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Abstract—We study the power of query access for the funda-
mental task of agnostic learning under the Gaussian distribution.
In the agnostic model, no assumptions are made on the labels
of the examples and the goal is to compute a hypothesis that
is competitive with the best-fit function in a known class, i.e., it
achieves error opt+ ¢, where opt is the error of the best function
in the class. We focus on a general family of Multi-Index Models
(MIMs), which are d-variate functions that depend only on few
relevant directions, i.e., have the form g(Wx) for an unknown
link function g and a k x d matrix W. Multi-index models cover a
wide range of commonly studied function classes, including real-
valued function classes such as constant-depth neural networks
with ReLU activations, and Boolean concept classes such as
intersections of halfspaces.

Our main result shows that query access gives significant
runtime improvements over random examples for agnostically
learning both real-valued and Boolean-valued MIMs. Under
standard regularity assumptions for the link function (namely,
bounded variation or surface area), we give an a%nostlc query
learner for MIMs with running time O(k I’Oly“/ poly(d
contrast, algorithms that rely only on random labeled examples
inherently require d”°¥'/<) samples and runtime, even for the
basic problem of agnostically learning a single ReLU or a
halfspace. As special cases of our general approach, we obtain
the following results:

« For the class of depth-¢, width-S ReLU networks on R¢, our
agnostic query learner runs in time poly(d)2P°Y (¢S/€), This
bound qualitatively matches the runtime of an algorithm by [1]
for the realizable PAC setting with random examples.

« For the class of arbitrary intersections of & halfspaces on R?,
our agnostic query learner runs in time poly(d) 2P (les(R)/<),
Prior to our work, no improvement over the agnostic PAC
model complexity (without queries) was known, even for the
case of a single halfspace.

In both these settings, we provide evidence that the 2P°¥(1/¢)
runtime dependence is required for proper query learners, even
for agnostically learning a single ReLU or halfspace.

Our algorithmic result establishes a strong computational sep-
aration between the agnostic PAC and the agnostic PAC+Query
models under the Gaussian distribution for a range of natural
function classes. Prior to our work, no such separation was
known for any natural concept class — even for the case of
a single halfspace, for which it was an open problem posed by
Feldman [2]. Our results are enabled by a general dimension-
reduction technique that leverages query access to estimate
gradients of (a smoothed version of) the underlying label function.

Index Terms—Agnostic Noise, Multi-index models, queries

I. INTRODUCTION

a) PAC Learning with Queries: In Valiant’s PAC learning
model [3], [4], the learner is given access to random examples
labeled according to an unknown function in a known concept
class. The goal of the learner is to compute a hypothesis that
is close to the target function with respect to a specified loss
function!. The standard PAC learning model is “passive” in
that the learning algorithm has no control over the selection of
the training set. Interestingly, while this has become known as
the PAC model, Valiant’s landmark paper [4] allowed queries
(in addition to random samples), i.e., black-box access to the
target function. We will refer to this as PAC+Query model.

A query oracle® allows the learner to obtain the value of
the target function on any desired point in the domain. PAC
learning with access to a query oracle can be viewed as an
“active” learning model, intuitively capturing the ability to
perform experiments or the availability of expert advice. A
long line of research in computational learning theory has
explored the power of queries in the context of PAC learning.
This line of investigation has spanned the distribution-free
versus distribution-specific settings and the realizable (i.e.,
clean label) setting versus the agnostic (i.e., adversarial label
noise) setting; see, e.g., [S]-[8] for some classical early works
and [9], [10] for some more recent results in this broad
area. A conceptual message of this line of work is that, in
the realizable setting, access to queries can be stronger than
random samples (from a computational standpoint) for a range
of natural concept classes.

In addition to being a fundamental open question in learning
theory, the general problem of understanding the effect of
query access in the computational complexity of learning
has received renewed attention over the past decade in the
context of deep neural networks. A recent line of inquiry from
the machine learning security community has studied model
extraction attacks — see, e.g., [11]-[17] and references therein
— where black-box query access to publicly deployed net-
works may allow efficient reconstruction of the hidden model

'For Boolean functions, one typically uses the 0-1 loss, while for real-
valued functions a typical choice is the Lo loss.

2In the special case of learning Boolean-valued functions, these are known
as “membership” queries, as the answer to a query determines membership
in the set of satisfying assignments of the target concept.
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— thus exposing potential vulnerability of the deployed models.
These practical applications served as a motivation for the
design of the first computationally efficient learners for simple
neural networks using query access to the target function [18],
[19]. Importantly, the latter algorithmic results apply in the
realizable PAC model under the Gaussian distribution.

b) Multi-index Function Models (MIMs): A common
(semi)-parametric modeling assumption in high-dimensional
statistics is that the target function depends only on a few
relevant directions. Specifically, multi-index models [20]-[25]
prescribe that the target function is of the form f(x) = g(Wx)
for a link function g R* +— R and a k x d weight
matrix W. In most settings, the link function g is assumed
to be unknown and satisfies certain smoothness properties.
Single-index models are the special case where the target
function depends only on a single hidden-direction w, i.e.,
f(x) = g(w -x) for some g : R — R and w € R? [26]-
[29]. Standard examples of single-index models include one-
bit compressed sensing [30]-[32] where g(t) = sign(¢); and
phase retrieval [33], [34], where g(t) = |¢|°.

Multi-index models capture a wide range of parametric
models studied in the statistics and computer science liter-
atures, including neural networks and classes of geometric
Boolean functions. The fundamental class of halfspace inter-
sections was studied in [35] over the Gaussian distribution.
Subsequent work [36]-[40] gave improved algorithms and
bounds for more general MIM classes.

More recently, an extensive line of work [41]-[52] has
studied the efficient learnability of (natural classes of) MIMs
from random examples under well-behaved marginal distri-
butions — most notably under the Gaussian distribution on
examples. The aforementioned works exclusively focus on
the PAC model with random samples and the underlying
algorithms succeed in the realizable setting (or in the presence
of additive Gaussian label noise).

c) This Work: Agnostically Learning Multi-index Models
with Queries: Here we study the power of queries in the
agnostic PAC model [53], [54] for a wide class of multi-
index models. In the agnostic model, no assumptions are made
on the labels of the examples and the goal is to compute
a hypothesis that is competitive with the best-fir function in
a known class. This is a notoriously challenging model of
learning with very few positive results in the distribution-free
setting. For example, it is known that even weak distribution-
free agnostic learning (i.e., outputting a hypothesis with non-
trivial advantage over random) is computationally hard for
very simple classes of single-index models with known link
functions. These include linear threshold gates and single
neurons with ReLU activations [55]-[58].

In this work, we focus on the general problem of agnosti-
cally learning multi-index models under the standard Gaussian
distribution using queries. At a high-level, our results also
encompass the challenging setting where the link function is

3We note that these (distribution-free) hardness results hold even with query
access, as follows from [2].

unknown and only require an average smoothness condition
on the target function. Classes covered by our framework
include real-valued function classes such as constant-depth
neural networks with ReLU activations and Boolean concept
classes such as intersections of halfspaces. In summary, we
are interested in the following question:

Question I.1. Does query access affect the complexity of
distribution-specific agnostic learning of multi-index models?
In particular, does the availability of queries allow for qual-
itatively more efficient algorithms, compared to the vanilla
random example setting?

The main contribution of this paper is a simple and general
methodology that answers this question in the affirmative for
a broad family of multi-index function models (including all
the aforementioned examples).

A special case of Question 1.1 was explicitly asked —
in the Boolean setting — for the class of Linear Threshold
Functions by Feldman [2] and by Gopalan, Kalai, and Kli-
vans [59] As a corollary of our approach, we answer this open
question. Specifically, we provide a new query algorithm for
agnostically learning halfspaces implying a super-polynomial
separation between the two learning models (learning with
random samples versus with queries), subject to standard
cryptographic assumptions. In the following subsection, we
describe our contributions in detail.

A. Our Results

a) Problem Definition: Before we formally state our
main results, we define the agnostic learning model with
queries. For concreteness, Definition 1.2 concerns real-valued
functions, where the accuracy is measured with respect to
the Lo loss. The definition for Boolean-valued concepts is
essentially identical, where the Lo loss is replaced by the 0-1
loss.

Definition 1.2 (Agnostically Learning Real-valued Functions
with Queries). Fix € € (0,1) and a class C of real-valued
functions on RY. The adversary picks a label function y(x) €
R for every x € R The learner is allowed to either draw
x ~ N (sample access) or select any desired point x € R?
(query access) and obtain the value y(x). Let Ny € Z be the
number of samples and Nq € Z the number of queries used
by the learner. The goal of the learner is to output a hypothesis
h: R — R that, with high probability, has excess L3 error
at most € (with respect to C), i.e., it satisfies E2(h,C;y) =
Eon[(h(x) = y(x))?] — infoce Bxnnrl(e(x) — y(x))2] < €.

Remark 1.3 (Boolean-valued Functions). In the boolean-
valued setting, we focus on learning with respect to the
0-1 loss. That is, the goal of the learner is to output a
hypothesis A : R? ~ {£1} with excess 0-1 error at
most €, ie., £/1(h,Cy) = Pryn[h(x) # yx)] —
infeee Proonfe(x) # y(x)] <e.

1) Agnostically Learning Real-valued Multi-index Models:
We start by describing the family of multi-index models
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for which our results are applicable. Roughly speaking, our
algorithmic approach can be used to agnostically learn any
family of multi-index models C such that any function in C
has “bounded variation”, in the sense that the Lo-norm of
its gradient is bounded with respect to the standard normal.
We remark that similar “smoothness” assumptions, i.e., that
f belongs in a Sobolev space, are standard (and necessary)
in non-parametric and semi-parametric regression [60]. Un-
der this assumption, we show that there exists an efficient
dimension-reduction scheme that yields a “fixed parameter
tractable” agnostic learner significantly improving over the
best known algorithmic results in the agnostic PAC setting
with random examples.

We are now ready to formally define the semi-parametric
class of MIMs that we consider in this work. In the following
definition, we require that the target function is bounded in
L4-norm (with respect to the standard normal distribution) and
also that the norm of its gradient is bounded in Ly-norm.

Definition 1.4 (Bounded Variation Multi-index Models). Fix
LM > 0 and k € Z;. We define the class (M, L, k)
of continuous, (almost everywhere) differentiable real-valued
functions such that for every f € R(M, L, k):

1) It holds (Exn[f*(x))'/? < M and Exx[||V f(x)[I3] <
L.

2) There exists a subspace U of R? of dimension at most k
such that f depends only on U, i.e., for every x € R?
it holds that f(x) = f(projyx), where projyx is the
projection of x on U.

We will subsequently see that this is a very broad class of
functions subsuming commonly studied classes such as multi-
layer neural networks with ReLUs and other activations.

Our main result is an efficient algorithm that exploits the
power of queries to significantly reduce the runtime of agnos-
tically learning the semi-parametric class of Definition 1.4.

Theorem 1.5 (Agnostic Query Learner for Real-valued Mul-
ti-index Models). Fix the function class R(M,L,k) given
in Definition 1.4. There exists an algorithm that makes
N, = poly(dML/e) queries, draws Ny = poly(dML/e) +
ko (L M) pandom  labeled  examples, runs in  time
poly(Ns, Ny, d), and outputs a polynomial h R?
R such that with high probability h has L3-excess error
Es(h, R(L, M, k);y) <e

a) Comparison with Sample-Based Algorithms: As a
corollary of Theorem L.5, we establish a strong separation
between the agnostic PAC+Query model and the agnostic PAC
model (with random samples only). We first compare with
the best-known algorithm for agnostically PAC learning real-
valued functions, which is the Ly-polynomial regression algo-
rithm. To agnostically learn the class of Definition 1.4 to excess
error €, one needs polynomials of degree poly(L,M,1/e),
and thus dPoly(L-M:1/€) samples and time are necessary. The-
orem L.5 leverages the power of queries to efficiently reduce
the dimensionality of the problem, and thus qualitatively
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improve the computational complexity of agnostic learning to
pOly(d) kpoly(L,M,l/s).

