration.
Then, in Section 3, we include explorations and estimations of of the Covid-19 tensor via CP decomposition
and Higher Order Orthogonal Iteration (HOOI) and compare and contrast their outputs. Section 4 describes a
sampling method for ALS with some numerical results comparison with ALS. Section 5 deals with the sparse
tensor model implemented with LRAT with Golub-Kahan [29]. We discuss its application to predicting Covid-19
infection cases and locating and identifying Covid-19 hotspots. Finally, we provide concluding remarks and some
future outlooks.

2|Preliminaries
We denote a vector by a bold lower-case letter a. The bold upper-case letter A represents a matrix, and
the symbol of a tensor is a calligraphic letter . Throughout this paper, we focus on third-order tensors
A = (aijk) œ RI◊J◊K of three indices 1 Æ i Æ I, 1 Æ j Æ J and 1 Æ k Æ K , but these can be
easily extended to tensors of arbitrary order greater or equal to three.

The three kinds of matricization for third-order A are A(1), A(2) and A(3), according to respectively arranging
the column, row, and tube fibers to be columns of matrices, which are defined by fixing every index but one
and denoted by a:jk, ai:k and aij: respectively. We also consider the vectorization for A to obtain a row
vector a such the elements of A are arranged according to k varying faster than j and j varying faster than
i, i.e., a = (a111, · · · , a11K , a121, · · · , a12K , · · · , a1J1, · · · , a1JK , · · · ). Kronecker Product of
two matrices A œ Rm◊n and B œ Rp◊q is denoted as A ¢ B œ Rmp◊nq and obtained as the product
of each element of A and the matrixB. Khatri-Rao Product of two matrices A and B with the same columns
are the column-wise Kronecker product: A § B = [a1 ¢ b1 . . . aR ¢ bR]. The outer product of a
rank-one third order tensor is denoted as a ¶ b ¶ c œ RI◊J◊K of three nonzero vectors a, b and c is a
rank-one tensor with elements aibjck for all the indices, i.e., the matricizations of a ¶ b ¶ c œ RI◊J◊K

are rank-one matrices. A canonical polyadic (CP) decomposition of A œ RI◊J◊K expresses A as a sum of
rank-one outer products:

A =
Rÿ

r=1
ar ¶ br ¶ cr (2)

where ar œ RI , br œ RJ , cr œ RK for 1 Æ r Æ R and and ¶ is the outer product. The outer product
ar ¶ br ¶ cr is a rank-one component and the integer R is the number of rank-one components in tensor A.
The minimal number R such that the decomposition (2) holds is the rank of tensor A, which is denoted by
rank(A). For any tensor A œ RI◊J◊K , rank(A) has an upper bound min{IJ, JK, IK} [11]. In
fact, tensor rank is NP-hard over R and C [6].
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Another standard tensor decomposition is higher-order Tucker (HOT) decomposition. HOT is a generalization
of matrix SVD where m ◊ n matrix M has a factorizaion U�V T , where U and V are orthogonal matrices
and � is a diagonal matrix with ‡ij = 0 if i ”= 0 and otherwise ‡ii >= 0. Its generalization in third-order
tensors is

T = G ◊1 U (1)
◊2 U (2)

◊3 U (3)

where T œ RI1◊I2◊I3 is the given tensor, G œ RR1◊R2◊R3 is the core tensor and U (i)
œ RIi◊Ri

for i = 1, 2, 3 is an orthogonal matrix. The Tucker contracted product ◊1 is defined as G ◊1 U (1) =
q

r1 Gr1r2r3U
(1)
i1r1 œ RI1◊R2◊R3 .

2.1|Standard Least-Squares Optimization for Tensor Decomposition
Tensor decompositions like CP and HOOI [3, 10] are considered to be generalizations of the singular value
decomposition (SVD) and principal component analysis (PCA) of a matrix. To achieve CP from a given third
order X , an optimization problem is solved to find the finite sum of rank one tensor of 3rd order approximating
X :

min
A,B,C

|| X ≠ X̂ ||F (3)

with

X̂ =
Rÿ

r=1
ar ¶ br ¶ cr (4)

where A, B, C are factor matrices with ar, br, cr are their respective column vectors. This nonlinear
optimization can be divided into subproblems of linear least squares with respect to the factor matrices. This is
called the Alternating Least Squares (ALS).

