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Abstract—We study the power of query access for the funda-
mental task of agnostic learning under the Gaussian distribution.
In the agnostic model, no assumptions are made on the labels
of the examples and the goal is to compute a hypothesis that
is competitive with the best-fit function in a known class, i.e., it
achieves error opt+ϵ, where opt is the error of the best function
in the class. We focus on a general family of Multi-Index Models
(MIMs), which are d-variate functions that depend only on few
relevant directions, i.e., have the form g(Wx) for an unknown
link function g and a k×d matrix W. Multi-index models cover a
wide range of commonly studied function classes, including real-
valued function classes such as constant-depth neural networks
with ReLU activations, and Boolean concept classes such as
intersections of halfspaces.

Our main result shows that query access gives significant
runtime improvements over random examples for agnostically
learning both real-valued and Boolean-valued MIMs. Under
standard regularity assumptions for the link function (namely,
bounded variation or surface area), we give an agnostic query

learner for MIMs with running time O(k)poly(1/ϵ) poly(d). In
contrast, algorithms that rely only on random labeled examples

inherently require dpoly(1/ϵ) samples and runtime, even for the
basic problem of agnostically learning a single ReLU or a
halfspace. As special cases of our general approach, we obtain
the following results:

• For the class of depth-ℓ, width-S ReLU networks on R
d, our

agnostic query learner runs in time poly(d)2poly(ℓS/ϵ). This
bound qualitatively matches the runtime of an algorithm by [1]
for the realizable PAC setting with random examples.

• For the class of arbitrary intersections of k halfspaces on R
d,

our agnostic query learner runs in time poly(d) 2poly(log(k)/ϵ).
Prior to our work, no improvement over the agnostic PAC
model complexity (without queries) was known, even for the
case of a single halfspace.

In both these settings, we provide evidence that the 2poly(1/ϵ)

runtime dependence is required for proper query learners, even
for agnostically learning a single ReLU or halfspace.

Our algorithmic result establishes a strong computational sep-
aration between the agnostic PAC and the agnostic PAC+Query
models under the Gaussian distribution for a range of natural
function classes. Prior to our work, no such separation was
known for any natural concept class — even for the case of
a single halfspace, for which it was an open problem posed by
Feldman [2]. Our results are enabled by a general dimension-
reduction technique that leverages query access to estimate
gradients of (a smoothed version of) the underlying label function.

Index Terms—Agnostic Noise, Multi-index models, queries

I. INTRODUCTION

a) PAC Learning with Queries: In Valiant’s PAC learning

model [3], [4], the learner is given access to random examples

labeled according to an unknown function in a known concept

class. The goal of the learner is to compute a hypothesis that

is close to the target function with respect to a specified loss

function1. The standard PAC learning model is “passive” in

that the learning algorithm has no control over the selection of

the training set. Interestingly, while this has become known as

the PAC model, Valiant’s landmark paper [4] allowed queries

(in addition to random samples), i.e., black-box access to the

target function. We will refer to this as PAC+Query model.

A query oracle2 allows the learner to obtain the value of

the target function on any desired point in the domain. PAC

learning with access to a query oracle can be viewed as an

“active” learning model, intuitively capturing the ability to

perform experiments or the availability of expert advice. A

long line of research in computational learning theory has

explored the power of queries in the context of PAC learning.

This line of investigation has spanned the distribution-free

versus distribution-specific settings and the realizable (i.e.,

clean label) setting versus the agnostic (i.e., adversarial label

noise) setting; see, e.g., [5]–[8] for some classical early works

and [9], [10] for some more recent results in this broad

area. A conceptual message of this line of work is that, in

the realizable setting, access to queries can be stronger than

random samples (from a computational standpoint) for a range

of natural concept classes.

In addition to being a fundamental open question in learning

theory, the general problem of understanding the effect of

query access in the computational complexity of learning

has received renewed attention over the past decade in the

context of deep neural networks. A recent line of inquiry from

the machine learning security community has studied model

extraction attacks — see, e.g., [11]–[17] and references therein

— where black-box query access to publicly deployed net-

works may allow efficient reconstruction of the hidden model

1For Boolean functions, one typically uses the 0-1 loss, while for real-
valued functions a typical choice is the L2 loss.

2In the special case of learning Boolean-valued functions, these are known
as “membership” queries, as the answer to a query determines membership
in the set of satisfying assignments of the target concept.
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– thus exposing potential vulnerability of the deployed models.

These practical applications served as a motivation for the

design of the first computationally efficient learners for simple

neural networks using query access to the target function [18],

[19]. Importantly, the latter algorithmic results apply in the

realizable PAC model under the Gaussian distribution.

b) Multi-index Function Models (MIMs): A common

(semi)-parametric modeling assumption in high-dimensional

statistics is that the target function depends only on a few

relevant directions. Specifically, multi-index models [20]–[25]

prescribe that the target function is of the form f(x) = g(Wx)
for a link function g : Rk 7→ R and a k × d weight

matrix W. In most settings, the link function g is assumed

to be unknown and satisfies certain smoothness properties.

Single-index models are the special case where the target

function depends only on a single hidden-direction w, i.e.,

f(x) = g(w · x) for some g : R 7→ R and w ∈ Rd [26]–

[29]. Standard examples of single-index models include one-

bit compressed sensing [30]–[32] where g(t) = sign(t); and

phase retrieval [33], [34], where g(t) = |t|2.

Multi-index models capture a wide range of parametric

models studied in the statistics and computer science liter-

atures, including neural networks and classes of geometric

Boolean functions. The fundamental class of halfspace inter-

sections was studied in [35] over the Gaussian distribution.

Subsequent work [36]–[40] gave improved algorithms and

bounds for more general MIM classes.

More recently, an extensive line of work [41]–[52] has

studied the efficient learnability of (natural classes of) MIMs

from random examples under well-behaved marginal distri-

butions — most notably under the Gaussian distribution on

examples. The aforementioned works exclusively focus on

the PAC model with random samples and the underlying

algorithms succeed in the realizable setting (or in the presence

of additive Gaussian label noise).

c) This Work: Agnostically Learning Multi-index Models

with Queries: Here we study the power of queries in the

agnostic PAC model [53], [54] for a wide class of multi-

index models. In the agnostic model, no assumptions are made

on the labels of the examples and the goal is to compute

a hypothesis that is competitive with the best-fit function in

a known class. This is a notoriously challenging model of

learning with very few positive results in the distribution-free

setting. For example, it is known that even weak distribution-

free agnostic learning (i.e., outputting a hypothesis with non-

trivial advantage over random) is computationally hard for

very simple classes of single-index models with known link

functions. These include linear threshold gates and single

neurons with ReLU activations [55]–[58]3.

In this work, we focus on the general problem of agnosti-

cally learning multi-index models under the standard Gaussian

distribution using queries. At a high-level, our results also

encompass the challenging setting where the link function is

3We note that these (distribution-free) hardness results hold even with query
access, as follows from [2].

unknown and only require an average smoothness condition

on the target function. Classes covered by our framework

include real-valued function classes such as constant-depth

neural networks with ReLU activations and Boolean concept

classes such as intersections of halfspaces. In summary, we

are interested in the following question:

Question I.1. Does query access affect the complexity of

distribution-specific agnostic learning of multi-index models?

In particular, does the availability of queries allow for qual-

itatively more efficient algorithms, compared to the vanilla

random example setting?

The main contribution of this paper is a simple and general

methodology that answers this question in the affirmative for

a broad family of multi-index function models (including all

the aforementioned examples).

A special case of Question I.1 was explicitly asked —

in the Boolean setting — for the class of Linear Threshold

Functions by Feldman [2] and by Gopalan, Kalai, and Kli-

vans [59] As a corollary of our approach, we answer this open

question. Specifically, we provide a new query algorithm for

agnostically learning halfspaces implying a super-polynomial

separation between the two learning models (learning with

random samples versus with queries), subject to standard

cryptographic assumptions. In the following subsection, we

describe our contributions in detail.

A. Our Results

a) Problem Definition: Before we formally state our

main results, we define the agnostic learning model with

queries. For concreteness, Definition I.2 concerns real-valued

functions, where the accuracy is measured with respect to

the L2 loss. The definition for Boolean-valued concepts is

essentially identical, where the L2 loss is replaced by the 0-1

loss.

Definition I.2 (Agnostically Learning Real-valued Functions

with Queries). Fix ϵ ∈ (0, 1) and a class C of real-valued

functions on Rd. The adversary picks a label function y(x) ∈
R for every x ∈ Rd. The learner is allowed to either draw

x ∼ N (sample access) or select any desired point x ∈ Rd

(query access) and obtain the value y(x). Let Ns ∈ Z+ be the

number of samples and Nq ∈ Z+ the number of queries used

by the learner. The goal of the learner is to output a hypothesis

h : Rd → R that, with high probability, has excess L2
2 error

at most ϵ (with respect to C), i.e., it satisfies E2(h, C; y) :=
Ex∼N [(h(x)− y(x))2]− infc∈C Ex∼N [(c(x)− y(x))2] f ϵ .
Remark I.3 (Boolean-valued Functions). In the boolean-

valued setting, we focus on learning with respect to the

0-1 loss. That is, the goal of the learner is to output a

hypothesis h : Rd 7→ {±1} with excess 0-1 error at

most ϵ, i.e., E0/1(h, C; y) := Prx∼N [h(x) ̸= y(x)] −
infc∈C Prx∼N [c(x) ̸= y(x)] f ϵ .

1) Agnostically Learning Real-valued Multi-index Models:

We start by describing the family of multi-index models
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for which our results are applicable. Roughly speaking, our

algorithmic approach can be used to agnostically learn any

family of multi-index models C such that any function in C
has “bounded variation”, in the sense that the L2-norm of

its gradient is bounded with respect to the standard normal.

We remark that similar “smoothness” assumptions, i.e., that

f belongs in a Sobolev space, are standard (and necessary)

in non-parametric and semi-parametric regression [60]. Un-

der this assumption, we show that there exists an efficient

dimension-reduction scheme that yields a “fixed parameter

tractable” agnostic learner significantly improving over the

best known algorithmic results in the agnostic PAC setting

with random examples.

We are now ready to formally define the semi-parametric

class of MIMs that we consider in this work. In the following

definition, we require that the target function is bounded in

L4-norm (with respect to the standard normal distribution) and

also that the norm of its gradient is bounded in L2-norm.

Definition I.4 (Bounded Variation Multi-index Models). Fix

L,M > 0 and k ∈ Z+. We define the class R(M,L, k)
of continuous, (almost everywhere) differentiable real-valued

functions such that for every f ∈ R(M,L, k):

1) It holds (Ex∼N [f4(x)])1/2 fM and Ex∼N [∥∇f(x)∥22] f
L.

2) There exists a subspace U of Rd of dimension at most k
such that f depends only on U , i.e., for every x ∈ Rd

it holds that f(x) = f(projUx), where projUx is the

projection of x on U .

We will subsequently see that this is a very broad class of

functions subsuming commonly studied classes such as multi-

layer neural networks with ReLUs and other activations.

Our main result is an efficient algorithm that exploits the

power of queries to significantly reduce the runtime of agnos-

tically learning the semi-parametric class of Definition I.4.

Theorem I.5 (Agnostic Query Learner for Real-valued Mul-

ti-index Models). Fix the function class R(M,L, k) given

in Definition I.4. There exists an algorithm that makes

Nq = poly(dML/ϵ) queries, draws Ns = poly(dML/ϵ) +
kpoly(L,M,1/ϵ) random labeled examples, runs in time

poly(Ns, Nq, d), and outputs a polynomial h : Rd 7→
R such that with high probability h has L2

2-excess error

E2(h,R(L,M, k); y) f ϵ.
a) Comparison with Sample-Based Algorithms: As a

corollary of Theorem I.5, we establish a strong separation

between the agnostic PAC+Query model and the agnostic PAC

model (with random samples only). We first compare with

the best-known algorithm for agnostically PAC learning real-

valued functions, which is the L2-polynomial regression algo-

rithm. To agnostically learn the class of Definition I.4 to excess

error ϵ, one needs polynomials of degree poly(L,M, 1/ϵ),
and thus dpoly(L,M,1/ϵ) samples and time are necessary. The-

orem I.5 leverages the power of queries to efficiently reduce

the dimensionality of the problem, and thus qualitatively

improve the computational complexity of agnostic learning to

poly(d) kpoly(L,M,1/ϵ).

Given the assumption of Definition I.4 that the target func-

tion depends only on an unknown k-dimensional subspace, it is

natural to attempt some kind of dimension-reduction technique

in order to reduce the sample and computational complexity

of learning. Such reductions are indeed often possible in

the realizable setting by using some form of PCA and then

working in the obtained low-dimensional subspace; see, e.g.,

[61].

On the other hand, in the agnostic setting considered

here, there is strong evidence that such dimension-reduction

schemes, or any other runtime improvements whatsoever, are

impossible using only sample access to the target function.

Specifically, a recent line of work (see, e.g., [62], [63])

has shown that for agnostically learning real-valued MIMs

(even very special cases thereof), the standard L2-regression

algorithm is qualitatively optimal computationally (e.g., under

standard cryptographic assumptions) in the standard agnostic

PAC model. This in particular implies that the best possible

runtime without query access is dpoly(1/ϵ). In fact, even for

learning a single ReLU activation, which satisfies Defini-

tion I.4 with L,M = O(1) and k = 1, dpoly(1/ϵ) samples and

time are required [62], [63]. In contrast, Theorem I.5 decouples

the dimension dependence from the dependence on 1/ϵ and

yields an algorithm with runtime poly(d) 2poly(1/ϵ).
b) Concrete Applications: Theorem I.5 applies to a fairly

general non-parametric class of functions. Here we provide

specific applications to well-studied classes of neural net-

works.

