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Abstract

We study Gaussian sparse estimation tasks in Hu-

ber’s contamination model with a focus on mean

estimation, PCA, and linear regression. For each

of these tasks, we give the first sample and com-

putationally efficient robust estimators with op-

timal error guarantees, within constant factors.

All prior efficient algorithms for these tasks in-

cur quantitatively suboptimal error. Concretely,

for Gaussian robust k-sparse mean estimation on

R
d with corruption rate ϵ > 0, our algorithm has

sample complexity (k2/ϵ2)polylog(d/ϵ), runs in

sample polynomial time, and approximates the tar-

get mean within ℓ2-error O(ϵ). Previous efficient

algorithms inherently incur error Ω(ϵ
√
log(1/ϵ)).

At the technical level, we develop a novel multi-

dimensional filtering method in the sparse regime

that may find other applications.

1. Introduction

Robust statistics focuses on developing estimators resilient

to a constant fraction of outliers in the sample data (Huber

& Ronchetti, 2009; Diakonikolas & Kane, 2023). A data set

may have been contaminated by outliers originating from

a variety of sources: measurement error, equipment mal-

function, data mismanagement, etc. The pivotal question

of developing robust estimators in statistics was first posed

in the 1960s by Tukey and Huber (Huber, 1964; Tukey,

1960). The standard model for handling outliers, originally

formalized in Huber (1964), is defined below.

Definition 1.1 (Huber Contamination Model). Given 0 <
ϵ < 1/2 and a distribution family D, the algorithm specifies

n ∈ N and observes n i.i.d. samples from a distribution

P = (1− ϵ)G+ ϵB, where G ∈ D and B is arbitrary. We
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say that G is the distribution of inliers, B the distribution

of outliers, and P is the ϵ-corrupted version of G. A set of

samples generated in this fashion is called an ϵ-corrupted

set of samples from P .

Estimating the parameters of a Gaussian distribution —

the prototypical family of distributions in statistics — in

the Huber contamination model is a foundational problem

in robust statistics (Huber & Ronchetti, 2009). Huber

in his foundational work (Huber, 1964) settled the ques-

tion of robust univariate Gaussian mean estimation, i.e.,

D = {N (µ, 1) : µ ∈ R}. Since then, a large body of work

has developed sample-efficient robust estimators for various

tasks (Huber & Ronchetti, 2009), that were unfortunately

computationally inefficient for high-dimensional tasks.

Only in the past decade have the first computationally ef-

ficient robust estimators been introduced; see Diakonikolas

& Kane (2023) for a book on the topic.

Despite this remarkable progress, perhaps surprisingly, our

understanding of this fundamental problem of Gaussian

estimation under Huber contamination remains incomplete

for structured settings.

In many high-dimensional settings, additional structural

information about the data can dramatically decrease the

sample complexity of estimation. Our focus here is on the

structure of sparsity. In the context of mean estimation,

this corresponds to the regime that at most k out of the d
coordinates of the target mean µ are non-zero; our focus

is on the practically relevant regime of k j d. Sparsity

has been crucial in improving statistical performance in a

myriad of applications (Hastie et al., 2015). We begin with

the problem of robust sparse mean estimation.

Definition 1.2 (Robust Sparse Mean Estimation). Given ϵ ∈
(0, 1/2) , k ∈ Z+ and ϵ-corrupted samples fromN (µ, I) on

R
d under Huber contamination for an unknown k-sparse1

mean µ, compute an estimate µ̂ such that ∥µ̂− µ∥2 is small.

For the above problem, it is known that the information-

theoretically optimal error is Θ(ϵ). Moreover, the sample

complexity of this task is known to be poly(k log d, 1/ϵ)
(upper and lower bound); this should be contrasted with the

unstructured setting (i.e., dense) whose sample complexity

1We say x is k-sparse if it has at most k non-zero coordinates.
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is poly(d/ϵ). Hence, we call algorithms with sample com-

plexity poly(k, log d, 1/ϵ) sample-efficient. However, until

recently, all known sample-efficient algorithms had running

time dΩ(k) (essentially amounting to brute-force search for

the hidden support). The first sample and computationally

efficient algorithm for robust sparse mean estimation was

given in Balakrishnan et al. (2017), but it incurred an error

of Ω(ϵ
√
log(1/ϵ)).2 On the other hand, Diakonikolas et al.

(2018) gave a computationally-efficient algorithm with error

O(ϵ) for the dense setting with sample complexity polyno-

mial in d, thus sample-inefficient. This leads to the question:

Question 1. Is there a sample and computationally efficient

robust sparse mean estimator with O(ϵ) error?

Beyond mean estimation, other important sparse estimation

tasks include principal component analysis (PCA) and linear

regression, defined below:

Definition 1.3 (Robust Sparse PCA). Given ϵ ∈ (0, 1/2),
spike strength Ä > 0, and a set of ϵ-corrupted samples from

N (0, I+Ävv¦) for an unknown k-sparse unit vector v∈Rd,

compute an estimate v̂ such that ∥v̂v̂¦ − vv¦∥F is small.

Robust PCA (in the dense setting) has been studied since

Xu et al. (2013), alas with suboptimal error.

Definition 1.4 (Robust Sparse Linear Regression). For ´ ∈
R
d and standard deviation Ã > 0, we define P´,Ã to be

the joint distribution over (X, y) where X ∼ N (0, I) and

y ∼ N (x¦´, Ã2). Given ϵ ∈ (0, 1/2), Ã > 0, and a set

of ϵ-corrupted samples from P´,Ã for an unknown k-sparse

´ ∈ R
d, compute an estimate ̂́ such that ∥ ̂́−´∥2 is small.

Taking Ä = Ã = 1 for convenience, the optimal errors for

both robust sparse PCA and linear regression are still Θ(ϵ).
Similarly to mean estimation, existing sample and compu-

tationally efficient estimators for these problems incur er-

ror Ω(ϵ
√
log(1/ϵ)) (Balakrishnan et al., 2017). Focusing

on linear regression, the recent work of Diakonikolas et al.

(2023b) gave a computationally efficient estimator Defini-

tion 1.4 achieving O(ϵ) error; but since they do not incorpo-

rate sparsity, their algorithm inherently requires Ω(d) sam-

ples. For robust PCA, the computational landscape is even

less understood: even with poly(d) samples, no polynomial-

time estimator is known that achieves O(ϵ) error. Thus, we

are led to the following question:

Question 2. Are there sample and computationally efficient

estimators for robust sparse PCA and robust sparse linear

regression that achieve O(ϵ) error?

We answer both of these questions in the affirmative.

2We remark that their algorithm is robust to strong contamina-
tion model, which is stronger than Huber contamination model;
see Section 1.3 for a thorough discussion.

1.1. Our Results

In what follows, we let ϵ0 ∈ (0, 1/2) be a sufficiently small

positive constant. We start with the mean estimation result:

Theorem 1.5 (Robust Sparse Mean Estimation). For any

ϵ ∈ (0, ϵ0), let T be an ϵ-corrupted set of n samples (in

the Huber contamination model) from N (µ, I) for an un-

known k-sparse mean µ∈Rd. There exists an algorithm

that, given corruption rate ϵ ∈ (0, ϵ0), failure probability

¶ ∈ (0, 1), sparsity parameter k ∈ N and a dataset with

n g k2 log d+log(1/¶)
ϵ2 polylog( 1ϵ ) samples, computes an esti-

mate µ̂ ∈ R
d such that ∥µ̂−µ∥2 = O(ϵ) with probability at

least 1− ¶. Moreover, the algorithm runs in poly(nd)-time.

The error of O(ϵ) is information-theoretically optimal up to

constants3. Importantly, Theorem 1.5 is the first sample and

computationally efficient algorithm achieving this optimal

error guarantee. Moreover, the k2 dependence in the sample

complexity is optimal within the class of computationally

efficient algorithms (Diakonikolas et al., 2017; Brennan &

Bresler, 2020). For robust sparse PCA, we show:

Theorem 1.6 (Robust Sparse PCA). For an ϵ ∈ (0, ϵ0),
let T be an ϵ-corrupted set of n samples (in the Huber

contamination model) fromN (0, I+Ävv¦) for an unknown

k-sparse unit vector v ∈ R
d and Ω(ϵ log(1/ϵ)) < Ä <

1. There exists an algorithm that, given corruption rate ϵ,
spike strength Ä, a sparsity parameter k ∈ N, and dataset

T with n := |T | g k2 log d
ϵ2 polylog(1/ϵ) many samples,

computes an estimate v̂ ∈ R
d such that with probability at

least 0.9: (i) ∥v̂v̂¦ − vv¦∥F = O(ϵ/Ä) and (ii) v̂¦Σv̂ g(
1−O

(
ϵ2/Ä

))
∥Σ∥op for Σ := I+ Ävv¦. Moreover, the

algorithm runs in poly(nd)-time.

Similarly, the error guarantee of Theorem 1.6 is optimal (for

the considered range of Ä) up to a constant factor, signif-

icantly improving on Xu et al. (2013); Balakrishnan et al.

(2017); Diakonikolas et al. (2019). Notably, the sample

complexity dependence on k2 is necessary among computa-

tionally efficient algorithms, even without outliers (Berthet

& Rigollet, 2013a). Even in the dense setting, Theorem 1.6

provides the first polynomial-time algorithm with O(ϵ) er-

ror; in comparison, the only existing algorithm (Diakoniko-

las et al., 2018) uses quasipolynomial time to get O(ϵ) error

for Definition 1.3. We additionally highlight that the approx-

imation factor of (1−O(ϵ2/Ä)) for v̂¦Σv̂
∥Σ∥op

improves upon

the known 1−O(ϵ log(1/ϵ)) guarantees achieved without

the spike structure (Jambulapati et al., 2020). Finally, for

sparse linear regression we show:

Theorem 1.7 (Robust Sparse Linear Regression). For ϵ ∈
(0, ϵ0), let T be an ϵ-corrupted set of n samples (in the

3Observe that Theorem 1.5 cannot be extended to identity
covariance sub-Gaussian distributions, as the information-theoretic
error for this class is Θ(ϵ

√

log(1/ϵ)).
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Huber contamination model) from P´,Ã for an unknown k-

sparse regressor ´ ∈ R
d and ∥´∥2 = O(Ã), and Ã ∈ R+.

There exists an algorithm that, given ϵ, k, and a dataset

T with n := |T | g k2 log d
ϵ2 polylog(1/ϵ) many samples

computes an estimate ̂́ ∈ R
d such that ∥ ̂́− ´∥2 = O(Ãϵ)

with probability at least 0.9. Moreover, the algorithm runs

in poly(nd)-time.

Similar to our previous results, the above error is opti-

mal up to a constant, improving upon Balakrishnan et al.

(2017); Liu et al. (2020). The dependence on d, ϵ in the

sample complexity is similarly nearly optimal for efficient

algorithms (Brennan & Bresler, 2020). The restriction

on the norm of ´ is rather mild because of existing algo-

rithm from Liu et al. (2020) which already achieves error

O(Ãϵ log(1/ϵ)) in polynomial time (but with sample com-

plexity depending logarithmically on the initial norm); thus,

we could simply use Liu et al. (2020) as a warm start; see

Remark 4.2 for further details.

1.2. Our Techniques

At a high-level, we adapt the O(ϵ) error algorithm of Di-

akonikolas et al. (2018) to the sparse setting, using ideas

from Balakrishnan et al. (2017); Diakonikolas et al. (2019).

We start by explaining the standard filtering algorithms that

achieve ϵ
√

log(1/ϵ) error. Let µ′ and Σ
′ be the empirical

mean and the empirical covariance of the (corrupted) data,

respectively. Algorithms for robust mean estimation detect

outliers by searching for atypical behaviors in Σ
′. Partic-

ularly, if v¦Σ′v g 1 + Cϵ log(1/ϵ) for some direction v,

then one can filter points using projections |v¦(x − µ′)|2,

with the guarantee of removing more outliers than inliers

(on average). This additional log(1/ϵ) factor is necessary

here because the ϵ-tail of (v¦X)2 for X ∼ N (0, I) is at

log(1/ϵ) (and that of |v¦X| at
√
log(1/ϵ)); without this

factor, the algorithm might remove too many inliers. Conse-

quently, when the algorithm stops, there could be directions

v with variance 1 + Θ(ϵ log(1/ϵ)) such that the ϵn outliers

remain Ω(
√
log(1/ϵ)) far from the v¦µ, leading to a total

error of Ω(ϵ
√

log(1/ϵ)) in the algorithm’s output.

To improve this error to O(ϵ), Diakonikolas et al. (2018)

makes the following key observation. If there are r (or-

thogonal) directions v1, . . . , vr all with variance bigger than

1+Cϵ, then (i) either r is small, implying that a brute-force

approach can be used to learn the mean optimally in this

r dimensional space (in the orthogonal space, the sample

mean would already be O(ϵ) close), or (ii) r is large, in

which case, it is unlikely for an inlier to have large projec-

tions along r of them simultaneously (formalized by the

Hanson-Wright inequality), thus permitting us to remove

more outliers for large r. Choosing r = Θ(log(1/ϵ)), both

(i) runs in polynomial time and (ii) removes sufficiently

many outliers. The resulting algorithm thus filters until the

r-th largest eigenvalue is at most 1 +O(ϵ), thereby decom-

posing the data into an r-dimensional space V and its com-

plement V § such that the sample mean on V § has error

O(ϵ), while the brute force approach on V also incurs O(ϵ)
error and runs in polynomial time. As a final step, the algo-

rithm adds these two orthogonal estimates.

Adapting this approach to the sparse regime in a sample-

efficient manner requires that we filter outliers only along

sparse directions v, which immediately hits the roadblock

that maximizing v¦Σ′v over sparse directions v is compu-

tationally hard. Thus, robust sparse estimation requires re-

laxing the objective v¦Σ′v = ïΣ′, vv¦ð for computational

efficiency (while still being sample-efficient). The relax-

ation of Balakrishnan et al. (2017) maximizes ïΣ′,Að over

PSD matrices A with unit trace and bounded entry-wise ℓ1
norm, which is a semidefinite program.4 If the maximum

is larger than 1 + Ω(ϵ log(1/ϵ)) with maximizer A∗, one

can filter out points x with large score x¦
A

∗x. Since the

filter relies only on a single “direction” A, this approach is

inherently limited to ϵ
√
log(1/ϵ) error.

Adapting Diakonikolas et al. (2018)’s approach to the relax-

ation of Balakrishnan et al. (2017) is challenging. Promis-

ingly, it is plausible that one can filter along r orthogonal “di-

rections” A1, . . . ,Ar (sample-efficiently) such that if their

average score is 1+Ω(ϵ), then one may remove enough out-

liers. Consequently, at the end of filtering, we can identify r
“directions” A1, . . . ,Ar such that all other orthogonal fea-

sible A’s would have small score, i.e., ïA,Σ′ð = 1+O(ϵ).
At this point, however, the analogy of A’s being a “direc-

tion” breaks down. There is no natural decomposition of the

data using A’s into a low-dimensional space V and its or-

thogonal space V §, such that the variance in V § is 1+O(ϵ)
(so that the sample mean is O(ϵ) close on V §).

We instead consider a different relaxation from Diakoniko-

las et al. (2019) that maximizes ïΣ′ − I,Að over k2-sparse

unit Frobenius norm matrices A.5 Their key observation

was that the resulting relaxation is both sample and com-

putationally efficient. Since they filtered along a single

A, their algorithm could not achieve o(ϵ
√

log(1/ϵ)) error.

However, since their relaxations consider sparse matrices

A, they naturally lead to a decomposition of coordinates:

support of A and the rest of the coordinates. Inspired by

Diakonikolas et al. (2018), we extend Diakonikolas et al.

(2019)’s approach as follows: We start with an empty set

of coordinates H and find the sparse matrix A1 that maxi-

mizes ïΣ′−I,A1ð. If the maximum is larger than 1+Ω(ϵ),
we add the support of A1 to H , and proceed to find A2 that

4The relaxation amounts to ignoring the rank constraint and
relaxing ℓ0 norm to ℓ1 norm.

5The relaxation ignores the rank, symmetry, and PSD con-
straints.
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maximizes ï(Σ′ − I)H∁ ,A2ð, where (Σ′ − I)H∁ is zero on

the coordinates in H . We continue until we have either (i)

identified r such Ai’s, each with score 1 + Ω(ϵ), in which

case we filter similarly to Diakonikolas et al. (2018); or (ii)

we have identified a small set of coordinates, H , such that

the sample mean is O(ϵ) accurate on H∁. This still leaves

the task of estimating the mean on the coordinates in H: al-

though brute force approach is not possible on H , we can

invoke the dense algorithm from Diakonikolas et al. (2018)

on H using fresh samples since |H| = Õ(k2).