Mode I

Mode II

Mode III

A 2 RI⇥J⇥K

=

a1 2 RI

b1 2 RJ

c1 2 RK

+ . . . +

aR 2 RI

bR 2 RK

cR 2 RK

Figure 1. CP-Decomposition Architecture

ALS is an iterative method for finding the CP decomposition of a given tensor. The nonlinear optimization
problem is:

min
A,B,C

||X ≠

Rÿ

r=1
ar ¶ br ¶ cr||

2
F (5)

where A, B and C are factor matrices containing the columns ar œ R
I , br œ R

J and cr œ R
K

respectively. The problem can be reduced to linear least squares problems at each iteration with an initial guess
A0, B0, C0, the sequences Ak, Bk, Ck are generated by solving each sub-problems[13, 32]. Given the
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initial guess A0,B0,C0, the factor matrices are updated by the following: update A via

Ak+1 = arg min
AœRI◊R

1
2 || X(1) ≠ A(Ck

§ Bk)T
||

2

F
(6)

update B via

Bk+1 = arg min
BœRJ◊R

1
2 || X(2) ≠ B(Ck

§ Ak)T
||

2

F
(7)

and update C via

Ck+1 = arg min
CœRK◊R

1
2 || X(3) ≠ C(Bk

§ Ak)T
||

2

F
(8)

These updating schemes are repeated until convergence; See figure 1, Algorithm 1. The local convergence and
uniqueness of the ALS technique were discussed in this work [26].

Algorithm 1 [20]CP-ALS for 3-Way Tensor Decomposition

Require: Tensor A œ RI◊J◊K rank R,Maximum Iterations N.
Ensure: CP Decomposition ⁄ œ RR◊1, A œ RI◊R,B œ RJ◊R, C œ RK◊R.

1: Initialize A, B, C;
2: for i = 1 ... N DO
3: A Ω X(1)(C § B)(CT C ú BT B)†

4: Normalize the columns of A(storing norms in vector ⁄.)
5: B Ω X(2)(C § A)(CT C ú AT A)†

6: Normalize the columns of A(storing norms in vector ⁄.)
7: C Ω X(3)(B § A)(BT B ú AT B)†

8: Normalize the columns of A(storing norms in vector ⁄.)
9: If convergence is met then,
10: break for loop
11: end if
12: end for
13: return ⁄, A, B, C ;

Algorithm 2 The CP-ALS Algorithm for General Case

Require: Initialize with factor matrics A0
œ RI◊R, B0

œ RJ◊R, C0
œ RK◊R

Ensure: Factor matrices A(n)
œ RIn◊R for n = 1, 2, . . . , N.

1: for i = k ... N DO
2:

(A(n))k+1 = arg min
A(n)

1
2 ||X(n) ≠ A((A(N))k

§ . . . § (A(n+1))k
¶ (A(n≠1)k+1

§ . . . § (A(1))k+1)T
||

2
F

3: end for
4: return A(n)

œ RIn◊R;
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2.2|Higher Order Orthogonal Iteration (HOOI)
HOOI is an iterative algorithm that computes low rank decomposition of a given tensor [22]. To achieve
the reconstruction of T in the HOOI format, i.e. T = G ◊1 U (1)

◊2 U (2)... ◊N U (N), the problem
formulation is

min
U (1),U (2),...,U (N)

|| T ≠ G ◊1 U (1)
◊2 U (2)... ◊N U (N)

||
2
F

where T œ RI1◊...◊IN and U (i)
œ RIi◊Ri is a low rank matrix for i = 1, . . . , N with Ii Ø Ri.

Equivalently, the optimization can be reformulated as a maximization of || G ||
2
F with G is given by

G = A ◊1 U (1)T

◊2 U (2)T

... ◊N U (N)T (9)

where the core tensor G œ RR1◊...RN tensor for i = 1, . . . , N . See Figures 2.