Single Non-Linear Gates. The simplest case is that of agnos-

tically learning a ReLU, i.e., a function of the form f(x) =
ReLU (w · x), where w ∈ Rd and ReLU(t) = max{0, t}.
In the vanilla agnostic PAC setting, the complexity of this

problem is dpoly(1/ϵ)(both upper and lower bounds). On the

positive side, the L2-polynomial regression algorithm has

sample and computational complexity dΘ(poly(1/ϵ)). On the

negative side, there is strong evidence that this complexity

upper bound is qualitatively best possible, both for SQ al-

gorithms [62], [64], [65] and under plausible cryptographic

assumptions [63]. Our agnostic query learner has complexity

poly(d) 2poly(1/ϵ), implying a super-polynomial separation

between the two learning models.

Corollary I.6 (Agnostic Query Learning for ReLUs). There

exists an agnostic query learner for the class of ReLUs on Rd

with running time poly(d) 2poly(1/ϵ).

Corollary I.6 follows from Theorem I.5 by observing that

ReLUs satisfy Definition I.4 for k = 1 and L,M = O(1)
(assuming that the norm of the weight vector is bounded, i.e.,

∥w∥2 = O(1)).
Note that selecting the excess error to be ϵ = 1/ logc(d),

where c > 0 is a small constant, the query algorithm of

Corollary I.6 has poly(d) runtime. On the other hand, the

complexity of agnostic learning problem with random samples

is super-polynomial in d for any ϵ = od(1).
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Finally, we note that Corollary I.6 holds for other link

functions satisfying smoothness assumptions, e.g., sigmoidal

activations of the form t 7→ 1/(1 + exp(−t)).
Single-index Models. Our first application above assumed that

the link function is known a priori.We next consider learning

Single-index models (SIMs) with an unknown Lipschitz link

function g : R 7→ R, i.e., f(x) = g(w · x). Classical

results [66], [67] gave efficient algorithms for this setting in

the realizable PAC setting (or with unbiased additive noise)

under the additional assumption that g is non-decreasing. The

agnostic setting was recently considered in [68] who gave an

efficient algorithm achieving error O(
√
opt) + ϵ for distri-

butions with bounded second moments (similarly assuming

weight vectors of bounded ℓ2-norm). Using Theorem I.5,

we can leverage query access to provide optimal agnostic

guarantees with essentially the same complexity as for the

case of known link function.

Corollary I.7 (Agnostic Query Learning for Lipschitz SIMs).

There exists an agnostic query learner for the class of L-

Lipschitz SIMs on Rd, for L = O(1), with running time

poly(d) 2poly(1/ϵ).

One-Hidden Layer ReLU Networks. Our approach naturally

extends to non-negative linear combinations (aka sums) of Re-

LUs, i.e., functions of the form f(x) =
∑k
i=1 ³

(i)ReLU(w(i) ·
x) for k non-negative weights ³(i) g 0 and weight vec-

tors w(i) ∈ Rd. Prior work [41], [42], [46], [69] has

studied this problem in the noiseless setting with random

samples under the Gaussian distribution — with the best-

known runtime being poly(d/ϵ) (k/ϵ)O(log2 k) [69]. Using

Theorem I.5, we obtain an agnostic query learner with com-

plexity poly(d)O(k)poly(1/ϵ). To see this, we note that as long

as E[f2(x)] = O(1) we also obtain that E[∥∇f(x)∥22] = O(1)
which implies only an O(k)poly(1/ϵ) runtime overhead.

Our approach can also be applied to the more general

class of (unconstrained) linear combinations of k ReLUs, i.e.,

functions of the form f(x) =
∑k
i=1 ³

(i)ReLU(w(i) ·x). This

is known [46], [50]–[52] to be a more challenging class of

functions to learn. In the noiseless setting, the best known

runtime for general linear combinations is (dk/ϵ)O(k) [52].

Using Theorem I.5, we obtain an agnostic query learner with

complexity poly(d) 2poly(k/ϵ).

Corollary I.8 (Agnostic Query Learning for 1-Hidden

Layer ReLU Networks). There exists an agnostic query

learner for sums of k ReLUs on Rd with running time

poly(d)O(k)poly(1/ϵ). For general linear combinations of

ReLUs, the runtime is poly(d) 2poly(k/ϵ).

Bounded Depth Neural Networks. Our non-parametric func-

tion class of Definition I.4 includes deep ReLU networks with

ℓ layers of width at most S. More precisely, we assume that

f(x) = WLReLU(WL−1 · · ·ReLU(W1x)), for matrices

W1 ∈ Rk1×d, . . . ,Wℓ ∈ Rkℓ×1, with ∥Wi∥op f O(1) and

ki f S; see Definition VI.23 for more details. The running

time of our algorithm for this class is poly(d)2poly(ℓS/ϵ);

TABLE I: Learning Real-Valued Functions using Queries:

Running time comparisons of the best known PAC algorithms

with our PAC+Query technique (Influence PCA).

Function Class PAC (without queries) PAC+Query
L2 Regression Influence PCA (Ours)

Single ReLU dpoly(1/ϵ) poly(d) 2poly(1/ϵ)

Sum of k ReLUs dpoly(1/ϵ) poly(d)O(k)poly(1/ϵ)

Linear Combinations dpoly(k/ϵ) poly(d) 2poly(k/ϵ)

of k ReLUs

Deep Networks dpoly(ℓS/ϵ) poly(d) 2poly(ℓS/ϵ)

with ℓ-Layers, S-width

Bounded Variation dpoly(k,L,M,1/ϵ) poly(d) 2poly(k,L,M,1/ϵ)

see Theorem VI.24. We remark that a similar fixed-parameter

tractability result for deep ReLU networks was recently shown

in [1] for the realizable PAC setting (with access to random

examples only). Our result exploits the power of queries to

provide a learner with qualitatively similar running time in the

much more challenging agnostic setting. We remark that the

following result can be readily extended to other continuous

activation functions, including sigmoids, LeakyReLUs, and

combinations thereof.

Corollary I.9 (Agnostic Query Learning for Bounded-Depth

Networks). There exists an agnostic query learner for ℓ-
depth, S-width, ReLU networks on Rd with running time

poly(d)2poly(ℓS/ϵ).

For a summary of our results for the above classes, we

refer to Table I (where for the L2-regression algorithm we

only assume random sample access).

c) Proper versus Improper Learning: The hypothesis

computed by the algorithm of Theorem I.5 is not necessarily

in the target concept class. That is, the agnostic learner is

improper. With some additional effort, our approach can be

used to obtain proper learners. As a concrete example, for the

class of ReLUs, we show the following:

Theorem I.10 (Proper Agnostic Query Learner of ReLUs).

There exists an algorithm that makes poly(d/ϵ) queries, runs

in time poly(d) 2poly(1/ϵ), and properly agnostically learns

the class of ReLUs on Rd, i.e., it outputs a ReLU hypothesis

h(x) = ReLU(ŵ ·x) with excess L2
2 error at most ϵ with high

probability.

We note that in addition to computing a ReLU hypothesis,

the learner of Theorem I.10 uses poly(d/ϵ) labeled examples

(queries plus random examples), removing the extraneous

2poly(1/ϵ) term in our generic result.

It is natural to ask whether the 2poly(1/ϵ) runtime depen-

dence in Theorem I.10 is inherent. We provide evidence that

such a dependence may be necessary for proper learners.

Specifically, we show (Theorem VIII.4) that if there exists

a poly(d/ϵ) agnostic proper learning for our problem, there

exists a polynomial-time algorithm for the small-set expansion

(SSE) problem [70] (refuting the SSE hypothesis). This hard-

ness result also extends to the Boolean class of halfspaces.
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Obtaining a computational lower bound for improper learners

is left as an interesting open problem.

2) Agnostically Learning Boolean Multi-index Models: We

start by describing the family of Boolean functions for which

our results are applicable. Roughly speaking, our algorithmic

approach can be used to agnostically learn any Boolean

concept class C satisfying the following conditions: (i) C has

bounded Gaussian surface area, (ii) it depends on an unknown

low-dimensional subspace, and (iii) it is closed under transla-

tions. Under these assumptions, we similarly obtain a “fixed

parameter tractable” agnostic learner qualitatively improving

over the agnostic PAC setting with random examples only.

The Gaussian surface area of a Boolean function is the

surface area of its decision boundary weighted by the Gaussian

density (Definition I.11). The Gaussian surface area of a con-

cept class has played a significant role as a useful complexity

measure in learning theory and related fields; see, e.g., [71]–

[75]. A formal definition follows:

Definition I.11 (Gaussian Surface Area). For a Borel set

A ¦ Rd, its Gaussian surface area is defined by Γ(A) :=

lim inf¶→0
N (A¶\A)

¶ , where A¶ = {x : dist(x,A) f ¶}. For

a Boolean function f : Rd 7→ {±1}, we overload notation

and define its Gaussian surface area to be the surface area

of its positive region K = {x ∈ Rd : f(x) = +1}, i.e.,

Γ(f) = Γ(K). For a class of Boolean concepts C, we define

Γ(C) := supf∈C Γ(f).

We are ready to define the class of Boolean multi-index

models for which our approach applies.

Definition I.12 (Bounded Surface Area, Low-Dimensional

Boolean Concepts). Fix Γ > 0 and k ∈ Z+. We define

the class B(Γ, k) of Boolean concepts with the following

properties:

1) For every f ∈ B(Γ, k), it holds Γ(fr) f Γ for all r ∈ Rd,

where fr(x) = f(x+ r).

2) For every f ∈ B(Γ, k), there exists a subspace U of Rd of

dimension at most k such that f depends only on U , i.e.,

for every x ∈ Rd it holds f(x) = f(projUx).

We remark that B(Γ, k) is a general non-parametric class

that contains a range of natural and well-studied Boolean

function classes. For example, B(Ω(k), k) contains arbitrary

functions of k halfspaces.

Our main positive result in this context is a query algorithm

that agnostically learns the class B(Γ, k) with running time

poly(d)kpoly(Γ/ϵ). In more detail, we establish the following

theorem:

Theorem I.13 (Agnostic Learner for Boolean Multi-index

Models). Fix the concept class B(Γ, k) given in Defini-

tion I.12. There exists an algorithm that makes Nq =
poly(d/ϵ) queries, draws Ns = poly(d/ϵ) + O(k)poly(Γ/ϵ)

random labeled examples, runs in sample-polynomial time,

and outputs a hypothesis h : Rd → {±1} with excess 0-1

error E0/1(h,B(Γ, k); y) f ϵ.

a) Discussion: Some remarks are in order. We start by

noting that, in the setting of Theorem I.13, an exponential

dependence on the parameter Γ is information-theoretically

necessary — even with access to queries. Specifically, as

shown in [71], there exists a Boolean concept class with Gaus-

sian surface area Γ (consisting of intersections of halfspaces)

such that the total number of samples and queries required to

obtain constant accuracy is 2Ω(Γ).

It is worth comparing Theorem I.13 with the best known

algorithmic results in the standard agnostic PAC model (with

random samples only). Klivans, O’Donnell and Servedio [71]

showed that the L1-polynomial regression algorithm of [76]

agnostically learns any concept class on Rd whose Gaussian

surface area is at most Γ > 0 with (sample and computational)

complexity dpoly(Γ/ϵ). Under the additional assumption that

the concepts in the target class depend on an unknown k-

dimensional subspace, for some parameter k j d, Theo-

rem I.13 gives a significantly improved agnostic query algo-

rithm with computational complexity poly(d) kpoly(Γ/ϵ).

For a concrete example, if the target class is the concept

class consisting of any intersection of ℓ halfspaces, then we

have that k = ℓ and Γ = O(
√

log(ℓ)) [71]. So, as long as

ℓ = O(1) or even ℓ = polylog(d), query access allows us to

obtain a super-polynomial complexity improvement.

b) Concrete Applications: Theorem I.13 applies to a

fairly general non-parametric class of functions. Here we pro-

vide specific applications to well-studied classes of Boolean

functions.

Halfspaces. Arguably the simplest application is for the class

of halfspaces. A halfspace (or Linear Threshold Function) is

any Boolean-valued function f : Rd → {±1} of the form

f(x) = sign (w · x− ¹), where w ∈ Rd is the weight vector

and ¹ ∈ R is the threshold. (The function sign : R→ {±1} is

defined as sign(t) = 1 if t g 0 and sign(t) = −1 otherwise.)

The problem of PAC learning halfspaces is a textbook problem

in machine learning, whose history goes back to Rosenblatt’s

Perceptron algorithm [77]. As a corollary of Theorem I.13, we

obtain the following:

Corollary I.14 (Agnostic Query Learning of Halfspaces).

There exists an agnostic query learner for the class of halfs-

paces on Rd with running time poly(d) 2poly(1/ϵ).

Corollary I.14 follows from Theorem I.13 by observing that

halfspaces satisfy Definition I.12 for k = 1 and Γ f 1/
√
2Ã.

As mentioned in the introduction, Corollary I.14 answers

an open question independently posed by Feldman [2] and by

Gopalan, Kalai, and Klivans [59]. Specifically, as we explain

below, it implies a super-polynomial computational separation

between agnostic query learning and agnostic learning with

random samples for the class of halfspaces.

In the vanilla agnostic PAC setting, the complexity of this

problem is dpoly(1/ϵ); the upper bound follows via the L1-

polynomial regression algorithm [76] which has complexity

dΘ(1/ϵ2) [78] in this setting. The matching lower bound

follows from a recent line of work, both in the SQ model [62],
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[64], [65] and under plausible cryptographic assumptions [58],

[63].

Functions of Halfspaces. A more general concept class where

our general approach is applicable is that consisting of all

intersections (or arbitrary functions) of a bounded number of

halfspaces. For the special case of intersections, we show:

Corollary I.15 (Agnostic Query Learning for Intersections

of Halfspaces). There exists an agnostic query learner for

intersections of ℓ halfspaces on Rd with running time

poly(d)O(ℓ)poly(log(ℓ)/ϵ).

Corollary I.15 follows from Theorem I.13 by observing that

intersections of ℓ halfspaces satisfy Definition I.12 for k = ℓ
and that their Gaussian surface area is bounded above by Γ =
O(

√
log(ℓ)), as shown by Nazarov (see, e.g., [71], [79]).