For sparse PCA, we provide a novel reduction that reduces

robust Gaussian PCA to robust (approximate) Gaussian

mean estimation. It is crucial here that we maintain the (ap-

proximate) Gaussianity in the latter because robust mean

estimation for generic subgaussian distributions incurs É(ϵ)
error. In fact, even for dense robust PCA, our algorithm is

the first polynomial-time algorithm to achieve O(ϵ) error.

Recall that our goal is to estimate v from corrupted samples

of X ∼ N (0, I+ Ävv¦). Given an initial rough approxima-

tion w of the spike v, we focus on estimating the correction

z := v − w. We decompose z as z := z′ + z§, where z′ is

parallel to w and z§ § w; the challenge lies in estimating

z§. Our key observation concerns the conditional distribu-

tion of (uncorrupted) samples projected orthogonally to w,

conditioned on w¦x = a, which we denote by X§
a . It turns

out that the distribution of X§
a is Gaussian, with mean pro-

portional to z§, and approximately isotropic covariance. Al-

though this insight reduces sparse PCA to (Gaussian) sparse

mean estimation, this does not directly lead to an algorithm,

because we cannot simulate this conditional sampling ex-

actly (even in the outlier-free setting). We combine our

insight with a template from Diakonikolas et al. (2023b),

which overcomes similar challenges in linear regression.

1.3. Related Work

Our work lies in the field of robust statistics, initiated in the

1960s (Tukey, 1960; Huber, 1964). We refer the reader to

Diakonikolas & Kane (2023) for a comprehensive overview

and discuss the most relevant works below. We discuss

additional related work in Appendix A.

Focusing on robust sparse estimation, several recent works

have developed efficient algorithms in various regimes. Bal-

akrishnan et al. (2017) gave an approach for robust sparse

functional estimation and applied it to mean estimation,

PCA, and linear regression (among others). While run-

ning in polynomial time, the resulting algorithms were not

practical because they relied on solving large semidefinite

programs. Moreover, their error guarantees are qualita-

tively suboptimal. Diakonikolas et al. (2019) proposed ef-

ficient and practical algorithms for robust mean estimation

and PCA. Focusing on sparse mean estimation, subsequent

works have proposed further extensions such as Diakoniko-

las et al. (2022c) for heavy-tailed distributions, Diakoniko-

las et al. (2022b) for light-tailed distributions with unknown

covariance matrix, Cheng et al. (2022) for non-convex first

order methods (also see Zhu et al. (2022)), and Diakoniko-

las et al. (2022a); Zeng & Shen (2022) for list-decodable

estimation. Liu et al. (2020) extended the work of Balakr-

ishnan et al. (2017) to sparse linear regression.

Huber’s model is the prototypical contamination model in

robust statistics (Huber, 1964). Since Diakonikolas et al.

(2016); Lai et al. (2016), much of the literature has focused

on developing efficient robust algorithms in the strong con-

tamination model, which is stronger than Huber’s model.

Interestingly, the information-theoretic optimal error rate for

Gaussian estimation tasks considered in our work is Θ(ϵ) in

both models. However, all computationally efficient algo-

rithms developed for the strong contamination model incur

a larger error of (ϵ
√

log(1/ϵ))) for Gaussians. In fact, Di-

akonikolas et al. (2017) gives evidence that removing the

extra log(1/ϵ)) factor under strong contamination model is

computationally hard. Since our focus is on developing ef-

ficient algorithms with error O(ϵ), we need to restrict our

attention to the Huber contamination model.

2. Preliminaries

Notation. We denote [n] := {1, . . . , n}. For

w : R
d → [0, 1] and a distribution P , we use Pw to

denote the weighted by w version of P , i.e., the distri-

bution with pdf Pw(x) = w(x)P (x)/EX∼P [w(X)]. We

use µP ,ΣP for the mean and covariance of P . When the

vector µ is clear from the context, we use ΣP to denote

the second moment matrix of P centered with respect to µ,

i.e., ΣP := EX∼P [(X − µ)(X − µ)¦]. We use ∥ · ∥2 for

ℓ2 norm of vectors and ∥ · ∥0 for the number of non-zero

entries in a vector. For a (square) matrix A, we use tr(·),
∥ · ∥op, and ∥ · ∥F for trace, operator, and Frobenius norm.

We use ïA,Bð := tr(A¦
B) =

∑
i,j Aj,iBi,j for the inner

product between matrices. If H ¢ [d] and v ∈ R
d, we de-

note by (v)H the vector x restricted to the entries in H . We

use polylog() to denote a quantity that is poly-logarithmic

in its arguments and Õ, Ω̃(), Θ̃ to hide such factors.

Definition 2.1 (Sparse Euclidean Norm). For x ∈ R
d and

k ∈ [d], we define ∥x∥2,k := supv:∥v∥2f1,∥v∥0fk v
¦x.

Definition 2.2 (Sparse Frobenius and Operator Norm).

For a d × d matrix A, for i ∈ [d], let Ai de-

note the rows of A. We define ∥A∥F,k,k :=√
maxS¦[d]:|S|=k

∑
i∈S ∥Ai∥22,k. For a matrix A, we de-

fine ∥A∥op,k := supv:∥v∥0fk,∥v∥2f1 ∥Av∥2.

Note the alternative variational definition (proven in Ap-

pendix B.1):

Fact 2.3 (Variational definition). ∥A∥F,k,k =
maxBïA,Bð where the maximum is taken over all matri-
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ces B with ∥B∥F=1 that have k non-zero rows, each of

which has at most k non-zero elements.

Moreover, a maximizer B of this variational formulation

can be found in poly(d, k) time given A.

We also note the following inequality between (F, k, k) and

∥ · ∥op,k norms:

Fact 2.4. ∥A∥op,k f ∥A∥F,k,k.

2.1. Deterministic Conditions on Inliers

Recall that for a distribution D and a weight function w :
R
d → [0, 1], the distribution Dw denotes the weighted (and

appropriately normalized) version of D using w. We further

use µDw
to denote the mean of Dw.

Definition 2.5 ((ϵ, ³, k)-goodness). For ϵ ∈ (0, 1/2), ³ >
0 and k ∈ N, we say that a distribution G on R

d is (ϵ, ³, k)-
good with respect to µ ∈ R

d, if the following are satisfied:

(1) For all w : Rd→[0, 1] with EX∼G[w(X)] g 1−³:

(1.a) (Mean) ∥µGw
− µ∥2,k ≲ ³

√
log(1/³).

(1.b) (Covariance) ∥ΣGw
− I∥op,k ≲ ³ log( 1

³ ), where

ΣGw
:= 1

E
X∼G

[w(X)] E
X∼G

[w(X)(X−µ)(X−µ)¦].

(2) (Tails of sparse degree-2 polynomials) If A ∈ R
d×d is

a matrix with at most k2 non-zero elements, ∥A∥F f√
log(1/ϵ) and ∥A∥op f 1, then the polynomial

p(x) := (x− µ)¦A(x− µ)− tr(A) satisfies:

(a) EX∼G[p(X)1(p(X) > 100 log(1/ϵ))] f ϵ.

(b) PrX∼G[p(X) > 10 log(1/ϵ)] f ϵ.

(c) EX∼G[p(X)1(h(x) > 100 log(1/ϵ))] f ϵ for all

h(x) of the form h(x) = ´ + v¦(x − µ) where

|´| f 1 and v is k-sparse and unit norm.

(3) PrX∼G[|v¦(X − µ)| g 40 log(1/ϵ))] f ϵ, for all k-

sparse unit norm vectors v ∈ R
d.

We will focus on regime ³ = Θ(ϵ/ log(1/ϵ)). We show

in Appendix E (cf. Lemma B.10) that if G is the uni-

form distribution on a set of (k
2

ϵ2 )polylog(
d
ϵ ) i.i.d. sam-

ples from N (µ, I), then, with high probability, G is

(ϵ,Θ(ϵ/ log(1/ϵ)), k)-good with respect to µ.

2.2. Certificate Lemma

The following lemma shows that if the covariance with re-

spect to the weighted distribution Pw is close to the identity

along k-sparse directions, then the mean of Pw is close to

µ in (2, k)-norm. Its proof is similar to prior work but we

include it for completeness in Appendix E.

Lemma 2.6 (Certificate Lemma). Let 0 < ³ < ϵ < 1/4.

Let P = (1− ϵ)G+ ϵB be a mixture of distributions, where

G satisfies Conditions (1.a) and (1.b) of Definition 2.5 with

respect to µ ∈ R
d. Let w : R

d → [0, 1] be such that

EX∼G[w(X)] > 1− ³. If ∥ΣPw
− I∥op,k f ¼, then

∥µPw
− µ∥2,k ≲ ³

√
log

(
1

³

)
+
√
¼ϵ+ϵ+

√
³ϵ log

(
1

³

)
.

Motivated by Lemma 2.6, the algorithm starts with weights

w(x) = 1 for all data and aims to iteratively down-weight

outliers until ∥ΣPw
− I∥op,k = O(ϵ); We also need to

ensure inliers are not too much downweighted, in the sense

EX∼G[w(X)]>1−³ with ³=Θ(ϵ/ log(1/ϵ))). If achieved,

the total error will be O(ϵ), as desired. As it will turn out,

we will be able to ensure only that a large subspace has

small sparse operator norm, not the entire Rd. While we can

estimate µ there using Lemma 2.6, we shall use the follow-

ing estimator on the complement subspace (with resulting

sample complexity scaling with the subspace’s rank).

Fact 2.7 (Dense Mean Estimation (Diakonikolas et al.,

2018; 2023b)). There is a polynomial-time algorithm that,

given parameters ϵ ∈ (0, ϵ0), ¶ ∈ (0, 1) and n g C
ϵ2 (d +

log(1/¶))polylog(d/ϵ) samples, for a large constant C,

from an ϵ-corrupted version ofN (µ, I) in the Huber contam-

ination model, computes an estimate µ̂ such that ∥µ̂−µ∥2 =
O(ϵ) with probability at least 1− ¶.

2.3. Down-weighting Filter

The filtering step of the algorithm is the following standard

procedure: Rescale every x by w(x) ∈ [0, 1] times a non-

negative score Ä̃(x) g 0, whose role is to quantify our belief

about how much of an outlier x is. Let G and B denote the

uniform distribution over the inliers and outliers, respec-

tively. The uniform distribution of the entire data is denoted

by P = (1−ϵ)G+ϵB. If s is a known bound to the weighted

scores of inliers, i.e., EX∼G[w(x)Ä̃(x)] f s, then Algo-

rithm 1 checks whether the average score over the entire

dataset is abnormally large, i.e., EX∼P [w(x)Ä̃(x)] > s´
(where ´ > 1 is a parameter), and if so, down-weighs each

point x proportionally to its Ä̃(x).

The filter guarantees that it removes roughly ´-times more

mass from outliers than inliers. Given the preceding dis-

cussion after Lemma 2.6, we will eventually use ´ =
Θ(ϵ/³) = Θ(log(1/ϵ)). The filter is now standard (see, e.g.,

Dong et al. (2019); Diakonikolas et al. (2023b) for proofs).

Lemma 2.8 (Filtering Guarantee). Let P = (1− ϵ)G+ ϵB
be a mixture of distributions supported on n points and

´ > 1. If (1 − ϵ)EX∼G[w(X)Ä̃(X)] < s, then the new

weights w′(x) output by Algorithm 1 satisfy:

(1−ϵ) E
X∼G

[w(X)−w′(X)]<
ϵ

´−1 E
X∼B

[w(X)−w′(X)],

and the filter can be implemented in O(n log( Ä̃max

s )))-time.
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Algorithm 1 Down-weighting Filter

1: Input: Distribution P on n points, weights w(x),
scores Ä̃(x) g 0, threshold s > 0, parameter ´ > 0.

Output: New weights w′(x).
2: Initialize w′(x)← w(x).
3: ℓmax ← maxx

Ä̃max

es , where Ä̃max := max
x∈support(P )

Ä̃(x).

4: for i = 1, . . . , ℓmax do

5: if EX∼P [w′(X)Ä̃(X)] > s´ then

6: w′(x)← w′(x)(1− Ä̃(x)/maxx:w(x)>0 Ä̃(x)).
7: end if

8: end for

9: return w′.

3. Robust Sparse Mean Estimation

In this section, we sketch our proof of Theorem 1.5.

As mentioned in Section 1.2, the algorithm (stated in Algo-

rithm 2) consists of two parts, summarized below:

• (First phase) First, a loop that iteratively finds sparse

and orthogonal maximizers Ai, . . . ,Ar of Σw−I for

r = log(1/ϵ), which are used to filter outliers, until

the “average variance” along these Ai’s drops to O(ϵ)
(cf. Line 7)

• (Second phase) After the loop, the algorithm identifies

a set H of k2r-many coordinates informed by the final

Ai’s (cf. Line 12). Algorithm then splits the space R
d

into [d]\H and H , and finds an O(ϵ) approximation of

µ for both subspaces separately. For the former, it uses

the empirical mean in those coordinates (which ought

to be accurate because of Lemma 2.6), and for the

latter, it employs a dense mean estimator (cf. Fact 2.7).

In the rest of the section, we formalize this high-level

sketch. Throughout the section, we will use the notation

P, µw,Σw, p̃, Ä̃ defined in Lines 6 and 9 of the pseudocode.

Starting with the first phase, we formally define A1, . . . ,Ar

mentioned in the previous paragraph, and we also define

what we informally referred to as “average variance along

the Ai’s”. In particular, A1, . . . ,Ar will be the matrices

in Definition 3.1 below for B = Σw − I, and the “average

variance along the Ai’s” will be 1
r gr(Σw − I).

Definition 3.1. For any matrix B, we define hi(B), Ai,

and Hi for i ∈ [r] recursively as follows.

• For i = 1, h1(B) := ∥B∥F,k,k = maxA∈SïA,Bð
where S is the set of matrices A that have ∥A∥F =
1 and have at most k-non-zero rows, each of which

has at most k non-zero entries. Let A1 be the matrix

6The weights w(x) may change in the course of the algorithm;
µw,Σw will denote the quantity based on the latest weights.

Algorithm 2 Robust Sparse Mean Estimation

1: Input: Set of points T0 = {xi}i∈[n] and ϵ > 0.

2: Output: A vector µ̂ ∈ R
d.

3: Let C be a sufficiently large constant, and r := log( 1ϵ ).
4: T ← PREPROCESSING(T0, ϵ, k). ▶{cf. Fact B.11}

5: Initialize w(x)← 1(∥x− µT ∥2 f 10
√
d log(d/ϵ)).

6: Let P be the uniform distribution on the set T , Pw be

the weighted by w version of P (with pdf Pw(x) =
P (x)/EX∼P [w(X)]) , µw := EX∼Pw

[w(X)] and

Σw:=EX∼Pw
[(X − µw)(X − µw)

¦] the weighted

mean and covariance of P . 6

7: while 1
r gr(Σw − I) > Cϵ do

8: Let A1, . . . ,Ar be the matrices from Definition 3.1

for B = Σw − I. (Also see Fact 2.3 for efficient

computation.)

9: Define p̃(x) := (x−µw)
¦
A(x−µw)− tr(A), and

Ä̃(x)=p̃(x)1(p̃(x)>200 log( 1ϵ )) for A=
∑
i∈[r] Ai.

10: Update w ← DOWNWEIGHTINGFILTER(P,w, Ä̃ , s =
ϵ, ´ = log(1/ϵ)).

11: end while

12: For i ∈ [r], let Hi ¦ [d] be sets defined in Definition 3.1

and form H :=
⋃r
i=1 Hi (cf. Definition 3.1).

13: Run the dense mean estimator from Fact 2.7 on a fresh

data restricted to the coordinates in H , to obtain µ̂1 ∈
R
d that is zero in every coordinate in [d]\H and satisfies

∥(µ̂1 − µ)H∥2,k = O(ϵ).
14: Let µ̂2 be the vector that is equal to EPw

[X] in the

coordinates in [d] \H and zero in the coordinates in H .

15: Return µ̂ = µ̂1 + µ̂2.

achieving the maximum. The set H1 ¦ [d] denotes the

rows and columns in which A1 has non-zero elements.

• For i ∈ {2, . . . , r}, we recursively define hi(B),
Ai, and Hi as follows: hi(B)=∥B′∥F,k,k where

B
′ is B after deleting (zeroing out) the rows and

columns from H1 ∪ · · · ∪ Hi−1. Similarly, Ai :=
argmaxA∈SïA,B′ð and Hi is the non-zero rows and

columns of Ai.