Given the assumption of Definition 1.4 that the target func-
tion depends only on an unknown k-dimensional subspace, it is
natural to attempt some kind of dimension-reduction technique
in order to reduce the sample and computational complexity
of learning. Such reductions are indeed often possible in
the realizable setting by using some form of PCA and then
working in the obtained low-dimensional subspace; see, e.g.,
[61].

On the other hand, in the agnostic setting considered
here, there is strong evidence that such dimension-reduction
schemes, or any other runtime improvements whatsoever, are
impossible using only sample access to the target function.
Specifically, a recent line of work (see, e.g., [62], [63])
has shown that for agnostically learning real-valued MIMs
(even very special cases thereof), the standard Lo-regression
algorithm is qualitatively optimal computationally (e.g., under
standard cryptographic assumptions) in the standard agnostic
PAC model. This in particular implies that the best possible
runtime without query access is dP°Y(1/€)_ In fact, even for
learning a single ReLU activation, which satisfies Defini-
tion 1.4 with L, M = O(1) and k = 1, d*°Y(*/¢) samples and
time are required [62], [63]. In contrast, Theorem 1.5 decouples
the dimension dependence from the dependence on 1/¢ and
yields an algorithm with runtime poly(d) 2P°¥ (/).

b) Concrete Applications: Theorem 1.5 applies to a fairly
general non-parametric class of functions. Here we provide
specific applications to well-studied classes of neural net-
works.

Single Non-Linear Gates. The simplest case is that of agnos-
tically learning a ReLU, i.e., a function of the form f(x) =
ReLU (w - x), where w € R? and ReLU(t) = max{0,t}.
In the vanilla agnostic PAC setting, the complexity of this
problem is dP°Y(1/€)(both upper and lower bounds). On the
positive side, the Lo-polynomial regression algorithm has
sample and computational complexity d®®°¥(1/€)) On the
negative side, there is strong evidence that this complexity
upper bound is qualitatively best possible, both for SQ al-
gorithms [62], [64], [65] and under plausible cryptographic
assumptions [63]. Our agnostic query learner has complexity
poly(d) 2P°¥(1/€) implying a super-polynomial separation
between the two learning models.

Corollary 1.6 (Agnostic Query Learning for ReLUs). There
exists an agnostic query learner for the class of ReLUs on R?
with running time poly(d) 2P°Y(1/€),

Corollary 1.6 follows from Theorem 1.5 by observing that
ReLUs satisfy Definition 1.4 for £ = 1 and L, M = O(1)
(assuming that the norm of the weight vector is bounded, i.e.,
[wll2 = O(1)).

Note that selecting the excess error to be € = 1/log®(d),
where ¢ > 0 is a small constant, the query algorithm of
Corollary 1.6 has poly(d) runtime. On the other hand, the
complexity of agnostic learning problem with random samples
is super-polynomial in d for any € = 04(1).
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Finally, we note that Corollary 1.6 holds for other link
functions satisfying smoothness assumptions, e.g., sigmoidal
activations of the form ¢ — 1/(1 + exp(—t)).

Single-index Models. Our first application above assumed that
the link function is known a priori.We next consider learning
Single-index models (SIMs) with an unknown Lipschitz link
function ¢ : R — R, ie, f(x) g(w - x). Classical
results [66], [67] gave efficient algorithms for this setting in
the realizable PAC setting (or with unbiased additive noise)
under the additional assumption that g is non-decreasing. The
agnostic setting was recently considered in [68] who gave an
efficient algorithm achieving error O(/opt) + € for distri-
butions with bounded second moments (similarly assuming
weight vectors of bounded /¢s-norm). Using Theorem I.5,
we can leverage query access to provide optimal agnostic
guarantees with essentially the same complexity as for the
case of known link function.

Corollary 1.7 (Agnostic Query Learning for Lipschitz SIMs).
There exists an agnostic query learner for the class of L-
Lipschitz SIMs on RY, for L O(1), with running time
poly(d) 2pely(1/e),

One-Hidden Layer ReLU Networks. Our approach naturally
extends to non-negative linear combinations (aka sums) of Re-
LUs, i.e., functions of the form f(x) = 31 a(ReLU(w(®.
x) for k non-negative weights a(¥ > 0 and weight vec-
tors w) € RZ Prior work [41], [42], [46], [69] has
studied this problem in the noiseless setting with random
samples under the Gaussian distribution — with the best-
known runtime being poly(d/e) (k/e)O“"gz k) [69]. Using
Theorem 1.5, we obtain an agnostic query learner with com-
plexity poly(d)O(k)P°Y(1/€), To see this, we note that as long
as E[f%(x)] = O(1) we also obtain that E[||V f(x)||3] = O(1)
which implies only an O(k)P°Y(1/¢) runtime overhead.

Our approach can also be applied to the more general
class of (unconstrained) linear combinations of k£ ReL.Us, i.e.,
functions of the form f(x) = Y% | aReLU(w(® - x). This
is known [46], [50]-[52] to be a more challenging class of
functions to learn. In the noiseless setting, the best known
runtime for general linear combinations is (dk/e)?*) [52].
Using Theorem 1.5, we obtain an agnostic query learner with
complexity poly(d) 2Py (k/e),

Corollary 1.8 (Agnostic Query Learning for 1-Hidden
Layer ReLU Networks). There exists an agnostic query
learner for sums of k ReLUs on R? with running time
poly(d) O(k)P°¥ (/<) For general linear combinations of
ReLUs, the runtime is poly(d) 2P°WY(*/€),

Bounded Depth Neural Networks. Our non-parametric func-
tion class of Definition 1.4 includes deep ReLU networks with
¢ layers of width at most S. More precisely, we assume that
f(x) = WLReLUW_p_;---ReLU(W;x)), for matrices
W, € REvxd W, € RFXL with ||[W;]|,p < O(1) and
k; < S; see Definition VI.23 for more details. The running
time of our algorithm for this class is poly(d)2P°¥(#5/e);
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TABLE I: Learning Real-Valued Functions using Queries:
Running time comparisons of the best known PAC algorithms
with our PAC+Query technique (Influence PCA).

Function Class PAC (without queries)

L2 Regression

PAC+Query
Influence PCA (Ours)

Single ReLU dpoly(1/€) poly(d) 2Pely(1/€)
Sum of k& ReLUs droly(1/¢) poly(d) O(k)Pely(1/e)
Linear Combinations dpoly(k/e) poly(d) 2rely(k/e)
of k ReLUs

Deep Networks qpoly(£S/e) poly(d) 2pely(¢S/€)

with ¢-Layers, S-width

Bounded Variation dpoly(k,L,M,1/¢)

pOly(d) gpoly(k,L,M,1/¢)

see Theorem VI.24. We remark that a similar fixed-parameter
tractability result for deep ReLU networks was recently shown
in [1] for the realizable PAC setting (with access to random
examples only). Our result exploits the power of queries to
provide a learner with qualitatively similar running time in the
much more challenging agnostic setting. We remark that the
following result can be readily extended to other continuous
activation functions, including sigmoids, LeakyReLUs, and
combinations thereof.

Corollary 1.9 (Agnostic Query Learning for Bounded-Depth
Networks). There exists an agnostic query learner for (-
depth, S-width, ReLU networks on R with running time
poly(d)2proly(¢5/€),

For a summary of our results for the above classes, we
refer to Table I (where for the Ly-regression algorithm we
only assume random sample access).

c) Proper versus Improper Learning: The hypothesis
computed by the algorithm of Theorem .5 is not necessarily
in the target concept class. That is, the agnostic learner is
improper. With some additional effort, our approach can be
used to obtain proper learners. As a concrete example, for the
class of ReLUs, we show the following:

Theorem 1.10 (Proper Agnostic Query Learner of ReLUs).
There exists an algorithm that makes poly(d/e) queries, runs
in time poly(d) 2eoly(1/€) - and properly agnostically learns
the class of ReLUs on R?, i.e., it outputs a ReLU hypothesis
h(x) = ReLU(W -x) with excess L3 error at most € with high
probability.

We note that in addition to computing a ReLU hypothesis,
the learner of Theorem 1.10 uses poly(d/e) labeled examples
(queries plus random examples), removing the extraneous
2rly(1/€) term in our generic result.

It is natural to ask whether the 2P°¥(1/¢) runtime depen-
dence in Theorem 1.10 is inherent. We provide evidence that
such a dependence may be necessary for proper learners.
Specifically, we show (Theorem VIIL.4) that if there exists
a poly(d/e) agnostic proper learning for our problem, there
exists a polynomial-time algorithm for the small-set expansion
(SSE) problem [70] (refuting the SSE hypothesis). This hard-
ness result also extends to the Boolean class of halfspaces.
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Obtaining a computational lower bound for improper learners
is left as an interesting open problem.

2) Agnostically Learning Boolean Multi-index Models: We
start by describing the family of Boolean functions for which
our results are applicable. Roughly speaking, our algorithmic
approach can be used to agnostically learn any Boolean
concept class C satisfying the following conditions: (i) C has
bounded Gaussian surface area, (ii) it depends on an unknown
low-dimensional subspace, and (iii) it is closed under transla-
tions. Under these assumptions, we similarly obtain a “fixed
parameter tractable” agnostic learner qualitatively improving
over the agnostic PAC setting with random examples only.

The Gaussian surface area of a Boolean function is the
surface area of its decision boundary weighted by the Gaussian
density (Definition I.11). The Gaussian surface area of a con-
cept class has played a significant role as a useful complexity
measure in learning theory and related fields; see, e.g., [71]—
[75]. A formal definition follows:

Definition I1.11 (Gaussian Surface Area). For a Borel set
A C RY, its Gaussian surface area is defined by T'(A) =
lim infs_,o N(A;\A>, where As = {z : dist(z, A) < 0}. For
a Boolean function f : R — {1}, we overload notation
and define its Gaussian surface area to be the surface area
of its positive region K = {x € R? : f(x) = +1}, ie,
I'(f) = T(K). For a class of Boolean concepts C, we define
D(C) = sup e T(f):

We are ready to define the class of Boolean multi-index
models for which our approach applies.

Definition 1.12 (Bounded Surface Area, Low-Dimensional
Boolean Concepts). Fix I' > 0 and k € Z,. We define
the class B(I',k) of Boolean concepts with the following
properties:

1) For every f € B(T, k), it holds T(f,) <T for all r € R,
where fp(x) = f(x +r).

2) For every f € B(T, k), there exists a subspace U of R? of
dimension at most k such that f depends only on U, i.e.,
for every x € R it holds f(x) = f(projyx).

We remark that B(T', k) is a general non-parametric class
that contains a range of natural and well-studied Boolean
function classes. For example, B((k), k) contains arbitrary
functions of £ halfspaces.

Our main positive result in this context is a query algorithm
that agnostically learns the class B(I", k) with running time
poly(d)kPe¥('/€) In more detail, we establish the following
theorem:

Theorem I.13 (Agnostic Learner for Boolean Multi-index
Models). Fix the concept class B(T',k) given in Defini-
tion 112. There exists an algorithm that makes N,
poly(d/e) queries, draws N, = poly(d/e) + O(k)Poy (/)
random labeled examples, runs in sample-polynomial time,
and outputs a hypothesis h : R* — {+1} with excess 0-1
error E1(h, B(T, k);y) < e

1935

a) Discussion: Some remarks are in order. We start by
noting that, in the setting of Theorem I1.13, an exponential
dependence on the parameter I' is information-theoretically
necessary — even with access to queries. Specifically, as
shown in [71], there exists a Boolean concept class with Gaus-
sian surface area I' (consisting of intersections of halfspaces)
such that the total number of samples and queries required to
obtain constant accuracy is 21,

It is worth comparing Theorem 1.13 with the best known
algorithmic results in the standard agnostic PAC model (with
random samples only). Klivans, O’Donnell and Servedio [71]
showed that the L;-polynomial regression algorithm of [76]
agnostically learns any concept class on R? whose Gaussian
surface area is at most I' > 0 with (sample and computational)
complexity dP°Y(I'/€), Under the additional assumption that
the concepts in the target class depend on an unknown k-
dimensional subspace, for some parameter k& < d, Theo-
rem 1.13 gives a significantly improved agnostic query algo-
rithm with computational complexity poly(d) kP°Y(T/€),

For a concrete example, if the target class is the concept
class consisting of any intersection of ¢ halfspaces, then we
have that £k = ¢ and I' = O(y/log(¢)) [71]. So, as long as
¢ = 0O(1) or even ¢ = polylog(d), query access allows us to
obtain a super-polynomial complexity improvement.

b) Concrete Applications: Theorem 1.13 applies to a
fairly general non-parametric class of functions. Here we pro-
vide specific applications to well-studied classes of Boolean
functions.