Analogously to the case of a single halfspace, the complex-

ity of the agnostic learning problem with random samples is

significantly worse (as long as ℓj d), namely dpoly(log(ℓ)/ϵ);
the upper bound follows from [71] and a qualitatively match-

ing SQ lower bound was given in [62], [80].

Finally, for arbitrary functions of ℓ halfspaces, the Gaussian

surface area is bounded by Γ = O(ℓ), leading to the following

corollary:

Corollary I.16 (Agnostic Query Learning for Functions of

Halfspaces). There exists an agnostic query learner for ar-

bitrary functions of ℓ halfspaces on Rd with running time

poly(d)O(ℓ)poly(ℓ/ϵ).

Similarly, the best known complexity upper bound with ran-

dom samples is dpoly(ℓ/ϵ).

Low-degree Polynomial Threshold Functions (PTFs). An-

other notable application is for the class of low-degree PTFs

that depend on a low-dimensional subspace. A degree-ℓ PTF

is any Boolean function f : Rd → {±1} of the form

h(x) = sign (p(x)), where p : Rd → R is a degree at most ℓ
polynomial. Low-degree PTFs have been extensively studied

in theoretical machine learning and specifically in the context

of agnostic learning [72], [81]–[83].

Here we consider a natural subclass of low-degree PTFs

where the underlying polynomial is a subspace junta. Specif-

ically, we consider the class of Boolean functions of the

form f(x) = sign (p(projUx)), where U is an unknown k-

dimensional subspace and p is a degree-ℓ polynomial in k
variables. Since the Gaussian surface area of this class of

functions is bounded above by Γ = O(ℓ) [72], we obtain

the following corollary:

Corollary I.17 (Agnostic Query Learning for

Low-Dimensional PTFs). There exists an agnostic

query learner for degree-ℓ PTFs on Rd that depend on

an unknown k-dimensional subspace with running time

poly(d)O(k)poly(ℓ/ϵ).

The above running time bound should be compared with

the best known complexity bound of dpoly(ℓ/ϵ) for agnostic

learning with samples [72].

TABLE II: Learning Boolean Concepts using Queries: Run-

ning time comparisons of the best known agnostic learners

(using random samples) with our Influence PCA technique

(using queries).

Concept Class PAC (without queries) PAC+Query
L1 Regression [71] Influence PCA (Ours)

Single Halfspace dpoly(1/ϵ) poly(d) 2poly(1/ϵ)

Intersections of k Halfspaces dpoly(log(k)/ϵ) poly(d) 2poly(log(k)/ϵ)

Functions of k Halfspaces dpoly(k/ϵ) poly(d) 2poly(k/ϵ)

Degree-ℓ, k-Dim. PTFs4 dpoly(ℓ/ϵ) poly(d)O(k)poly(ℓ/ϵ)

Low-Dim. Geometric Concepts dpoly(Γ/ϵ) poly(d)O(k)poly(Γ/ϵ)

Table II summarizes our contributions for Boolean concept

classes in comparison to prior work on agnostic PAC learning

(with random samples only).

II. TECHNICAL OVERVIEW

We leverage query access to develop a unified dimension-

reduction framework for agnostically learning both real-

valued and Boolean-valued multi-index models. As already ex-

plained after the statement of Theorem I.5, natural dimension-

reduction approaches that work in the realizable (noiseless)

setting inherently cannot be extended to the agnostic setting.

At a high-level, our framework reduces the problem of

agnostically learning MIMs in d dimensions to agnostically

learning the same class in poly(k/ϵ) dimensions. It consists

of three main steps:

• First we use queries to the label function to simulate gradient

queries to a “smoothed” version ỹ(x) of the adversarial

label y(x). We show that, as long as the concept class

of interest has bounded variation (real-valued MIMs of

Definition I.4) or bounded Gaussian surface area (Boolean

MIMs of Definition I.12), a hypothesis that has low excess-

error with respect to the smoothed label ỹ will also have

low excess error with respect to the original label y(x); see

Proposition II.1.

• The second step uses gradient queries to the function

ỹ in order to compute an accurate estimate of the in-

fluence matrix of the “smoothed” label, namely M =
Ex∼N [∇ỹ(x)(∇ỹ(x))¦]. We perform PCA on M and

find the top eigenvectors (i.e., the eigen-directions whose

corresponding eigenvalues are larger than some threshold).

This method is known as outer gradient product [24]; in the

context of learning/testing Boolean concepts, it has been

used in [75], [84]. (See Section III for a detailed summary

of related work.) We show that those “high-influence” direc-

tions form a low-dimensional (i.e., of dimension poly(k/ϵ))
subspace such that there exists a hypothesis that (i) depends

only on the low-dimensional subspace, (ii) has bounded

surface area/variation, and (iii) is close to our target function.

That is, we effectively reduce the dimension of our original

learning task from d down to poly(k/ϵ).

4The surface area bound was proved in [72].
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• The third step is to solve an agnostic learning task of

a bounded variation/surface area function in the low-

dimensional subspace spanned by the top eigenvectors

of M. For this step, for learning real-valued MIMs, we

rely on a generic L2-regression algorithm; for learning

Boolean concepts, we use the L1-polynomial regression

agnostic learner of [71], [76]. Those methods yield non-

proper learning algorithms – to obtain proper-learners, we

essentially perform a brute-force search over a net of the

low-dimensional parameter space found in the previous step.

A. From Zero- to First-Order: Gradient Queries via Oracle

Queries

Intuitively, having access to queries, for some example x,

we can ask for the values of y(x) in a “small” neighborhood

around x and therefore estimate the gradient ∇xy(x). The first

issue that we have to overcome is that the observed label y(x)
is not guaranteed to be a differentiable function (even if the

underlying target function is). To circumvent this issue, we

employ a strategy similar to the Gaussian convolution tech-

nique used in zero-order (gradient-free) optimization [85]. In

particular, to estimate the gradient of a function y(·) at x only

having access to a value oracle, the method samples z from a

mean-zero Gaussian with small covariance, i.e., z ∼ N (0, ÄI)
for some small Ä, and then asks for the value of the function

at x+Äz. Even if the function y(·) itself is non-smooth, then,

by Stein’s identity, we have Ez∼N [z y(x + Äz)] ∝ ∇ỹ(x)
(see Lemma V.4), where ỹ(x) is a smoothed version of

y(x), specifically ỹ(x) = Ez∼N [y(x + Äz)]. By drawing

N = poly(d/ϵ) Gaussian samples z(1), . . . , z(N), we can

empirically estimate the gradient of ỹ(·) at every desired point

x ∈ Rd. Therefore, by performing N queries on the points

z(i), we obtain an approximation of the gradient∇ỹ(x) for any

x. Even though the above technique yields gradient estimates,

it comes with a cost: to obtain the “smooth” label ỹ(x), we

add noise to the (already corrupted) label y(x). Our plan is to

argue that learning using the resulting smoothed labels ỹ(x)
yields a good classifier for the original instance — as long as

the “smoothing” parameter Ä is sufficiently small.

a) Ornstein–Uhlenbeck Smoothing: One could hope that

if we add a small amount of noise to y(x), the smooth

label ỹ(x) will be close to y(x) (at least in the L2-sense).

Unfortunately, this is not true (even in one dimension), as y(x)
may be an arbitrarily complex function and after smoothing

ỹ(x) may be far from y(x); see Figure 1. To be able to learn

from the smoothed instance, we need two properties: (i) the

resulting marginal distribution on the examples must be close

to the initial x-marginal, and (ii) the smoothing operation must

not increase the excess error of the functions in the hypothesis

class by a lot. In other words, a hypothesis that performs

well with respect to the smoothed label ỹ(x) should also

perform well with respect to the original label y(x). Applying

the Gaussian convolution smoothing x + Äz yields a normal

distribution that has covariance (1 + Ä)I. In order to make

this distribution be close to a standard normal (say, in total

variation distance), one would need to apply a tiny amount of

noise, i.e., Ä should be at most poly(1/d). To avoid changing

the x-marginal of the instance, instead of simply convolving

with a Gaussian kernel, we apply the Ornstein–Uhlenbeck

noise operator TÄ that rescales x and corresponds to the

transformation x̃ =
√
1− Ä2x+Äz. We observe that x̃ follows

a standard normal distribution. The resulting “smoothed” label

ỹ is now defined as TÄy(x) = Ez∼N [y(x̃)]. Even though the

marginal of x̃ matches exactly with the initial marginal, we

have introduced noise to the instance and we still need to show

that this does not significantly affect the performance of the

hypotheses in the function class of interest.

We show that, regardless of how complex the label y(x)
is, if the function class of interest is “well-behaved” —

in the sense that it only contains concepts with bounded

variation/Gaussian surface area — the Ornstein–Uhlenbeck

noise process will not significantly affect the excess error of

a hypothesis h.

Proposition II.1 (Informal – Ornstein–Uhlenbeck Smoothing

Preserves the Risk-Minimizer). Let y : Rd 7→ R and C be a

class of functions over Rd such that for every f ∈ C it holds

Ex∼N [∥∇f(x)∥22] f L. Let f̃ ∈ C be an L2 risk minimizer

with respect to the smoothed label TÄy (see Definition V.1),

i.e., f̃ ∈ argminh∈C Ex∼N [(h(x)−TÄy(x))2]. Then we have

that

Pr
x∼N

[(f̃(x)− y(x))2] f inf
f∈C

Pr
x∼N

[(f(x)− y(x))2] +O(Ä2L) .

At a high-level, the effect of the noise operator TÄ on

the risk minimizer is milder when the function does not

change very rapidly. To prove Proposition II.1, we show

that the correlation of any hypothesis f with bounded varia-

tion is approximately preserved when we replace y(x) with

TÄy(x). The correlation of f with respect to TÄy(x) is

Ex∼N [f(x)TÄy(x)]. However, since TÄ is a symmetric linear

operator, we can equivalently apply the smoothing TÄ to f
and consider Ex∼N [TÄf(x)y(x)]. Since f(x) has bounded

variation, we can now show via a result on noise sensitivity

for real-valued functions, that TÄf(x) is indeed close to

f(x) in L2
2. Therefore, the correlation Ex∼N [TÄf(x)y(x)]

is close to Ex∼N [f(x)y(x)]. The fact that TÄf and f are

close is intuitively clear: the smaller the variation of f ,

Ex∼N [∥∇f(x)∥22], the smaller the effect of slightly perturbing

a point x will have on the L2
2, as the L2

2 distance between f(x)
and f(

√
1− Äx+Äz) is roughly proportional to Ä2∥∇f(x)∥22.

For more details, we refer to Section V and Proposition V.6.

For learning Boolean concepts, we identify their Gaussian

Surface Area to be the crucial complexity measure that de-

termines the effect the smoothing operator TÄ has on the

agnostic learning instance. Similarly to our result for real-

valued functions, we reduce preserving the excess error to

preserving the correlation of concepts, i.e., ensuring that

Ex∼N [f(x)TÄy(x)] − Ex∼N [f(x)y(x)] is small for all con-

cepts of interest f — see Proposition V.10 — and then use a

result of Ledoux [86] and Pisier [87] to show that correlations

are indeed approximately preserved when the concepts have

bounded Gaussian Surface Area; see Proposition V.10.
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Fig. 1: Smoothing the label y(x). The label y(x) corresponds

to the “square wave” (shown in blue). The smoothed version

ỹ(x) is the red curve. We observe that y(x) and ỹ(x) are far

(in the L2 sense).

B. Learning Bounded Variation Functions via Influence PCA

a) Real-Valued MIMs: Up to this point, we have estab-

lished that (i) we can leverage query access in order to effi-

ciently simulate gradient queries for the Ornstein–Uhlenbeck

smoothed label TÄy, and (ii) learning from the smoothed label

TÄy is approximately equivalent to learning from the original

label y(x). We will now describe an efficient learner that uses

the gradient queries to TÄy.

Our learner is based on estimating the influence matrix of

TÄy, i.e., M = Ex∼N [∇TÄy(x)(∇TÄy(x))¦], using gradient

queries. Our main structural result is a general dimension-

reduction tool establishing the following: given (an approxi-

mation of) the influence matrix of the smooth function TÄy,

we can perform PCA and learn a low-dimensional subspace

V so that a bounded variation function that depends only on

V can achieve ϵ excess error with respect to TÄy in L2
2. This

dimension-reduction step crucially relies on the target concept

being low-dimensional (see Definition I.4).

In fact, our dimension-reduction proof for real-valued con-

cepts shows directly that a low-degree polynomial that depends

only on the low-dimensional space V exists.

Proposition II.2 (Informal Statement of Proposition VI.10–

Dimension Reduction via Influence PCA: Real-Valued

Functions ). Let ỹ(x) = TÄy(x) and let M =
Ex∼N [∇ỹ(x)(∇ỹ(x))¦]. Moreover, let V be the subspace

spanned by all the eigenvectors of M whose corresponding

eigenvalues are at least ϵ2/(kM). The following holds:

• The dimension of V is at most poly(M,k, 1/Ä, 1/ϵ).

• There exists a polynomial q : V 7→ R of degree m =
O(L/ϵ2) such that

E
x∼N

[(q(projV (x))− ỹ(x))2]
f inf
f∈R(M,L,k)

E
x∼N

[(f(x)− ỹ(x))2] + ϵ .

To prove Proposition II.2, we explicitly construct a low-

dimensional polynomial as follows: we first marginalize out

the low-influence directions of ỹ(·), and then we keep its low-

degree Hermite approximation.

b) Marginalizing Low-Influence Directions: We first

construct a low-dimensional (not necessarily polynomial) ver-

sion of the noisy label ỹ that preserves the correlation with

the target function f(·). By the assumption of Proposition II.2,

all directions in the orthogonal complement V § are low-

influence, i.e., for h ∈ V § it holds Ex∼N [(h · ∇ỹ(x))2] f
O(ϵ2/k). In words, the function ỹ is “approximately con-

stant” along some low-influence direction h. Let us first

assume that ỹ is exactly constant on all directions of V §.