Figure 2. HOOI Architecture of 3-Way Tensor [16]

Algorithm 3 [20]Higher-Order Orthogonal Iteration(HOOI)

Require: :Tensor X œ RI1◊...◊IN and ranks R1, ..., RN

Ensure: :Tucker Factors:U1 œ RI1◊R1, U2 œ RI2◊R2, ..., UN œ RIN ◊RN

and Core tensor G œ RR1◊R2◊...◊RN

1: Initialize U1, ..., UN ;(random or given by HSVD)
2: while convergence criterion not met do
3: for n = 1,...,N do
4: W Ω X ◊N UT

N ... ◊n+1 UT
n+1 ◊n≠1 UT

n≠1... ◊1 UT
1

5: [U�V ] Ω SV D(W(n))
6: Un Ω U(:, 1 : Rn)
7: end for
8: end while
9: G Ω X ◊N UT

N ◊N≠1 UT
N≠1... ◊1 UT

1
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3|Covid-19 Tensor Analysis Using ALS and HOOI
In this section, we explore the Covid-19 infection data tensor through reconstruction and estimation using CP
decomposition and HOOI. We then compare and contrast their outputs.

3.1|Covid-19 Data Preparation
We focus on the daily Covid-19 infection data of New Jersey State from the New York Times’s Covid-19 Data
Depository from the period of 04/01/2020 to 12/26/2021 [25, 1]. The state of New Jersey was initially chosen
since we would like to investigate the spread of the disease in the most densely populated and a�ected state.
The raw data collected by New York Times was a daily basis cumulative data. We restructured the data table
into weekly total Covid-19 infections in each county. We stacked 21 matrices representing the counties of New
Jersey of size 13 weeks ◊ 7 quarters. Thus, we construct a tensor data, C œ R13◊7◊21. Each element of the
tensor represents the total infection in a week of a particular quarter in a county. See Figure 3 below.

7 Days
¸ ˚˙ ˝

13
W

ee
ks

¸
˚˙

˝

21
Cou

ntie
s

¸
˚˙

˝

C

Figure 3. Covid-19 Tensor: New Jersey’s number of weekly Covid-19 cases every quarter per
county.

To increase the accuracy and e�cacy of the algorithms, we normalized the data tensor converting it into relative
cases tensor with respect to the population of the respective county. We constructed the population tensor of
New Jersey collecting population data from US Census 2020 [1] and divided the tensor-data tensor by the
population data tensor. Each element of our new normalized tensor is the following:

C(i, j, k) = Total infections in jth week of ith quarter in the kth county
Respective Mid-year Population

Specifically, we have

C(1, 1, 1) = Total covid infections of Atlantic County in 1st week of April
mid year population of Atlantic county in 2020

= A(1, 1, 1)
P (1, 1, 1) = 67

274534 = 2.44e ≠ 04

The tensor C is rescaled by dividing by the population of respective counties of mid-year 2020 [1]. The new
tensor data C̄ has greatly improved e�ciency in the numerical implementations. See sections ,,, and for some
experimental results.
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3.2|Numerical Experiments

3.2.1|CP vs HOOI
One main advantage of tensor decomposition, namely, ALS and HOOI, is that it provides analytic tools for
higher-order data in several modes. We implemented the algorithms, CP and HOOI, on our tensor C̄ of size
13 ◊ 7 ◊ 6. First, we ran the ALS algorithm to construct the CP decomposition into three-factor matrices.
Then we analyze through the visualization of the three-factor matrices from the estimated constructed tensor.
We are able to estimate the same evolutionary patterns of Covid-19 cases as the original data tensor; see Figures
4 and 5. Collectively, we plot the cases in Figures 6 based on the intensity levels. HOOI is faster in time, but it
gives lower accuracy results than CP.