Halfspaces. Arguably the simplest application is for the class
of halfspaces. A halfspace (or Linear Threshold Function) is
any Boolean-valued function f : R? — {41} of the form
f(x) = sign (w - x — ), where w € R? is the weight vector
and 6 € R is the threshold. (The function sign : R — {£1} is
defined as sign(t) = 1 if ¢ > 0 and sign(¢) = —1 otherwise.)
The problem of PAC learning halfspaces is a textbook problem
in machine learning, whose history goes back to Rosenblatt’s
Perceptron algorithm [77]. As a corollary of Theorem 1.13, we
obtain the following:

Corollary 1.14 (Agnostic Query Learning of Halfspaces).
There exists an agnostic query learner for the class of halfs-
paces on R with running time poly(d) 2P°y(1/€),

Corollary 1.14 follows from Theorem 1.13 by observing that
halfspaces satisfy Definition .12 for k = 1 and T' < 1/+/27.

As mentioned in the introduction, Corollary 1.14 answers
an open question independently posed by Feldman [2] and by
Gopalan, Kalai, and Klivans [59]. Specifically, as we explain
below, it implies a super-polynomial computational separation
between agnostic query learning and agnostic learning with
random samples for the class of halfspaces.

In the vanilla agnostic PAC setting, the complexity of this
problem is d”°V(1/9); the upper bound follows via the Li-
polynomial regression algorithm [76] which has complexity
de/€) [78] in this setting. The matching lower bound
follows from a recent line of work, both in the SQ model [62],
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[64], [65] and under plausible cryptographic assumptions [58],
[63].

Functions of Halfspaces. A more general concept class where
our general approach is applicable is that consisting of all
intersections (or arbitrary functions) of a bounded number of
halfspaces. For the special case of intersections, we show:

Corollary I.15 (Agnostic Query Learning for Intersections
of Halfspaces). There exists an agnostic query learner for
intersections of { halfspaces on R with running time
poly(d) O(¢)pely(loe(®)/€)

Corollary 1.15 follows from Theorem 1.13 by observing that
intersections of ¢ halfspaces satisfy Definition 1.12 for k = ¢
and that their Gaussian surface area is bounded above by I' =
O(/log(¢)), as shown by Nazarov (see, e.g., [71], [79]).

Analogously to the case of a single halfspace, the complex-
ity of the agnostic learning problem with random samples is
significantly worse (as long as £ < d), namely d@rey(los(6)/e);
the upper bound follows from [71] and a qualitatively match-
ing SQ lower bound was given in [62], [80].

Finally, for arbitrary functions of ¢ halfspaces, the Gaussian
surface area is bounded by I' = O(¥¢), leading to the following
corollary:

Corollary 1.16 (Agnostic Query Learning for Functions of
Halfspaces). There exists an agnostic query learner for ar-
bitrary functions of ¢ halfspaces on RY with running time
poly(d) O(£)PoV /).

Similarly, the best known complexity upper bound with ran-
dom samples is POV /),

Low-degree Polynomial Threshold Functions (PTFs). An-
other notable application is for the class of low-degree PTFs
that depend on a low-dimensional subspace. A degree-¢ PTF
is any Boolean function f : RY — {£1} of the form
h(x) = sign (p(x)), where p : R¢ — R is a degree at most £
polynomial. Low-degree PTFs have been extensively studied
in theoretical machine learning and specifically in the context
of agnostic learning [72], [81]-[83].

Here we consider a natural subclass of low-degree PTFs
where the underlying polynomial is a subspace junta. Specif-
ically, we consider the class of Boolean functions of the
form f(x) = sign (p(projyx)), where U is an unknown k-
dimensional subspace and p is a degree-¢ polynomial in k
variables. Since the Gaussian surface area of this class of
functions is bounded above by I' = O(¢) [72], we obtain
the following corollary:

Corollary 117  (Agnostic  Query Learning for
Low-Dimensional PTFs). There exists an agnostic
query learner for degree-f PTFs on R? that depend on
an unknown k-dimensional subspace with running time
poly(d) O (k)P (/o).

The above running time bound should be compared with
the best known complexity bound of dP°¥(¢/€) for agnostic
learning with samples [72].
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TABLE II: Learning Boolean Concepts using Queries: Run-
ning time comparisons of the best known agnostic learners
(using random samples) with our Influence PCA technique
(using queries).

Concept Class PAC (without queries) PAC+Query

L1 Regression [71] Influence PCA (Ours)

Single Halfspace droly(1/¢€) poly(d) 2poly(1/€)
Intersections of k Halfspaces dpoly(log(k)/€)  poly(d) 2rely(log(k)/e€)
Functions of k Halfspaces droly(k/e) poly(d) opoly(k/e)
Degree-¢, k-Dim. PTFs* droly(£/e) poly(d) O(k)POIY(Z/‘)
Low-Dim. Geometric Concepts dpoly(T'/e) poly(d) O(k)Poly(T'/€)

Table II summarizes our contributions for Boolean concept
classes in comparison to prior work on agnostic PAC learning
(with random samples only).

II. TECHNICAL OVERVIEW

We leverage query access to develop a unified dimension-
reduction framework for agnostically learning both real-
valued and Boolean-valued multi-index models. As already ex-
plained after the statement of Theorem 1.5, natural dimension-
reduction approaches that work in the realizable (noiseless)
setting inherently cannot be extended to the agnostic setting.

At a high-level, our framework reduces the problem of
agnostically learning MIMs in d dimensions to agnostically
learning the same class in poly(k/e) dimensions. It consists
of three main steps:

« First we use queries to the label function to simulate gradient
queries to a “smoothed” version y(x) of the adversarial
label y(x). We show that, as long as the concept class
of interest has bounded variation (real-valued MIMs of
Definition 1.4) or bounded Gaussian surface area (Boolean
MIMs of Definition 1.12), a hypothesis that has low excess-
error with respect to the smoothed label y will also have
low excess error with respect to the original label y(x); see
Proposition II.1.

The second step uses gradient queries to the function
y in order to compute an accurate estimate of the in-
fluence matrix of the “smoothed” label, namely M
E.n[V7(x)(Vy(x))T]. We perform PCA on M and
find the top eigenvectors (i.e., the eigen-directions whose
corresponding eigenvalues are larger than some threshold).
This method is known as outer gradient product [24]; in the
context of learning/testing Boolean concepts, it has been
used in [75], [84]. (See Section III for a detailed summary
of related work.) We show that those “high-influence” direc-
tions form a low-dimensional (i.e., of dimension poly(k/¢))
subspace such that there exists a hypothesis that (i) depends
only on the low-dimensional subspace, (ii) has bounded
surface area/variation, and (iii) is close to our target function.
That is, we effectively reduce the dimension of our original
learning task from d down to poly(k/e).

4The surface area bound was proved in [72].
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o The third step is to solve an agnostic learning task of
a bounded variation/surface area function in the low-
dimensional subspace spanned by the top eigenvectors
of M. For this step, for learning real-valued MIMs, we
rely on a generic Lo-regression algorithm; for learning
Boolean concepts, we use the L;-polynomial regression
agnostic learner of [71], [76]. Those methods yield non-
proper learning algorithms — to obtain proper-learners, we
essentially perform a brute-force search over a net of the
low-dimensional parameter space found in the previous step.

A. From Zero- to First-Order: Gradient Queries via Oracle
Queries

Intuitively, having access to queries, for some example x,
we can ask for the values of y(x) in a “small” neighborhood
around x and therefore estimate the gradient Vyy(x). The first
issue that we have to overcome is that the observed label y(x)
is not guaranteed to be a differentiable function (even if the
underlying target function is). To circumvent this issue, we
employ a strategy similar to the Gaussian convolution tech-
nique used in zero-order (gradient-free) optimization [85]. In
particular, to estimate the gradient of a function y(-) at x only
having access to a value oracle, the method samples z from a
mean-zero Gaussian with small covariance, i.e., z ~ N (0, pI)
for some small p, and then asks for the value of the function
at x + pz. Even if the function y(-) itself is non-smooth, then,
by Stein’s identity, we have E,. [z y(x + pz)] < Vy(x)
(see Lemma V.4), where y(x) is a smoothed version of
y(x), specifically y(x) E.n[y(x + pz)]. By drawing
N = poly(d/e) Gaussian samples z(V, ... z0"), we can
empirically estimate the gradient of y(+) at every desired point
x € R? Therefore, by performing N queries on the points
z(%), we obtain an approximation of the gradient V7(x) for any
x. Even though the above technique yields gradient estimates,
it comes with a cost: fo obtain the “smooth” label y(x), we
add noise to the (already corrupted) label y(x). Our plan is to
argue that learning using the resulting smoothed labels y(x)
yields a good classifier for the original instance — as long as
the “smoothing” parameter p is sufficiently small.

a) Ornstein—-Uhlenbeck Smoothing: One could hope that
if we add a small amount of noise to y(x), the smooth
label y(x) will be close to y(x) (at least in the Lo-sense).
Unfortunately, this is not true (even in one dimension), as y(x)
may be an arbitrarily complex function and after smoothing
y(x) may be far from y(x); see Figure 1. To be able to learn
from the smoothed instance, we need two properties: (i) the
resulting marginal distribution on the examples must be close
to the initial x-marginal, and (ii) the smoothing operation must
not increase the excess error of the functions in the hypothesis
class by a lot. In other words, a hypothesis that performs
well with respect to the smoothed label y(x) should also
perform well with respect to the original label y(x). Applying
the Gaussian convolution smoothing x + pz yields a normal
distribution that has covariance (1 + p)I. In order to make
this distribution be close to a standard normal (say, in total
variation distance), one would need to apply a tiny amount of
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noise, i.e., p should be at most poly(1/d). To avoid changing
the x-marginal of the instance, instead of simply convolving
with a Gaussian kernel, we apply the Ornstein—Uhlenbeck
noise operator T}, that rescales x and corresponds to the
transformation X = /1 — p?x+pz. We observe that X follows
a standard normal distribution. The resulting “smoothed” label
y is now defined as T,y(x) = E,n[y(X)]. Even though the
marginal of X matches exactly with the initial marginal, we
have introduced noise to the instance and we still need to show
that this does not significantly affect the performance of the
hypotheses in the function class of interest.

We show that, regardless of how complex the label y(x)
is, if the function class of interest is “well-behaved” —
in the sense that it only contains concepts with bounded
variation/Gaussian surface area — the Ornstein—Uhlenbeck
noise process will not significantly affect the excess error of
a hypothesis h.

Proposition II.1 (Informal — Ornstein—Uhlenbeck Smoothing
Preserves the Risk-Minimizer). Let y : R¢ — R and C be a
class of functions over R? such that for every f € C it holds
Exn[IVF(x)|3] < L. Let f € C be an Lo risk minimizer
with respect to the smoothed label T,y (see Definition V.I),
ie, [ € argmin,c o Exon[(h(x) — T,y(x))?]. Then we have
that

(F6) = ()7 < juf, Pr[(£060) = y(x))*] + O(*L).