Then, in order to preserve the correlation of ỹ with f , we

only need to match the expected value of ỹ over V §. This

motivates the following “Gaussian Marginalization Operator”

(ΠV g)(x) := Ez∼N [g(projV x + projV §z)] (see Defini-

tion VI.5 and Lemma VI.6). So a natural low-dimensional

“approximation” of ỹ is ΠV ỹ. Indeed, if ỹ was constant on

V §, using the fact that projV x and projV §x are independent

standard Gaussians, we would obtain that

E
z∼N

[ E
x∼N

ỹ(projV (x)+projV §(z))f(x)]]− E
x∼N

[ỹ(x)f(x)] = 0 .

Our goal is to show that the Gaussian marginalization ΠV ỹ
achieves similar correlation with ỹ as f , when ỹ is not

constant in V § but “approximately constant”, i.e., it has low-

influence in directions of V §. In Lemma VI.12 we show

that when V § contains only low-influence directions, the

same is approximately true (up to some additive ϵ error):

Ex∼N [(ỹ(x) − ΠV ỹ(x))f(x)] f O(ϵ) . To do this, we first

observe that since f depends only on the subspace U , it

holds that ΠUf = f ; and since ΠV ỹ depends only on V ,

we can restrict our attention inside the relevant subspace

W = U + V . We can thus restrict our attention on W ,

i.e., Ez∼NW
[(ỹ(z)−ΠV ỹ(z))f(z)], where NW is a standard

normal on the subspace W . We will show that this correlation

difference can be bounded by the variance of ỹ in the irrelevant

directions. Indeed, by the Cauchy-Schwarz inequality, we have

E
z∼NW

[(ỹ(z)−ΠV ỹ(z))f(z)]

f
(

E
x∼NW

[f2(x)]

)1/2 (
E

z∼NW

[(ỹ(z)−ΠV ỹ(z))
2]

)1/2

.

We next relate the L2
2 error introduced by the marginalization

operation ΠV on ỹ with the influence matrix M. We use the

Gaussian Poincare inequality, which states that for some g(t) :
R 7→ R it holds Vart∼N [g(t)] f Et∼N [(g′(t))2]. We obtain

that for any subspace R = r§ (the orthogonal complement

to the direction r) the variance Ez∼NW
[(ỹ(z) − ΠRỹ(z))

2]
is bounded above by Ex∼NW

[(∇ỹ(x) · r)2] = r¦Mr. By

repeatedly applying the Gaussian Poincare inequality on a

basis of the (at most) k-dimensional subspace V § ∩W , we

show that

E
x∼NW

[(ỹ(z)−ΠV ỹ(z))
2] fMk max

r∈V §,∥r∥2=1
r¦Mr

f k O(ϵ2/(kM) = O(ϵ2) .

In the above bound, we observe that accepting eigenvectors

with corresponding eigenvalues at least ϵ2/(Mk) ensures that

ΠV ỹ achieves at most O(ϵ) worse correlation with f than ỹ.
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c) The Low-Degree Polynomial Approximation: We have

established that ΠV ỹ is similar to ỹ in the sense that it

has similar (up to ϵ2) correlation with the target function

f(·). To obtain a polynomial with a similar behavior, we

use the low-degree Hermite expansion of ΠV ỹ, which we

denote by PmΠV ỹ, where Pmg maps the function g to its

m-degree Hermite expansion. We show that in order for

PmΠV ỹ to achieve low L2
2 excess error, it suffices to pick

the degree m so that Pmf(x) is close to f(x) (in L2
2). We

show that the following bound for the excess error defined as

E2(q, f ; ỹ) = Ex∼N [(ỹ(x)−q(x))2]−Ex∼N [(ỹ(x)−f(x))2].
We refer to Lemma VI.11 for the formal statement and proof.

Lemma II.3 (Informal – Excess L2
2 Error Decomposition). It

holds

E2(PmΠV ỹ, f ;È) f O(1)
(

E
x∼N

[(f(x)− Pmf(x))2]
︸ ︷︷ ︸

Polynomial Approximation Error

+ E
x∼N

[(ỹ(x)−ΠV ỹ(x))f(x)]
︸ ︷︷ ︸

Correlation Error

)
.

Since f(x) has bounded variation (see Definition I.4), we

can show using a result from [74] (see Lemma VI.4) that

with degree m = O(L/ϵ2), it holds that Ex∼N [(f(x) −
Pmf(x))

2] = ϵ. Moreover, in the previous paragraph, we have

already established that the correlation error is also O(ϵ).
d) Polynomial Regression in V : So far, we have identi-

fied the subspace V and we know that there exists a polyno-

mial that depends on V and achieves low L2
2 error with the

smoothed label ỹ = TÄy. Since we have established that the

smoothing operation TÄ does not affect the excess error of a

bounded-surface area concept by a lot (see Proposition II.1),

we know that the same concept will achieve low excess-error

with respect to the original label y. Having established this, for

our final step we may directly perform polynomial regression

in the low-dimensional subspace V to learn a polynomial

with low-excess error. Since the dimension of V is roughly

poly(Mk/ϵ) and the degree of the polynomial is poly(L/ϵ),
the total sample and computational complexity of this task is

roughly kpoly(L/ϵ).
e) Boolean MIMs: At a high level, the proof and al-

gorithm for Boolean MIMs is similar to that for real-valued

MIMs. We show the following dimension reduction lemma

that essentially reduces the initial problem to learning a

bounded surface area concept in a poly(k/ϵ)-dimensional

subspace V .

Proposition II.4 (Informal Statement – Dimension-Reduc-

tion via Influence PCA: Boolean Concepts). Let V be

the subspace spanned by all the eigenvectors of M =
Ex∼N [∇TÄy(x)(∇TÄy(x))¦] whose corresponding eigenval-

ues are at least Ω(ϵ2/k). The following holds:

• The dimension of V is at most poly(k/(ϵÄ)).
• There exists g : Rd → {±1} with Γ(g) f Γ and g(x) =
g(projV x) for all x ∈ Rd such that

E
x∼N

[|g(x)−TÄy(x)|] f inf
f∈B(Γ,k)

E
x∼N

[|f(x)−TÄy(x)|]+ϵ .

So far, we have identified the subspace V and we know

that there exists a bounded surface area Boolean concept that

depends on V and achieves low L1 error with the smoothed

label TÄy. Since we have established that the smoothing oper-

ation TÄ does not affect the excess error of a bounded-surface

area concept by a lot (see Proposition II.1 and Lemma V.11),

we know that the same concept will achieve low excess-error

with respect to the original label y. Having established this,

for our final step we may use the L1-agnostic learner of [71]

on the k-dimensional subspace V to learn a PTF of degree

poly(Γ/ϵ) with (dim(V ))poly(Γ/ϵ) = kpoly(Γ/ϵ) samples and

time.

C. Hardness of Proper Agnostic Query Learning for ReLUs

and Halfspaces

Here we sketch our hardness reduction, establishing that

the exponential dependence in 1/ϵ is inherent for proper

agnostic learners, even with query access to the function

(see Theorem VIII.3 and Theorem VIII.4). In particular, we

show that assuming there are no polynomial-time algorithms

for the Small-Set Expansion (SSE) problem [70], then there

are no polynomial time proper agnostic learning algorithms

for ReLUs and homogeneous halfspaces with respect to the

Gaussian distribution.

The basic idea of our argument is to reduce to the prob-

lem of (approximately) optimizing a homogeneous degree-4
polynomial over the unit sphere (for the case of halfspaces

we reduce to optimizing a degree-5 polynomial). As there

are already known reductions from SSE to the problem of

finding approximate maxima of degree-4 polynomials (and

for halfspaces we can do a simple reduction from degree-4
to degree-5) this will suffice.

For this, we note that if f(x) is a polynomial and g(x) =
ReLU(v · x) for v a unit vector, then E[f(x)g(x)] is a low-

degree polynomial in v. In fact, by specifying f , we can make

this into any homogeneous degree-5 polynomial we desire.

This gives us SSE hardness of approximating E[f(x)g(x)].

If f were a Boolean function we would be done. However,

as this is not the case, we need two additional steps. Firstly,

we scale down f and truncate it so that its values stay within

[−1, 1] (note that this introduces only a small error if the

average size of f is small). Second, we replace f by a

random Boolean function f̃ so that E[f̃(x)] = f(x). Doing

this, it is not hard to see that with high probability over the

randomness of defining f̃ that E[f̃(x)g(x)] is arbitrarily close

to E[f(x)g(x)] for all functions g.

Now even if the algorithm was given an explicit description

of our function f̃ , finding a ReLU function g that approxi-

mately maximizes E[f̃(x)g(x)] is essentially equivalent to ap-

proximately optimizing a homogeneous degree-5 polynomial

of the sphere, which is SSE-hard.

III. RELATED WORK

Here we discuss prior and related work that was not already

discussed in the introduction.
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a) Comparison to Prior Work: We start by providing an

explicit comparison with prior work.

Our algorithmic template involves two steps to agnostically

learn multi-index models under the Gaussian distribution.

First, we use queries to “smooth” the label function without

adding a lot of noise to the instance. We then use PCA

on the expected gradient outer-product of the “smoothed”

concept Ex∼Dx
[∇f(x)∇f(x)T ] to find a low-dimensional

space containing an (nearly) optimal hypothesis.

Using PCA on the expected gradient outer-product is a well-

known dimension reduction technique that has been applied in

many supervised learning settings, see, e.g., [24], [88]–[90].

We emphasize that prior results of this type focus on (i) the

noiseless (realizable) setting, and (ii) the case of differentiable

target functions. In comparison, we perform agnostic learning

with non-differentiable functions by crucially exploiting query

access. Using sample access only, estimating the gradient of

f(x) requires exponentially many examples in the dimension,

see, e.g., [89].

[9] developed an efficient agnostic query learner for deci-

sion trees under the uniform distribution on the Boolean hyper-

cube. The approach of [9] crucially relies on the fact that the

target hypothesis can be represented as a sparse polynomial.

The class of functions we consider (Definition I.12) — and in

particular even a single halfspace or ReLU — does not have

this property, and therefore methods relying on sparsity [7],

[9] are not applicable.

In the context of property testing, [75] used a similar

approach based on PCA on the expected outer gradient product

to test whether the observed label is close to a smooth low-

dimensional junta (similar to Definition I.12). An important

difference with the current work is that in many interesting

applications the link function may be assumed to be known,

e.g., agnostically learning a ReLU or a halfspace, and the

goal is to learn a good hypothesis — a task that information-

theoretically requires Ω(d) samples. In contrast, [75] focuses

on the semi-parametric task of only testing the unknown link

function (and not identifying the underlying low-dimensional

subspace) while avoiding a poly(d) dependence in the sample

complexity.

Finally, related to our setting is the more recent work of

[84], where a combination of polynomial regression and PCA

on the average outer product of the gradient was employed for

proper, agnostic learning of a single halfspace with runtime

and sample complexity dpoly(1/ϵ). In this work, we crucially

exploit the query access to bypass the polynomial regression

step and significantly improve the runtime to poly(d)2poly(1/ϵ)

(for the special case of a single halfspace).

b) Agnostically Learning Boolean Functions with

Queries: In the context of learning Boolean functions, the

study of distribution-specific agnostic learning with queries

has a rich history. One of the earliest results in this vein is

the classical algorithm of Goldreich and Levin [6] that uses

queries to efficiently agnostically learn parity functions under

the uniform distribution. (Recall that the problem of learning

parities with noise is conjectured to be computationally hard

with random samples only.) Kushilevitz and Mansour [7],

building on the ideas of [6], developed an efficient (non-

agnostic) query learner for decision trees under the uniform

distribution. As already mentioned, [9] subsequently gave

a polynomial-time agnostic query learner for decision trees

under the uniform distribution.

It is known (see, e.g., [2]) that the availability of queries

does not help computationally in the distribution-free agnostic

setting. Specifically, Feldman [2] showed that every concept

class that is agnostically learnable with queries is also agnos-

tically learnable from random samples only (while preserving

computational efficiency within a polynomial factor). This

simple yet powerful fact has motivated the study of agnostic

query learning with respect to specific natural distributions,

such as the uniform distribution on the hypercube or the

Gaussian distribution. [2] also showed that there exists a

concept class that provides a computational separation (under

cryptographic assumptions) between uniform distribution ag-

nostic PAC learning and agnostic PAC+Query learning. Since

this concept class is not natural, he asked whether queries are

useful for natural concept classes such as halfspaces. As a

special case of our main result, we answer this question in the

affirmative.

IV. ROADMAP, NOTATION, AND PRELIMINARIES

A. Roadmap

In Section V-A, we show that we can use queries to simulate

gradient access to the Ornstein–Uhlenbeck smoothing TÄy. In

Sections V-B and V-C, we show that the noise operator we use

does not affect the agnostic learning task for real-valued func-

tions and Boolean concepts. In Section VI, we show our result

for learning real-valued functions and prove Theorem I.5. In

Section VI-C, we show how Theorem I.5 implies agnostic

learning for linear combinations of ReLU activations and deep

networks. In Section VII, we give our agnostic learner for

Boolean concepts with bounded surface area and establish

Theorem I.13 and the associated applications. In Section VIII,

we show that under the SSE hypothesis, no polynomial-time

proper query learner for agnostically learning ReLUs or LTFs

exists.