Figure 4. Original and Approximated using CP

Figure 5. Original and Approximated using HOOI

Geo-Plot of CP approximation
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(a) Original (b) Missing (c) Reconcruted with CP

Figure 6. Geographical distribution plot of Covid-19 cases;

3.2.2|Extracting Patterns in Covid-19 via Factor Matrices
Extracting Patterns in Covid-19 via Factor Matrices. We further explore from our output factor
matrices of the CP decomposition. We multiply di�erent factor matrices to observe the county-wise, week-wise,
and quarter-wise pattern of the Covid-19 cases. The first visualization of Figure 7 shows which quarter has the
highest cases increment in 2nd week. Then the second visualization of the quarter, Sep 27-Dec-26 2020, indicates
that the fourth week has the highest number of cases. Our algorithm estimates that the week, of Oct 4-10,2020,
is the week of the highest increment. Furthermore, we found that the same identical patterns on the original
Covid-19 data tensor are consistent with our findings. Similarly, Figure 8 shows the identical pattern of our
estimated and original Covid-19 infections in Essex county from June 27 - Sept 25, 2021.
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Figure 7. Cross-Pattern on Sep 27-Dec-26 2020
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Figure 8. Covid-19 weekly consecutive increment (relative cases) of Essex county on 7th
quarter of June 27 - Sept 25, 2021.

4|Sampling Method for Alternating Least-Squares (SMALS)
Given a tensor X œ RI◊J◊K and a fixed positive integer R, the ALS algorithm solves three independent
least squares problems alternatively. The least squares problems can be solved via various methods such as QR
factorization, Cholesky factorization and etc. However, it requires of an O(R3) floating point operations per
second. To reduce this we let S µ {1, . . . R} be the set of sample indices and As, Bs and Cs represent the
sub-matrices obtained by choosing the columns of A, B, and C according to the index set S respectively. The
partial derivatives of the objective function f with respect to the blocks As, Bs and Cs are

ˆf

ˆAS
= ≠X(1)(CS § BS) + A(C § B)T (CS § BS), (10)

ˆf

ˆBS
= ≠X(2)(CS § AS) + B(C § A)T (CS § AS), (11)

and
ˆf

ˆCS
= ≠X(3)(BS § AS) + C(B § A)T (BS § AS). (12)
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the stationary points of the above equations can be obtained by setting each gradient equal to zero. For instance
ÒAS f = 0 implies the following normal equation

AS

1
(C § B)T (CS § BS)

2S
= ≠ASC

1
(C § B)T (CS § BS)

2SC

(13)
+ X(1)(CS § Bs)

where AS represents the sub matrix of A obtained by sampling the rows of A corresponding to the sampling set
S. Similar results can be derived by solving the equations ÒBS f = 0 and ÒCS f = 0. This reduces the latter
computational complexity to O(max{|S|

3
}). When I, J and K are relatively large, the reduction could be

significant.In each iteration, the sampling set S is selected based on the performance of every block variable.
For example, if updating the block Aj leads to a smaller decrease in the objective function than updating the
block Ai, the index j will replace i in the subsequent iteration. More information on the di�erentiation of ALS
can be found in [23].

Algorithm 4 Psuedo-code for SMALS

Initialize Ê0 = (A0, B0, C0) where A0
œ RI◊R, B0

œ RJ◊R and C0
œ RK◊R

General Step select S µ {1, . . . , R}

For k = 0, 1, . . . max interaton, updates the corresponding blocks AS, BS and CS :

Ak+1
S œ arg min

ASœRI◊|S|

1

2
ÎX(1) ≠ (AS , Ak

SC )(Ck § Bk
)

T Î2
F

Bk+1
S œ arg min

BSœRJ◊|S|

1

2
ÎX(2) ≠ (BS , Bk

SC )(Ck § Ak+1
)

T Î2
F

Ck+1
S œ arg min

CSœRK◊|S|

1

2
ÎX(3) ≠ (CS , Ck

SC )(Bk+1 § Ak+1
)

T Î2
F

Update Ak+1, Bk+1 and Ck+1 by replacing the columns Ak+1
S , Bk+1

S and Ck+1
S .

Set Êk+1 = (Ak+1, Bk+1, Ck+1).
Update the sampling set Sk according to the performance of each block variable in the previous iteration
Repeat until the stopping criteria are met.