Pr |
x~N
At a high-level, the effect of the noise operator 7}, on
the risk minimizer is milder when the function does not
change very rapidly. To prove Proposition II.1, we show
that the correlation of any hypothesis f with bounded varia-
tion is approximately preserved when we replace y(x) with
T,y(x). The correlation of f with respect to T,y(x) is
Exn[f(x)T,y(x)]. However, since T, is a symmetric linear
operator, we can equivalently apply the smoothing 7}, to f
and consider Ex. [T, f(x)y(x)]. Since f(x) has bounded
variation, we can now show via a result on noise sensitivity
for real-valued functions, that T),f(x) is indeed close to
f(x) in L3. Therefore, the correlation Exn [T, f(x)y(x)]
is close to Exn[f(x)y(x)]. The fact that T,,f and f are
close is intuitively clear: the smaller the variation of f,
Exn[IV£(x)|2], the smaller the effect of slightly perturbing
a point x will have on the L2, as the L2 distance between f(x)
and f(y/T — px+ pz) is roughly proportional to p?||V f(x)||2.
For more details, we refer to Section V and Proposition V.6.
For learning Boolean concepts, we identify their Gaussian
Surface Area to be the crucial complexity measure that de-
termines the effect the smoothing operator 7}, has on the
agnostic learning instance. Similarly to our result for real-
valued functions, we reduce preserving the excess error to
preserving the correlation of concepts, i.e., ensuring that
Exn[f(x)T,y(x)] — Exon[f(x)y(x)] is small for all con-
cepts of interest f — see Proposition V.10 — and then use a
result of Ledoux [86] and Pisier [87] to show that correlations
are indeed approximately preserved when the concepts have
bounded Gaussian Surface Area; see Proposition V.10.
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Fig. 1: Smoothing the label y(x). The label y(x) corresponds
to the “square wave” (shown in blue). The smoothed version
y(x) is the red curve. We observe that y(x) and y(x) are far
(in the Lo sense).

B. Learning Bounded Variation Functions via Influence PCA

a) Real-Valued MIMs: Up to this point, we have estab-
lished that (i) we can leverage query access in order to effi-
ciently simulate gradient queries for the Ornstein—Uhlenbeck
smoothed label 7,3, and (ii) learning from the smoothed label
T,y is approximately equivalent to learning from the original
label y(x). We will now describe an efficient learner that uses
the gradient queries to T)y.

Our learner is based on estimating the influence matrix of
T,y, i.e., M = Exun[VT,y(x)(VT,y(x)) "], using gradient
queries. Our main structural result is a general dimension-
reduction tool establishing the following: given (an approxi-
mation of) the influence matrix of the smooth function T,y,
we can perform PCA and learn a low-dimensional subspace
V' so that a bounded variation function that depends only on
V' can achieve € excess error with respect to 7,y in L2. This
dimension-reduction step crucially relies on the target concept
being low-dimensional (see Definition 1.4).

In fact, our dimension-reduction proof for real-valued con-
cepts shows directly that a low-degree polynomial that depends
only on the low-dimensional space V exists.

Proposition IL.2 (Informal Statement of Proposition VI.10—
Dimension Reduction via Influence PCA: Real-Valued
Functions ). Let y(x) T,y(x) and let M
En[VY(x)(VH(x))T]. Moreover, let V be the subspace
spanned by all the eigenvectors of M whose corresponding
eigenvalues are at least €2/(kM). The following holds:

o The dimension of V is at most poly(M,k,1/p,1/e).
o There exists a polynomial q : V +— R of degree m
O(L/€?) such that

F, [(a(projy () — 7(x))°]

< inf
FER(M,L,k) x~N

To prove Proposition 1.2, we explicitly construct a low-
dimensional polynomial as follows: we first marginalize out
the low-influence directions of ¥(-), and then we keep its low-
degree Hermite approximation.

E [(f(x) - §(x)*] +e.
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b) Marginalizing Low-Influence Directions: We first
construct a low-dimensional (not necessarily polynomial) ver-
sion of the noisy label % that preserves the correlation with
the target function f(-). By the assumption of Proposition II.2,
all directions in the orthogonal complement V1 are low-
influence, i.e., for h € V= it holds Exy[(h - Vy(x))?] <
O(€%/k). In words, the function % is “approximately con-
stant” along some low-influence direction h. Let us first
assume that 7 is exactly constant on all directions of V.
Then, in order to preserve the correlation of y with f, we
only need to match the expected value of 3 over V. This
motivates the following “Gaussian Marginalization Operator”
(IIyg)(x) = E,n[g(projyx + projy.z)] (see Defini-
tion VI.5 and Lemma VI.6). So a natural low-dimensional
“approximation” of 7 is Il y. Indeed, if § was constant on
VL, using the fact that projy x and projy,. x are independent
standard Gaussians, we would obtain that

B E_j(orojy (x)+projy () f()]]—_E [70)(x)

Our goal is to show that the Gaussian marginalization Iy gy
achieves similar correlation with y as f, when ¥y is not
constant in V1 but “approximately constant”, i.e., it has low-
influence in directions of V. In Lemma VL12 we show
that when V1 contains only low-influence directions, the
same is approximately true (up to some additive e error):
Exnv[(y(x) — Oyy(x))f(x)] < O(e). To do this, we first
observe that since f depends only on the subspace U, it
holds that II;;f = f; and since IIyy depends only on V,
we can restrict our attention inside the relevant subspace
W = U + V. We can thus restrict our attention on W,
ie., BEzony [(7(2) — Ty y(z)) f(z)], where Ny is a standard
normal on the subspace W. We will show that this correlation
difference can be bounded by the variance of ¥ in the irrelevant
directions. Indeed, by the Cauchy-Schwarz inequality, we have

B [(5z) - y2)f(2)
1/2 1/2
o) (B 166 - i)

z~Nw
( B
x~Nw
We next relate the L3 error introduced by the marginalization
operation Iy, on ¥ with the influence matrix M. We use the
Gaussian Poincare inequality, which states that for some g(¢) :
R — R it holds Var;.x[g(t)] < Eiun[(g'(t))?]. We obtain
that for any subspace R = r* (the orthogonal complement
to the direction r) the variance E,. i, [(4(z) — Iy (2))?]
is bounded above by Eyny, [(VH(x) - 1)?] = r'Mr. By
repeatedly applying the Gaussian Poincare inequality on a
basis of the (at most) k-dimensional subspace V+ N W, we
show that

LB 1((2) ~ Tvi(2)°] < Mk

- E
x~N

<

max r Mr
reV4 |rfl2=1

<k O(E/(kM) = O(é%).
In the above bound, we observe that accepting eigenvectors

with corresponding eigenvalues at least €2/(Mk) ensures that
Iy y achieves at most O(e) worse correlation with f than .
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¢) The Low-Degree Polynomial Approximation: We have
established that IIyy is similar to § in the sense that it
has similar (up to €2) correlation with the target function
f(-). To obtain a polynomial with a similar behavior, we
use the low-degree Hermite expansion of IIyy, which we
denote by P, Ilyy, where P,g maps the function g to its
m-degree Hermite expansion. We show that in order for
P, Iy to achieve low L3 excess error, it suffices to pick
the degree m so that P, f(x) is close to f(x) (in L%). We
show that the following bound for the excess error defined as
(a0, £39) = Exan [(J(%) —4(x))?] = Exon [(5(x) - f(x))?].
We refer to Lemma VI.11 for the formal statement and proof.

Lemma I1.3 (Informal — Excess L% Error Decomposition). It
holds

E2(Pullv, £5v) < 0(1)( Ponf ()

Polynomial Approximation Error
+ E [x) - M)/ (x)] )

Correlation Error

E [(f(x) -

x~N

Since f(x) has bounded variation (see Definition 1.4), we
can show using a result from [74] (see Lemma VI.4) that
with degree m = O(L/€?), it holds that Ex n[(f(x) —
P,,f(x))?] = €. Moreover, in the previous paragraph, we have
already established that the correlation error is also O(e).

d) Polynomial Regression in V: So far, we have identi-
fied the subspace V' and we know that there exists a polyno-
mial that depends on V' and achieves low L3 error with the
smoothed label y = T,y. Since we have established that the
smoothing operation T}, does not affect the excess error of a
bounded-surface area concept by a lot (see Proposition II.1),
we know that the same concept will achieve low excess-error
with respect to the original label y. Having established this, for
our final step we may directly perform polynomial regression
in the low-dimensional subspace V' to learn a polynomial
with low-excess error. Since the dimension of V' is roughly
poly(Mk/e€) and the degree of the polynomial is poly(L/€),
the total sample and computational complexity of this task is
roughly kPoly(L/€),

e) Boolean MIMs: At a high level, the proof and al-
gorithm for Boolean MIMs is similar to that for real-valued
MIMs. We show the following dimension reduction lemma
that essentially reduces the initial problem to learning a
bounded surface area concept in a poly(k/e)-dimensional
subspace V.

Proposition I1.4 (Informal Statement — Dimension-Reduc-
tion via Influence PCA: Boolean Concepts). Let V be
the subspace spanned by all the eigenvectors of M
Exn[VT,y(x)(VT,y(x)) "] whose corresponding eigenval-
ues are at least Q(€%/k). The following holds:
e The dimension of V is at most poly(k/(ep)).
o There exists g : R? — {1} with T'(g) < T and g(x) =
g(projy x) for all x € R? such that

E o) -Ty(x)] < E [1f (0~ Tyl +e.

inf
feB(T,k)x
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So far, we have identified the subspace V' and we know
that there exists a bounded surface area Boolean concept that
depends on V' and achieves low L error with the smoothed
label T},y. Since we have established that the smoothing oper-
ation T}, does not affect the excess error of a bounded-surface
area concept by a lot (see Proposition II.1 and Lemma V.11),
we know that the same concept will achieve low excess-error
with respect to the original label y. Having established this,
for our final step we may use the L;-agnostic learner of [71]
on the k-dimensional subspace V to learn a PTF of degree
poly(I'/e) with (dim(V))Pel¥(T/e) = gpoly(T/€) samples and
time.

C. Hardness of Proper Agnostic Query Learning for ReLUs
and Halfspaces

Here we sketch our hardness reduction, establishing that
the exponential dependence in 1/¢ is inherent for proper
agnostic learners, even with query access to the function
(see Theorem VIIL.3 and Theorem VIIL.4). In particular, we
show that assuming there are no polynomial-time algorithms
for the Small-Set Expansion (SSE) problem [70], then there
are no polynomial time proper agnostic learning algorithms
for ReLUs and homogeneous halfspaces with respect to the
Gaussian distribution.

The basic idea of our argument is to reduce to the prob-
lem of (approximately) optimizing a homogeneous degree-4
polynomial over the unit sphere (for the case of halfspaces
we reduce to optimizing a degree-5 polynomial). As there
are already known reductions from SSE to the problem of
finding approximate maxima of degree-4 polynomials (and
for halfspaces we can do a simple reduction from degree-4
to degree-5) this will suffice.

For this, we note that if f(x) is a polynomial and g(x) =
ReLU(v - x) for v a unit vector, then E[f(x)g(x)] is a low-
degree polynomial in v. In fact, by specifying f, we can make
this into any homogeneous degree-5 polynomial we desire.
This gives us SSE hardness of approximating E[f(x)g(x)].

If f were a Boolean function we would be done. However,
as this is not the case, we need two additional steps. Firstly,
we scale down f and truncate it so that its values stay within
[-1,1] (note that this introduces only a small error if the
average size of f is small). Second, we replace f by a
random Boolean function f so that E[f(x)] = f(x). Doing
this, it is not hard to see that with high probability over the
randomness of defining f that E[f(x)g(x)] is arbitrarily close
to E[f(x)g(x)] for all functions g.

Now even if the algorithm was given an explicit description
of our function f, finding a ReLU function g that approxi-
mately maximizes E[f(x)g(x)] is essentially equivalent to ap-
proximately optimizing a homogeneous degree-5 polynomial
of the sphere, which is SSE-hard.

III. RELATED WORK

Here we discuss prior and related work that was not already
discussed in the introduction.
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a) Comparison to Prior Work: We start by providing an
explicit comparison with prior work.

Our algorithmic template involves two steps to agnostically
learn multi-index models under the Gaussian distribution.
First, we use queries to “smooth” the label function without
adding a lot of noise to the instance. We then use PCA
on the expected gradient outer-product of the “smoothed”
concept Eyp, [Vf(x)Vf(x)T] to find a low-dimensional
space containing an (nearly) optimal hypothesis.