B. Notation and Preliminaries

a) Basic Notation: For n ∈ Z+, let [n] := {1, . . . , n}.
We use small boldface characters for vectors and capital bold

characters for matrices. For x ∈ Rd and i ∈ [d], xi denotes

the i-th coordinate of x, and ∥x∥2 := (
∑d
i=1 x

2
i )

1/2 denotes

the ℓ2-norm of x. We will use x · y for the inner product of

x,y ∈ Rd and ¹(x,y) for the angle between x,y. We slightly

abuse notation and denote ei the i-th standard basis vector in

Rd. We will use 1A to denote the characteristic function of

the set A, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.

b) Asymptotic Notation: We use the standard

O(·),Θ(·),Ω(·) asymptotic notation. We also use Õ(·)
to omit poly-logarithmic factors.
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c) Probability Notation: We use Ex∼D[x] for the expec-

tation of the random variable x according to the distribution

D and Pr[E ] for the probability of event E . For simplicity of

notation, we may omit the distribution when it is clear from

the context. For (x, y) distributed according to D, we denote

Dx to be the distribution of x and Dy to be the distribution

of y. For unit vector v ∈ Rd, we denote Dv the distribution

of x on the direction v, i.e., the distribution of xv.

d) Gaussian Space: Let N (µ,Σ) denote the d-

dimensional Gaussian distribution with mean µ ∈ Rd and

covariance Σ ∈ Rd×d, we denote ϕd(·) the pdf of the d-

dimensional Gaussian and we use the ϕ(·) for the pdf of the

standard normal. In this work we usually consider the standard

normal, i.e., µ = 0 and Σ = I, and therefore, we denote it

simply N . We define the standard Lp norms with respect to

the Gaussian measure, i.e., ∥g∥Lp = (Ex∼N [|g(x)|p)1/p. We

denote by L2(N ) the vector space of all functions f : Rd → R

such that Ex∼N0
[f2(x)] < ∞. The usual inner product for

this space is Ex∼N0
[f(x)g(x)]. While, usually one considers

the probabilists’s or physicists’ Hermite polynomials, in this

work we define the normalized Hermite polynomial of degree

i to be H0(x) = 1, H1(x) = x,H2(x) =
x2−1√

2
, . . . , Hi(x) =

Hei(x)√
i!
, . . . where by Hei(x) we denote the probabilists’

Hermite polynomial of degree i. These normalized Hermite

polynomials form a complete orthonormal basis for the single

dimensional version of the inner product space defined above.

To get an orthonormal basis for L2(N ), we use a multi-

index V ∈ Nd to define the d-variate normalized Hermite

polynomial as HV (x) =
∏d
i=1Hvi(xi). The total degree of

HV is |V | = ∑
vi ∈ V vi. Given a function f ∈ L2 we com-

pute its Hermite coefficients as f̂(V ) = Ex∼N [f(x)HV (x)]
and express it uniquely as

∑
V ∈Nd f̂(V )HV (x). We denote

by Pkf(x) the degree k partial sum of the Hermite ex-

pansion of f , Pkf(x) =
∑

|V |fk f̂(V )HV (x). Then, since

the basis of Hermite polynomials is complete, we have

limk→∞ Ex∼N [(f(x)− Pkf(x))
2
] = 0. Parseval’s identity

states that Ex∼N [(f(x)− Pkf(x))
2
] =

∑∞
|V |=k f̂(V )2.

V. FROM ZERO- TO FIRST-ORDER: DERIVATIVE QUERIES

VIA ORACLE QUERIES

In this section, we show that we can efficiently simulate gra-

dient access to a smoothed version of the label y using queries.

In Section V-A we show how to use the Ornstein–Uhlenbeck

operator to get acecss to gradient queries of y. In Section V-C

and Section V-B we show that the noise that we introduce

in order to simulate the gradient queries does not affect the

agnostic learning task for Boolean and real valued concepts

as long as the Gaussian surface area (for Boolean concepts)

and the expected gradient norm (for real-valued functions) are

bounded.

A. Gradient Queries via Oracle Queries

We first formally define the Ornstein–Uhlenbeck smoothing

operator.

Definition V.1 (Ornstein–Uhlenbeck Operator). Let Ä ∈ (0, 1).
We denote as TÄ the linear operator that maps a function

g ∈ L2(N ) to the function TÄg defined as:

(TÄg)(x) := E
z∼N

[
g(
√
1− Ä2x+ Äz)

]
.

To simplify notation, we often write TÄg(x) instead of

(TÄg)(x).

The Ornstein–Uhlenbeck operator is well studied (see, e.g.,

[71], [91] and references therein) and has several structural

properties that enable the analysis of our algorithm. Its crucial

property is that regardless of how complex the initial function

g is, TÄg is always everywhere differentiable and also the norm

of the gradient of TÄg only depends on the maximum value of

the function g. In the next fact we collect the properties that

we use.

Fact V.2 (see, e.g., [91]). Let g : Rd 7→ R. For the function

TÄg(x) the following properties hold

1) TÄg(x) is differentiable at every point x.

2) TÄg(x) is 1/Ä-Lipschitz, i.e., ∥∇TÄg(x)∥2 f ∥g∥∞/Ä.

3) For any p g 1, TÄ is a contraction with respect the ∥ ·∥p,

i.e., it holds ∥TÄg∥Lp f ∥g∥Lp .

Using it allows the gradient of the smoothed function

TÄg(x) to be computed directly given value access to the

underlying function g. We now present the main result of this

section showing that given query access to the label y(·) we

can efficiently simulate gradient queries to the smoothed label

TÄy(·) with roughly Õ(d/ϵ) queries.

Lemma V.3 (Gradient Queries from Oracle Queries). Fix

ϵ, ¶, Ä > 0. Let y(x) : Rd 7→ R be a function in L2
2(N ) with

|y(x)| fM . There exists an algorithm (see Algorithm 1) that

given a point x ∈ Rd makes N = Ω̃(dM/ϵ) log(1/¶) queries

to y(x) and, in polynomial time, returns a vector À̃ such that,

with probability at least 1− ¶, it holds ∥À̃ −∇TÄy(x)∥2 f ϵ.
Proof. To show the lemma, we first need to show that for

any point x ∈ Rd, we can use enough queries to estimate

DÄy(x) accurately, meaning that we need to estimate the ran-

dom variable Z =

√
1−Ä2
Ä Ez∼N (0,I)

[
y(
√
1− Ä2x+ Äz)z

]

accurately. Note that by definition the random variable Z is

1/Ä2 sub-gaussian, therefore from a simple application of the

Hoefding inequality, we get that with O(dM/(Äϵ)2 log(1/¶1))
queries, we can find a Z̃ such that ∥Z̃ − E[Z]∥2 f ϵ with

probability at least 1− ¶1.

Lemma V.4 (Gradient of Smoothed Label). Let Ä ∈ (0, 1).
We denote as DÄ the linear operator that maps a function

g ∈ L2(N ) to the function DÄg defined as: (DÄg)(x) :=
∇(TÄg)(x). It holds that

(DÄg)(x) =

√
1− Ä2
Ä

E
z∼N

[
g(
√
1− Ä2x+ Äz)z

]
.

To simplify notation, we often write DÄg(x) instead of

(DÄg)(x).
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Proof. We first observe that for any fixed x the ran-

dom variable
√

1− Ä2x + Äz is distributed according to

N (
√
1− Ä2x, Ä2I). Therefore, we have

TÄg(x) = E
z∼N

[g(
√
1− Ä2x+ Äz)] = E

u∼N (
√

1−Ä2x,Ä2I)
[g(u)]

We can now directly compute the gradient of the smoothed

function TÄg:

∇x(TÄg)(x) = ∇x E
u∼N (

√
1−Ä2x,Ä2I)

[g(u)]

=

√
1− Ä2
Ä2

E
u∼N (

√
1−Ä2x,Ä2I)

[
g(u)(u−

√
1− Ä2x)

]

=

√
1− Ä2
Ä

E
z∼N

[
g(
√
1− Ä2x+ Äz)z

]
.

Input: ϵ > 0, ¶ > 0, Ä > 0, location x ∈ Rd.

Requries: Sample and query access to distribution of

labeled examples D
Output: An estimation À̃ of ∇TÄy(x) such that ∥À̃−
∇TÄy(x)∥2 f ϵ.

1) Sample N = Õ(d/ϵ) log(1/¶) points

z(1), . . . , z(N) ∼ N .

2) Perform N Queries at the locations q(j) =√
1− Ä2x+ Äz(j) and obtain y(j).

3) Return the empirical estimate À̃ =√
1−Ä2
NÄ

∑N
j=1 y

(j)z(j) .

Algorithm 1:Simulating Gradient Queries with Queries

B. Smoothing the Labels for Learning Real-valued Functions

In this section we show that adding noise to the label

y(x) in order to make it smooth and compute its gradients

does not “change” the agnostic learning task significantly.

Assume that there exists a learning algorithm that can learn

a hypothesis h(·) that achieves ϵ-excess error compared to a

class of concepts C, given access to the smooth labels TÄy(x).
In other words, assume that we are given a learner that finds

a hypothesis h(·) that satisfies

E
x∼N

[(h(x)− TÄy(x))2] f inf
f∈C

E
x∼N

[(f(x)− TÄy(x))2] + ϵ .

Then, can we say that h(·) will perform well compared to the

same class C under the original (non-smooth) label y(·)? We

show that this is true when (i) the hypothesis h(·) produced

by the learner is not very complicated in the sense that it has

bounded variation and (ii) the hypothesis class C that we are

comparing h(·) against has also bounded variation.

In particular, we show that a hypothesis h(·) achieves

ϵ-excess error compared to some concept class C in the

smoothed instance, achieves (ϵ + O(
√
Ä)-excess error with

respect to the original instance. In other words, as long as

the variation and L2
2 norms of the target concept class and the

hypothesis produced by the learner are bounded, smoothing the

noisy label y(x) does not introduce significantly more noise

to the instance. To simplify notation, we first define the excess

error, i.e., the error of a classifier minus the error of the best-

in-class classifier of some class C.

Definition V.5 (Excess Error). Given hypotheses h, f : Rd 7→
R we define the L1-excess error of h(·) compared to f(·) with

respect to the label y(·) to be E1(h, f ; y) = Ex∼N [|h(x) −
y(x)|] − Ex∼N [|f(x) − y(x)|]. Moreover, for a class of

concepts C we define the excess error of h(·) compared to C
with respect to y(·) as supf∈C E1(h, f ; y). Similarly, we define

the L2
2-excess error as E2(h, f ; y) = Ex∼N [(h(x)−y(x))2]−

Ex∼N [(f(x)−y(x))2] and E2(h,C; y) = supf∈C E2(h, f ; y).
We now show that that the Ornstein–Uhlenbeck noise

operator also preserves the L2
2-excess error of a classifier

h : Rd 7→ R as long as the target class and the classifier

h have bounded expected gradient.

Proposition V.6 (Smoothing the Noisy Labels). Fix f ∈
R(M,L, k). Let y : Rd 7→ R be a function in L2(N )
with Ex∼N [y2(x)] f M . Moreover, let p(x) : Rd 7→ R

be an almost everywhere differential function in L2(N ) with

Ex∼N [∥∇p(x)∥22] f L. It holds that

E2(p, C; y) f E2(p, C;TÄy) +O(
√
ÄML) .

Proof of Proposition V.6. We first prove the following lemma

that connects the excess error of a real-valued function h(·)
with respect to the smoothed label TÄy(·) to its excess er-

ror with respect to the original label y(·). If the operator

TÄ preserves the correlation of all concepts f ∈ C, i.e.,

|Ex∼N [f(x)y(x)] − Ex∼N [f(x)TÄy(x)]| f ϵ for all f ∈ C
and it also preserves the correlation of the hypothesis h(·), i.e.,

|Ex∼N [h(x)y(x)]−Ex∼N [h(x)TÄy(x)]| f ϵ, then the excess

error of h(·) with respect to y(·) is at most 2ϵ worse than its

excess error with respect to the smoothed label TÄy(·). In the

following lemma, we show that we can connect the L2-excess

error with the correlation of concepts.

Lemma V.7 (From Excess Error to Correlation Preservation).

Let h : Rd 7→ R be a real-valued hypotheses and C be a class

of real-valued hypotheses. It holds

E2(h,C;TÄy)− E2(h,C; y) f
2 sup
f∈C

∣∣∣ E
x∼N

[f(x)TÄy(x)]− E
x∼N

[f(x)y(x)]
∣∣∣+

2
∣∣∣ E
x∼N

[h(x)TÄy(x)]− E
x∼N

[h(x)y(x)]
∣∣∣ .

Proof. We first note that E2(h,C;TÄy) − E2(h,C; y) =
supf∈C E2(h, f ;TÄy) − supf∈C E2(h, f ; y) f
supf∈C

∣∣E2(h, f ;TÄy) − E2(h, f ; y)
∣∣. For some fixed

concept f ∈ C, we have

E2(h, f ;TÄy) = E
x∼N

[h2(x)]− E
x∼N

[f2(x)]

+ 2 E
x∼N

[(f(x)− h(x))(TÄy)] .
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Therefore, we have

E2(h, f ;TÄy)− E2(h, f ; y) = 2

(
E

x∼N
[f(x)(TÄy(x)− y(x))]

+ E
x∼N

[h(x)(TÄy(x)− y(x))]
)
.

By taking the supremum over the f , we complete the proof.

Note that Ex∼N [f(x)(TÄy(x) − y(x))] =
Ex∼N [y(x)(TÄf(x) − f(x))]. Therefore, using Cauchy-

Schwarz inequality we have that

E
x∼N

[y(x)(TÄf(x)− f(x))]

f
(

E
x∼N

[y2(x)] E
x∼N

[(TÄf(x)− f(x))2]
)1/2

f
√
M

(
E

x∼N
[(TÄf(x)− f(x))2]

)1/2

,

where we used that Ex∼N [y2(x)] f
√
Ex∼N [y4(x)] f M .

To bound the remaining term, we prove the following claim.

Claim V.8. Let f ∈ L2(N ) be a continuous and (almost

everywhere) differentiable function. Then, Ex∼N [(TÄf(x) −
f(x))2] f 2Ä2 Ex∼N [∥∇f(x)∥22.

Proof. We will use the following result from [74].

Fact V.9 (Correlated Differences, (Lemma 7 in [74])). Let

f ∈ L2(N ) be an (almost everywhere) differentiable function.

Denote by

DÄ = N
(
0,

(
I (1− Ä)I

(1− Ä)I I

))
.

It holds E(x,z)∼DÄ
[(f(x)− f(z))2] f 2Ä Ex∼N [∥∇f(x)∥22] .