4.1|Computational Complexity: ALS vs SMALS
In this section, we describe the computational complexity of SMALS. For a given rank R, the ALS algorithm
requires computing a pseudo-inverse matrix R ◊ R in the inner iteration, which incurs a high cost for
the large tensors. In contrast, the SMALS algorithm ((4)) requires computing a pseudo-inverse of |S| ◊

|S| matrix where S µ {1, ..., R}. Numerically, the computational complexity of the ALS algorithm
[33] is 3RIJK + (7R2 + R)(JK + KI + IJ) + (I + J + K)(R2 + R) + 11R3

¥

O{(R2(IJ + JK + KI) + RIJK}. It follows that SMALS has a computational complexity
O{(|S|

2(IJ + JK + KI) + |S|IJK} where |S| Æ R.

4.2|Numerical Results: SMALS vs ALS
These experiments ran on a laptop with Apple M1 chip, 8-core CPU, 8GB memory, and 512GB storage. In order
to demonstrate the e�ectiveness of the SMALS algorithm and to compare it with the standard ALS algorithm,
we have conducted numerical experiments using both Covid-19 tensor data, random color image data, and
randomly generated data as well. Specifically, we have focused on the comparison of lower rank approximations
over the Covid-19 case tensor of three counties in New Jersey. Our results show that the SMALS estimation
approach performs well in every case see figure 9.
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Figure 10 illustrates the performance of the SMALS algorithm on image data and demonstrates its compelling
results. Additionally, the error evolution in figure 16 indicates that SMALS performs better than ALS, as it has
fewer fluctuations or "swamps". The experimental data presented in table 2 further supports this conclusion, as
it shows that SMALS executes with less time cost than ALS for each tensor of di�erent sizes and various ranks.

Figure 9. SMALS vs ALS on Covid-19 Tensor

Figure 10. SMALS vs ALS on Random Color Images (R = 20)



30 Dipak Dulal, Ramin and Navasca| Com. Alg. Num. Dim Innov. 3(1) (2024) 17-44

Figure 11. Warren County: 4th Quarter(Jan- March 2021), 7th(Oct-Dec,2021), 1st(April-
June 2020) last week covid cases prediction using SMALS algorithm with rank 9◊ 7 about 20%
data missing

Figure 12. Middlesex County: 4th Quarter(Jan- March 2021), 7th(Oct-Dec,2021), 1st(April-
June 2020) last week covid cases prediction using SMALS algorithm with rank 9◊ 7 about 30%
data missing
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Figure 13. Ocean County: Fourth Quarter(Jan- March 2021), 7th(Oct-Dec,2021), 1st(April-
June 2020) last week covid cases prediction using SMALS algorithm with rank 9◊ 7 about 70%
data missing

Rank ALS SMALS
Error Time (s) Error Time (s)

9 ◊ 7 2.98e-4 4.06 2.65e-02 2.65
7 ◊ 7 5.4e-03 2.95 2.93e-02 2.1
7 ◊ 8 2.1e-04 3.29 2.5e-02 2.51

Table 1. E�ciency Comparison: ALS vs SMALS
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Figure 14. Quarter Estimation using SMALS

Figure 15. Residual Error: SMALS vs ALS with rank 63
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Figure 16. Error Evolution of ALS vs SMALS on random images

E�cacy Comparison Between ALS and SMALS

Table 2. ALS vs SMALS Comparison

We implement both ALS and SMALS algorithms on di�erent sizes of varying tensors. We run the codes twenty
times for each tensor case and average their results. Our result indicates SMALS is more e�cient in terms of
time cost, see table 2



34 Dipak Dulal, Ramin and Navasca| Com. Alg. Num. Dim Innov. 3(1) (2024) 17-44

5|Tensor Sparse Optimization
In [29], an iterative method based on proximal algorithms called low-rank approximation of tensors (LRAT)
was proposed to solve the minimum rank optimization:

min
ar,br,cr,–r

ÎC ≠ LÎ
2
F + ‡Î–Î¸1 (14)

where L = qR
r=1 –rar ¶ br ¶ cr, C , a given data tensor. The implementation is in Algorithm 5. In a

recent work, [7], a more practical choice of the parameter ‡ led to a more e�cient and accurate algorithm.
The practical regularization method is based on a flexible Golub-Kahan (fGK) process. In Figures 17 and 18,
we implemented the LRAT + fGK algorithm with the convergence plot; the sparse model predicts the general
phenomena of the Covid-19 cases.