• Finally, we define gr(B) :=
∑r
i=1 hi(B).

Observe that the matrices A1, . . . ,Ar can be computed

efficiently using Fact 2.3.

We now explain why we informally call 1
r gr(Σw−I)

the “average variance along the Ai’s”: For each i,
hi(B) represents the mean of the degree-two polynomial

(x−µw)¦Ai(x−µw)−tr(Ai), representing a variance-like

quantity of x along Ai. Formally, (see (22) for the details):

gr(Σw−I) =
r∑

i=1

E
X∼Pw

[(X−µw)¦Ai(X−µw)−tr(A)]

(1)

6
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3.1. Proof Overview of Theorem 1.5

The proof of correctness consists of the following claims:

1. For any iteration of line 7, if w(x), w′(x) denote the

weights before and after the iteration:

(a) (log(1/ϵ) more outliers than inliers are removed)

E
X∼G

[w(X)−w′(X)]< 2ϵ
log( 1

ϵ
)

E
X∼B

[w(X)−w′(X)].

(b) (Non-trivial mass is removed) EX∼P [w(X) −
w′(X)] = Ω̃(ϵ/d).

2. After the loop ends, ∥(µ̂2 − µ)[d]\H∥2,k = O(ϵ).7

Item 1b means that the algorithm terminates after Õ(d/ϵ)
iterations (since no outliers are left at that point), Item 1a

means that EX∼G[w(X)] g 1−3ϵ/ log(1/ϵ) is an invariant

condition throughout the loop, and Item 2 states that the

empirical mean is accurate on the coordinates from [d] \H .

Before proving these claims, we show how they im-

ply Theorem 1.5. We decompose µ into µ1 + µ2 for

µ1 = (µ)H and µ2 := (µ)[d]\H . By triangle inequal-

ity and definition of µ̂, we have ∥µ̂ − µ∥2,k f ∥µ̂1 −
µ1∥2,k + ∥µ̂2 − µ2∥2,k. We bound each of these terms

by O(ϵ). The inequality ∥µ̂1−µ1∥2,k f O(ϵ) corre-

sponds to the guarantee of the dense estimator (Fact 2.7),

run on a fresh dataset, when restricted to coordinates in

H . Fact 2.7 gives an estimator with O(ϵ) error and sam-

ple complexity 1
ϵ2 (|H|+ log(1/¶))polylog(d/ϵ). Since

|H| f k2 log(1/ϵ), the setting satisfies the assumptions

of Theorem 1.5. The term ∥µ̂2−µ2∥2,k is equal to ∥(µ̂2 −
µ)[d]\H∥2,k and thus O(ϵ) by Item 2.

We now sketch the proofs of Items 1a, 1b and 2 used above.

Proof of Item 2 Once Item 1b is shown, it implies that

EX∼G[w(X)] g 1−3ϵ/ log(1/ϵ) and thus Item 2 becomes

a straightforward application of the Certificate Lemma 2.6

with ³ = 3ϵ/ log(1/ϵ) and ¼ = Cϵ to agree with the stop-

ping condition of line 7 (for this we need to show that the

condition of line 7 implies ∥(Σw−I)([d]\H)×([d]\H)∥op,k =
O(ϵ); see Claim C.4 in Appendix C for the details).

Proof of Item 1a We want to use Lemma 2.8 with ´ =
log(1/ϵ) and s = ϵ. To apply the lemma, we need to show

that EX∼G[w(X)Ä̃(X)] f ϵ. This looks like Item (2)a of

the goodness conditions (Definition 2.5) but the difference

is that Ä̃(x) centers the point around µw instead of µ that is

used in Ä(x). While these centering issues are easily dealt

with when A is PSD and no sparsity constraints are present,

our setting requires additional technical work. We defer the

full proof to Appendix C, sketching the steps here.

7Recall (x)H denotes the vector x restricted to H ⊂ [d].

Let Ä̃(x) = p̃(x)1(p̃(x) > 200 log(1/ϵ)), where p̃(x) =
(x − µw)

¦
A(x − µw) − tr(A); the algorithm uses Ä̃(x)

as scores. Define Ä(x) = p(x)1(p(x) > 100 log(1/ϵ)),
with p(x) = (x − µ)¦A(x − µ) − tr(A), to be the

ideal scores appearing in the deterministic condition

(that center data around the true µ). Denote the differ-

ence of these polynomials by ∆p(x) := p̃(x) − p(x) =
¶¦µA¶µ+(x−µ)¦A¶µ+(x−µ)¦A¦¶µ for ¶µ := µ−µw.

Using triangle inequalities, we get

E
X∼G

[w(X)Ä̃(X)] f |¶¦µA¶µ|

+ E
X∼G

[(X−µ)¦A¶µ1(p(X)>200 log(1/ϵ)−∆p(X))]

+ E
X∼G

[(X−µ)¦A¦¶µ1(p(X)>200 log(1/ϵ)−∆p(X))]

+ E
X∼G

[p(X)1(p(X) > 200 log(1/ϵ)−∆p(X))]. (2)

We need to bound all three terms above by O(ϵ). For the first

term, we take advantage of the sparsity of A to establish:

Claim 3.2. Let A =
∑
ℓ∈[r] B

(ℓ) where each B
(ℓ) is a

square matrix with Frobenius norm equal to one, k non-zero

rows, each of which has k non-zero entries. Then, for any

vectors u, v, it holds |u¦
Av| f r∥u∥2,k∥v∥2,k.

This means that |¶¦µA¶µ| f log(1/ϵ)∥¶µ∥22,k, which can

eventually be bounded by ϵ using Lemma 2.6 and the prepro-

cessing of Line 4. The second term in (2) may be broken into

two terms by considering the cases ∆p(X) f 100 log(1/ϵ)
and ∆p(X) > 100 log(1/ϵ). The latter case is a very

low-probability event by Item (3), eventually bounding

the relevant term by ϵ. For the former case, we can use

that p(X) > 200 log(1/ϵ) is a low-probability event (by

Item (2)b of Definition 2.5). The third term uses an identi-

cal argument. Finally, the third term in (2) is similarly split

into two by taking cases for ∆p(X), and bounding each

one using either Item (2)a or Item (2)c of the Definition 2.5.

Proof of Item 1b By design, the down-weighting filter

only removes mass when EX∼P [w(X)Ä̃(X)] g s´ =:
ϵ log(1/ϵ) (cf. line 5 of Algorithm 1). Thus, we first need to

show that this is true throughout the loop of Line 7. To do

so, we write EX∼P [w(X)Ä̃(X)] = EX∼P [w(X)p̃(X)]−
EX∼P [w(X)Ä̃(X)1(p̃(X) f 200 log(1/ϵ))]. The first

term is already roughly gr(Σw−I) by (1), up to a normaliza-

tion of E[w(x)] ≈ 1, and hence at least ϵ log(1/ϵ) by Line

7). Showing that the second term is less than gr(Σw − I)/2
involves a multi-step argument similar to the ones in the

previous paragraph, which can be found in Appendix C.

Once this is established, Item 1b follows easily: First,

by design of the down-weighting filter, EX∼P [w(X) −
w′(X)] = EX∼P [w(X)Ä̃(X)]/maxx Ä̃(X). We have al-

ready shown that the numerator is Ω(ϵ). The denomina-

tor is O(d polylog(d/ϵ)) since ∥x∥2 =
√
d log(d/ϵ) for all

points in the dataset, by Gaussian concentration.
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4. Robust Sparse PCA and Linear Regression

4.1. Robust PCA

In this section, we show Theorem 1.6 via a novel reduction

to mean estimation (which also implies new results for the

dense setting). A natural first attempt is to consider the

following existing reduction to mean estimation (see, e.g.,

Diakonikolas et al. (2019)): the mean of vec(XX¦−I)
for X ∼ D, where vec denotes the operator that converts

matrices to vectors by stacking its rows, is exactly Ävv¦,

which is also poly(k) sparse. However, the distribution of

vec(XX¦−I) is not Gaussian but rather a second power

of a Gaussian, thus existing mean estimators would only

yield O(ϵ log(1/ϵ)) error. We propose a different reduc-

tion, which does not lose this log(1/ϵ) factor. Let w be a

unit vector that is an (ϵ
√

log(1/ϵ))-approximation of the

spike v (e.g., using Balakrishnan et al. (2017)). Denote

the projection of X onto the subspace orthogonal to w by

Projw§(X).8 Our key idea is that Projw§(X) conditioned

on w¦x=³ can give information about Projw§(v − w),
i.e., the correction v−w in that subspace. We prove the

following simple claim in Appendix D.

Claim 4.1. Let X ∼ N (0, I+Ävv¦) be a random variable

from the spiked covariance model and w be a unit vector.

Let Z = Projw§(X), the projection of X onto the subspace

perpendicular to w. For ³ ∈ R, let G³ denote the distribu-

tion of Z conditioned on w¦X = ³. Then the distribution

G³ is equal to N (µ̃, Σ̃) with

µ̃ =
Ä(w¦v)³

1 + Ä(w¦v)2
v̄ and

Σ̃ = I+
Ä

1 + Ä(w¦v)2
v̄v̄¦,

where v̄ := Projw§(v) = v − (w¦v)w.

We use the result above to estimate Projw§(v), and our final

estimate, v̂, shall be v̂1+v̂2, where v̂1 estimates Projw(v) =
(w¦v)w and v̂2 estimates Projw§(v). Importantly, the

mean of G³ is a scaled version of Projw§(v), and thus if

z ≈ µG³
, we could use v̂2 = z(Ä³(w¦v))/(1+ Ä(w¦v)2).

However, since w¦v is unknown, we need to estimate

it from data; we also need it to estimate v̂1. Note that

1+ Ä(w¦v)2 is the variance of X¦w. Thus we can use one-

dimensional (robust) variance estimation algorithm to find

y such that |y − (w¦v)2| = O(ϵ/Ä). This leads to Algo-

rithm 3.

We show that the final error, i.e. ∥v̂ − v∥2 f ∥z 1+Äy
Ä
√
y³ −

Projw§(v)∥2 + |√y − w¦v|, is O(ϵ/Ä) using the guaran-

tees of the two aforementioned estimators (i.e., that |y −
(w¦v)2| = O(ϵ) and ∥z − µG³

∥2 = O(ϵ)); see Claim D.3.

8For a vector u, we use Proj
u§(·) to denote the projection

operator on the null space of u.

Algorithm 3 Reduction from PCA to Mean Estimation

1: Find unit vector w such that ∥ww¦−vv¦∥F =
O(ϵ

√
log(1/ϵ)/Ä).

▶{For example, using Balakrishnan et al. (2017)}

2: Find y: |y − (w¦v)2| = O(ϵ/Ä).
▶{by robustly estimating the variance of (w¦x) (see

Claim D.4)}

3: Fix an ³ = Ω(1) and find z with ∥z − µG³
∥2 = O(ϵ),

where G³ is the conditional distribution from Claim 4.1.

▶{e.g., using Algorithm 2 (see Claim D.4 for details)}

4: Return v̂ = z 1+Äy
Ä
√
y³ + w

√
y.

To complete an overview of the proof of Theorem 1.6, we

need to explicitly show how to obtain z in Line 3 of Al-

gorithm 3 using our sparse mean estimator, Theorem 1.5.

An obvious issue is that we cannot simulate samples from

G³ using X ∼ N (0, I+ Ävv¦) by rejection sampling—let

alone that is at most O(ϵ) corrupted given ϵ-corrupted X—

because the probability that a sample has w¦x = ³ is zero.

To overcome this, we use insights from Diakonikolas et al.

(2023b) and relax this procedure by instead conditioning on

samples to be in a thin interval I around ³. The resulting

pseudocode is as follows:

1. Draw ³ uniformly from [−(1 + Ä), 1 + Ä] and define

the interval I := [³− ℓ, ³+ ℓ] for ℓ = 1/ log(1/ϵ).

2. T ′ = {Projw§(x) : x ∈ T and w¦x ∈ I}.

3. Let z be the output of Algorithm 2 run on T ′.

Although conditioning on an interval increases the probabil-

ity and thus permits efficient rejection sampling, the down-

side is that the conditional distribution on w¦x ∈ I is no

longer a Gaussian distribution, but instead a continuous mix-

ture of Gaussians:

GI(z) =

∫
³′∈I G³′(z) PrX∼N (0,I+Ävv¦)[w

¦X = ³′]d³′

PrX∼N (0,I+Ävv¦)[w¦X ∈ I]
.

The mean of the mixture, µGI
, may shift away from µG³

,

and thus we need the length ℓ of I to be small enough so

that the shift is O(ϵ). Moreover, GI is not Gaussian, and

thus Theorem 1.5 is not applicable in a black-box manner.

However, for small ℓ, it is close enough to a Gaussian so

that the deterministic conditions of Definition 2.5 hold with

respect to µG³
(the details are deferred to Appendix D).

To ensure applicability of our mean estimator, it remains to

show that the fraction of outliers in the conditional dataset

T ′ is O(ϵ). This is why the center ³ of the interval needs

to be chosen randomly (as in Diakonikolas et al. (2023b));

otherwise, the outlier distribution could happen to have all
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outliers x satisfying w¦x = ³. To show that T ′ is O(ϵ)-
corrupted, it suffices to check that the probability of an out-

lier x satisfying w¦x ∈ I divided by the probability that an

inlier x′ having w¦x′ ∈ I is at most O(1). Since I is chosen

independently of everything, we can imagine that the outlier

x is fixed and only I is drawn randomly. Let us examine only

the case where w¦x ∈ [−2(1 + Ä), 2(1 + Ä)] (because oth-

erwise w¦x ̸∈ I). The probability that w¦x ∈ I is then the

ratio of the length of I to the length of the interval [−2(1 +
Ä), 2(1 + Ä)], i.e., O(ℓ/(1 + Ä)). Regarding the inliers x′,
we can use the same trick to imagine that I is fixed and the

inlier x′ is drawn fromN (0, I + Ävv¦). Note that w¦x′ ∼
N (0, Ã̃2) with Ã̃2 := 1+Ä(w¦v)2. Since I ¦ [−3Ã̃2, 3Ã̃2],
the Gaussian distribution behaves approximately uniformly

there and thus the probability that w¦x ∈ I is Ω(ℓ/Ã̃),
which is also Ω(ℓ/(1 + Ä)) by using |w¦v|2 = Ω(1).

4.2. Robust Sparse Linear Regression

We conclude with Theorem 1.7, which follows by a reduc-

tion to mean estimation from Diakonikolas et al. (2023b).

Their reduction seamlessly extends to the sparse setting con-

sidered in this paper, thus we describe it only briefly.

As a first step, using Liu et al. (2020) as preprocessing,

we may assume that ∥´∥2 ≲ Ãϵ log(1/ϵ). Analogously to

Claim 4.1, Diakonikolas et al. (2023b, Claim 4.1) shows the

following: let Qa denote the conditional distribution of X ,

conditioned on y = ³ for (X, y) ∼ P´,Ã in Definition 1.4,

then Qa ∼ N ((³/Ã2
y)´, I−´´¦/Ã2

y) for Ã2
y := Ã2+∥´∥22.

Since Qa is an approximately isotropic Gaussian with a

sparse mean, we can hope to estimate it with O(ϵ) error in a

sample-efficient way by Theorem 1.5. Finally, to obtain The-

orem 1.7, one needs to use similar tricks as in the last section

(such as conditioning on a random interval of an appropri-

ate length instead of a fixed point). Fortunately, all of these

approximations suffice to get O(ϵ) error as in Diakonikolas

et al. (2023b). The final algorithm is given in Algorithm 4.

Algorithm 4 Robust Linear Regression

1: Input: Set of points T = {(xi, yi)}i∈[n] and ϵ > 0.

2: Output: A vector v̂ ∈ R
d.

3: Find Ã̂y such that |Ã̂2
y − Ã2

y| = O(Ã2
yϵ log(1/ϵ)).

4: Draw ³ ∈ R uniformly at random from [−Ã̂y, Ã̂y].
5: Define I = [³− ℓ, ³+ ℓ] for ℓ := Ã̂y/ log(1/ϵ).
6: T ′ ← {x : (x, y) ∈ T, y ∈ I}.
7: Let ̂́I be the output of Algorithm 2 on T ′.
8: Return ̂́ := (Ã̂2

y/³)
̂́
I .