Using PCA on the expected gradient outer-product is a well-
known dimension reduction technique that has been applied in
many supervised learning settings, see, e.g., [24], [88]-[90].
We emphasize that prior results of this type focus on (i) the
noiseless (realizable) setting, and (ii) the case of differentiable
target functions. In comparison, we perform agnostic learning
with non-differentiable functions by crucially exploiting query
access. Using sample access only, estimating the gradient of
f(x) requires exponentially many examples in the dimension,
see, e.g., [89].

[9] developed an efficient agnostic query learner for deci-
sion trees under the uniform distribution on the Boolean hyper-
cube. The approach of [9] crucially relies on the fact that the
target hypothesis can be represented as a sparse polynomial.
The class of functions we consider (Definition 1.12) — and in
particular even a single halfspace or ReLU — does not have
this property, and therefore methods relying on sparsity [7],
[9] are not applicable.

In the context of property testing, [75] used a similar
approach based on PCA on the expected outer gradient product
to test whether the observed label is close to a smooth low-
dimensional junta (similar to Definition 1.12). An important
difference with the current work is that in many interesting
applications the link function may be assumed to be known,
e.g., agnostically learning a ReLU or a halfspace, and the
goal is to learn a good hypothesis — a task that information-
theoretically requires ©(d) samples. In contrast, [75] focuses
on the semi-parametric task of only testing the unknown link
function (and not identifying the underlying low-dimensional
subspace) while avoiding a poly(d) dependence in the sample
complexity.

Finally, related to our setting is the more recent work of
[84], where a combination of polynomial regression and PCA
on the average outer product of the gradient was employed for
proper, agnostic learning of a single halfspace with runtime
and sample complexity dP°¥(1/€)_ In this work, we crucially
exploit the query access to bypass the polynomial regression
step and significantly improve the runtime to poly (d)2P°¥(1/€)
(for the special case of a single halfspace).

b) Agnostically Learning Boolean Functions with
Queries: In the context of learning Boolean functions, the
study of distribution-specific agnostic learning with queries
has a rich history. One of the earliest results in this vein is
the classical algorithm of Goldreich and Levin [6] that uses
queries to efficiently agnostically learn parity functions under
the uniform distribution. (Recall that the problem of learning
parities with noise is conjectured to be computationally hard
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with random samples only.) Kushilevitz and Mansour [7],
building on the ideas of [6], developed an efficient (non-
agnostic) query learner for decision trees under the uniform
distribution. As already mentioned, [9] subsequently gave
a polynomial-time agnostic query learner for decision trees
under the uniform distribution.

It is known (see, e.g., [2]) that the availability of queries
does not help computationally in the distribution-free agnostic
setting. Specifically, Feldman [2] showed that every concept
class that is agnostically learnable with queries is also agnos-
tically learnable from random samples only (while preserving
computational efficiency within a polynomial factor). This
simple yet powerful fact has motivated the study of agnostic
query learning with respect to specific natural distributions,
such as the uniform distribution on the hypercube or the
Gaussian distribution. [2] also showed that there exists a
concept class that provides a computational separation (under
cryptographic assumptions) between uniform distribution ag-
nostic PAC learning and agnostic PAC+Query learning. Since
this concept class is not natural, he asked whether queries are
useful for natural concept classes such as halfspaces. As a
special case of our main result, we answer this question in the
affirmative.

IV. ROADMAP, NOTATION, AND PRELIMINARIES

A. Roadmap

In Section V-A, we show that we can use queries to simulate
gradient access to the Ornstein-Uhlenbeck smoothing T},y. In
Sections V-B and V-C, we show that the noise operator we use
does not affect the agnostic learning task for real-valued func-
tions and Boolean concepts. In Section VI, we show our result
for learning real-valued functions and prove Theorem L.5. In
Section VI-C, we show how Theorem I.5 implies agnostic
learning for linear combinations of ReLU activations and deep
networks. In Section VII, we give our agnostic learner for
Boolean concepts with bounded surface area and establish
Theorem 1.13 and the associated applications. In Section VIII,
we show that under the SSE hypothesis, no polynomial-time
proper query learner for agnostically learning ReL.Us or LTFs
exists.

B. Notation and Preliminaries

a) Basic Notation: For n € Z,, let [n] == {1,...,n}.
We use small boldface characters for vectors and capital bold
characters for matrices. For x € R? and i € [d], x; denotes
the i-th coordinate of x, and [x|js == (3¢, x?)!/2 denotes
the ¢o-norm of x. We will use x -y for the inner product of
x,y € R% and (x,y) for the angle between x,y. We slightly
abuse notation and denote e; the i-th standard basis vector in
R4, We will use 14 to denote the characteristic function of
the set A, ie., 1a(x)=1ifx€ Aand 14(x) =0if x ¢ A.

b) Asymptotic  Notation: ~We use the standard
O(-),©(-),Q(-) asymptotic notation. We also use O(:)
to omit poly-logarithmic factors.
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¢) Probability Notation: We use E,..p[z] for the expec-
tation of the random variable x according to the distribution
D and Pr[€] for the probability of event £. For simplicity of
notation, we may omit the distribution when it is clear from
the context. For (x,y) distributed according to D, we denote
Dy to be the distribution of x and D, to be the distribution
of y. For unit vector v € R?, we denote D, the distribution
of x on the direction v, i.e., the distribution of x.,.

d) Gaussian Space: Let N(w,X) denote the d-
dimensional Gaussian distribution with mean p € R? and
covariance ¥ € R?*?, we denote ¢g4(-) the pdf of the d-
dimensional Gaussian and we use the ¢(-) for the pdf of the
standard normal. In this work we usually consider the standard
normal, i.e., 4 = 0 and ¥ = I, and therefore, we denote it
simply A. We define the standard L? norms with respect to
the Gaussian measure, i.e., ||g||rr = (Exnr[|g(x)|?)/?. We
denote by L2(N) the vector space of all functions f : R? — R
such that Exn; [f2(2)] < oo. The usual inner product for
this space is Exuar, [f(x)g(x)]. While, usually one considers
the probabilists’s or physicists’ Hermite polynomials, in this
work we define the normalized Hermite polg/nomial of degree
ito be Ho(z) = 1, Hy(7) = x, Hy(x) = “’\/%17...7Hi(x) =

H%”,... where by He;(z) we denote the probabilists’
Hermite polynomial of degree i. These normalized Hermite
polynomials form a complete orthonormal basis for the single
dimensional version of the inner product space defined above.
To get an orthonormal basis for L2(N), we use a multi-
index V' € N? to define the d-variate normalized Hermite
polynomial as Hy (x) = H?zl H,,(z;). The total degree of
Hy is |[V| = 3. v; € Vu;. Given a function f € L? we com-
pute its Hermite coefficients as f(V) = Eyxx[f(x)Hy (x)]
and express it uniquely as ) cya F(V)Hy (x). We denote
by Ppf(x) the degree k partial sum of the Hermite ex-
pansion of f, Prf(x) = 3y < f(V)Hy (x). Then, since
the basis of Hermite polynomials is complete, we have
limj— 00 Exon[(f(x) — Prf(x))?] = 0. Parseval’s identity

states that Ex n[(f(x) — Prf(x))%] = ero/\zk fv)2.

V. FROM ZERO- TO FIRST-ORDER: DERIVATIVE QUERIES
VIA ORACLE QUERIES

In this section, we show that we can efficiently simulate gra-
dient access to a smoothed version of the label y using queries.
In Section V-A we show how to use the Ornstein—Uhlenbeck
operator to get acecss to gradient queries of y. In Section V-C
and Section V-B we show that the noise that we introduce
in order to simulate the gradient queries does not affect the
agnostic learning task for Boolean and real valued concepts
as long as the Gaussian surface area (for Boolean concepts)
and the expected gradient norm (for real-valued functions) are
bounded.

A. Gradient Queries via Oracle Queries

We first formally define the Ornstein—Uhlenbeck smoothing
operator.
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Definition V.1 (Ornstein—Uhlenbeck Operator). Let p € (0,1).
We denote as T, the linear operator that maps a function
g € L2(N) to the function T,g defined as:

(Tog)(x) = E_ [g(\/ 1—p*x+ pZ)} ~

To simplify notation, we often write T,g(x) instead of
(Thg)(x).

The Ornstein—Uhlenbeck operator is well studied (see, e.g.,
[71], [91] and references therein) and has several structural
properties that enable the analysis of our algorithm. Its crucial
property is that regardless of how complex the initial function
gis, T},g is always everywhere differentiable and also the norm
of the gradient of 7,,g only depends on the maximum value of
the function g. In the next fact we collect the properties that
we use.

Fact V.2 (see, e.g., [91]). Let g : R? — R. For the function
T,9(x) the following properties hold
1) T,g(x) is differentiable at every point x.
2) T,g(x) is 1/p-Lipschitz, i.e., |VT,g(x)|l2 < [|glec/p-
3) Forany p > 1, T, is a contraction with respect the || -
i.e., it holds || T,g| e < |l9|lLe-

D

Using it allows the gradient of the smoothed function
T,9(x) to be computed directly given value access to the
underlying function g. We now present the main result of this
section showing that given query access to the label y(-) we
can efficiently simulate gradient queries to the smoothed label
T,y(-) with roughly O(d/¢) queries.

Lemma V.3 (Gradient Queries from Oracle Queries). Fix
€,8,p > 0. Let y(x) : R? > R be a function in L2(N) with
ly(x)| < M. There exists an algorithm (see Algorithm 1) that
given a point x € R makes N = Q(dM /¢)log(1/0) queries
to y(x) and, in polynomial time, returns a vector & such that,
with probability at least 1 — 6, it holds ||€ — VT,y(x)|2 < e.

Proof. To show the lemma, we first need to show that for
any point x € R?, we can use enough queries to estimate
D,y(x) accurately, meaning that we need to estimate the ran-

. 1p B onon [y(\/l - p?x + PZ)Z}
accurately. Note that by definition the random variable Z is
1/p? sub-gaussian, therefore from a simple application of the
Hoefding inequality, we get that with O(dM /(pe)? log(1/61))
queries, we can find a Z such that [|Z — E[Z]||» < e with
probability at least 1 — d7. O

dom variable Z =

Lemma V.4 (Gradient of Smoothed Label). Let p € (0,1).
We denote as D, the linear operator that maps a function
g € L2(N) to the function D,g defined as: (D,g)(x) :
V(T,g)(x). It holds that

1—p?

5 [g(ﬂx + pz)z] .

To simplify notation, we often write D,g(x) instead of
(Dpg) (x).

E

(Dy9)(x) = E,
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Proof. We first observe that for any fixed x the ran-
dom variable /1 — p2x + pz is distributed according to

N(y/1 — p?>x, p1). Therefore, we have
To9(x) = E [g(\/1 - p*x+pz)] = E
z~N u~N(4/1—p2x,p2I)

P
We can now directly compute the gradient of the smoothed
function T),g:

[9(w)]

VX(T/)Q)(X):VX A 1E— . 21)[9(“)}
:17_/)2 _ ~ 2x
P [g(u)(u - v/T= %)
S b [T ]

Input: € >0, § > 0, p > 0, location x € RA.
Requries: Sample and query access to distribution of
labeled examples D

Output An estimation £ of VT,y(x) such that (=

VTyx)llz <e. _
1) Sample N = O(d/e)log(1/6) points
z, ..z ~ N

2) Perform N Queries at the locations ) =

V1 — p?x + pz() and obtain y¥).
3) Return the empirical estimate

lez YDz

Algorithm 1:Simulating Gradient Queries with Queries

3

B. Smoothing the Labels for Learning Real-valued Functions

In this section we show that adding noise to the label
y(x) in order to make it smooth and compute its gradients
does not “change” the agnostic learning task significantly.
Assume that there exists a learning algorithm that can learn
a hypothesis h(-) that achieves e-excess error compared to a
class of concepts C, given access to the smooth labels T,y (x).
In other words, assume that we are given a learner that finds
a hypothesis h(-) that satisfies

B () = Thy(x))?] < jnf B = Tpy(x))*] +e.