Therefore, using Jensen’s inequality, we have that

E
x∼N

[(TÄf(x)− f(x))2]

= E
x∼N

[( E
z∼N

[f(
√

1− Ä2x+ Äz)]− f(x))2]
f E

(x,z′)∼DÄ

[(f(z′)− f(x))2] ,

for Ä = 1−
√
1− Ä2. Therefore, using Fact V.9, we obtain

E
x∼N

[(TÄf(x)− f(x))2] f 2(1−
√

1− Ä2) E
x∼N

[∥∇f(x)∥22
f 2Ä2 E

x∼N
[∥∇f(x)∥22 ,

where we used the fact that
√

1− Ä2 g 1 − Ä2 which holds

for all Ä ∈ [0, 1] and implies that 1−
√

1− Ä2 f Ä2.

Therefore, from Claim V.8, we have that

E2(p, C; y) f E2(p, C;TÄy)
+O(

√
ÄM)

(√
E

x∼N
[∥∇f(x)∥22] +

√
E

x∼N
[∥∇p(x)∥22]

)
.

Using that Ex∼N [∥∇f(x)∥22],Ex∼N [∥∇p(x)∥22] f L, we

complete the proof of Proposition V.6.

C. Smoothing Labels for Learning Boolean Concepts

The following proposition shows that the L1-excess error of

a hypothesis h with respect to the original label y is close to

its L1-excess error with respect to the smoothed label TÄy as

long as (i) the class C contains concepts with bounded surface

area and (ii) the classifier h also has bounded surface area.

Proposition V.10 (Smoothing the Noisy Labels Preservs

L1-Excess Error). Fix y : Rd 7→ {±1} and let C be a class

of Boolean concepts. It holds

E1(h,C; y) f E1(h,C;TÄy) +O(Ä) (Γ(C) + Γ(h)) ,

where E(·, ·; ·) is the excess error defined in Definition V.5

Proof. We first prove the following lemma showing that

connects the excess error of a classifier h(·) with respect to the

smoothed label TÄy(·) to its excess error with respect to the

original label y(·). This is analogous to the real-valued case

(Lemma V.7). In the following lemma we show that we can

connect the L1-excess error with the correlation of concepts

(which basically relies on the identity |t − s| = 1 − ts when

t ∈ [−1, 1] and s ∈ {±1}.
Lemma V.11 (From Excess Error to Correlation Preservation:

Boolean Concepts). Let h : Rd 7→ {±1} and C be a class of

Boolean hypotheses. It holds

E1(h,C;TÄy)− E1(h,C; y)
f sup
f∈C

∣∣∣ E
x∼N

[f(x)TÄy(x)]− E
x∼N

[f(x)y(x)]
∣∣∣+

∣∣∣ E
x∼N

[h(x)TÄy(x)]− E
x∼N

[h(x)y(x)]
∣∣∣ .

Proof. We first note that E1(h,C;TÄy) − E1(h,C; y) =
supf∈C E1(h, f ;TÄy) − supf∈C E1(h, f ; y) f
supf∈C

∣∣E1(h, f ;TÄy) − E1(h, f ; y)
∣∣. Using the fact that

Ex∼N [|f1(x) − f2(x)|] = 1 − Ex∼N [f1(x)f2(x)], for any

functions f1 : Rd 7→ [−1, 1] and f2 : Rd 7→ {±1}, we have

that

E1(h, f ;TÄy) = E
x∼N

[|TÄy(x)− h(x)|]− E
x∼N

[|TÄy(x)− f(x)|]
= E

x∼N
[TÄy(x)f(x)]− E

x∼N
[TÄy(x)h(x)] .

Therefore, for some concept f ∈ C, we have that
∣∣E1(h, f ;TÄy)− E1(h, f ; y)

∣∣ =∣∣ E
x∼N

[(TÄy(x)− y(x))f(x)]
∣∣+

∣∣ E
x∼N

[(TÄy(x)− y(x))h(x)]
∣∣ .

Taking the supremum over the C completes the proof.

First, note that since |y(x)| f 1, it also holds that

|TÄy(x)| f 1. Using Lemma V.11, we have that Proposi-

tion V.10 is equivalent to showing that for a Boolean function

f : Rd 7→ {±1} it holds |Ex∼N [(TÄy(x) − y(x))f(x)]| f
O(Ä) Γ(f) . We do this in the following lemma.

Lemma V.12 (TÄ Preserves Correlation). Let y : Rd 7→ {±1}
and let f : Rd 7→ {±1} be a (Borel) Boolean function. It

holds that∣∣∣ E
x∼N

[f(x)TÄy(x)]− E
x∼N

[f(x)y(x)]
∣∣∣ f O(Ä) Γ(f) .
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Proof. Using the fact that the Ornstein–Uhlenbeck noise op-

erator TÄ is a symmetric linear operator on L2(N ), we have

E
x∼N

[f(x)TÄy(x)] = E
x∼N

[y(x)TÄf(x)]

= E
x∼N

[y(x)f(x)] + E
x∼N

[y(x)(TÄf(x)− f(x))] .

Therefore,
∣∣∣ E
x∼N

[f(x)TÄy(x)]− E
x∼N

[f(x)y(x)]
∣∣∣

=
∣∣∣ E
x∼N

[y(x)(TÄf(x)− f(x))]
∣∣∣

f E
x∼N

[|TÄf(x)− f(x)|] ,

where, for the inequality we used the fact that the label y(x) ∈
{±1}. We next bound the term Ex∼N [|TÄf(x)− f(x)|]. We

will use the following result from Ledoux and Pisier as stated

in [71].

Fact V.13 (Ledoux-Pisier [92]). Let f : Rd 7→ {±1} be

a Boolean function. It holds Ex∼N [f(x)TÄf(x)] g 1 −
2
√
Ã Γ(f) Ä .

In what follows, we denote by K the set labeled as positive

by the LTF f(x). Using the fact that Ex∼N [|TÄf(x) −
f(x)|] = 1 − Ex∼N [TÄf(x)f(x)], which holds because

|TÄf(x)| f 1 and f(x) ∈ {±1}, we have

E
x∼N

[|TÄf(x)− f(x)|] = 1− E
x∼N

[f(x)TÄf(x)] f O(ÄΓ(f)) ,

where the inequality follows from Fact V.13.

Applying Lemma V.12 on f and g gives the result.

VI. AGNOSTICALLY LEARNING REAL-VALUED

MULTI-INDEX MODELS

In this section we present our algorithmic result Theorem I.5

for learning real-valued function classes in the L2
2 norm. For

convenience, we first restate the class of bounded variation

concepts that we consider.

Definition VI.1 (Bounded Variation, Low-Dimensional Con-

cepts). Fix L,M > 0 and k ∈ Z+. We define the class

R(M,L, k) of continuous, (almost everywhere) differentiable

real-valued functions with the following properties:

1) For every f ∈ R(M,L, k), it holds

(Ex∼Nd [f4(x)])1/2 fM and Ex∼Nd [∥∇f(x)∥22] f L.

2) There exists a subspace U of Rd of dimension at most k
such that f depends only on U , i.e., for every x ∈ Rd,

f(x) = f(projUx).

We now state the main result of this section (the formal

version of Theorem I.5).

Theorem VI.2 (Improper Learner for Real-valued Func-

tions). Fix k ∈ N and M,L ∈ R+. Let D be a dis-

tribution on Rd × R+ such that the x-marginal of D is

standard d-dimensional normal. There exists an algorithm that

makes Nq = poly(d/ϵ) queries, draws Ns = poly(d) +

poly((kM/ϵ)L
2/ϵ4 , 1/ϵ, log(1/¶)) samples from D, runs in

time poly(Ns, Nq, d) and outputs a polynomial p : Rd 7→ R

so that with probability at least 1− ¶ it holds

E
(x,y)∼D

[(p(x)− y)2] f inf
f∈R(M,L,k)

E
(x,y)∼D

[(f(x)− y)2] + ϵ .

Before we proceed to the proof we define the Hermite

expansion operator that maps a function f to its degree m
Hermite polynomial.

Definition VI.3 (Hermite Expansion Operator). Given a func-

tion f ∈ L2(N ), we denote by Pm(f)(x), the linear operator

that maps f to the Hermite polynomial of degree m of f , i.e.,

(Pmf)(x) =
∑

|I|fm
f̂(I)HI(x),

where HI is the multivariate Hermite polynomial of degree

I ∈ Nd and f̂(I) = Ex∼N [f(x)HI(x)] is the corresponding

Hermite coefficient of f(x).

The following lemma bounds the error of the polynomial

approximation of degree m for “smooth” functions. Its proof

is implicit in [74]; we provide a short proof for completeness.

Lemma VI.4 (Polynomial Approximation of Smooth Func-

tions). Let f(x) : Rd 7→ R be an (almost everywhere)

differentiable function and m ∈ N. It holds

E
x∼N

[(f(x)− Pmf(x))
2] f O

( 1

m

)
E

x∼N
[∥∇f(x)∥22] .

Proof. We denote as P>mf the Hermite expansion of f , which

contains the terms with degrees higher than m. We have that

E
x∼N

[(f(x)− Pmf(x))
2] = E

x∼N
[(P>mf(x))

2] =
∑

I:|I|>m
(f̂(I))2

f 1

m

∑

I:|I|>m
|I|(f̂(I))2 ,

where in the last inequality, we used that 1 f |I|/m. Further-

more, (see, e.g., the proof of Lemma 6 in [74]) we have that

for a continuous and (almost everywhere) differentiable func-

tion f , it holds that Ex∼N [∥∇f(x)∥22] =
∑
I∈Nd |I|(f̂(I))2.

Combining the above, the result follows.

As we discussed in Section II to show that an approximately

optimal, low-dimensional concept exists we will use the Gaus-

sian Marginalization Operator defined below.

Definition VI.5 (Gaussian Marginalization Operator). Let U
be a subspace of Rd. Denote by DU§ the standard normal

distribution on the subspace U§ (we assume that a vector

z ∼ DU§ is a d-dimensional vector that lies in U§). Given a

function f ∈ L2(N ), we denote by ΠUf the linear operator

defined by

(ΠUf)(x) = E
z∼D

U§

[f(projU (x) + z)] .
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a) Motivation about the Gaussian Marginalization Oper-

ator, ΠV : By the assumption of Proposition II.4, all directions

in the orthogonal complement V § are low-influence, i.e., for

h ∈ V § it holds Ex∼N [(h · ∇ỹ(x))2] f O(ϵ2/k). In words,

the function ỹ is “approximately constant” along some low-

influence direction h. Let us first assume that ỹ is exactly

constant on all directions of V §. Then, in order to preserve

the correlation of ỹ with f , we only need to match the

expected value of f over V §. This motivates the following

“Gaussian Marginalization Operator” of Definition VI.5. In-

deed, if ỹ was constant on V §, using the fact that projV x
and projV §x are independent standard Gaussians, we would

obtain that Ez∼N [Ex∼N f(projV (x) + projV §(z))ỹ(x)]] −
Ex∼N [f(x)ỹ(x)] = 0. We observe that since ΠV f is a convex

combination of different translations of f and B(Γ, k) is

closed under translations, we obtain that the Gaussian surface

area of f is also bounded above by Γ.

In the next lemmas, we collect some useful properties of the

Gaussian Marginalization Operator. The proofs can be found

in the full version of the paper.

Lemma VI.6. Let g ∈ L2(N ) and V ¦ Rd. We have the

following properties for the operator ΠV .

• ΠV are contractions, i.e., Ex∼N [(ΠV g(x))
2] f

Ex∼N [g2(x)].

• Let U, V ¦ Rd, it holds that ΠVΠU+V g =
ΠV+UΠV+U§g = ΠV g.

Lemma VI.7. Let g ∈ L2(N ), m ∈ N and V ¦ Rd. We have

the following properties for the operators Pm and ΠV .

• Pm is a contraction, i.e., Ex∼N [(Pmg(x))
2] f

Ex∼N [g2(x)].

• Pm and ΠV commute, i.e., PmΠV g = ΠV Pmg.

Next, we show that ΠU and Pm commute. The proof can

be found in the full version of the paper.

Claim VI.8 (Pm and ΠU commute). Let g ∈ L2(N ), m ∈ N,

and V be a subspace of Rd. It holds that PmΠV g = ΠV Pmg.

Input: ϵ > 0, ¶ > 0 and sample and query access to

distribution D
Output: An estimation of M =
Ex∼Dx

[DÄy(x)DÄy(x)
¦].

1) Ä ← Cϵ2, ¸ ← Cϵ2, for C > 0 sufficiently small

constant.

2) Let SN be the set that contains N samples

x(1), . . . ,x(N) from the distribution D.

3) For each x ∈ SN , use Algorithm 1 to get a gradient

estimate (̂DÄy)(x) of (DÄy)(x).

4) return M̂ = 1
N

∑N
i=1 (̂DÄy)(x

(i))(̂DÄy)(x
(i))¦.

Algorithm 2:Estimation of the influence matrix M with Queries

Having access to the gradient, enables us to calculate the

influence matrix of the function which captures the sensitivity

of the function in different directions. We formally define the

influence matrix of a function g.

Definition VI.9 (Influence Matrices). Given a differentiable

g ∈ L2(N ), we define the influence matrix as

Infg := E
x∼N

[∇g(x)∇g(x)¦].

Fix Ä ∈ (0, 1). Given g ∈ L2(N ) (not necessarily differen-

tiable), we define its Ä-smoothed influence matrix as

InfÄg := E
x∼N

[DÄg(x)(DÄg(x))
¦] .

A. Influence PCA for Learning in L2
2

In this section we show that for learning real-valued con-

cepts of bounded variation in L2
2 we can effectively reduce

the dimension of the problem via PCA in the influence of the

smoothed label TÄy. We show that the low-degree polynomial

approximation of the smoothed label TÄy can be projected

down to the subspace V via the Gaussian Marginalization

Operator. In other words, we construct an explicit polynomial

approximation of the label TÄ that depends only on the

low-dimensional subspace V . We now state our dimension-

reduction result.