Remark 4.2. We further expand on the norm constraint of

∥´∥2 = O(Ã) in Theorem 1.7. The algorithm in (Liu et al.,

2020) obtains an error of O(Ãϵ log(1/ϵ)) but their sample

complexity scales multiplicatively with log(∥´∥2/ϵÃ). If

we do not assume a norm constraint on ´, the sample com-

plexity in Theorem 1.7 would also have an extra multiplica-

tive term of log(∥´∥2/ϵÃ) if we use (Liu et al., 2020) as

a warm-start. However, this factor of log(∥´∥2/ϵÃ) does

not appear in the information-theoretical rate and can poten-

tially be removed using either a tighter analysis of (Liu et al.,

2020) or a different (computationally-efficient) algorithm.

5. Discussion

In this paper, we presented the first computationally-efficient

algorithms that achieve the information-theoretic optimal

error under Huber contamination for various sparse estima-

tion tasks. We now discuss some immediate open problems.

Starting with mean estimation, our algorithm (Theorem 1.5)

needs to know the covariance matrix of the inlier distribu-

tion; developing a sample and computationally-efficient al-

gorithm for an unknown covariance matrix remains an im-

portant open problem. More broadly, one could consider

robust covariance estimation in the sparse operator norm or

the (F, k, k) norm. For robust PCA (Theorem 1.6), our al-

gorithm works for a somewhat restricted range of the spike

parameter Ä. Removing this spike assumption and, more

broadly, developing a sparse PCA algorithm for the gap-

free setting (similar to Jambulapati et al. (2020); Kong et al.

(2020); Diakonikolas et al. (2023a) in the dense setting) re-

mains open.

Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none which we feel must be

specifically highlighted here.
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Supplementary Material

The supplementary material is structured as follows: Appendix A discusses additional related work, Appendix B includes

omitted preliminaries, Appendix C provides the full proof of Theorem 1.5 for robust sparse mean estimation, Appendix D

provides the proof of Theorem 1.6 for PCA, and finally, Appendix E includes omitted proofs from Appendix B.

A. Additional Related Work

Our work lies in the field of robust statistics, initiated in the 1960s (Tukey, 1960; Huber, 1964). We refer the reader to

Diakonikolas & Kane (2023) for a comprehensive overview and discuss the most relevant works below.

Robust PCA Principal Component Analysis has been studied extensively in the outlier-robust setting using a variety of

algorithmic approaches, such as robustly estimating the covariance matrix first and maximizing certain robust variance

measures (see Croux & Haesbroeck (2000); Xu et al. (2010); Candès et al. (2011) and the references therein). Xu et al.

(2013) gave the first efficient algorithm that overcomes prior work’s challenges stemming from high-dimensions.

Robust Sparse Estimation In high-dimensional statistics, sample sizes that scale with the dimension d can quickly

become overwhelming. However, a smaller sample size is possible under additional structural assumptions such as sparsity.

In the context of mean estimation of distributions with light tails, the folklore sample size of d is replaced by k when the

mean is known to be k-sparse (Hastie et al., 2015). Similar improvement is known for the robust version of the problem,

where ϵ-fraction of the samples is corrupted (Balakrishnan et al., 2017; Diakonikolas et al., 2019; Cheng et al., 2019;

Diakonikolas et al., 2022b). Focusing on sparse mean estimation, subsequent works have proposed further extensions

such as Diakonikolas et al. (2022c) for heavy-tailed distributions, Diakonikolas et al. (2022b) for light-tailed distributions

with unknown covariance matrix, Cheng et al. (2022) for non-convex first order methods (also see Zhu et al. (2022)), and

Diakonikolas et al. (2022a); Zeng & Shen (2022) for list-decodable estimation. Liu et al. (2020) extended the work of

Balakrishnan et al. (2017) to sparse linear regression.

PCA, has also been studied under sparsity. For the uncorrupted case, Berthet & Rigollet (2013b); Wang et al. (2016)

provided optimal information-theoretic bounds as well as evidence through reductions to planted clique problem that efficient

algorithms might require quadratically more samples. Croux et al. (2013) provided a sparse adaptation of earlier techniques

for robust sparse PCA that showed improved performance in simulations. Balakrishnan et al. (2017) and Diakonikolas et al.

(2019) studied theoretically the formulation of the problem as stated in this paper. Finally, guarantees have been developed

for robust sparse linear regression too (see Chen et al. (2013) for early work on this problem). Balakrishnan et al. (2017)

gave sample-efficient and poly-time algorithm for the task but with an error that scales with ∥´∥2, the norm of the unknown

regressor. Liu et al. (2020) removed this dependence on ∥´∥2, resulting in nearly optimal error.

Huber Contamination The Huber contamination model of Definition 1.1 is the prototypical model under which the study

of robust statistics was initiated. Since then, stronger models have been used, such as the “total variation model” where

the samples come i.i.d. from a distribution that is O(ϵ)-away from the original one in TV-distance, or the so called “strong

contamination model”, where a set of samples are drawn i.i.d. from the original distribution and then a computationally

unbounded adversary is allowed to inspect them and edit arbitrarily ϵ-fraction of them, potentially breaking independence

between samples. Information-theoretically, for all of these models, the optimal error for Gaussian k-sparse mean estimation

is Θ(ϵ) using k log(d)/ϵ2 (see, e.g., Diakonikolas & Kane (2023)). However, the different models play a role when

computational efficiency is considered.9 Prior works on robust sparse mean estimation that obtain O(ϵ
√
log(1/ϵ)) error

(such as Balakrishnan et al. (2017); Diakonikolas et al. (2019)) succeed under the strong contamination model (and thus also

Huber contamination model). However, there is evidence that with poly(k) samples, even in the total variation model, it is

computationally hard to remove the
√
log(1/ϵ) factor from the error. This evidence comes in the form of Statistical Query

(SQ) lower bounds (Diakonikolas et al., 2017) (which transfers to the low-degree polynomials model due to the equivalence

between them (Brennan et al., 2021)). Finally, we emphasize that we can not relax the Gaussianity assumption to generic

sub-Gaussianity, since, even under univariate Huber contamination, the information-theoretic optimal error is ϵ
√

log(1/ϵ)
for sub-Gaussian distributions.

9For other tasks, there even may be statistical differences: (Canonne et al., 2023) has shown that the sample complexity for these two
models may be different (for testing problems).
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Robust Sparse Estimation with Unknown Covariance One generalization of Definition 1.2 is to consider Gaussian

k-sparse mean estimation when the covariance Σ is not necessarily identity and unknown to the algorithm. The information-

theoretic limit for this case remains unchanged, apart from the fact that now the error naturally needs to scale with the size

of the covariance, i.e., it becomes O(ϵ)
√
∥Σ∥op. However, we do not know of a polynomial time algorithm to achieve

O(ϵ)
√
∥Σ∥op error, while the currently best known polynomial-time algorithm (Diakonikolas et al., 2022b) achieves a

larger error of ϵpolylog(1/ϵ)
√
∥Σ∥op error (i.e., off by a polylog(1/ϵ) factor) with poly(k/ϵ) samples. Achieving the

optimal O(ϵ)
√
∥Σ∥op error in polynomial time is not even known in the dense setting: the current fastest algorithm runs in

quasi-polynomial time (Diakonikolas et al., 2018).

B. Preliminaries

This section contains additional preliminaries and omitted facts and proofs.

Additional Notation If U ¦ [d]× [d] is a set of pairs of indices such that for every (i, j) ∈ U , (j, i) is also in U , then for

any matrix A ∈ R
d×d we denote by (A)U the matrix restricted to the entries from U . We use x ≲ y to denote that x f Cy

for some absolute constant C. We use the notation ak b to mean that a > Cb where C is some sufficiently large constant.

In the next few subsections, we state some well-known facts without proof, and some useful lemmata.

B.1. Miscellaneous Facts

Fact 2.3 (Variational definition). ∥A∥F,k,k = maxBïA,Bð where the maximum is taken over all matrices B with ∥B∥F=1
that have k non-zero rows, each of which has at most k non-zero elements.

Moreover, a maximizer B of this variational formulation can be found in poly(d, k) time given A.

Proof. Let M be the square matrix that is equal to 1 for each (i, j) for which A
2
i,j is witnessed in

maxS¦[d]:|S|=k
∑
i∈S ∥Ai∥22,k, and 0 otherwise. Also, let [A»M]i,j := Ai,jMi,j .

Then,

∥A∥F,k,k =

√
max

S¦[d]:|S|=k

∑

i∈S
∥Ai∥22,k = ∥A»M∥F = max

V,∥V∥F=1

∑

i,j

Ai,jMi,jVi,j .

Since Mi,j is non-zero only on k rows, and k elements in each of these rows, the expression above is equivalent to

maxBïA,Bð where the maximum is taken over all matrices B with ∥B∥F=1 that have k non-zero rows, each of which has

at most k non-zero elements. Given A, we can construct the mask M, and setting B := (A ·M)/∥A ·M∥F achieves the

maximum value.

Fact 2.4. ∥A∥op,k f ∥A∥F,k,k.

Proof. This is true because vv¦ and −vv¦ for any k-sparse unit vector v has Frobenius norm 1 and has at most k non-zero

rows, each of which has at most k non-zero entries.

Fact B.1 (Cover of the Sphere). Let r > 0. Let BR = {x ∈ R
d : ∥x∥2 f R}. There exists a set C ¦ BR such that

|C| f (1 + 2R/¸)d and for every v ∈ BR we have that miny∈C ∥y − v∥2 f ¸.

Fact B.2. For any square matrix A and positive-semidefinite matrix B, tr(AB) f ∥A∥optr(B).

Fact B.3 (see, for example, Diakonikolas & Kane (2023)). For x, y ∈ R
d with y being a k-sparse vector, we have that

∥tk(x)− y∥2 f
√
6∥x− y∥2,k, where ∥ · ∥2,k denotes the sparse Euclidean norm (Definition 2.1) and tk(x) the operator

that sets all but the k coordinates with the largest absolute values to zero.

Fact B.4. For unit vectors w, v ∈ R
d, we have that ∥ww¦ − vv¦∥F = Θ(∥w − v∥2).
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B.2. Probability Facts

Fact B.5 (Gaussian Norm Concentration). For every 0 f ´ f Ã
√
d we have that

Pr
X∼N (0,Ã2I)

[|∥X∥2 − Ã
√
d| > ´] f 2 exp

(
− ´2

16Ã2

)
.

Fact B.6. For any d× d matrix A, it holds VarX∼N (0,I)[X
¦
AX] = ∥A∥2F + tr(A2).

Definition B.7 (Sub-Gaussian and Sub-gamma Random Variables). A one-dimensional random variable Y is sub-Gaussian

if ∥Y ∥È2
:= suppg1 p

−1/2
E [|Y |p] is finite. We say that ∥Y ∥È2

is the sub-Gaussian norm of Y . A random vector X in R
d

is sub-Gaussian if for every v ∈ Sd−1, ∥v¦X∥È2
is finite. The sub-Gaussian norm of the vector is defined to be

∥X∥È2
:= sup

v∈Sd−1

∥v¦X∥È2
.

We call a centered one-dimensional random variable Y a (¿, ³)+ sub-gamma if E[exp(¼Y )] f ¿2¼2/2 for all 0 f ¼ f 1/³.

We call ∥Y ∥È1
:= suppg1 p

−1
E[|Y |p] the sub-gamma norm of Y .

Lemma B.8 (Properties of Sub-gamma Random Variables (Wainwright, 2019; Boucheron et al., 2013)). The class of

sub-gamma random variables satisfy the following:

1. (Wainwright, 2019, Proposition 2.9) If Y is a centered (¿, ³)+ sub-gamma random variable, then with probability

1− ¶, Y ≲ ¿
√
log(1/¶) + ³ log(1/¶).

2. (Boucheron et al., 2013, Theorem 2.3) If Y is a centered random variable satisfying that for all ¶ ∈ (0, 1), Y f
¿
√
log(1/¶) + ³ log(1/¶), then Y is (¿′, ³′)+ sub-gamma with ¿′ ≲ ¿ + ³ and ³′ ≲ ³.

3. (Wainwright, 2019, Section 2.1.3) Let Y1, . . . , Yk be k centered independent (¿, ³)+ sub-gamma random variables.

Then
∑k
i=1 Yi is a (¿

√
k, ³)+ sub-gamma random variable.

We also use the standard Hanson-Wright inequality (Vershynin, 2018):

Fact B.9 (Hanson-Wright Inequality). For X ∼ N (0, I) in R
d and for every square d× d matrix A and scalar t g 0, the

following holds:

Pr[|X¦
AX −E[X¦

AX]| > t] f 2 exp

(
−0.1min

(
t2

∥A∥2F
,

t

∥A∥op

))
.

The constant 0.1 above follows from Moshksar (2021).

B.3. Deterministic Conditions

The correctness of our algorithm will require the inliers to satisfy generic structural properties defined in Definition 2.5.

Recall that for a distribution D and a weight function w, we denote the weighted (and appropriately normalized) version of

D using w by Dw. We further use µDw
to denote the mean of Dw. We restate the conditions and then state formally the

lemma showing that Gaussian samples satisfy them with high probability.

Definition 2.5 ((ϵ, ³, k)-goodness). For ϵ ∈ (0, 1/2), ³ > 0 and k ∈ N, we say that a distribution G on R
d is (ϵ, ³, k)-good

with respect to µ ∈ R
d, if the following are satisfied:

(1) For all w : Rd→[0, 1] with EX∼G[w(X)] g 1−³:

(1.a) (Mean) ∥µGw
− µ∥2,k ≲ ³

√
log(1/³).

(1.b) (Covariance) ∥ΣGw
− I∥op,k ≲ ³ log( 1

³ ), where ΣGw
:= 1

E
X∼G

[w(X)] E
X∼G

[w(X)(X−µ)(X−µ)¦].

(2) (Tails of sparse degree-2 polynomials) If A ∈ R
d×d is a matrix with at most k2 non-zero elements, ∥A∥F f

√
log(1/ϵ)

and ∥A∥op f 1, then the polynomial p(x) := (x− µ)¦A(x− µ)− tr(A) satisfies:
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(a) EX∼G[p(X)1(p(X) > 100 log(1/ϵ))] f ϵ.

(b) PrX∼G[p(X) > 10 log(1/ϵ)] f ϵ.

(c) EX∼G[p(X)1(h(x) > 100 log(1/ϵ))] f ϵ for all h(x) of the form h(x) = ´ + v¦(x− µ) where |´| f 1 and v
is k-sparse and unit norm.

(3) PrX∼G[|v¦(X − µ)| g 40 log(1/ϵ))] f ϵ, for all k-sparse unit norm vectors v ∈ R
d.

The following lemma (proved in Appendix E) demonstrates that the uniform distribution over a sufficiently large set of

samples drawn from N (µ, Id) satisfies the deterministic conditions with respect to µ.

Lemma B.10 (Sample Complexity of Goodness Conditions). Let ϵ0 > 0 be a sufficiently small absolute constant. Let S
be a set of n samples drawn i.i.d. from N (µ, Id). Let G denote the uniform distribution on the points from S. If ϵ < ϵ0,

k2 f d and nk 1
min{ϵ2,³2} (k

2 log(d) + log(1/¶))polylog(1/ϵ), then with probability at least 1− ¶, G is (ϵ, ³, k)-good.

B.4. Certificate Lemma

We restate and prove the following lemma.

Lemma 2.6 (Certificate Lemma). Let 0 < ³ < ϵ < 1/4. Let P = (1 − ϵ)G + ϵB be a mixture of distributions, where

G satisfies Conditions (1.a) and (1.b) of Definition 2.5 with respect to µ ∈ R
d. Let w : R

d → [0, 1] be such that

EX∼G[w(X)] > 1− ³. If ∥ΣPw
− I∥op,k f ¼, then

∥µPw
− µ∥2,k ≲ ³

√
log

(
1

³

)
+
√
¼ϵ+ϵ+

√
³ϵ log

(
1

³

)
.

Proof. Let Ä = ϵEX∼B [w(X)]/EX∼P [w(X)]. Recall our notation Pw(x) = w(x)P (x)/EX∼P [w(X)], Bw(x) =
w(x)B(x)/EX∼B [w(X)], Gw(x) = w(x)G(x)/EX∼G[w(X)] for the weighted versions of the distributions P,B,G and

denote the corresponding covariance matrices by ΣPw
,ΣBw

,ΣGw
. We can write:

ΣPw
= ÄΣBw

+ (1− Ä)ΣGw
+ Ä(1− Ä)(µGw

− µBw
)(µGw

− µBw
)¦ . (3)

Let v be a k-sparse unit norm vector. Since v¦ΣPw
v f 1 + ¼, we obtain the following:

1 + ¼ g v¦ΣPw
v g (1− Ä)v¦ΣGw

v + Ä(1− Ä)(v¦(µBw
− µGw

))2

g (1− Ä) (1− ³ log(1/³)) + Ä(1− Ä)(v¦(µBw
− µGw

))2 ,

where the second step uses Equation (3) and the last step uses the fact that G satisfies Condition (1.b) of Definition 2.5. The

expression above implies the following:

(v¦(µBw
− µGw

))2 f ¼+ Ä+ ³ log(1/³)

Ä(1− Ä)
.