P C x~N
Then, can we say that h(-) will perform well compared to the
same class C under the original (non-smooth) label y(-)? We
show that this is true when (i) the hypothesis h(:) produced
by the learner is not very complicated in the sense that it has
bounded variation and (ii) the hypothesis class C' that we are
comparing h(-) against has also bounded variation.

In particular, we show that a hypothesis h(-) achieves
e-excess error compared to some concept class C in the
smoothed instance, achieves (¢ 4+ O(,/p)-excess error with
respect to the original instance. In other words, as long as
the variation and L2 norms of the target concept class and the
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hypothesis produced by the learner are bounded, smoothing the
noisy label y(x) does not introduce significantly more noise
to the instance. To simplify notation, we first define the excess
error, i.e., the error of a classifier minus the error of the best-
in-class classifier of some class C.

Definition V.5 (Excess Error). Given hypotheses h, f : R% —
R we define the Li-excess error of h(-) compared to f(-) with
respect to the label y(-) to be & (h, f;y) = Exun[|lh(x) —
y(x)|] — Ex~n[f(x) — y(x)|]. Moreover, for a class of
concepts C we define the excess error of h(-) compared to C
with respect to y(-) as sup e E1(h, f;y). Similarly, we define
the L3-excess error as Ea(h, f;y) = Bxon[(h(x) —y(x))?] -

Ex~N[(f( )—y(x))?] and Ex(h, Cyy) = supgcc E2(h, fiy).

We now show that that the Ornstein—Uhlenbeck noise
operator also preserves the L3-excess error of a classifier
h : R? — R as long as the target class and the classifier
h have bounded expected gradient.

Proposition V.6 (Smoothing the Noisy Labels). Fix f €

R(M,L,k). Let y : R* s R be a function in L*(N)

with Exn[y?(x)] < M. Moreover, let p(x) : R? — R

be an almost everywhere differential function in Lo(N') with
E.n[IVp(x)|3] < L. It holds that

Ea(p, Csy) < Ea(p, C; Tpy) + O(v/pML) .

Proof of Proposition V.6. We first prove the following lemma
that connects the excess error of a real-valued function h(-)
with respect to the smoothed label T,y(-) to its excess er-
ror with respect to the original label y(-). If the operator

T, preserves the correlation of all concepts f € C, ie,
| Exn[f (X)y(x)] — Exon[f (%) x)]| <eforall feC

and it also preserves the correlatlon of the hypothesis h(-), i.e.,
| Exon[R(%)y(x)] —Exn [h(x)T,y(x)]| < €, then the excess
error of h(-) with respect to y(-) is at most 2¢ worse than its
excess error with respect to the smoothed label T,,y(-). In the
following lemma, we show that we can connect the Ly-excess
error with the correlation of concepts.

Lemma V.7 (From Excess Error to Correlation Preservation).
Let h : R? = R be a real-valued hypotheses and C be a class
of real-valued hypotheses. It holds

E(h, C; Tyy) — Ex(h, Csy) <
2sup | B 1SGT(x)) = B [F00u00)]|+
2| B hG)T,y(x)] - ngWx)y(x)]] .

Proof: We first note that &;(h,C;T,y) — E2(h,C;y)

IA

supsec &a(h, f;T,y)  —  suppec &a(h, fiy)
SUPfec |€2 (h, i Tpy) — Sg(h,f;y)|. For some fixed
concept f € C, we have
E(h, f;Tyy) = E [1(x)] - E [f*(x)]
+2 E [(f(x) = h(x)(T,y)]-
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Therefore, we have

Ealh £ Ty0) €2 19) =2( B IIGOTow) — )]

By taking the supremum over the f, we complete the proof.
O

+ B [hx)(Ty(x) ~ y(x))]

Note that Exn|[f(x)(T,y(x)
Exn[y(x)(T,f(x) — f(x))].

Schwarz inequality we have that

E [y(x)(T,f(x) - f(x))]

y(x))]

Therefore, using Cauchy-

XNN
< (B 6 B IT,500 — 1))
< VT B (3,000~ 500)7]) "

< VExn[y* (X)) < M.
To bound the remaining term, we prove the following claim.

where we used that Ex[y?(x)] <

Claim V8. Let f € L*(N) be a continuous and (almost
everywhere) differentiable function. Then, Ex. n[(T,f(x) —
fF(x))?] < 20* Exon [V F(X)I3:

Proof. We will use the following result from [74].

Fact V.9 (Correlated Differences, (Lemma 7 in [74])). Let
f € L2(N) be an (almost everywhere) differentiable function.

Denote by
D, :N(o, <(1 L —IT)I> ) .

1t holds Ex gy [(F(x) — F(2))%] < 27 Exn[IVF()[3].
Therefore, using Jensen’s inequality, we have that
B (T, ()~ f())”
B (B [(VT= P+ pm)] — f())°]
E [(f(z) - fx)],

(x,2")~D~

<

for 7 =1 — /1 — p2. Therefore, using Fact V.9, we obtain
E AT f(x) ~ )% <201 = V1= p?) xE\[[Ilvf(X)H%
<2p° XPNHIV}‘(X)H%,

where we used the fact that M > 1 — p? which holds
for all p € [0,1] and implies that 1 — /1 — p2 < p2. O
Therefore, from Claim V.8, we have that
E(p, Cry) < E(p, CiTpy)
+0(/oM)(/ BIVIGIE +/ B [IVp(x)[]) -

Using that Exn [[|V(x)[3], Ex~n (VP[] < L. we
complete the proof of Proposition V.6. O
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C. Smoothing Labels for Learning Boolean Concepts

The following proposition shows that the L;-excess error of
a hypothesis h with respect to the original label y is close to
its L1-excess error with respect to the smoothed label T,y as
long as (i) the class C' contains concepts with bounded surface
area and (ii) the classifier A also has bounded surface area.

Proposition V.10 (Smoothing the Noisy Labels Preservs
L-Excess Error). Fix y : R? s {£1} and let C be a class
of Boolean concepts. It holds

&1(h, Cy) < &(h, C; Tyy) + O(p) (T(C) +T(R)),
where E(-,-;-) is the excess error defined in Definition V.5

Proof. We first prove the following lemma showing that
connects the excess error of a classifier i(-) with respect to the
smoothed label T,y(-) to its excess error with respect to the
original label y(-). This is analogous to the real-valued case
(Lemma V.7). In the following lemma we show that we can
connect the L;-excess error with the correlation of concepts
(which basically relies on the identity |t — s| = 1 — ts when
te[-1,1] and s € {£1}.

Lemma V.11 (From Excess Error to Correlation Preservation:
Boolean Concepts). Let h: R? s {41} and C be a class of
Boolean hypotheses. It holds

E1(h, C; Tpy) — E1(h, Csy)

< sup | B LA T,u00] = B, [FGouo]]+
| B he0Ty()] = E [hx)y(x)].

Proof. We first note that & (h,C;T,y) — &1(h,Csy)

suprec E1(h, f5T,y)  —  supsec E1(h, fiy)
SUpPfec }51(h7f;pr) — 51(h,f;y)}. Using the fact that

Exn[lfi(x) = fo(x)]] = 1 — Exun[f1(x)f2(x)], for any
functions f; : R? +— [~1,1] and f5 : R? — {£1}, we have
that

Eulh, fiTpy) = E [ITy(x) = h(x)] = E [IToy(x) — f(x)l]
= B [Ty()f ()]~ B, [Ty()h(x)]

Therefore, for some concept f € C, we have that
\E1(h, [ Tpy) — Ex(h, fry)| =

(Thy(x) — y(x) f(x)]| + | EATpy(x) — y(x)h(x)]| .
O

First, note that since |y(x)| < 1, it also holds that
|T,y(x)| < 1. Using Lemma V.11, we have that Proposi-
tion V.10 is equivalent to showing that for a Boolean function
£ R s {£1} it holds | Bxen(T,y(x) — y(x)) f(x)]| <
O(p) T'(f) . We do this in the following lemma.

Lemma V.12 (7, Preserves Correlation). Let y : R? — {£1}
and let f : R? s {1} be a (Borel) Boolean function. It
holds that

| E f6Ty(0] -

IA I

| B
x~N
Taking the supremum over the C' completes the proof.

E [f(x)y(x)]| <O(p) I'(f).

x~N
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Proof. Using the fact that the Ornstein—Uhlenbeck noise op-
erator T, is a symmetric linear operator on L?(\'), we have

BT = E [y(T,f(x)]

= E W]+ E )T, (x) = f(x))].

Therefore,

| E [f(0Ty(0] = _E [f(x)y(x)]

| B yx)(T,5(x) ~ 1)
< E IT,f(x) - S,

where, for the inequality we used the fact that the label y(x) €
{£1}. We next bound the term Ey ar[|T, f(x) — f(x)|]. We
will use the following result from Ledoux and Pisier as stated
in [71].

Fact V.13 (Ledoux-Pisier [92]). Let f : R% — {£1} be
a Boolean function. It holds Exn[f(x)T,f(x)] > 1 —
27 I(f) p-

In what follows, we denote by K the set labeled as positive
by the LTF f(x). Using the fact that E.n/[|T,f(x) —
f(x)|]] = 1 — Exn[T,f(x)f(x)], which holds because
|T,f(x)] <1 and f(x) € {£1}, we have

BT, 1) — 0l = 1= B, [FGIT,f(x)] < O(a()),

where the inequality follows from Fact V.13.
O

Applying Lemma V.12 on f and g gives the result. O

VI. AGNOSTICALLY LEARNING REAL-VALUED
MULTI-INDEX MODELS

In this section we present our algorithmic result Theorem 1.5
for learning real-valued function classes in the L3 norm. For
convenience, we first restate the class of bounded variation
concepts that we consider.

Definition VI.1 (Bounded Variation, Low-Dimensional Con-
cepts). Fix L,M > 0 and k € Z,. We define the class
R(M, L, k) of continuous, (almost everywhere) differentiable
real-valued functions with the following properties:
1) For every f € R(M, L, k), it holds
(Exonal fA(x)])!/? < M and By yal|V f(x)[3] < L.
2) There exists a subspace U of R¢ of dimension at most k
such that f depends only on U, i.e., for every x € RY,
f(x) = f(projyx).

We now state the main result of this section (the formal
version of Theorem L.5).

Theorem VI.2 (Improper Learner for Real-valued Func-
tions). Fix k € N and M,L € R*. Let D be a dis-
tribution on R x Rt such that the x-marginal of D is
standard d-dimensional normal. There exists an algorithm that
makes N, = poly(d/e) queries, draws Ny, = poly(d) +
poly((kM/e)L2/64,1/6, log(1/9)) samples from D, runs in

time poly(Ns, Ny, d) and outputs a polynomial p : R? — R
so that with probability at least 1 — § it holds

[(p(x) —y)?] < _inf [(F(x) —y)?] +¢.

n E
(x,y)~D JER(M,L,k) (x,y)~D
Before we proceed to the proof we define the Hermite
expansion operator that maps a function f to its degree m
Hermite polynomial.

Definition VI.3 (Hermite Expansion Operator). Given a func-
tion f € L3(N), we denote by Py, (f)(x), the linear operator
that maps f to the Hermite polynomial of degree m of f, i.e.,

(Prf)(x) = > FU)H;(x),

[T]<m

where Hj is the multivariate Hermite polynomial of degree
I € N% and f(I) = Exon[f(x)H[(x)] is the corresponding
Hermite coefficient of f(x).

The following lemma bounds the error of the polynomial
approximation of degree m for “smooth” functions. Its proof
is implicit in [74]; we provide a short proof for completeness.

Lemma VI.4 (Polynomial Approximation of Smooth Func-
tions). Let f(x) : RY — R be an (almost everywhere)
differentiable function and m € N. It holds

E [(f) ~ P f()? < O(-) B 1973

Proof. We denote as P, f the Hermite expansion of f, which
contains the terms with degrees higher than m. We have that

B0 = Prf)’] = B [(Ponf(x)*] = > (F(1)*
I:|I|>m
<23 e,
I:|I|>m

where in the last inequality, we used that 1 < |I|/m. Further-
more, (see, e.g., the proof of Lemma 6 in [74]) we have that
for a continuous and (almost everywhere) differentiable func-

—~

tion f, it holds that EXNN[HVf(x)H%] = ZIeNd |I\(f([))2.
Combining the above, the result follows. O

As we discussed in Section II to show that an approximately
optimal, low-dimensional concept exists we will use the Gaus-
sian Marginalization Operator defined below.