Figure 17. LRAT + fGK Estimation
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Figure 18. LRAT + fGK Convergence Plot

.
In figure 7, the error plot shows the di�erence between the original data and estimation. The horizontal line
detects an anomaly and this spot coincides with a spike in the number of infections.

5.1|Hotspot Identification
[12, 2] Recently, “hotspots” in infectious disease epidemiology have been increasingly used, and they dictate
the implementation of appropriate control measures for the specific place. Despite “Hotspots “has not a concrete
definition, it is described variously as per area of elevated incidence, prevalence, higher transmission e�ciency,
or higher chance of disease emergence. Our research is also on Covid-19 pandemic-infected population data, so
we defined “hotspots” as the geographical area where the higher intensity of disease prevalence and transmission
rate as per population density and flow in the specific area. More specifically, we have defined a threshold in the
specific area as per population and its activities, indicating the hotspots there. Identifying hotspots attracts the
attention of authorities so that more e�cient control measures may be implemented by targeting these areas to
sustain further transmission.

5.1.1|Sparse Optimization for Hotspot Identification
Our goal is to detect hotspots rapidly. Our goal is to have the following decomposition: Y = L + S where Y is
the given tensor, L is a low rank reconstructed tensor of Y and S is the sparse tensor. In video processing, the
original video is separated into background and foreground subspaces to detect anomalous activities. The tensor
L is the background, and S is the foreground. The sparse tensor S can provide anomalous activities. Similarly,
S will contain hotspot occurrence. Thus, we use the sparse tensor model and implement LRAT 5.
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5.1.2|Hotspot Detection with Practical Threshold
First, we convert the Covid-19 data tensor into a tensor with each entry as the rate of change in the number of
infections from the prior week by computing

Number of infections this week ≠ Last week’s total infections
Last week’s number of infections

for each entry. Then we apply the LRAT algorithm to the new tensor. We use the practical threshold mean +
5*standard deviation on the newly converted tensor for Atlantic County during April 01-June 30,2020 see, Figure
19 and mean + 1.5* std for Burlington county during October 01- Dec 25, 2020, See Figure 7 The resulting plot
from LRAT spikes above the threshold line in the week considered to have hotspots. The hotspots detected
through our algorithm with a suitable threshold match the pattern of the original Covid-19 infection data.

Figure 19. April 01 - June 30, 2020
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Figure 20. October 01- December 25,2020

5.2|Tensor Completion for Predicting Covid-19 Infection Cases
The tensor completion is the problem of completing the missing or unobserved entries of the partially observed
tensor. Tensor completion algorithms have a wide range of applications in the field of big data [24],computer
vision such as image completion [7, 28] which focus on filling the missing entries in a presence of noise. Other
important applications of tensor completion are link prediction[15] and recommendation system [8, 5] and
video completion [14]. With the given the tensor L of order n with missing entries for a given rank, the tensor
completion optimization problem can be formulated as the following:

minimizeL rank(L)
subject to L(�) = C(�)

In the work of Wang and Navasca [29], this optimization is reformulated to the tensor sparse model. To apply
the tensor sparse model with constraints in the prediction of Covid-19 infection cases, we set up our data by
removing some column data from the original tensor; see Figure 21. We implement algorithm 5 to complete the
Covid-19 tensor with the observed data constraints. The reconstructed tensor exhibits the same pattern as the
tensor cases even though there are some dissimilarities in particular numerical data.
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Figure 21. Our Tensor Completion Architecture on Covid-19 data Tensor
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Algorithm 5 [29, 7, 21, 34]Tensor Completion via LRAT with ISTA or FGK
Require: Tensor C œ RI◊J◊K

rank of the tensor R,a regularization parameter ⁄ and a scale t>0.

Ensure: An approximated tensor X
1: Initialize a tensor C0

= [‡0
; A0, B0, C0

]T .

2:Update steps:

I) Update factor matrices A, B, C:

Compute Un
= Dn

(C § B)
T

and let dn = max{ÎUnUnT ÎF , 1}.