We can now bound the error |v¦(µPw
− µ)| as follows:

|v¦(µPw
− µ)| = |v¦(µGw

− µ) + Äv¦(µBw
− µGw

)|
f |v¦(µGw

− µ)|+ Ä|v¦(µBw
− µGw

)|
f ∥µGw

− µ∥2,k + Ä|v¦(µBw
− µGw

)|

f ³
√
log(1/³) +

√
Ä

√
¼+ Ä+ ³ log(1/³)

1− Ä
,

where the last inequality uses that G satisfies Condition (1.a). We now use bounds on Ä to simplify the terms. Recall that

Ä = ϵEX∼B [w(X)]/EX∼P [w(X)] f ϵ/(1− ³). As ³ < 1/2, we get that Ä < 2ϵ. In addition, note that Ä < 1/2. Using

these, we conclude that

∥µPw
− µ∥2,k f |v¦(µPw

− µ)| ≲ ³
√
log(1/³) +

√
¼ϵ+ ϵ+

√
³ϵ log(1/³) .
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B.5. Useful Procedures from Robust Statistics

The following result is implicit in Diakonikolas et al. (2019), which gives algorithm for k-sparse mean estimation with

sub-optimal error of O(ϵ
√
log(1/ϵ)). Since that algorithm relies on a certificate lemma similar to Lemma 2.6, it filters out

points until the k-sparse norm of the empirical covariance minus identity becomes O(ϵpolylog(1/ϵ)). Even though it does

not manage to make the variance as small as would be required for the Certificate Lemma to yield O(ϵ) error, this is a useful

starting point, and we will use it to pre-process the data in order to assume an O(ϵpolylog(1/ϵ)) bound on the variance

throughout our proofs.

Fact B.11. Let D ∼ N (µ, I) be a Gaussian distribution on R
d with unknown mean µ and ϵ f ϵ0 for some sufficiently

small absolute constant ϵ0 > 0. Let T be a set of n samples from an ϵ-corrupted version of D, according to the Huber

contamination model. If nk (k2 log(d) + log(1/¶))polylog(1/ϵ)/ϵ2, the algorithm from (Diakonikolas et al., 2019) run

on input T, k, ϵ outputs a subset T ′ ¦ T of the original dataset such that the following hold with probability at least 1− ¶:

1. (Algorithm deletes log(1/ϵ) more outliers than inliers) If S denotes the set of inliers in T , we have that |(T \T ′)∩S| f
1

log(1/ϵ) |(T \ T ′) ∩ (T \ S)|.

2. (Small (F, k, k)-norm) Denoting by ΣT ′ the covariance matrix of the output set T ′, we have that ∥ΣT ′ − I∥F,k,k =
O(ϵ log2(1/ϵ)).

3. (Estimate of true mean) The empirical mean µT ′ of the output dataset satisfies ∥µT ′ − µ∥2,k ≲ ϵ log(1/ϵ).

Proof sketch. (Algorithm deletes log(1/ϵ) more outliers than inliers): Algorithm 1 from (Diakonikolas et al., 2019) filters

points while ensuring that for every inlier deleted, Ω(1) outliers are deleted. This is done by eliminating points according to

the tail probabilities of the data. If the tail beyond some point T has a constant fraction more mass than it should, then a

constant fraction of the points that are eliminated should be outliers. To boost the ratio of inliers to outliers being deleted, one

just needs to adjust the threshold in lines 7 and 10 in Algorithm 1 of (Diakonikolas et al., 2019) so that the mass beyond T
has to be more than 1 + log(1/ϵ) times the mass of the inliers. This will imply that the ratio of inliers to outliers deleted can

be is boosted to log(1/ϵ). The cost that we need to pay for this change is that the stopping condition in Line 4 of Algorithm

1 in Diakonikolas et al. (2019) changes from ∥(ΣT ′ − I)U∥F f O(ϵ log(1/ϵ)) to ∥(ΣT ′ − I)U∥F f O(ϵ log2(1/ϵ)).

(Small (F,k, k)-norm of output covariance matrix): Running the (modified version of) Algorithm 1 in (Diakonikolas et al.,

2019) with sparsity set to 2k (instead of k) ensures that upon termination we have that ∥(ΣT ′ − I)U∥F = O(ϵ log2(1/ϵ))
for U ¢ [d]× [d] being the set of the 2k largest magnitude diagonal entries of ΣT ′ − I and the largest magnitude 4k2 − 2k
off diagonal entries, with ties broken so that if (i, j) ∈ U then (j, i) ∈ U . By using the definition of (F, k, k)-norm, this

implies that:

∥ΣT ′ − I∥F,k,k f ∥(ΣT ′ − I)U∥F f O(ϵ log2(1/ϵ)) , (4)

(Estimate of the mean): Since the algorithm deleted log(1/ϵ) factor more outliers than inliers and initially we

have ϵn outliers, it must be the case that the inliers after filtering are at least (1 − ϵ/ log(1/ϵ))n. Also note that

supv∈Rd:∥v∥2=1,∥v∥0=k v
¦(ΣT ′ − I)v = O(ϵ log2(1/ϵ)), which comes from (4) and Fact 2.4. This allows us to use

Lemma 2.6, which implies that ∥µT ′ − µ∥2,k ≲ ϵ log(1/ϵ) (for this application we also used that the inliers in the dataset

satisfy the goodness conditions of Definition 2.5 with ³ = ϵ/ log(1/ϵ))).

C. Robust Sparse Mean Estimation Under Huber Contamination

In this section we provide the complete proof of correctness, an overview of which was given in Section 3.

Recall Definition 3.1. We record a useful fact about the above definition.

Fact C.1. Consider the matrix A =
∑r
i=1 Ai where Ai for i ∈ [r] are the matrices in Definition 3.1. Then, it is true that

(i) ∥A∥F =
√
r, and (ii) ∥A∥op f 1.

Proof. Proof of (i): Since A =
∑r
i=1 Ai, the Ai’s have their non-zero entries on disjoint coordinates, and ∥Ai∥F = 1 we

have that ∥A∥2F =
∑r
i=1 ∥Ai∥2F = r.
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Proof of (ii): Observe that for i ̸= j, the matrices Ai and Aj satisfy that if (k, ℓ) entry of Ai is non-zero, then the

corresponding entry of Aj must be zero. As a result, by relabeling coordinates, we see that A can be written as a block

matrix:

A =




A1 O . . . O O

O A2 . . . O O

...
...

...
...

...

O O . . . Ar O

O O . . . O O,




where O represent a matrix with all entries set to zero; observe that O above could be of varing dimensions. Therefore,

A
¦
A is equal to

A
¦
A =




A
¦
1 A1 O . . . O O

O A
¦
2 A2 . . . O O

...
...

...
...

...

O O . . . A
¦
r Ar O

O O . . . O O,




Since this is a block diagonal PSD matrix, the operator norm of A¦
A is equal to maxi ∥A¦

i Ai∥op, which we can upper

bound as ∥A¦
i Ai∥op f tr(A¦

i Ai) = ∥Ai∥2F = 1. Therefore, ∥A∥op f
√
∥A¦A∥op f 1.

We now provide the full proof of Theorem 1.5, where we state each of the three steps as separate claims and prove them

individually.

Proof of Theorem 1.5. We start with some notation. Let T be the dataset after preprocessing (line 4). We let P be the

uniform distribution over T , G be the uniform distribution over the inliers of T and B the uniform distribution over the

outliers. We can write P as mixture P = (1− ϵ)G+ ϵB. If w : T → [0, 1] denotes the weights that the algorithm maintains

at a given point during its execution, we denote by Pw the weighted by w version of P . By Lemma B.10, we have that with

probability at least 1− ¶, G is (ϵ, ³, k)-good with ³ = 3ϵ/ log(1/ϵ).

We will show Theorem 1.5 via the following steps listed as individual claims below:

Claim C.2. Consider the setting and notation of Theorem 1.5 and Algorithm 2. The condition EX∼G[w(X)] g 1 −
3ϵ/ log(1/ϵ) remains true throughout the execution of the loop in line 7.

Claim C.3. Under the setting of Theorem 1.5, the loop of line 7 terminates after Õ(d/ϵ) time.

Claim C.4. Consider the setting and notation of Theorem 1.5 and Algorithm 2. After the loop of line 7 ends, let w be

the resulting weight function, let µw = EX∼Pw
[X] be the mean of the dataset weighted by w, and denote by H the set of

coordinates as in line 12 of the pseudocode. Then, for every k-sparse v ∈ R
d, it holds |v¦(µw − µ)[d]\H | = O(ϵ)∥v∥2.

We will prove these claims at the end of the current proof. We first use these to show that the algorithm has error O(ϵ)
overall: For every k-sparse vector v of Rd, let v1 denote the copy of v that has all of its entries in the coordinates from

[d]\H zeroed out and v2 the copy of v that has all of the entries in the coordinates from H zeroed out. Similarly, decompose

µ into µ1 + µ2. Then:

∣∣v¦(µ̂− µ)
∣∣2 =

∣∣v¦(µ̂1 − µ1 + µ̂2 − µ2)
∣∣2 f 2

∣∣v¦1 (µ̂1 − µ1)
∣∣2 + 2

∣∣v¦2 (µ̂2 − µ2)
∣∣2 ,

where we used the “almost triangle inequality” (a+b)2 f 2a2+2b2. To conclude the proof, we claim that
∣∣v¦1 (µ̂1 − µ1)

∣∣2 f
∥v1∥22O(ϵ2) and

∣∣v¦2 (µ̂2 − µ2)
∣∣2 f ∥v2∥22O(ϵ2), which, once established, can be used to conclude that

∣∣v¦(µ̂− µ)
∣∣2 f

O(ϵ2)(∥v1∥22 + ∥v2∥22) = O(ϵ2)∥v∥22, i.e., the final error is O(ϵ).
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The claim that
∣∣v¦1 (µ̂1 − µ1)

∣∣ f ∥v1∥2O(ϵ) follows by the O(ϵ)-error guarantee of the dense robust mean estimator run on

a dataset restricted to the coordinates in H . Let d′ := |H| be the dimensionality of the restricted dataset. Fact 2.7 states

that in order for that estimator to achieve O(ϵ) error the dataset used needs to be of size a sufficiently large multiple of
1
ϵ2 (d

′ + log(1/¶))polylog(d/ϵ). Since d′ = |H| f rk = log(1/ϵ)k, this quantity is O( 1
ϵ2 (k + log(1/¶)))polylog(d/ϵ)

and thus smaller than the sample complexity mentioned in the statement of Theorem 1.5.

The claim that
∣∣v¦2 (µ̂2 − µ2)

∣∣ f ∥v2∥2O(ϵ) follows by Claim C.4.

We now prove Claims C.2 to C.4.

Proof of Claim C.2. To show this, it suffices to show that every time the weight function is updated, log(1/ϵ) more mass is

removed from outliers than inliers. We will show this inductively: Assume it is true for all previous rounds and we will

show it for the current round using Lemma 2.8 applied with ´ = log(1/ϵ), s = ϵ once we show that the lemma is applicable.

Denote ¼′ := ∥Σw− I∥F,k,k. In order to show that Lemma 2.8 is applicable, we need to check that EX∼G[w(X)Ä̃(X)] f ϵ.
Regarding that, Ä̃(X) looks like the thresholded polynomial Ä(x) used in the deterministic Condition (2) for which we know

that EX∼G[w(X)Ä(X)] f ϵ. The difference is that Ä̃(x) centers the point around µw instead of µ that is used in Ä(x), thus

we need some triangle inequalities and Claim 3.2, which is shown in Appendix C.1, to prove that this difference is not

substantial.

Let Ä̃(x) = p̃(x)1(p̃(x) > 200 log(1/ϵ)), where p̃(x) = (x− µw)
¦
A(x− µw)− tr(A) be the scores that the algorithm

uses (which center points around µw) and Ä(x) = p(x)1(p(x) > 100 log(1/ϵ)) with p(x) = (x− µ)¦A(x− µ)− tr(A)
be the ideal scores appearing in the deterministic condition (that center things around the true µ). Denote by ∆p(x) :=
p̃(x)−p(x) = (µ−µw)¦A(µ−µw)+(x−µ)¦A(µ−µw)+(x− µ)¦A¦(µ− µw) the difference of the two polynomials.

We have that

E
X∼G

[w(X)Ä̃(X)] f E
X∼G

[Ä̃(X)]

= E
X∼G

[p̃(X)1(p̃(X) > 200 log(1/ϵ))]

= E
X∼G

[(∆p(X) + p(X))1(p(X) > 200 log(1/ϵ)−∆p(X))]

= E
X∼G

[∆p(X)1(p(X) > 200 log(1/ϵ)−∆p(X))]

+ E
X∼G

[p(X)1(p(X) > 200 log(1/ϵ)−∆p(X))]

f |(µ− µw)
¦
A(µ− µw)|

+ E
X∼G

[(X − µ)¦A(µ− µw)1(p(X) > 200 log(1/ϵ)−∆p(X))]

+ E
X∼G

[(X − µ)¦A¦(µ− µw)1(p(X) > 200 log(1/ϵ)−∆p(X))]

+ E
X∼G

[p(X)1(p(X) > 200 log(1/ϵ)−∆p(X))] . (5)

We claim that each of the four terms above is at most O(ϵ). Denote ¼ := maxv∈Rd:∥v∥2=1,∥v∥0=k v
¦(Σw − I)v—not to be

confused with ¼′ := ∥Σw − I∥F,k,k. For the first term in (5), we have that

|(µ− µw)
¦
A(µ− µw)| f r∥µ− µw∥22,k (using Claim 3.2)

≲ r(ϵ¼+ ϵ2) (using Lemma 2.6)

f rϵ¼′ + rϵ2 (¼ f ¼′ by Fact 2.4)

f rϵ2 log2(1/ϵ) (using ¼′ ≲ ϵ log2(1/ϵ))

f ϵ, (6)

applicable as follows: in the second line we applied Lemma 2.6 with ³ = 3ϵ/ log(1/ϵ) (the requirement that

EX∼G[w(X)] g 1− ³ of that lemma is satisfied by inductive hypothesis), and the last line uses that r := log(1/ϵ).

We now move to the second term in (5). The bound for the third term is identical, thus we will omit it. We have that

E
X∼G

[(X − µ)¦A(µ− µw)1(p(X) > 200 log(1/ϵ)−∆p(X))]
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f E
X∼G

[(X − µ)¦A(µ− µw)1(p(X) > 200 log(1/ϵ)−∆p(X),∆p(X) f 100 log(1/ϵ))]

+ E
X∼G

[|(X − µ)¦A(µ− µw)|1(∆p(X) > 100 log(1/ϵ))]

f E
X∼G

[|(X − µ)¦A(µ− µw)|1(p(X) > 100 log(1/ϵ))]

+ E
X∼G

[|(X − µ)¦A(µ− µw)|1(∆p(X) > 100 log(1/ϵ))] . (7)

We now work with the two terms individually. We start with the first term of (7). In what follows we define the vectors

ui := Ai(µ− µw)/∥Ai(µ− µw)∥2,k to shorten notation. We have the following series of inequalities (see below for step

by step explanations)

E
X∼G

[|(X − µ)¦A(µ− µw)|1(p(X) > 100 log(1/ϵ))]

f
r∑

i=1

E
X∼G

[|(X − µ)¦Ai(µ− µw)|1(p(X) > 100 log(1/ϵ))] (8)

≲

r∑

i=1

√
E

X∼G
[|(X − µ)¦Ai(µ− µw)|2]

√
Pr
X∼G

[p(X) > 100 log(1/ϵ)] (9)

=
r∑

i=1

∥Ai(µ− µw)∥2,k
√

E
X∼G

[|(X − µ)¦ui|2]
√

Pr
X∼G

[p(X) > 100 log(1/ϵ)] (10)

f
r∑

i=1

∥Ai∥F∥µ− µw∥2,k
√

E
X∼G

[|(X − µ)¦ui|2]
√

Pr
X∼G

[p(X) > 100 log(1/ϵ)] (11)

≲ r(
√
¼′ϵ+ ϵ)

√
Pr
X∼G

[p(X) > 100 log(1/ϵ)] (12)

≲ r(
√
¼′ϵ+ ϵ)

√
ϵ (13)

≲ ϵ1.5 log2(1/ϵ) (14)

f ϵ . (15)

(8) follows from the definition of A =
∑r
i=1 Ai and the triangle inequality. (9) uses the Cauchy–Schwarz inequality. (10) is

a re-writing using ui := Ai(µ− µw)/∥Ai(µ− µw)∥2,k, where the point to note is that ui is k-sparse (because Ai has only

k non-zero rows) and unit norm. (11) uses the inequality ∥Cv∥2,k f ∥C∥F∥v∥2,k. This is true since C is a matrix with at

most k nonzero rows with at most k nonzero entries in each row and has Frobenius norm 1. An application of Claim 3.2 with

r = 1 then gives us what we want. Then, (12) uses that ∥Ai∥F f 1, ∥µ− µw∥2,k ≲
√
ϵ¼+ ϵ f

√
ϵ¼′ + ϵ by Lemma 2.6

and Fact 2.4, and EX∼G[|(x− µ)¦ui|2] f 1 + Õ(ϵ) ≲ 1 by the deterministic Condition (1.b) (these utilize the fact that ui
is unit-norm k-sparse vector). (13) uses that PrX∼G[p(X) > 100 log(1/ϵ)] f ϵ by the deterministic Item (2)b. (14) uses

that ¼′ ≲ ϵ log2(1/ϵ) by the preprocessing step of the algorithm (cf. Fact B.11) and also that r = log(1/ϵ).