Definition V1.5 (Gaussian Marginalization Operator). Let U
be a subspace of R Denote by Dy . the standard normal
distribution on the subspace Ut (we assume that a vector
z ~ Dy is a d-dimensional vector that lies in U~). Given a
function f € L?*(N), we denote by Il f the linear operator
defined by

My f)(x)= E

ZNDUL

[f (projy (x) +2)] .
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a) Motivation about the Gaussian Marginalization Oper-
ator, Iy, : By the assumption of Proposition I1.4, all directions
in the orthogonal complement VL are low-influence, i.e., for
h € Vit holds Exn[(h - Vy(x))?] < O(¢?/k). In words,
the function y is “approximately constant” along some low-
influence direction h. Let us first assume that 3 is exactly
constant on all directions of VL. Then, in order to preserve
the correlation of y with f, we only need to match the
expected value of f over V1. This motivates the following
“Gaussian Marginalization Operator” of Definition VLS. In-
deed, if ¥ was constant on V1, using the fact that proj;-x
and projy . x are independent standard Gaussians, we would
obtain that E,.n[Exn f(projy (x) + projy . (2))y(x)]] —
Exn[f(x)7(x)] = 0. We observe that since Iy f is a convex
combination of different translations of f and B(T', k) is
closed under translations, we obtain that the Gaussian surface
area of f is also bounded above by I

In the next lemmas, we collect some useful properties of the
Gaussian Marginalization Operator. The proofs can be found
in the full version of the paper.

Lemma VL6. Let g € L2(N) and V C RY. We have the
following properties for the operator 11y,.

o IIy are contractions, ie, Ex.n[(Ilyg(x))?] <

Exnlg®(x)].
o Let UV C RY it holds that Iyvllysvg =
yiullyprg =yyg.
Lemma VL7. Let g € L2(N), m € Nand V C R% We have
the following properties for the operators P, and Iy .

o P, is a contraction, ie, Exon[(Pmg(x))?] <
Exnlg”(x))-
o P, and Iy, commute, i.e., P,,Ilyyg = 1l P, g.

Next, we show that Iy and P, commute. The proof can
be found in the full version of the paper.

Claim VL8 (P,, and IT;; commute). Let g € L2(N), m € N,
and V be a subspace of RY. It holds that P,, Iy g = Iy Ppg.

Input: ¢ > 0, § > 0 and sample and query access to
distribution D
QOutput: An estimation of M =
Ex~p, [Dpy(X)Dpy(X)T}-

1) p <+ Cé, n <+ Ce, for C > 0 sufficiently small

constant.
2) Let Sy be the set that contains N samples
xM ..., xW) from the distribution D.

3) For each x/G\S N, use Algorithm 1 to get a gradient
estimate (D,y)(x) of (B&)(x)
NE N DN o (5
4) return M = 570 (Dpy) (x) (D) (x) .

Algorithm 2:Estimation of the influence matrix M with Queries

Having access to the gradient, enables us to calculate the
influence matrix of the function which captures the sensitivity

of the function in different directions. We formally define the
influence matrix of a function g.

Definition VI.9 (Influence Matrices). Given a differentiable
g € L2(N), we define the influence matrix as

Inf, = XPN[Vg(x)Vg(x)T].

Fix p € (0,1). Given g € L?(N) (not necessarily differen-
tiable), we define its p-smoothed influence matrix as

Inff = B [D,g(x)(D,g(x))"].

A. Influence PCA for Learning in L2

In this section we show that for learning real-valued con-
cepts of bounded variation in L2 we can effectively reduce
the dimension of the problem via PCA in the influence of the
smoothed label T},y. We show that the low-degree polynomial
approximation of the smoothed label T,y can be projected
down to the subspace V' via the Gaussian Marginalization
Operator. In other words, we construct an explicit polynomial
approximation of the label T, that depends only on the
low-dimensional subspace V. We now state our dimension-
reduction result.

Proposition VLI.10. Fix e, M,L,Q > 0 and let ¢ : R — R
with [P(x)] < Q and ||Vip(x)||2 < . Let n be sufficiently
small multiple ofei/(kzM) and m be sufficiently large multiple
of (Q*L) /€. Let M be so that ||Inf,,—M|| < /2 and let V

be the subspace spanned by all the eigenvectors of M whose
corresponding eigenvalues are at least 1. Then, it holds

1
B [(Pullyd(x) = (x))?]
< E [(0(0) = F())*] +e..

< inf
FER(M,L,k) x~N
2) The dimension of V is at most O(9?/n).

Proof of Proposition VI.10. Fix f € (M, L, k). By assump-
tion, there exists a subspace U of dimension at most &, so that
f depends only on U, ie., f(x) = f(projyx). Therefore,
My v f(x) = f(x).

Lemma VIL11 (Excess L2 Error Decomposition). We have
E(Pullve, f9) < Q( B [(f(x) - P f(x))%])'/?
Polynomial Approximation Error
+2 E [(4(x) — vy (x) f(x)] -

Correlation Error

For the proof of Lemma VI.11 refer to the full version of
the paper.

Lemma VI.12 (Correlation Error Bound). It holds

LE () — vy (x) f(x)] < Ofe) - €))
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Proof. Note that f(x) depends only on the subspace U,
therefore, Iy v f(x) = f(x). Therefore, we have that

CE W60 — v (x)) £ (x)]
XPN[(HerUd)(X) — Oy ully(x)) f(x)]

= XPN[(H\/+U1/)(X) — HvIly o (x)) f(x)]

(B [0 — Ty v))?]_E [7260)

<

where in the last equality we used Lemma VI.7 and in the last
inequality we used the Cauchy-Schwarz inequality. Note that
Ex~n[f?(x)] < M. To bound the other term we show that
Exn[(Iy 2o (x) — Uy Iy vab(x))?] is small. For that, we
prove the following:

Lemma VI.13 (Generalized Gaussian Marginalization Error).
Let g : R? s R be a function in L2(N) such that Vg €
L2(N) and let V,U be subspaces of R%. It holds

E [(y4ug(x) — MyIlypg(x))?]

x~N
<dim(V+nU ¢ E -v)?].
< dim( )vewg}ﬁvuzzlxw[(vg(X) v)7]

The proof of Lemma VI.13 can be found in the version of
the paper. From Lemma VI.13, we have that

XE‘,N[(Hv+U1/J(x) — My My v i(x))?]

. 1 2
<dim(UNV )veUm\r/nP,}\\{vllzzlXPNK(VQMX)) V)T

Furthermore note that max,cynv - jv),=1 Ex~n[((VY(X)) -
v)?] < 10/2 + maxyepavL |v)s=1 v Mv < 27 because the
subspace U NV contains vectors with influence at most 1.
Note that dim(U N V+) < dim(U) < k and noting n =
O(€2/(MFK)) completes the proof of Lemma VI.12. O

Combining Lemmas VI.11 and VI.12 and using that
Exn[(f(x) — Pnf(x))?] < L/m from Lemma VI4,
we get that B on[(Pnlyw(x) — ¥(x))? <
inf reqr(ar,2k) Bxn[(V(x) — f(x))?] + e To show
that the subspace V' has small dimension, we show the
following lemma. The proof can be found in the full version
of the paper.

Lemma VL14. Fixn > 0,p € (0,1). Let ¢ be a function from
R? to R such that |V)(x)||2 < U and let V be the subspace
spanned by all the eigenvectors of Inf, with eigenvalue at
least 1. Then the dimension of the subspace V is dim(V) =

o(¥?/n).

An application of the lemma above (Lemma VI.14) gives,
which gives that the subspace it at most O(W¥2/n). This
completes the proof of Proposition VI.10 (I
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B. Proof of Theorem VL2

We use the following fact about the Ly polynomial regres-
sion.

Fact VL.15 (see, e.g., Theorem D.7 [84]). Let D be a
distribution on R% x R such that the x-marginal of D
is standard d-dimensional normal and the labels y are
bounded by M. The Ls-regression algorithm draws N =
poly((dm)mz7 1/e, M, log(1/0)) samples from D, runs in time
poly (N, d), and outputs a polynomial p : R — R such that
with probability at least 1—36 it holds Ex ,y.p[(p(x)—y)?] <
mingep,, B y)~p[(p(x) — y)?] + € where Py, is the class
of polynomials with degree at most m.

We first show that we can truncate the labels with |y(x)| >
M’ = M'/?/e'/? without increasing the error by a lot. We
show that for trunc(y(x)) = sign(y(x)) min(|y(x)|, M’) it
holds that (see the full version for the proof)

B [(f(0) = trune(y(x)))’] < B [(f(x) = y(x))*] + €.

For the rest of the proof, we assume that y(x) is trun-
cated at M'. Let ¢(x) = T,y for p poly(e/(ML)).
Note that |[Vi(x)|l2 < M’'. From Lemma V.3, with N =
poly(d/e)log(1/6) queries, we get that with probability 1 —
§/2 a matrix M, so that |[M — Inf,||r < e Applying
Proposition VI.10 to the matrix M, we get that in the subspace
V spanned by the eigenvectors of the matrix M with eigen-
values larger than 1 = poly(e/Mk)) with dimension at most
O(poly(M’,1/n,1/e€)), there exists a polynomial p : V — R
of degree m = poly(Ma/e€) with Exn[p?(x)] < E[¢?(x)] <
(M")2, so that

B (66— 9 B [(/(x) — v(x))] + /2.

From Proposition V.6, we get that for the same polynomial
and using that Exn[[|[Vp(%)|2 < mExa[p?(x)], it also

holds that
LE () — y(x))?] < B0~ y(x)*] +¢/2.

Let P : R? s V be the projection matrix to the subspace
V. Let (Px,y) ~ D', where (x,y) ~ D. We use the
Lo-regression algorithm on D’ and from Fact VL15, using
poly((kM/e)X*/<* 1/e,10g(1/5)) samples from D', we get a
polynomial p’ : V +— R so that with probability at least 1 — 4,
it holds

E [(0'(Px) - y(x)*] < _E, [(p(x) = y(x))*] + /2

" < B (60— y(x)] 4.

This completes the proof of Theorem VI.2.
C. Applications of Theorem VI.2

In this section, we apply Theorem VI.2 for several real-
valued activations. We start by applying our theorem for the
class of ReLU activations.

Theorem VI.16 (Improper Learner for ReLUs Activations).
Fix M € R,. Let C be the concept class containing all the
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ReLU activations with normal vectors bounded in {5 norm
by M. Let D be a distribution on R% x R such that the x-
marginal of D is the standard d-dimensional normal. There
exists an algorithm that makes N, = poly(dM/e€) queries,
draws N, = poly(d/e) + 2P M/ 10g(1/8) samples from
D, runs in time poly(Ns, Ng,d) and outputs a polynomial
p: R® = R so that with probability at least 1 — 6 it holds

WE ) -y <inf B (FG) - y)") +e.

Proof. To prove the above theorem it suffices to show that
C CR(V3M?,M?,1). Note that Ey.x[(ReLU(w - x))*] <
Eyxn[(w-x)%] < 3M*. Furthermore, we bound the derivative
of the activation. We have that

D

E
x~N
Therefore, it follows that C C 93(v/3M?2, M?,1). An applica-
tion of Theorem VI.2 gives the result. O

We next consider learning Single-index models (SIMs) with
an unknown Lipschitz link function g : R — R, ie., f(x) =

g(w - x).

Definition VI.17. We define the class of L-Lipschitz SIMs on
RY denoted SIM(L, M) as follows. For each f € SIM(L, M),
f(x) = g(w-x), for L-Lipschitz g : R — R and |w|2 < M.