Compute Dn
and An+1

by

Dn
= An ≠ 1

tdn
ÒAf(An, Bn, Cn, ‡n

),

An+1
= Dn

diag(Îdn
1 Î, · · · , Îdn

T Î)
≠1

where dn
i is the i-th column of Dn

for i = 1, · · · , T and

ÒAf is gradient of the cost function given by 14

Compute V n
as Un

and let en = max{ÎV nV nT ÎF , 1}.

Compute En
and Bn+1

by

En
= Bn ≠ 1

ten
ÒBf(An+1, Bn, Cn, ‡n

),

Bn+1
= En

diag(Îen
1 Î, · · · , Îen

T Î)
≠1

where en
i is the i-th column of En

for i = 1, · · · , T .

Compute W n
as Un

and let fn = max{ÎW nW nT ÎF , 1}.

Compute F n
and Cn+1

by

F n
= Cn ≠ 1

tfn
ÒCf(An+1, Bn+1, Cn, ‡n

),

Cn+1
= F n

diag(Îfn
1 Î, · · · , Îfn

T Î)
≠1

where fn
i is the i-th column of F n

for i = 1, · · · , R.

II) Update the row vector ‡:

Compute Qn+1
where Q = (qT

1 , · · · , qT
R), qr is row vector

of rank one tensor ar ¶ br ¶ cr constructed from columns of respective

factor matrices A, B and C,

let ÷n = max{ÎQn+1Qn+1T ÎF , 1}.

via ISTA: Compute ‡n+1
by

‡n+1
= argmin‡{1

2
Î‡ ≠ ‡n

+
1

s
Ò‡f(An+1, Bn+1, Cn+1, ‡n

)Î2
+

1

s÷n
Î‡Î1}

via FGK:

Compute ‡n+1
by

‡n+1
= argmin‡{1

2
Ît ≠ ‡QÎ2

F + ⁄Î‡Î1}

5.2.1|Numerical Experiments on Prediction of Infected Cases
We implement a tensor completion algorithm to our tensor data. We replace the last (most current) week’s
data of the Atlantic and Warren counties with the mean of the remaining data. Then, the missing values on the
tensor are completed via a low-rank approximation with Flexible Golub Kahan(FGK) and ISTA as well. Figure
(6a) depicts the geographical distribution of Covid-19 cases by severity in the final week of December 2021 in
the state of New Jersey. Figure (6b) illustrates the same as figure (6a), but with the omission of cases from
two counties, while Figure (6c) shows the final representation after the application of the tensor completion
algorithm LRAT with FGK. Figure 22 and 23 show the prediction of last week’s covid infections in Atlantic and
Warren County of a particular quarter using LRAT+ FGK and LRAT + ISTA, respectively, whereas Figure
24 and 25 show the prediction of pattern and last quarter total covid infections. Figure 26 compares the error
evolution of two algorithms.
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Figure 22. LRAT + FGK

Figure 23. LRAT + ISTA
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Figure 24. Prediction of Covid-19 Pattern of 7th quarter of Atlantic county via LRAT with
FGK.
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Figure 25. 7th Qtr Prediction of Covid Infections: this is the total number of cases prediction
of Atlantic county for 7th Quarter (June27-Sep25)

Figure 26. Comparison over: FGK and ISTA
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5|Conclusion
In this work, we apply various tensor models and tensor algorithms to analyze Covid-19 data. The standard
tensor models, CP and HOOI, with their o�-the-shelves algorithms, ALS and HOOI, are tested against a new
sampling method for ALS (SMALS). The numerical results are auspicious as it cuts the downtime while keeping
the Frobenius norm errors relatively consistent with ALS. Here tensor sparse model [29, 7] is used as the
model for predicting future Covid-19 infection cases as a tensor completion problem. The numerical results are
impressive as the tensor completion algorithm can predict infection a week and quarter ahead. Moreover, the
sparse tensor model can locate which counties exhibit hotspots. The sparse tensor model is based on proximal
algorithms and the flexible hybrid method by Golub-Kahan for e�cient practical implementation.

In our future work, we would like a more mathematical and methodical technique for locating and detecting
hotspots. We have used l1 minimization in the tensor completion; we will work on the e�cacy of l0 minimization
of low-rank approximation of CP decomposition and tensor completion algorithm in the proximal framework.
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