We now move to the second term of (7).

E
X∼G

[|(X − µ)¦A(µ− µw)|1(∆p(X) > 100 log(1/ϵ))]

f r(
√
¼′ϵ+ ϵ)

√
Pr
X∼G

[∆p(X) > 100 log(1/ϵ)] (similar to steps (8-12))

≲ ϵ1.5 log2(1/ϵ) ≲ ϵ , (16)

where we bounded PrX∼G[∆p(X) > 100 log(1/ϵ)] as follows: First, PrX∼G[∆p(x) > 100 log(1/ϵ)] f PrX∼G[|(X −
µ)¦A(µ − µw)| > 99 log(1/ϵ)] + PrX∼G[|(X − µ)¦A¦(µ − µw)| > 99 log(1/ϵ)], where this uses that ∆p(x) =
(µ− µw)

¦
A(µ− µw) + (x− µ)¦A¦(µ− µw) + (x− µ)¦A(µ− µw), and that |(µ− µw)

¦
A(µ− µw)| f 1 < log(1/ϵ)

by (6). We will only focus on the first term, since the second probability is bounded identically:

Pr
X∼G

[|(X − µ)¦A(µ− µw)| > 99 log(1/ϵ)] f Pr
X∼G

[∣∣∣∣(X − µ)¦
A(µ− µw)

∥A(µ− µw)∥2

∣∣∣∣ >
99 log(1/ϵ)

∥A(µ− µw)∥2

]
(17)
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f Pr
X∼G

[∣∣∣∣(X − µ)¦
A(µ− µw)

∥A(µ− µw)∥2

∣∣∣∣ > 99 log(1/ϵ)

]
(18)

f ϵ (19)

where (17) divides by A(µ − µw) both sides (18) uses that ∥A(µ − µw)∥2 f
∑r
i=1 ∥Ai(µ − µw)∥2 =

∑r
i=1 ∥Ai(µ −

µw)∥2,k f
∑r
i=1 ∥Ai∥F∥µ − µw∥2,k f r∥µ − µw∥2,k ≲ r(

√
¼′ϵ + ϵ) f 1, where the first step is a triangle inequality,

the second step uses the fact that Ai has only k-nonzero rows, the next step uses Cauchy-Schwartz, then we use that

there are r terms in the sum, ∥Ai∥F f 1, and finally that ∥µ − µw∥2,k ≲
√
ϵ¼′ + ϵ by Lemma 2.6 and finally that

r = log(1/ϵ), ¼′ = O(1) by our preprocessing step inside the algorithm (Fact B.11). (19) uses Item (3) of Definition 2.5,

which is indeed applicable because A(µ− µw) is rk-sparse since A has at most rk non-zero rows.

We are now done with all the terms in (7) and can now move to the last term of (5):

E
X∼G

[p(X)1(p(X) > 200 log(1/ϵ)−∆p(X))]

f E
X∼G

[p(X)1(p(X) > 200 log(1/ϵ)−∆p(X),∆p(X) < 100 log(1/ϵ))]

+ E
X∼G

[p(X)1(∆p(X) > 100 log(1/ϵ))]

Now, the first term above is EX∼G[p(X)1(p(X) > 100 log(1/ϵ))] = EX∼G[Ä(x)] which is at most O(ϵ) by our determin-

istic Condition (2). The EX∼G[p(X)1(∆p(X) > 100 log(1/ϵ))] is bounded by ϵ using Item (2)c of the deterministic condi-

tion Condition (2) (the application is very similar to the application of Item (3) of Definition 2.5 in equations (17)-(19)).

Proof of Claim C.3. We will show that in every iteration of the while loop of line 7, EX∼P [w(X)] is reduced by at least

Ω̃(ϵ/d), where w(x) are the weights that the algorithm maintains and P is the uniform distribution over the input dataset.

Since initially EX∼P [w(X)] = 1, this would mean that after at most Õ(d/ϵ) iterations, the weight from all the outliers

would have been reduced to zero. We will finally show that this would trigger the stopping condition of line 7 and cause the

algorithm to terminate.

We start with the first claim, that EX∼P [w(X)] gets non-trivially reduced in every round. Fix an iteration of the algorithm

and denote by w(x) the weights at the start of that round and by w′(x) the weights after that round ends. The mass removed

is, by design of the filtering algorithm (see line 6 of Algorithm 1)

E
X∼P

[w(X)− w′(X)] =
EX∼P [w(X)Ä̃(X)]

maxx:w(x)>0 Ä̃(X)
. (20)

We will show that the denominator is O(d log2(d/ϵ)), and that the numerator is Ω(ϵ log(1/ϵ)).

Regarding the denominator, let µT denote the vector from line 5 of the algorithm (the vector used in the naïve pruning

step). For every point with w(x) > 0 it holds Ä̃(x) f |(x − µw)
¦
A(x − µw)| f ∥A∥op∥x − µw∥22 f ∥x − µw∥22 ≲

∥x−µ∥22 + ∥µ−µT ∥22 + ∥µT −µw∥22 ≲ d log2(d/ϵ), where the fact that every point in the dataset is within 10
√
d log(d/ϵ)

from µT (by the pruning done in line 5 of the algorithm).

Regarding the numerator, let ¼′′ := gr(Σw − I). We will show that the numerator is Ω(¼′′). Note that as long as the while

loop of line 7 has not been terminated, ¼′′ k log(1/ϵ)ϵ by design. We rewrite the numerator:

E
X∼P

[w(X)Ä̃(X)] = E
X∼P

[w(X)p̃(X)]− E
X∼P

[w(X)p̃(X)1(p̃(X) f 200 log(1/ϵ))] (21)

We first show that, after re-normalizing, the first term at least 0.5gr(Σw − I):

E
X∼P

[w(X)p̃(X)] = E
X∼P

[w(X)] E
X∼Pw

[p̃(X)]

= E
X∼P

[w(X)] E
X∼Pw

[ïA, (X − µw)(X − µw)
¦ − Ið]

= E
X∼P

[w(X)]

〈
A, E

X∼Pw

[(X − µw)(X − µw)
¦]− I

〉
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= E
X∼P

[w(X)]ïA,Σw − Ið

= E
X∼P

[w(X)]

r∑

i=1

ïAi,Σw − Ið (see Definition 3.1)

= E
X∼P

[w(X)]

r∑

i=1

hr(Σw − I) (see Definition 3.1)

= E
X∼P

[w(X)]gr(Σw − I) (22)

g 0.5¼′′ ,

where we used Claim C.2 to obtain that EX∼P [w(X)] g 1/2.

In the reminder, we show that the second term in Equation (21) is at most 0.002¼′′. First, we decompose into inliers and

outliers:

E
X∼P

[w(X)p̃(X)1(p̃(X) f 200 log(1/ϵ))]

= (1− ϵ) E
X∼G

[w(X)p̃(X)1(p̃(X) f 200 log(1/ϵ))]

+ ϵ E
X∼B

[w(X)p̃(X)1(p̃(X) f 200 log(1/ϵ))]

We again treat each term individually. For the second term, (the one due to outliers), we have the following due to the

indicator function

ϵ E
X∼B

[w(X)p̃(X)1(p̃(X) f 200 log(1/ϵ))] f ϵ(200 log(1/ϵ)))j ¼′′ ,

where we used that by design of line 7 of the algorithm ¼′′ > Crϵ with r := log(1/ϵ) and C being a sufficiently large

constant.

For the term due to inliers, we can say the following: Denote by ∆p(x) = p̃(x)− p(x) = (µ− µw)
¦
A(µ− µw) + (x−

µ)¦A(µ − µw) + (x − µ)¦A¦(µ − µw). Then, we will establish the following bounds (see below for explanations of

each step):

(1− ϵ) E
X∼G

[w(X)p̃(X)1(p̃(X) f 200 log(1/ϵ))] (23)

f (1− ϵ) E
X∼G

[w(X)p̃(X)] (24)

= (1− ϵ) E
X∼G

[w(X)p(X)] + (1− ϵ) E
X∼G

[w(X)∆p(X)] (25)

f ϵ+ (1− ϵ) E
X∼G

[w(X)∆p(X)] (26)

f ϵ+ (1− ϵ) E
X∼G

[w(X)(µ− µw)
¦
A(µ− µw)]

+ (1− ϵ) E
X∼G

[w(X)(x− µ)¦A(µ− µw)] + (1− ϵ) E
X∼G

[w(X)(x− µ)¦A¦(µ− µw)] (27)

f O(ϵ) + (µ− µw)
¦
A(µ− µw) + (µG − µ)¦A(µ− µw) + (µG − µ)¦A¦(µ− µw) (28)

= O(ϵ) (29)

f 0.002¼′′ (30)

(31)

We explain the steps below: (24) uses that the indicator only removes non-negative terms. (25) decomposes into inliers

and outliers. (26) bounds the average value of the polynomial over inliers as follows (we will use the notation pA(x) =
(x− µ)¦A(x− µ)− tr(A) for clarity):

E
X∼G

[w(X)pA(X)] = E
X∼G

[w(X)pA(X)]

= E
X∼G

[pA(X)]− E
X∼G

[(1− w(X))pA(X)]
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= E
X∼N (µ,I)

[pA(X)] +O(ϵ)− E
X∼G

[(1− w(X))pA(X)]

= O(ϵ) + E
X∼G

[(1− w(X))p−A(X)] (32)

where in the second to last line we used that for all degree-2 polynomials g with at most k2 terms∣∣EX∼G[g(X)]−EZ∼N (µ,I)[g(Z)]
∣∣ f ϵ

√
VarZ∼N (µ,I)[g(Z)], which can be found in which can be found in Lemma 4.3

in (Diakonikolas et al., 2019). (32) line we renamed −A to A
′. Then, decomposing the remaining term into the large and

small part using indicator functions, we have that

E
X∼G

[(1− w(X))p−A(X)] = E
X∼G

[(1− w(X))p−A(X)1(p−A(X) f 100 log(1/ϵ))]

+ E
X∼G

[(1− w(X))p−A(X)1(p−A(X) g 100 log(1/ϵ))]

≲ E
X∼G

[(1− w(X))100 log(1/ϵ)] + ϵ

≲ ϵ

where in the second to last step we used that EX∼G[1 − w(X)] ≲ ϵ/ log(1/ϵ) by Claim C.2, and also that EX∼G[(1 −
w(X))p−A(X)1(p−A(X) g 100 log(1/ϵ))] f ϵ by the deterministic condition (2).

Back to explaining the sequence of bounds in (23)-(30), the bound used in (29) can be proved exactly as in (6) and (30) uses

that ¼′′ > Crϵ because of line 7 of the algorithm.

We have thus completed the argument that Ω̃(ϵ/d) mass is removed in every round of the loop of line 7. To conclude the proof

of Claim C.3, it remains to show that after Õ(d/ϵ) iterations the algorithm will necessarily terminate. First note that after that

many iterations, there cannot be any outliers left. Moreover, by Claim C.2 a large fraction of inliers still remains in the dataset

(i.e., EX∼G[w(X)] g 1− 3ϵ/ log(1/ϵ)). We claim that under this setting, gr(Σw − I) = EX∼G[w(X)p̃(X)] ≲ ϵ log(1/ϵ)
causing the stopping condition of line 7 to trigger. We show the bound as follows:

E
X∼G

[w(X)p̃(X)] f O(ϵ) + (µ− µw)
¦
A(µ− µw) + (µGw

− µ)¦A(µ− µw) + (µGw
− µ)¦A¦(µ− µw)

≲ ϵ+ r∥µ− µw∥22,k + r∥µ− µw∥2,k∥µGw
− µw∥2,k

where the first inequality is as in (24)-(28). Finally to bound each term by O(ϵ) one can use the deterministic Condition (1.a)

and (6).

Proof of Claim C.4. The claim follows by Lemma 2.6. We show how to apply this lemma: By the definition of the stopping

condition of the algorithm, upon termination we have that gr(Σw−I) f O(rϵ), or, equivalently 1
r

∑r
i=1 hi(Σw−I) f O(ϵ).

This means that hr, as the smallest term in the sum, must be O(ϵ). Since hr(Σw− I) is the (F, k, k) norm of the matrix after

deletion of the elements in ([d]\H)×([d]\H) (cf. line 12 of pseudocode), it follows that ∥(Σw−I)([d]\H)×([d]\H)∥F,k,k f
hr(Σw − I) f O(ϵ). Combining with Fact 2.4, we have that sup∥v∥2=1,∥v∥0=k v

¦((Σw − I)([d]\H)×([d]\H))v = O(ϵ). We

also recall that the dataset is (ϵ, ³, k)-stable with ³ = 3ϵ/ log(1/ϵ) and, because of Claim C.2, EX∼G[w(X)] g 1 − ³
holds when exiting the main loop of the algorithm. All of these mean that we can apply Lemma 2.6 with ¼ = O(ϵ) and

³ = 3ϵ/ log(1/ϵ) to obtain that
∣∣v¦2 (µ̂2 − µ2)

∣∣ f ∥v2∥22O(ϵ) for any vector k-sparse vector v2 supported on [d] \H .

C.1. Proof of Claim 3.2

We restate and prove the following inequality

Claim 3.2. Let A =
∑
ℓ∈[r] B

(ℓ) where each B
(ℓ) is a square matrix with Frobenius norm equal to one, k non-zero rows,

each of which has k non-zero entries. Then, for any vectors u, v, it holds |u¦
Av| f r∥u∥2,k∥v∥2,k.
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Proof. First, u¦
Av =

∑
ℓ u

¦
B

(ℓ)v. Consider a single matrix B
(ℓ) from the sum and denote by b

(ℓ)
i for i ∈ [d] the rows of

B
(ℓ) (only k of them are non-zero and each has at most k non-zero elements). We have the following:

u¦
B

(ℓ)v = u¦
B

(ℓ)v

=
∑

i,j

uivj(B
(ℓ))ij

=
∑

i

ui
∑

j

vj(B
(ℓ))ij

f
∑

i

ui∥v∥2,k∥b(ℓ)i ∥2 (33)

f ∥u∥2,k∥v∥2,k∥B(ℓ)∥F (34)

= ∥u∥2,k∥v∥2,k (35)

where the step in (33) used Cauchy–Schwarz inequality along with the fact that at most k-entries are non zero in the i-th row

of B(ℓ), and (34) used Cauchy–Schwarz again along with the fact that there are at most k non-zero rows in B
(ℓ).

Finally, summing over all terms in (35) concludes the proof.

D. Robust Principal Component Analysis

We state and prove a more detailed version of Claim 4.1 below:

Claim D.1. Let X ∼ N (0, I+ Ävv¦) be a random variable from the spiked covariance model and Z = Projw¦(X) the

projection of X onto the subspace perpendicular to w. For ³ ∈ R, let G³ denote the distribution of Z conditioned on

w¦X = ³, and for an interval I ¢ R, let GI denote the distribution of Z conditioned on w¦X ∈ I . We also use the

notation ϕ(z;µ,Σ) for the pdf of N (µ,Σ). Then, the pdfs of the two aforementioned distributions are:

1. G³(z) = ϕ(z; µ̃, Σ̃) with µ̃ = Ä(w¦v)³
1+Ä(w¦v)2

v̄ and Σ̃ = I+ Ä
1+Ä(w¦v)2

v̄v̄¦, where v̄ := (v − (w¦v)w).