Proposition VI.10. Fix ϵ,M,L,Q > 0 and let È : Rd 7→ R

with |È(x)| f Q and ∥∇È(x)∥2 f Ψ. Let ¸ be sufficiently

small multiple of ϵ2/(kM) and m be sufficiently large multiple

of (Q2L)/ϵ2. Let M̂ be so that ∥InfÈ−M̂∥2 f ¸/2 and let V

be the subspace spanned by all the eigenvectors of M̂ whose

corresponding eigenvalues are at least ¸. Then, it holds

1)

E
x∼N

[(PmΠV È(x)− È(x))2]
f inf
f∈R(M,L,k)

E
x∼N

[((È(x)− f(x))2] + ϵ .

2) The dimension of V is at most O(Ψ2/¸).

Proof of Proposition VI.10. Fix f ∈ R(M,L, k). By assump-

tion, there exists a subspace U of dimension at most k, so that

f depends only on U , i.e., f(x) = f(projUx). Therefore,

ΠU+V f(x) = f(x).

Lemma VI.11 (Excess L2
2 Error Decomposition). We have

E2(PmΠV È, f ;È) f Q ( E
x∼N

[(f(x)− Pmf(x))2])1/2
︸ ︷︷ ︸

Polynomial Approximation Error

+ 2 E
x∼N

[(È(x)−ΠV È(x))f(x)]
︸ ︷︷ ︸

Correlation Error

.

For the proof of Lemma VI.11 refer to the full version of

the paper.

Lemma VI.12 (Correlation Error Bound). It holds

E
x∼N

[(È(x)−ΠV È(x))f(x)] f O(ϵ) . (1)
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Proof. Note that f(x) depends only on the subspace U ,

therefore, ΠU+V f(x) = f(x). Therefore, we have that

E
x∼N

[(È(x)−ΠV È(x))f(x)]

= E
x∼N

[(ΠV+UÈ(x)−ΠV+UΠV È(x))f(x)]

= E
x∼N

[(ΠV+UÈ(x)−ΠVΠV+UÈ(x))f(x)]

f
(

E
x∼N

[(ΠV+UÈ(x)−ΠVΠV+UÈ(x))
2] E

x∼N
[f2(x)]

)1/2

,

where in the last equality we used Lemma VI.7 and in the last

inequality we used the Cauchy-Schwarz inequality. Note that

Ex∼N [f2(x)] f M . To bound the other term we show that

Ex∼N [(ΠV+UÈ(x)−ΠVΠU+V È(x))
2] is small. For that, we

prove the following:

Lemma VI.13 (Generalized Gaussian Marginalization Error).

Let g : Rd 7→ R be a function in L2(N ) such that ∇g ∈
L2(N ) and let V,U be subspaces of Rd. It holds

E
x∼N

[(ΠV+Ug(x)−ΠVΠV+Ug(x))
2]

f dim(V § ∩ U) max
v∈V §∩U,∥v∥2=1

E
x∼N

[(∇g(x) · v)2] .

The proof of Lemma VI.13 can be found in the version of

the paper. From Lemma VI.13, we have that

E
x∼N

[(ΠV+UÈ(x)−ΠVΠU+V È(x))
2]

f dim(U ∩ V §) max
v∈U∩V §,∥v∥2=1

E
x∼N

[((∇È(x)) · v)2] .

Furthermore note that maxv∈U∩V §,∥v∥2=1 Ex∼N [((∇È(x)) ·
v)2] f ¸/2 + maxv∈U∩V §,∥v∥2=1 v

¦M̂v f 2¸ because the

subspace U ∩ V § contains vectors with influence at most ¸.

Note that dim(U ∩ V §) f dim(U) f k and noting ¸ =
O(ϵ2/(Mk)) completes the proof of Lemma VI.12.

Combining Lemmas VI.11 and VI.12 and using that

Ex∼N [(f(x) − Pmf(x))
2] f L/m from Lemma VI.4,

we get that Ex∼N [(PmΠV È(x) − È(x))2] f
inff∈R(M,L,k) Ex∼N [((È(x) − f(x))2] + ϵ. To show

that the subspace V has small dimension, we show the

following lemma. The proof can be found in the full version

of the paper.

Lemma VI.14. Fix ¸ > 0, Ä ∈ (0, 1). Let È be a function from

Rd to R such that ∥∇È(x)∥2 f Ψ and let V be the subspace

spanned by all the eigenvectors of Infg with eigenvalue at

least ¸. Then the dimension of the subspace V is dim(V ) =
O(Ψ2/¸).

An application of the lemma above (Lemma VI.14) gives,

which gives that the subspace it at most O(Ψ2/¸). This

completes the proof of Proposition VI.10

B. Proof of Theorem VI.2

We use the following fact about the L2 polynomial regres-

sion.

Fact VI.15 (see, e.g., Theorem D.7 [84]). Let D be a

distribution on Rd × R such that the x-marginal of D
is standard d-dimensional normal and the labels y are

bounded by M . The L2-regression algorithm draws N =
poly((dm)m

2

, 1/ϵ,M, log(1/¶)) samples from D, runs in time

poly(N, d), and outputs a polynomial p : Rd 7→ R such that

with probability at least 1−¶ it holds E(x,y)∼D[(p(x)−y)2] f
minp∈Pm

E(x,y)∼D[(p(x) − y)2] + ϵ, where Pm is the class

of polynomials with degree at most m.

We first show that we can truncate the labels with |y(x)| g
M ′ = M1/2/ϵ1/2 without increasing the error by a lot. We

show that for trunc(y(x)) = sign(y(x))min(|y(x)|,M ′) it

holds that (see the full version for the proof)

E
x∼N

[(f(x)− trunc(y(x)))2] f E
x∼N

[(f(x)− y(x))2] + ϵ .

For the rest of the proof, we assume that y(x) is trun-

cated at M ′. Let È(x) = TÄy for Ä = poly(ϵ/(ML)).
Note that ∥∇È(x)∥2 f M ′. From Lemma V.3, with N =
poly(d/ϵ) log(1/¶) queries, we get that with probability 1 −
¶/2 a matrix M, so that ∥M − InfÈ∥F f ϵ. Applying

Proposition VI.10 to the matrix M, we get that in the subspace

V spanned by the eigenvectors of the matrix M with eigen-

values larger than ¸ = poly(ϵ/Mk)) with dimension at most

O(poly(M ′, 1/¸, 1/ϵ)), there exists a polynomial p : V 7→ R

of degree m = poly(M2/ϵ) with Ex∼N [p2(x)] f E[È2(x)] f
(M ′)2, so that

E
x∼N

[(p(x)− È(x))2] f E
x∼N

[(f(x)− È(x))2] + ϵ/2 .

From Proposition V.6, we get that for the same polynomial

and using that Ex∼N [∥∇p(x)∥2 f mEx∼N [p2(x)], it also

holds that

E
x∼N

[(p(x)− y(x))2] f E
x∼N

[(f(x)− y(x))2] + ϵ/2 .

Let P : Rd 7→ V be the projection matrix to the subspace

V . Let (Px, y) ∼ D′, where (x, y) ∼ D. We use the

L2-regression algorithm on D′ and from Fact VI.15, using

poly((kM/ϵ)L
2/ϵ4 , 1/ϵ, log(1/¶)) samples from D′, we get a

polynomial p′ : V 7→ R so that with probability at least 1− ¶,

it holds

E
x∼N

[(p′(Px)− y(x))2] f E
x∼N

[(p(x)− y(x))2] + ϵ/2

f E
x∼N

[(f(x)− y(x))2] + ϵ .

This completes the proof of Theorem VI.2.

C. Applications of Theorem VI.2

In this section, we apply Theorem VI.2 for several real-

valued activations. We start by applying our theorem for the

class of ReLU activations.

Theorem VI.16 (Improper Learner for ReLUs Activations).

Fix M ∈ R+. Let C be the concept class containing all the
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ReLU activations with normal vectors bounded in ℓ2 norm

by M . Let D be a distribution on Rd × R such that the x-

marginal of D is the standard d-dimensional normal. There

exists an algorithm that makes Nq = poly(dM/ϵ) queries,

draws Ns = poly(d/ϵ) + 2poly(M/ϵ) log(1/¶) samples from

D, runs in time poly(Ns, Nq, d) and outputs a polynomial

p : Rd 7→ R so that with probability at least 1− ¶ it holds

E
(x,y)∼D

[(p(x)− y)2] f inf
f∈C

E
(x,y)∼D

[(f(x)− y)2] + ϵ .

Proof. To prove the above theorem it suffices to show that

C ¦ R(
√
3M2,M2, 1). Note that Ex∼N [(ReLU(w · x))4] f

Ex∼N [(w·x)4] f 3M4. Furthermore, we bound the derivative

of the activation. We have that

E
x∼N

[∥∇xReLU(w · x)∥22] = E
x∼N

[∥1{w · x g 0}w∥22] fM2 .

Therefore, it follows that C ¦ R(
√
3M2,M2, 1). An applica-

tion of Theorem VI.2 gives the result.

We next consider learning Single-index models (SIMs) with

an unknown Lipschitz link function g : R 7→ R, i.e., f(x) =
g(w · x).
Definition VI.17. We define the class of L-Lipschitz SIMs on

Rd denoted SIM(L,M) as follows. For each f ∈ SIM(L,M),
f(x) = g(w · x), for L-Lipschitz g : R 7→ R and ∥w∥2 fM .

Theorem VI.18 (Improper Learner for SIMs). Fix L,M ∈
R+. Let D be a distribution on Rd × R such that the x-

marginal of D is the standard d-dimensional normal. There

exists an algorithm that makes Nq = poly(dL/ϵ) queries,

draws Ns = poly(d/ϵ) + 2poly(LM/ϵ) log(1/¶) samples from

D, runs in time poly(Ns, Nq, d) and outputs a polynomial

p : Rd 7→ R so that with probability at least 1− ¶ it holds

E
(x,y)∼D

[(p(x)− y)2] f inf
f∈SIM(L,M)

E
(x,y)∼D

[(f(x)− y)2] + ϵ .

Proof. Note that for any f ∈ SIM(L) by definition if holds

that ∥∇f(x)∥2 f L and also that E[f4(x)] f L4 E[(w ·
x)4] ≲ M4L4. Therefore, we have that f ∈ SIM(L,M) ¦
R(M2L2, L, 1). An application of Theorem VI.2 gives the

result.

We define the class of linear combinations of ReLU net-

works.

Definition VI.19 (ReLU Networks). We define the class

Re(M,k) of ReLU networks as follows. For each f ∈
Re(M,k), f(x) = W2ReLU(W1x), for matrices W1 ∈
Rk×d,W2 ∈ {±1}k×1, with ∥W1∥op fM .

We give our result for learning linear combinations of

ReLUs, i.e., real-valued functions of the form f(x) =∑k
i=1 aiReLU(w(i) · x), where ai ∈ R. The proof can be

found in the full version of the paper.

Theorem VI.20 (Improper Learner for Linear Combinations

of ReLUs). Fix k ∈ N and M ∈ R+. Let D be a distribution

on Rd × R such that the x-marginal of D is the standard

d-dimensional normal. There exists an algorithm that makes

Nq = poly(dM/ϵ) queries, draws Ns = poly(d/ϵ) +
(kM/ϵ)poly(kM/ϵ) log(1/¶) samples from D, runs in time

poly(Ns, Nq, d) and outputs a polynomial p : Rd 7→ R so

that with probability at least 1− ¶ it holds

E
(x,y)∼D

[(p(x)− y)2] f inf
f∈Re(M,k)

E
(x,y)∼D

[(f(x)− y)2] + ϵ .

We now give an improved result for learning sums of

ReLUs, i.e., real-valued functions of the form f(x) =∑k
i=1 ReLU(w(i) · x). We first define the class of sum of

ReLUs.

Definition VI.21 (Sums of ReLU Networks). We define the

class Re+(M,k) of ReLU networks as follows. For each f ∈
Re+(M,k), f(x) = ReLU(Wx), for matrices W ∈ Rk×d,

with E[f2(x)] fM .

Theorem VI.22 (Improper Learner for Sums of ReLUs). Fix

k ∈ N and M ∈ R+. Let D be a distribution on Rd×R+ such

that the x-marginal of D is the standard d-dimensional nor-

mal. There exists an algorithm that makes Nq = poly(dM/ϵ)
queries, draws Ns = poly(d/ϵ) + (kM/ϵ)poly(M/ϵ) log(1/¶)
samples from D, runs in time poly(Ns, Nq, d) and outputs a

polynomial p : Rd 7→ R so that with probability at least 1− ¶
it holds

E
(x,y)∼D

[(p(x)− y)2] f inf
f∈Re+(M,k)

E
(x,y)∼D

[(f(x)− y)2] + ϵ .

The proof Theorem VI.22 can be found in the full version

of the paper.

Next we show our result for a general ReLU network. We

first define the clas of Deep ReLU networks.

Definition VI.23 (Deep ReLU Networks). We define

the class D(M,L, k, S) of depth-(L + 1) ReLU net-

works as follows. For each f ∈ D(M,L, k), f(x) =
WLReLU(WL−1 · · ·ReLU(W1x)), for matrices W1 ∈
Rk×d, . . . ,WL ∈ RkL×1, with ∥Wi∥op fM and ki f S.

We show the following theorem in the full version of the paper.

Theorem VI.24 (Agnostic Learner for Deep ReLU Net-

works). Fix k, S, L ∈ N and M ∈ R+. Let D be a

distribution on Rd × R+ such that the x-marginal of D is

the standard d-dimensional normal. There exists an algo-

rithm that makes Nq = poly(dM/ϵ) queries, draws Ns =
poly(d/ϵ) + 2poly(kSM/ϵ) log(1/¶) samples from D, runs in

time poly(Ns, Nq, d) and outputs a polynomial p : Rd 7→ R

so that with probability at least 1− ¶ it holds

E
(x,y)∼D

[(p(x)−y)2] f inf
f∈D(M,L,k,S)

E
(x,y)∼D

[(f(x)−y)2]+ϵ .