2. GI(z) =
1

Pr
X∼N(0,I+Ävv¦)

[w¦X∈I]
∫
³′∈I G³′(z) PrX∼N (0,I+Ävv¦)[w

¦X = ³′]d³′.

Proof. Let e1, . . . , ed denote the standard orthonormal basis of Rd. By a rotation of the space, we can assume without

loss of generality that w is aligned with ed, i.e., w = ∥w∥2ed. We denote by v = (v1, . . . , vd−1) the projection of v to the

subspace orthogonal to w and by vd = w¦v the projection of v in the direction of w. This way the subspace perpendicular

to w is the one spanned by the first d− 1 basis elements. The first part of the claim follows from Fact D.2 below applied

with y1 = (x1, . . . , xd−1), y2 = ³, µ1 = 0, µ2 = 0,Σ11 = I + Äv̄v̄¦,Σ12 = Ävdv̄,Σ21 = Ävdv̄
¦ and Σ22 = 1 + Äv2d

(and the fact that vd = w¦v and v = v − (w¦v)w). The second claim follows by the law of total probability.

Fact D.2. If

[
y1
y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
, then y1|y2 ∼ N (µ̄, Σ̄), with µ̄ = µ1 + Σ12Σ

−1
22 (y2 − µ2) and Σ̄ =

Σ11 −Σ12Σ
−1
22 Σ21.

Claim D.3. Under the assumptions of Theorem 1.6 and assuming that the estimators in lines 1,2 and 3 exist, we have that

∥v̂ − v∥2 = O(ϵ/Ä).

Proof. Let e1, . . . , ed denote the standard orthonormal basis of Rd. By a rotation of the space, we can assume without

loss of generality that w is aligned with ed, i.e., w = ∥w∥2ed. We denote by v = (v1, . . . , vd−1) the projection of v to the

subspace orthogonal to w and by vd = w¦v the projection of v in the direction of w.

Some useful observations for later on are the following: Note that, by Fact B.4, the fact that we start with ∥ww¦− vv¦∥F =
O(ϵ

√
log(1/ϵ)/Ä) in the algorithm implies that ∥w − v∥2 = O(ϵ

√
log(1/ϵ)/Ä), which also means that 1 g w¦v g

1−O(ϵ2 log(1/ϵ)/Ä2). Since w¦v = vd (by our rotation assumption) and ∥v∥2 = 1, the previous discussion means that:

∥v̄∥2 =
√

1− (w¦v)2 = O(ϵ
√

log(1/ϵ)/Ä) and 1−O(ϵ2 log(1/ϵ)/Ä2) f vd f 1 . (36)
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Now, let x ∼ N (0, I + Ävv¦) be a random vector coming from our spiked covariance model. We want to consider

the distribution of (x1, . . . , xd−1) conditioned on w¦x = ³ (note that by our rotation assumption this is equivalent to

conditioning on xd = ³). By Claim 4.1, this conditional distribution is N
(
Ävd³
1+Äv2

d

v, I+ Ä
1+Äv2

d

vv¦
)

.

The error of our final estimator is

∥v̂ − v∥2 f
∥∥∥∥z

1 + Äy

Ä
√
y³
− v̄

∥∥∥∥
2

+ |√y − vd| .

The second term is O(ϵ/Ä) by line 2 of the pseudocode. To see this, note that |y − v2d| = O(ϵ/Ä) implies |√y − vd| =
|y−v2d|√
y+vd

= O(ϵ/Ä) by using vd g 1/2. For the first term, we have the following:

∥∥∥∥z
1 + Äy

Ä
√
y³
− v̄

∥∥∥∥
2

f
∥∥∥∥z

1 + Äy

Ä
√
y³
− z

1 + Äv2d
Ävd³

∥∥∥∥
2

+

∥∥∥∥z
1 + Äv2d
Ävd³

− v̄

∥∥∥∥
2

f ∥z∥2
∣∣∣∣
1 + Äy

Ä
√
y³
− 1 + Äv2d

Ävd³

∣∣∣∣+
1 + Äv2d
Ävd³

∥∥∥∥z − v̄
Ä³vd

1 + Äv2d

∥∥∥∥
2

(37)

≲ Ä

∣∣∣∣
1 + Äy

Ä
√
y³
− 1 + Äv2d

Ävd³

∣∣∣∣+O(ϵ/Ä) , (38)

where the first line is a triangle inequality, and the last line used the following: First, the factor (1 + Äv2d)/(Ävd³) is O(1/Ä)
because of ³ = Θ(1), Ä = O(1), and 1 g vd g 1/3 (by (36)). Also, by the mean estimation guarantee (line 3 of the

pseudocode), we have that ∥z − v̄ Ä³vd
1+Äv2

d

∥2 = O(ϵ), which bounds the last term in (37). Lastly, the previous two imply that

∥z∥2 f O(Ä):

∥z∥2 f
∥∥∥∥z − v̄

Ä³vd
1 + Äv2d

∥∥∥∥
2

+

∥∥∥∥v̄
Ä³vd

1 + Äv2d

∥∥∥∥
2

≲ ϵ+ Ä∥v̄∥2 (mean estimation guarantee, ³ = Θ(1), vd f 1)

≲ ϵ+ ÄO(ϵ
√

log(1/ϵ)/Ä) (by (36))

≲ ϵ
√

log(1/ϵ) ≲ Ä . (by assumption)

This is because z is O(ϵ)-close to v̄ Ä³vd
1+Äv2

d

, whose norm can be checked to be O(ϵ
√
log(1/ϵ)) using that ³ = Θ(1), vd =

Θ(1) and ∥v̄∥2 = O(ϵ
√
log(1/ϵ)/Ä) (by (36)) and finally ϵ

√
log(1/ϵ) ≲ Ä by assumption.

We now bound the remaining term in (38). We know that |y− v2d| = O(ϵ/Ä), thus we also have |√y− vd| = O(ϵ/Ä). Let us

write
√
y = vd+¸, y = v2d+¸′ for some |¸| = O(ϵ/Ä), |¸′| = O(ϵ/Ä). Using this and doing some algebra, the term in (38) is

Ä

∣∣∣∣
1 + Äy

Ä
√
y³
− 1 + Äv2d

Ävd³

∣∣∣∣ =
Ä

Ä³

∣∣∣∣
1 + Äv2d + Ä¸′

vd + ¸
− 1 + Äv2d

vd

∣∣∣∣

f
∣∣∣∣
Ä¸′vd − ¸ − Äv2d¸

vd(vd + ¸)

∣∣∣∣ (³ = Θ(1))

≲ ϵ/Ä ,

where in the last step we used Ä = O(1), |vd| = Θ(1) (from (36)) and |¸| = O(ϵ/Ä), |¸′| = O(ϵ/Ä) to show that every term

is O(ϵ/Ä).

Claim D.4. There exists a computationally efficient estimator that uses O(1/ϵ) ϵ-corrupted samples and achieves the guar-

antee in line 2 of Algorithm 3. There exists a computationally efficient estimator that uses O((k2 log(d)+polylog(1/ϵ))/ϵ2)
ϵ-corrupted samples from N (0, I+ Ävv¦) and achieves the guarantee in line 3 of Algorithm 3.

Proof sketch. The first estimator exists since it is known that robustly estimating the variance of a Gaussian in one dimension

can be done with O(ϵ) error (see, e.g., Diakonikolas et al. (2018) which is for high-dimensions but here we only need
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it for one dimension). Concretely, consider (w¦x) for x ∼ N (0, I + Ävv¦). Then (w¦x) ∼ N (0, 1 + Ä(w¦v)2). By

robustly estimating its variance, we can obtain y′ such that |y′ − (1 + Ä(w¦v)2)| = O(ϵ(1 + Ä)) = O(ϵ); here we used that

Ä = O(1) by assumption. Then y := (y′ − 1)/Ä satisfies |y − (w¦v)2| = O(ϵ/Ä), which is the guarantee mentioned in line

2 of Algorithm 3.

The estimator for line 3 of Algorithm 3 is the following: Let T be a set of ϵ-corrupted samples from N (0, I+ Ävv¦) in the

Huber contamination model.

1. Draw ³ uniformly from [−(1 + Ä), 1 + Ä] \ [−0.1, 0.1].10

2. Define the interval I = [³− ℓ, ³+ ℓ] for ℓ = 1/ log(1/ϵ).

3. T ′ = {x ∈ T : w¦x ∈ I}.

4. T ′′ = {Projw§(x) : x ∈ T ′} (Project samples to subspace orthogonal to w).

5. Let z be the output of Algorithm 2 run on T ′′.

6. Output the vector obtained from z after zeroing out all coordinates except the 2k ones with the largest absolute value.

The correctness of Algorithm 2 relies on the following two: (i) the fraction of outliers in T ′ continues to be O(ϵ) and (i.e.,

we are still in the Huber contamination model with approximately the same corruption level) (ii) the inliers satisfy the

deterministic conditions from Definition 2.5.

We start with (i), where we sketch the proof. We argue that the probability of an outlier x having w¦x ∈ I divided by the

probability that an inlier having w¦x ∈ I is at most O(1). This would ensure that the fraction of outliers does not blow

up by more than a constant factor. We start with upper bounding the probability for outliers. Since I is chosen randomly

and independently of anything else we can imagine that the outlier x is fixed and then I is chosen randomly. Let us only

examine the case where w¦x ∈ [−2(1 + Ä), 2(1 + Ä)] (because otherwise w¦x ̸∈ I). The probability that w¦x ∈ I is then

the ratio of the length of I to the length of the interval [−2(1 + Ä), 2(1 + Ä)], which is O(ℓ/(1 + Ä)). We now argue about

the inliers. For this, we can imagine that I is fixed and the inlier x is drawn randomly from the inlier distribution. We note

that w¦x ∼ N (0, Ã̃2) with Ã̃2 := 1 + Ä(w¦v)2. Since I ¦ [−3Ã̃2, 3Ã̃2] the Gaussian distribution behaves approximately

uniformly there and thus the probability that w¦X ∈ I is Ω(ℓ/Ã̃2), which is also Ω(ℓ/(1 + Ä)).

We next show (ii). The inliers follow the distribution GI from Claim 4.1. We want to show that GI satisfies the deterministic

conditions of Definition 2.5 with respect to µG³
, the mean of the distribution X ∼ N (0, I + Ävv¦) conditioned on

w¦X = ³, where ³ is the center of the interval I . We sketch the argument for why each of the conditions holds.

Condition (1.a) and Condition (1.b) rely only on three properties: (i) ∥µGI
− µ³∥2 = O(ϵ), (ii) ∥I−ΣGI

∥op = O(ϵ) and

(iii) O(1)-subgaussianity. We can check that these hold. For the first one, we have that

∥µG³′ − µG³
∥2 ≲ ℓ

Ä(w¦v)
1 + Ä(w¦v)2

∥v − w(w¦v)∥2 ≲ ℓÄ(ϵ
√
log(1/ϵ)/Ä) ≲ ϵ , (using ℓ = 1/ log(1/ϵ))

where the last line uses that ³ = O(1), (w¦v)2 f 1 and ∥v − w(w¦v)∥2 = O(ϵ
√
log(1/ϵ)/Ä) by the guarantee of the

estimator in line 1. We move to the covariance property. Let ³1 and ³2 denote the bounds of the interval I , i.e., I = [³1, ³2].

We have that EX∼G³′ [XX¦] = I + Ä
1+Ä(w¦v)2

v̄v̄¦ + Ä2(³′)2

(1+Ä(w¦v)2)
v̄v̄¦ where v̄ := v − (w¦v)w. Thus, as a convex

combination, EX∼GI
[XX¦] = I+ Ä

1+Ä(w¦v)2
v̄v̄¦ + ÀÄ2(³1)

2+(1−À)Ä2(³2)
2

(1+Ä(w¦v)2)
v̄v̄¦ for some À ∈ [0, 1].

∥ΣGI
− I∥op f

∥∥∥∥
Ä

1 + Ä(w¦v)2
v̄v̄¦ +

ÀÄ2(³1)
2 + (1− À)Ä2(³2)

2

(1 + Ä(w¦v)2)
v̄v̄¦

∥∥∥∥

≲ Ä∥v̄∥22 + Ä2 max(³2
1, ³

2
2)∥v̄∥22

≲ Ä(ϵ
√

log(1/ϵ)/Ä)2 + Ä2(ϵ
√
log(1/ϵ)/Ä)2

≲ ϵ2 log(1/ϵ)/Ä+ (ϵ
√
log(1/ϵ))2 ≲ ϵ . (using Ä g ϵ log(1/ϵ))

10We draw α from [−(1 + ρ), 1 + ρ] \ [−0.1, 0.1] because we need |α| = Ω(1) in Claim D.3.
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For the subgaussianity, we have that

E
X∼GI

[|v¦(X − µGI
)|p]1/p f max

³′∈I
E

X∼G³′

[|v¦(X − µGI
)|p]1/p f max

³′∈I
E

X∼G³′

[|v¦(X − µG³′ )|p]1/p + ∥µG³′ −GI∥2

≲
√
p+ ℓ

Ä³(w¦v)
1 + Ä(w¦v)2

∥v − w(w¦v)∥2 ≲
√
p+ ℓO(ϵ

√
log(1/ϵ)) =

√
p+O(1) .

We now move to the remaining deterministic conditions about thresholded polynomials. Let us use the notation pa(x) =
(x − µ³)

¦
A(x − µ³) − tr(A). Our goal is to show that EX∼S [p³(x)1(p³(x) > 100 log(1/ϵ))] f ϵ, where S is a set

of n i.i.d. samples from GI . As it can be seen by the proof Lemma B.10, the key element for proving that condition is

the concentration in (40). Thus it suffices to ensure that it holds for samples from GI . Since GI is a mixture of the G³′

distributions, it suffices to show that the concentration holds for G³′ for all ³′ ∈ I . Let ∆p(x) = p³(x) − p³′(x) =
(µ³′ − µ³)

¦
A(µ³′ − µ³) + 2(x− µ³′)¦A(µ³′ − µ³) be the difference of the two polynomials. By considering the cases

where |∆p(x)| f 50 log(1/ϵ)) and |∆p(x)| > 50 log(1/ϵ)), we have that

Pr
X∼G³′

[|p³(X)| g 100 log(1/ϵ)] f Pr
X∼G³′

[|p³′(X)| g 50 log(1/ϵ)] + Pr
X∼G³′

[|∆p(X)| > 50 log(1/ϵ)] . (39)

The first term is bounded using Item (2)a of Lemma B.10 (although the lemma has been proved for Gaussians with identity

covariance, it can be checked that it goes through for X ∼ G³′ which is Gaussian with covariance I +O(ϵ)). The second is

bounded using Gaussian concentration (∆p(X) is a linear polynomial).

The previous discussion means that our mean estimator (Algorithm 2) is applicable and satisfies the same guarantee as in

Theorem 1.5, i.e., yields z with ∥z − µGI
∥2,k = O(ϵ) (which since ∥µGI

− µ³∥2 = O(ϵ) from earlier also means that

∥z−µ³∥2,k = O(ϵ)). However the guarantee in line 3 of Algorithm 3 that we are trying to prove uses ℓ2-norm instead of the

(2, k)-norm. We explain below how one can get from the one norm bound to the other: We start by focusing on the “warm

start” estimate w in line 1 of Algorithm 3. First, ∥w − v∥2,k f ∥w − v∥2 = Θ(∥ww¦ − vv¦∥F) = O(ϵ
√

log(1/ϵ)/Ä)
(where first step is Fact B.4, and the second step is because ww¦ − vv¦ is rank-2 matrix). Then, since v is k-sparse, we can

assume without loss of generality by Fact B.3 that w is also k-sparse. Using Claim D.1, this means that µGI
(the mean that

we are trying to robustly estimate) is 2k-sparse, because every µG³
is a scaled version of v − (w¦v)w and both v, w are

k-sparse. The mean estimator satisfies ∥z − µGI
∥2,k = O(ϵ), and by Claim D.1, we can keep the largest 2k-coordinates in

z to obtain a z′ with ∥z′ − µGI
∥2 = O(ϵ).

Finally, regarding the last part of Theorem 1.6, we have that

v̂Σv̂

∥Σ∥op
=

1 + Ä(v¦v̂)2

1 + Ä
g 1 + Ä(1−O(ϵ2/Ä2))

1 + Ä
g 1−O

(
ϵ2

Ä(1 + Ä))

)
.

E. Omitted Proofs from Appendix B.3

We restate and prove the following:

Lemma B.10 (Sample Complexity of Goodness Conditions). Let ϵ0 > 0 be a sufficiently small absolute constant. Let S
be a set of n samples drawn i.i.d. from N (µ, Id). Let G denote the uniform distribution on the points from S. If ϵ < ϵ0,

k2 f d and nk 1
min{ϵ2,³2} (k

2 log(d) + log(1/¶))polylog(1/ϵ), then with probability at least 1− ¶, G is (ϵ, ³, k)-good.

Proof. The proof of Conditions (1.a) and (1.b) can be found in prior work (see, e.g., Li (2018)). Item (3) uses that for all

k-sparse unit vectors v, and T g 6, PrX∼G[|v¦(X − µ)| g T ] f 3erfc
(
T√
2

)
+ ϵ2

T 2 , which can be found in Lemma 4.3 in

Diakonikolas et al. (2019).

We prove the remaining conditions below.

Proof of Condition (2): We will use the notation gA(x) = (x−µ)¦A(x−µ) (i.e., we do not include the centering tr(A)
in the polynomial and also we write the matrix A in the subscript for extra clarity) and ÄA(x) = (gA(x)− tr(A))1(gA(x)−
tr(A) > 100 log(1/ϵ)). The proof will consist of the following steps (the last two steps involve a cover argument):

26



Robust Sparse Estimation for Gaussians with Optimal Error

(1) First, we show that EX∼N (µ,I)[ÄA(X)] ≲ ϵ4 for every A of the form mentioned in Condition (2).

(2) We then show that ÄA(X)− EX∼N (µ,I)[ÄA(X)] for X ∼ N (µ, I) is a sub-gamma random variable for every A of

the form mentioned in Condition (2).

(3) Then, we show that for any fixed A of that form, if X1, . . . , Xn are i.i.d. samples fromN (µ, I), with probability 1− ¶,

we have 1
n

∑n
i=1 Ä(Xi)−EX∼N (µ,I)[Ä(X)] ≲ 1√

n
∥A∥F

√
log(1/¶) + 1

n∥A∥op log(1/¶).

(4) Finally, with probability 1 − ¶′, EX∼S [ÄA(X)] ≲ ϵ4 +
√

log(1/ϵ)(k2 log(d)+log(1/¶′))
n + k2 log(d/ϵ)+log(1/¶′)

n holds

simultaneously for all matrices A of the form mentioned in Condition (2).

We now prove the claims above.

Proof of Item (1): Using the Hanson-Wright inequality (Fact B.9), we have that

Pr
X∼N (µ,I)

[|gA(X)− tr(A)| > t] f 2 exp

(
−0.1min

(
t2

∥A∥2F
,

t

∥A∥op

))
. (40)

Setting t = 100 log(1/ϵ), ∥A∥F f
√
log(1/ϵ), and ∥A∥op f 1, the above becomes PrX∼N (µ,I)[gA(X) − tr(A) >

100 log(1/ϵ)] ≲ ϵ10. This allows us to upper bound EX∼N (µ,I)[ÄA(X)] by O(ϵ4) as follows,

E
X∼N (µ,I)

[ÄA(X)] = E
X∼N (µ,I)

[(gA(X)− tr(A))1(gA(X)− tr(A) > t)]

f
√

Pr
X∼N (µ,I)

[gA(X)−tr(A) > t] E
X∼N (µ,I)

[(gA(X)− tr(A))2] (by Cauchy-Schwarz)

=
√

Pr
X∼N (µ,I)

[gA(X)−tr(A) > t]
√

VarX∼N (µ,I)[gA(X)]

≲ ϵ5
√
∥A∥F + tr(A2) f ϵ5

√
∥A∥F + ∥A∥2F ≲ ϵ5 log(1/ϵ) ≲ ϵ4 , (41)

where the final inequality uses Fact B.6 and then it uses the fact that tr(A2) f ∥A∥2F, which can be seen as follows: Let Ai
denote the rows of A and Ãi the rows, then tr(A2) =

∑d
i=1 A

¦
i Ãi f

∑d
i=1 ∥Ai∥2∥Ãi∥2 f

∑d
i=1(∥Ai∥22 + ∥Ãi∥22)/2 f

∥A∥2F.

Proof of Item (2): Re-writing Equation (40), we see,

|gA(X)− tr(A)| ≲ ∥A∥F
√
log(1/¶) + ∥A∥op log(1/¶) . (42)

Moreover,

ÄA(X)− E
X∼N (µ,I)

[ÄA(X)] f ÄA(X) (ÄA(X) g 0 by definition)

= (gA(X)− tr(A))1(gA(X)− tr(A) > 100 log(1/ϵ))

f |gA(X)− tr(A)|
≲ ∥A∥F

√
log(1/¶) + ∥A∥op log(1/¶) (by (42))

which means that the random variable ÄA(x) − EX∼N (µ,I)[ÄA(X)] is also (¿, ´)+-sub-gamma with ¿ = ∥A∥F and

´ = ∥A∥op.

Proof of Item (3) By Lemma B.8, Item (2) implies that for i.i.d. samples X1, . . . , Xn ∼ N (µ, I), the average
1
n

∑n
i=1 ÄA(Xi) − EX∼N (µ,I)[ÄA(X)] is (∥A∥F/

√
n, ∥A∥op/n)-sub-gamma or, equivalently, with probability 1 − ¶ it

holds:

1

n

n∑

i=1

ÄA(Xi)− E
X∼N (µ,I)

[ÄA(X)] ≲
1√
n
∥A∥F

√
log(1/¶) +

1

n
∥A∥op log(1/¶) . (43)
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Proof of Item (4): The above is about a fixed choice of the matrix A from the set V := {A ∈ R
d×d : ∥A∥F f√

log(1/ϵ), ∥A∥op = 1,A has at most k2 non-zero elements}. To show that concentration holds for all A in V , we take

a cover set V¸ ¢ V . For every ¸ > 0 let V¸ be an ¸-cover of V , i.e., a set V¸ such that for every A ∈ V there exists an

A
′ ∈ V¸ with ∥A−A

′∥F f ¸. The next claim shows that the size of V¸ is not too large.

Claim E.1. The size of V¸ is upper bounded by (6
√
log(1/ϵ)/¸)k

2( d
k2

)
.

Proof. If we look at the flattened version of the matrix as a vector in R
d×d, there are

(
d
k2

)
-many ways to select which are the

k2 non-zero elements, and for each such choice of the non-zero elements there exists a cover of size (3
√
log(1/ϵ)/¸)k

2

by

Fact B.1. The union of all of these sets covers has size at most (3
√

log(1/ϵ)/¸)k
2( d
k2

)
but may not necessarily be a subset

of V . However, by Exercise 4.2.9 in Vershynin (2018) there exists a V¸ ¦ V with size same as before but by replacing ¸ by

¸/2.

We will choose ¸ = 0.0001ϵ4/d4 (the reason for this choice will be clear later on). By setting ¶ = ¶′/(6
√
log(1/ϵ)/¸)k

2( d
k2

)

and by a union bound, we can ensure that (43) holds for all A ∈ V¸ simultaneously. We will now show that, by continuity,

the upper bound of (43) with some additional error terms holds for all A ∈ V simultaneously.

We will need the following notation: let A ∈ V be an arbitrary element of V and A
′ ∈ V¸ satisfy ∥A−A′∥F f ¸. Denote by

S = {X1, . . . , Xn} the set of i.i.d. samples fromN (µ, I). Also denote by ∆g(X) := (gA(x)−tr(A))−(gA′(x)−tr(A′))
the difference between the two polynomials. The goal is to upper bound EX∼S [ÄA(X)] which we do in steps as follows:

First, we rewrite (gA(X)− tr(A)) = (gA′(X)− tr(A′)) + ∆g(X), to get

E
X∼S

[ÄA(X)] = E
X∼S

[(gA(X)− tr(A))1(gA(X)− tr(A) > 100 log(1/ϵ))]

f E
X∼S

[|∆g(X)|] + E
X∼S

[(gA′(X)− tr(A′))1(gA′(x)− tr(A′) > 100 log(1/ϵ)−∆g(X))] . (44)

We will now bound each of the terms above. For the first one, we show that the following bound holds with probability

1− ¶ over the random selection of S

E
X∼S

[|∆g(X)|] f E
X∼S

[|gA(X)− gA′(X)|] + |tr(A−A
′)|

=

∣∣∣∣∣

〈
A−A

′,
1

n

n∑

i=1

(Xi − µ)(Xi − µ)¦
〉∣∣∣∣∣+ |tr(A−A

′)|

f ∥A−A
′∥F

1

n

n∑

i=1

∥Xi − µ∥22 + d∥A−A
′∥F (45)

≲ ¸d, (46)

where, in (45) we used that ïB,Cð f ∥B∥F∥C∥F and ∥xx¦∥F = ∥x∥22, and in (46) we used that ∥A−A
′∥F f ¸ and that∑n

i=1 ∥Xi − µ∥22 f d+O(log(1/¶)/n) = O(d) by Gaussian norm concentration Fact B.5 combined with the last part of

Lemma B.8.

We now move to the second term in the RHS of (44).

E
X∼S

[(gA′(X)− tr(A′))1(gA′(x)− tr(A′) > 100 log(1/ϵ)−∆g(X))]

= E
X∼S

[(gA′(X)− tr(A′))1(gA′(x)− tr(A′) > 100 log(1/ϵ)−∆g(X))1(∆g(X) < log(1/ϵ))]

+ E
X∼S

[(gA′(X)− tr(A′))1(gA′(x)− tr(A′) > 100 log(1/ϵ)−∆g(X))1(∆g(X) > log(1/ϵ))]

f E
X∼S

[(gA′(X)− tr(A′))1(gA′(X)− tr(A′) > 99 log(1/ϵ))]

+ E
X∼S

[|gA′(X)− tr(A′)|1(∆g(X) > log(1/ϵ))] . (47)
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The first term is almost the same as EX∼S [ÄA(X)],11 which by Equation (41) and (43) we know that is upper bounded as

follows:

E
X∼S

[(gA′(X)− tr(A′))1(gA′(X)− tr(A′) > 99 log(1/ϵ))] ≲ ϵ4 +
∥A∥F

√
log(1/¶)√
n

+
∥A∥op log(1/¶)

n
(48)

≲ ϵ4 +

√
log(1/ϵ) log(1/¶)√

n
+

log(1/¶)

n
, (49)

where the last line used the assumptions ∥A∥F f
√

log(1/ϵ) and ∥A∥op f 1.

For the second term in (47) we claim that

E
X∼S

[|gA′(X)− tr(A′)|1(∆gA(X) > log(1/ϵ))] = 0 (50)

whenever ∥x−µ∥2 f 10
√
d for all x ∈ S because of the indicator: This is because ∆g(x) = ïA−A

′, (x−µ)(x−µ)¦ð+
tr(A−A

′) f ∥A−A
′∥F∥x− µ∥22 + tr(A−A

′) f ¸100d+ d∥A−A
′∥F f 101¸d and if ¸ < 0.0001 log(1/ϵ)/d, then

the previous quantity is less than log(1/ϵ). The event that for all x ∈ S, ∥x− µ∥2 f 10
√
d happens with overwhelming

probability: PrX1,...,Xi∼N (µ,I)[∃Xi ∈ S : ∥Xi − µ∥2 > 10
√
d] f ne−d/100 by Gaussian norm concentration (Fact B.5)

and a union bound.

Combining (44),(46),(47),(43),(50), and choosing ¶ = ¶′/(6
√
log(1/ϵ)/¸)k

2( d
k2

)
, and ¸ = 0.0001ϵ4/d4, we conclude that

with probability 1− ¶′ − ne−d/100, the following holds simultaneously for all matrices A in the cover:

E
X∼S

[ÄA(X)] ≲ ϵ4 +

√
log(1/ϵ) log(1/¶)

n
+

log(1/¶)

n
+ d¸

≲ ϵ4 +

√
log(1/ϵ) log(1/¶)

n
+

log(1/¶)

n
(51)

Using n k ϵ−2polylog(1/ϵ)(k2 log(d/ϵ) + log(1/¶′)) we can make the RHS less than ϵ. Finally, in order to have

ne−d/100 f ¶′ we need dk polylog(1/(ϵ¶′)) but we can assume that this is true without loss of generality by padding the

samples with additional Gaussian coordinates (if the goodness conditions hold for the padded data, they continue to hold for

the original data).

Proof of Item (2)c in Condition (2): Qualitatively, the proof goes through the same arguments as the one for Item (2)a,

thus we will not be that detailed and instead we will focus mostly on the few differences. Denote gA(x) = (x−µ)¦A(x−µ),
h´,v = ´ + v¦(x− µ), and ÄA,´,v(x) = (gA(x)− tr(A))1(h(x) > 100 log(1/ϵ)). For t > 1, by Gaussian concentration

PrX∼N (µ,I)[h(x) > t] f e−Ω(t2). Thus, for t = 100 log(1/ϵ)

E
X∼N (µ,I)

[ÄA(X)] f
√

Pr
X∼N (µ,I)

[h(x) > t]
√

VarX∼N (µ,I)[gA(X)] f ϵ5∥A∥F ≲ ϵ4 .

Similarly to Equation (42), ÄA,´,v(X)−EX∼N (µ,I)[ÄA,´,v(X)] is (∥A∥F, ∥A∥op)-sub-gamma. Therefore, the average of

n i.i.d. samples is (∥A∥F/
√
n, ∥A∥op/n)-sub-gamma. We now let V¸ be the cover set of Claim E.1, C¸ be the cover set of

the k-sparse unit ball, which has size at most (3/¸)k
(
d
k

)
, and finally let V ′

¸ = V¸ × C¸ be the product of the two. We choose

¸ = 0.0001(ϵ/d)10 and probability of failure ¶ = 1/|V ′
¸|. By a union bound, we have that

1

n

n∑

i=1

ÄA′,´′,v′(Xi)− E
X∼N (µ,I)

[ÄA′,´′,v′(X)] ≲
1√
n
∥A′∥F

√
log(1/¶) +

1

n
∥A′∥op log(1/¶) . (52)

holds simultaneously for all A′, ´′, v′ inside the cover set. Now let arbitrary A, ´, v. We can show that (52) will

still hold, with some additional error terms. First, let ∆g(x) = (gA(x) − tr(A)) − (gA′(x) − tr(A′) and ∆h(x) =
´ − ´′ + (v − v′)¦(x− µ). Also, denote by S = {X1, . . . , Xn} the set of n samples.

E
X∼S

[ÄA,´,v(X)] f E
X∼S

[|∆g(X)|] + E
X∼S

[(gA′(X)− tr(A′))1(h′(x) > 100 log(1/ϵ)−∆h(X))]

11The only difference is that the constant is 99 instead of 100 but this does not affect the conclusion.
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The first term is at most O(¸d) as in Equation (46). We bound the second term as follows:

E
X∼S

[(gA′(X)− tr(A′))1(h′(x) > 100 log(1/ϵ)−∆h(X))] (53)

f E
X∼S

[(gA′(X)− tr(A′))1(h′(x) > 99 log(1/ϵ))] + E
X∼S

[|gA′(X)− tr(A′)|1(∆h(X) > log(1/ϵ))] (54)

The first term above is bounded as in Equation (52) (the only change is that the constant 100 is now 99 but that should only

affect the constant in the RHS of Equation (52)). For the second term, we note that with probability 1− ne−d/100 we have

∥x− µ∥2 f 10
√
d for all x ∈ S. Since ∆h(x) = ´ − ´′ + (v − v′)¦(x− µ) and we have designed the cover such that

|´ − ´′| and ∥v − v′∥2 are at most ¸ f 0.0001(ϵ/d)10, we have that 1(∆h(X) > log(1/ϵ)) = 0 for all X ∈ S under that

event. Thus, with probability 1− ne−d/100 over the dataset S, the second term in Equation (54) is zero. Putting everything

together, we have the same bound as in Equation (51).

Proof of Item (2)b in Condition (2): Using (40) with t = 10 log(1/ϵ), ∥A∥F f
√
log(1/ϵ) and ∥A∥op = 1, we

obtain that PrX∼N (µ,I)[p(X) > 20 log(1/ϵ)] ≲ ϵ2. Now by a basic application of Chernoff bounds we have that

|PrX∼S [p(X) > 20 log(1/ϵ)]−PrX∼N (µ,I)[p(X) > 20 log(1/ϵ)]| f ¸ with probability 1− e−Ω(¸2n), where we will use

¸ = ϵ. Thus, if nk ϵ−2 log(1/¶), we have that PrX∼S [p(X) > 20 log(1/ϵ)] ≲ ϵ with probability at least 1− ¶.
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