VII. AGNOSTICALLY LEARNING BOOLEAN MULTI-INDEX

MODELS

In this section, we present our results for Boolean multi-

index models of bounded surface area. For convenience, we

restate the class of concepts that we consider.

Definition VII.1 (Bounded Surface Area, Low-Dimensional

Boolean Concepts). We define the class B(Γ, k) of Boolean

concepts with the following properties:
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1) For every f ∈ B(Γ, k), it holds Γ(f) f Γ.

2) For every f ∈ B(Γ, k), there exists a subspace U of Rd

of dimension at most k such that f depends only on U ,

i.e., for every x ∈ Rd, f(x) = f(projUx).
3) B(Γ, k) is closed under translations, i.e., if f(x) ∈

B(Γ, k) then f(x+ t) ∈ B(Γ, k) for all t ∈ Rd.

We remark that B(Γ, k) is a general, non-parametric class.

For example B(Ω(k), k) contains LTFs, intersections of k
LTFs, and Polynomial Threhsold Functions (PTFs) of degree

at most k (that depend on a k-dimensional subspace). Our

learner is able to learn a hypothesis of low excess error

when compared against all concepts of B(Γ, k) with roughly

poly(d/ϵ) + kpoly(Γ/ϵ) runtime.

Theorem VII.2. Fix k ∈ N and M ∈ R+. Let D be a

distribution on Rd × {±1} such that the x-marginal of D is

standard d-dimensional normal. There exists an algorithm that

makes Nq = poly(d/ϵ) queries and draws Ns = poly(d/ϵ)+

poly((kΓ/ϵ)Γ
2/ϵ4 , 1/ϵ, log(1/¶)) samples from D and runs in

time poly(Ns, Nq, d) and outputs a polynomial p : Rd 7→ R

so that with probability at least 1− ¶ it holds

Pr
(x,y)∼D

[sign(p(x)) ̸= y] f inf
f∈B(Γ,k)

Pr
(x,y)∼D

[f(x) ̸= y] + ϵ .

We refer to the full version of the paper for the proof of

Theorem VII.2.

A. Corollaries for Intersections of Halfspaces and PTFs

Using Theorem VII.2, we can show the following corollary

for intersections of k halfspaces:

Corollary VII.3. Let C be the class of intersections k
halfspaces in Rd. Let D be a distribution on Rd ×
{±1} such that the x-marginal of D is the standard d-

dimensional normal. There exists an algorithm that makes

Nq = poly(d/ϵ) queries and draws Ns = poly(d/ϵ) +

poly((k/ϵ)log(k)/ϵ
4

, 1/ϵ, log(1/¶)) samples from D and runs

in time poly(Ns, Nq, d) and outputs a polynomial p : Rd 7→ R

so that with probability at least 1− ¶ it holds

Pr
(x,y)∼D

[sign(p(x)) ̸= y] f min
f∈C

Pr
(x,y)∼D

[f(x) ̸= y] + ϵ .

Proof of Corollary VII.3. For the proof, we use the fact that

the Gaussian surface area of the intersection of k halfspaces

is at most O(
√
log k) (see Theorem 20 of [71]) and then the

proof follows from Theorem VII.2.

We show that we can use Theorem VII.2 to learn low-degree

polynomial threshold functions (PTFs) that depend only on a

small dimensional subspace.

Corollary VII.4. Let C be the class of degree-ℓ PTFs in Rd

that depend on an unknown k-dimensional subspace. Let D be

a distribution on Rd×{±1} such that the x-marginal of D is

the standard d-dimensional normal. There exists an algorithm

that makes Nq = poly(d/ϵ) queries, draws Ns = poly(d/ϵ)+

poly((k/ϵ)ℓ/ϵ
4

, 1/ϵ, log(1/¶)) samples from D, runs in time

poly(Ns, Nq, d) and outputs a polynomial p : Rd 7→ R so that

with probability at least 1− ¶ it holds

Pr
(x,y)∼D

[sign(p(x)) ̸= y] f min
f∈C

Pr
(x,y)∼D

[f(x) ̸= y] + ϵ .

Proof of Corollary VII.4. For the proof, we use the fact that

the Gaussian surface area of degree-ℓ PTFs is at most O(ℓ)
(see [72]) and the proof follows from Theorem VII.2.

Finally, we show that we can use Theorem VII.2 to learn

arbitrary functions of ℓ halfspaces.

Corollary VII.5. Let C be the class of functions of ℓ halfs-

paces in Rd. Let D be a distribution on Rd×{±1} such that

the x-marginal of D is the standard d-dimensional normal.

There exists an algorithm that makes Nq = poly(d/ϵ) queries,

draws Ns = poly(d/ϵ) + poly((ℓ/ϵ)ℓ/ϵ
4

, 1/ϵ, log(1/¶)) sam-

ples from D, runs in time poly(Ns, Nq, d) and outputs a

polynomial p : Rd 7→ R so that with probability at least 1− ¶
it holds

Pr
(x,y)∼D

[sign(p(x)) ̸= y] f min
f∈C

Pr
(x,y)∼D

[f(x) ̸= y] + ϵ .

Proof of Corollary VII.5. We note that the Gaussian surface

area of functions of ℓ halfspaces is bounded above by ℓ.
From [71] (see, e.g., Fact 17), we have that the surface area

of a Boolean function f that depends on ℓ halfspaces, is

bounded above by the sum of the surface area of the individual

halfspaces; therefore, we have that Γ(f) f O(ℓ). The proof

follows from Theorem VII.2.

VIII. HARDNESS OF AGNOSTIC PROPER LEARNING OF

HALFSPACES AND RELUS WITH QUERIES

One might ask if the exponential dependence on 1/ϵ in our

upper bound (Corollaries I.6 and I.14) is necessary or just an

artifact of our algorithmic approach. In this section, we provide

some evidence that it is inherent. Unfortunately, there are very

few circumstances where one can prove computational lower

bounds against improper learners with query access to the

function. So our bounds will apply only to proper learners.

The basic idea of our argument is that if f(x) = sign(v · x)
is a linear threshold function or f(x) = ReLU(v ·x) with v a

unit vector and p(x) a polynomial, then E[f(x)p(x)] will be

a polynomial in v. As approximately optimizing low-degree

polynomials over the unit sphere is conjectured to be compu-

tationally hard, this will prove hardness for proper learning of

linear threshold functions. In particular, our hardness reduction

starts from the small-set expansion problem [70]. We then

rely on results of [93] to reduce this problem to one about

polynomial optimization. In particular we have:

Theorem VIII.1. If there is a polynomial-time algorithm

that given a1,a2, . . . ,an ∈ Rd outputs a constant factor

approximation to max∥x∥2=1
1
n

∑n
i=1(ai · x)4, then there is

a polynomial time algorithm for the small-set expansion prob-

lem.

We note here that max∥x∥2=1
1
n

∑n
i=1(ai · x)4 is a homo-

geneous degree-4 polynomial. It will be important for our
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purposes that the polynomial in question have odd degree.

Fortunately, we can reduce to this case.

Corollary VIII.2. If there is a polynomial-time algorithm that

given a homogeneous degree-5 polynomial p on Rd outputs a

constant factor approximation to max∥x∥2=1 p(x), then there

is a polynomial-time algorithm for the small-set expansion

problem.

Proof. We give a reduction to this problem from the problem

in Theorem VIII.1. In particular, given a1, . . . ,an ∈ Rd, we

let q(x) = 1
n

∑n
i=1(ai ·x)4. We then define the homogeneous

degree-5 polynomial p on Rd+1 as p(x, y) = q(x)y (where

x here represents the first d coordinates of the input and

y represents the last one). We note that if ∥(x, y)∥2 = 1,

then ∥x∥2 = a and y = b for some a2 + b2 = 1. Letting

x′ = x/a and using the homogeneity of q, we have that

p(x, y) = a4bq(x′). For fixed x′, the maximum of this over

a, b is obtained when a =
√
4/5 and b =

√
1/5. Thus, the

maximum value of p(x, y) over the unit sphere equals the

maximum value of q(x′) over the unit sphere times 16/52.5.

Thus, finding a constant-factor approximation to the maximum

value of one is equivalent to finding such an approximation of

the other. This completes our proof.

We are now ready to state our main theorem.

Theorem VIII.3 (Hardness of Proper Learning for LTFs).

Suppose that there is an algorithm that given query access

to a Boolean function f on Rd runs in poly(d) time and

approximates the minimum misclassification error between

f and a homogeneous LTF (with respect to the standard

Gaussian distribution) to additive error ϵ for some ϵ < d−10.

Then there is a polynomial-time algorithm for the small set

expansion problem.

Before we prove Theorem VIII.3, we note that any proper

agnostic learner can be used to approximate this error merely

by approximating the error between f and the learned function.

Thus, this result will imply a lower bound for learning.

Proof. We assume throughout that d is sufficiently large, as

otherwise there is nothing to prove. We proceed by a reduction

from the problem in Corollary VIII.2. In particular, let p be

a homogeneous degree-5 polynomial on Rd. Let T be the

unique symmetric tensor so that p(x) = T(x,x,x,x,x). By

scaling T, we may assume that ∥T∥2 = 1. Let q(x) = (T ·
H(x)), where H(x) is the tensor whose entries are the degree-

5 Hermite polynomials in x.

Morally, we would like to take f(x) = q(x). Unfortunately,

this does not work for two reasons.

First, f(x) needs to be Boolean, while q(x) distinctly is not.

We can fix this by taking f to be a random function, where

the expected value of f(x) equals q(x).

Unfortunately, this cannot work because the expected value

of f(x) must still be in [−1, 1], while q is unbounded. To solve

this, we first scale q down substantially and then truncate its

extreme values. To do this, we define:

t(x) =





1 if x > 1

−1 if x < −1
x otherwise.

We then divide Rd into tiny boxes of side length ¶ for some

very small ¶. For each box B, we pick an x ∈ B and

then (independently for each box) let f be 1 on B with

probability (t(q(x)/d) + 1)/2 and −1 on B otherwise. We

note that the expected value of f on B is t(q(x)/d), where

x is the representative element. As the difference between q
at the representative element x of B and at any other point

in B will be small if ¶ is (and if the box is not too far

from the origin), it is not hard to see that the expectation

over the randomness in defining f of |Ex∼N [f(x)sign(v ·
x)] − Ex∼N [t(q(x)/d)sign(v · x)]| goes to 0 with ¶. As the

variance of Ex∼N [f(x)sign(v · x)] also goes to 0 with ¶, if

we take ¶ sufficiently small, then with high probability over

the randomness in f , we have that |Ex∼N [f(x)sign(v ·x)]−
Ex∼N [t(q(x)/d)sign(v · x)]| < ϵ/2 for all unit vectors v.

Therefore, finding an ϵ additive approximation to the minimum

misclassification error between f and an LTF is equivalent to

finding a 2ϵ-additive approximation to the maximum value of

Ex∼N [f(x)sign(v · x)], which in turn is sufficient to find an

ϵ-additive approximation of Ex∼N [t(q(x)/d)sign(v · x)]. We

will show that this is computationally hard.

To start with, we note that Ex∼N [q(x)2] = ∥T∥2 = 1.

Therefore, by standard concentration bounds, we have that

Prx∼N [|q(x)| > d] = exp(−Ω(d2/5)) < ϵ3. Therefore, by

the Cauchy-Scwartz inequality, we have that

E
x∼N

[|q(x)/d− t(q(x))/d|] f
√

Pr
x∼N

(|q(x)| > d) E
x∼N

[q(Gx)2]

f ϵ/2 .
Thus, if one can approximate the maximum value of

Ex∼N [t(q(x)/d)sign(v · x)] to additive error ϵ, one can ap-

proximate the maximum value of Ex∼N [(q(x)/d)sign(v ·x)]
to additive error ϵ/2. However, we can compute this expec-

tation by comparing the Hermite expansions for q(x)/d and

sign(v · x). In particular, the former only has non-vanishing

terms in degree 5, where they are given by the tensor T/d. The

latter has its degree-5 Hermite tensor given by c5v
¹5, where

c5 = Ez∼N [h5(z)sign(z)] = (3/2)
√
1/(15Ã). Therefore, we

have that

E
x∼N

[(q(x)/d)sign(v · x)] = (T/d) · (c5v¹5)

= (c5/d)T(v,v,v,v,v)

= (c5/d)p(v) .

Thus, finding an ϵ/2-additive approximation to the maximum

value of Ex∼N [(q(x)/d)sign(v · x)] for unit vectors v is

equivalent to finding an O(d−9)-additive approximation to

the maximum value of p(v) over unit vectors v. We claim

that doing this would give a constant-factor multiplicative

approximation to the maximum value of p(v), finishing our
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reduction to the problem of Corollary VIII.2. To do this, we

need to show that the maximum value of p(v) is much larger

than d−9.

To show this, we note that because ∥T∥2 = 1, the sum

of the squares of the entries of T is 1. Since T has only d5

entries, this means that it must have some entry with norm at

least d−5. Therefore, there must be unit vectors v1,v2, . . . ,v5

so that T(v1,v2,v3,v4,v5) g d−5. However, this value is

proportional to
∑
ϵ1,...,ϵ5∈{±1} ϵ1ϵ2 · · · ϵ5p(ϵ1v1+ϵ2v2+. . .+

ϵ5v5). As each term here is proportional to p of some unit

vector (using the fact that p is homogeneous), this implies that

there is some unit vector v with |p(v)| k d−5. Replacing v

by its negation if necessary, we have that the maximum value

of p(v) over unit vectors v is Ω(d−5). This completes our

proof.

Theorem VIII.4 (Hardness of Proper Learning for ReLUs).

Suppose that there is an algorithm that given query access

to a real-valued function f on Rd runs in poly(d) time

and approximates the minimum L2
2 error between f and a

homogeneous ReLU (with respect to the standard Gaussian

distribution) to additive error ϵ for some ϵ < d−4. Then there

is a polynomial-time algorithm for the small set expansion

problem.

The proof of Theorem VIII.4 can be found in the full version

of the paper.
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