Theorem VI.18 (Improper Learner for SIMs). Fix L, M €
Ry. Let D be a distribution on R? x R such that the x-
marginal of D is the standard d-dimensional normal. There
exists an algorithm that makes N, = poly(dL/e) queries,
draws N, = poly(d/e) 4 2P LM/) 10g(1/8) samples from
D, runs in time poly(Ns, Ng,d) and outputs a polynomial
p: R%— R so that with probability at least 1 — 6 it holds

B0 97 < (60 =y +e.

Proof. Note that for any f € SIM(L) by definition if holds
that |[Vf(x)|l2 < L and also that E[f(x)] < L*E[(w -
x)4 < M*LA. Therefore, we have that f € SIM(L, M) C
M(M?2L?,L,1). An application of Theorem VI.2 gives the
result. O

inf E
FESIM(L, M) (x,y)~D

We define the class of linear combinations of ReLU net-
works.

Definition VL.19 (ReLU Networks). We define the class
Re(M, k) of ReLU networks as follows. For each [ €
Re(M, k), f(x) = WoReLU(W;x), for matrices W1 €
RFXE Wy € {£1}FXL, with |[W1|lop < M.

We give our result for learning linear combinations
ReLUs, i.e., real-valued functions of the form f(x)
¥ a;ReLU(w(® - x), where a; € R. The proof can
found in the full version of the paper.

Theorem VI.20 (Improper Learner for Linear Combinations
of ReLUs). Fix k € Nand M € Ry. Let D be a distribution
on R x R such that the x-marginal of D is the standard
d-dimensional normal. There exists an algorithm that makes

[IVxReLU(w - x)[5] = B [[1{w x> 0}wlj3] < M*.

1947

N, = poly(dM/e) queries, draws Ny = poly(d/e) +
(kM /e)Poy(EM/€) 160(1/8) samples from D, runs in time
poly(Ns, Ny, d) and outputs a polynomial p : R? — R so
that with probability at least 1 — § it holds

E [(p(x)~y)’] < inf E

x) —y)? +e.
(x,y)~D T feRe(M,k) (x,y)~D f( ) y)]

We now give an improved result for learning sums of
ReLUs, i.e., real-valued functions of the form f(x)
Zle ReLU(w(® . x). We first define the class of sum
ReLUs.

Definition VI.21 (Sums of ReLU Networks). We define the
class Re, (M, k) of ReLU networks as follows. For each [ €
Re, (M, k), f(x) = ReLU(WX), for matrices W € RF*4,
with E[f%(x)] < M.

Theorem VI.22 (Improper Learner for Sums of ReLUs). Fix
k€ Nand M € R,. Let D be a distribution on R? x R such
that the x-marginal of D is the standard d-dimensional nor-
mal. There exists an algorithm that makes Ny = poly(dM /e)
queries, draws N, = poly(d/e) + (kM /e)P°¥M/€) Jog(1/8)
samples from D, runs in time poly(Ny, Ny, d) and outputs a
polynomial p : R — R so that with probability at least 1 — ¢
it holds

E
(x,y)~D

(p(x) —y)?] < [(f(x)—y)?] +e.

< inf E
feRes (M,k) (x,y)~D
The proof Theorem VI.22 can be found in the full version

of the paper.

Next we show our result for a general ReLU network. We
first define the clas of Deep ReLU networks.

Definition VI.23 (Deep ReLU Networks). We define
the class ©(M,L.,k,S) of depth-(L + 1) ReLU net-
works as follows. For each f € ©(M,L,k), f(x)
W ReLU(W[_;---ReLU(W;x)), for matrices W,
RFXd . W € RF2X1 with |Wi|lop < M and k; < S.

S

We show the following theorem in the full version of the paper.

Theorem VI.24 (Agnostic Learner for Deep ReLU Net-
works). Fix k,S,L € N and M € R,. Let D be a
distribution on R? x R* such that the x-marginal of D is
the standard d-dimensional normal. There exists an algo-
rithm that makes N, = poly(dM/e) queries, draws N, =
poly(d/e) + 2P (kSM/€) 160(1/8) samples from D, runs in
time poly(Ns, N, d) and outputs a polynomial p : R — R
so that with probability at least 1 — § it holds

E x)—y)?] < inf E x)— )2 +e .
JE (009 S it B (7))

VII. AGNOSTICALLY LEARNING BOOLEAN MULTI-INDEX
MODELS
In this section, we present our results for Boolean multi-
index models of bounded surface area. For convenience, we
restate the class of concepts that we consider.

Definition VIL.1 (Bounded Surface Area, Low-Dimensional
Boolean Concepts). We define the class B(T', k) of Boolean
concepts with the following properties:
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1) For every f € B(T, k), it holds T'(f) <T.

2) For every f € B(T, k), there exists a subspace U of R?
of dimension at most k such that f depends only on U,
ie., for every x € RY, f(x) = f(projy x).

3) B, k) is closed under translations, ie., if f(x) €
B(T, k) then f(x+t) € B(T, k) for all t € R%.

We remark that B (I, k) is a general, non-parametric class.
For example B(Q(k), k) contains LTFs, intersections of k
LTFs, and Polynomial Threhsold Functions (PTFs) of degree
at most k (that depend on a k-dimensional subspace). Our
learner is able to learn a hypothesis of low excess error
when compared against all concepts of B(I', k) with roughly
poly(d/e) + kP°Y(T'/) runtime.

Theorem VIL2. Fix k € N and M € R'. Let D be a
distribution on R? x {£1} such that the x-marginal of D is
standard d-dimensional normal. There exists an algorithm that
makes N, = poly(d/e) queries and draws Ns = poly(d/e) +
poly((kF/e)F2/54, 1/€,log(1/6)) samples from D and runs in
time poly(Ns, Ny, d) and outputs a polynomial p : R — R
so that with probability at least 1 — § it holds

Signx) #yl < inf  Pr [f(x)#y]+e.

Pr < in r
Fe€B(T.k) (x,y)~D

(xy)~
We refer to the full version of the paper for the proof of
Theorem VIIL.2.

A. Corollaries for Intersections of Halfspaces and PTFs

Using Theorem VIIL.2, we can show the following corollary
for intersections of k halfspaces:

Corollary VIL3. Let C be the class of intersections k
halfspaces in R Let D be a distribution on R% x
{£1} such that the x-marginal of D is the standard d-
dimensional normal. There exists an algorithm that makes
N, = poly(d/e) queries and draws Nj poly(d/e) +
poly((k/e)log(k)/€4, 1/€e,1og(1/8)) samples from D and runs
in time poly(Ns, Ny, d) and outputs a polynomial p : R — R
so that with probability at least 1 — § it holds

[f(x) #yl+e.

Pr [sign(p(x < min Pr
br lsien(p(x)) #y] <min Pr
Proof of Corollary VII.3. For the proof, we use the fact that
the Gaussian surface area of the intersection of k& halfspaces
is at most O(y/log k) (see Theorem 20 of [71]) and then the
proof follows from Theorem VII.2. O

We show that we can use Theorem VII.2 to learn low-degree
polynomial threshold functions (PTFs) that depend only on a
small dimensional subspace.

Corollary VIL4. Let C be the class of degree-{ PTFs in R?
that depend on an unknown k-dimensional subspace. Let D be
a distribution on R® x {£1} such that the x-marginal of D is
the standard d-dimensional normal. There exists an algorithm
that makes N, = poly(d/e€) queries, draws Ny = poly(d/e)+
poly((k/€)/<' 1/e,10g(1/8)) samples from D, runs in time
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poly(Ns, Ny, d) and outputs a polynomial p : R¢ — R so that
with probability at least 1 — § it holds

sign(p(x <min Pr
[sign(p(x)) # y] < min Pr

Pr
(x,y)~D

[f(x) #yl+e.

Proof of Corollary VII.4. For the proof, we use the fact that
the Gaussian surface area of degree-¢ PTFs is at most O(¥)
(see [72]) and the proof follows from Theorem VIL.2. O

Finally, we show that we can use Theorem VIL.2 to learn
arbitrary functions of ¢ halfspaces.

Corollary VILS. Let C be the class of functions of ¢ halfs-
paces in R%. Let D be a distribution on R? x {41} such that
the x-marginal of D is the standard d-dimensional normal.
There exists an algorithm that makes Ny = poly(d/e) queries,
draws N, = poly(d/e) + poly((¢/e)/<" 1/ 1og(1/8)) sam-
ples from D, runs in time poly(Ns, Ng,d) and outputs a
polynomial p : R? — R so that with probability at least 1 — §
it holds

(x71;)1; 5 [f(x) #yl+e.
Proof of Corollary VII.5. We note that the Gaussian surface
area of functions of ¢ halfspaces is bounded above by /.
From [71] (see, e.g., Fact 17), we have that the surface area
of a Boolean function f that depends on ¢ halfspaces, is
bounded above by the sum of the surface area of the individual
halfspaces; therefore, we have that I'(f) < O(¢). The proof
follows from Theorem VIL.2. O

sign(p(x y| <min Pr
[sign(p(x)) # y] <min Pr

VIII. HARDNESS OF AGNOSTIC PROPER LEARNING OF
HALFSPACES AND RELUS WITH QUERIES

One might ask if the exponential dependence on 1/¢ in our
upper bound (Corollaries 1.6 and 1.14) is necessary or just an
artifact of our algorithmic approach. In this section, we provide
some evidence that it is inherent. Unfortunately, there are very
few circumstances where one can prove computational lower
bounds against improper learners with query access to the
function. So our bounds will apply only to proper learners.
The basic idea of our argument is that if f(x) = sign(v - x)
is a linear threshold function or f(x) = ReLU(v-x) with v a
unit vector and p(x) a polynomial, then E[f(x)p(x)] will be
a polynomial in v. As approximately optimizing low-degree
polynomials over the unit sphere is conjectured to be compu-
tationally hard, this will prove hardness for proper learning of
linear threshold functions. In particular, our hardness reduction
starts from the small-set expansion problem [70]. We then
rely on results of [93] to reduce this problem to one about
polynomial optimization. In particular we have:

Theorem VIIL.1. If there is a polynomial-time algorithm
that given aj,ag,...,a, € R outputs a constant factor
approximation to max|x|,=1 + >+, (a; - X)*, then there is
a polynomial time algorithm for the small-set expansion prob-
lem.

We note here that max x,—1 ~ Y1 ; (a; - x)* is a homo-

geneous degree-4 polynomial. It will be important for our

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 13,2025 at 22:24:40 UTC from IEEE Xplore. Restrictions apply.



purposes that the polynomial in question have odd degree.
Fortunately, we can reduce to this case.

Corollary VIIL.2. If there is a polynomial-time algorithm that
given a homogeneous degree-5 polynomial p on R? outputs a
constant factor approximation to maxjx|,—1 P(X), then there
is a polynomial-time algorithm for the small-set expansion
problem.

Proof. We give a reduction to this problem from the problem
in Theorem VIIIL.1. In particular, given a;,...,a, € R4, we
let g(x) = L 3" | (a; -x)*. We then define the homogeneous
degree-5 polynomial p on R+ as p(x,y) = ¢(x)y (where
x here represents the first d coordinates of the input and
y represents the last one). We note that if ||(x,y)|s = 1,
then ||x|[2 = a and y = b for some a? + b> = 1. Letting
x' = x/a and using the homogeneity of ¢, we have that
p(x,y) = a*bg(x’). For fixed x’, the maximum of this over
a, b is obtained when a = 1/4/5 and b = \/1/75 Thus, the
maximum value of p(x,y) over the unit sphere equals the
maximum value of g(x’) over the unit sphere times 16,/525.
Thus, finding a constant-factor approximation to the maximum
value of one is equivalent to finding such an approximation of
the other. This completes our proof. (I

We are now ready to state our main theorem.

Theorem VIIL.3 (Hardness of Proper Learning for LTFs).
Suppose that there is an algorithm that given query access
to a Boolean function f on R? runs in poly(d) time and
approximates the minimum misclassification error between
f and a homogeneous LTF (with respect to the standard
Gaussian distribution) to additive error ¢ for some € < d—19,
Then there is a polynomial-time algorithm for the small set
expansion problem.

Before we prove Theorem VIII.3, we note that any proper
agnostic learner can be used to approximate this error merely
by approximating the error between f and the learned function.
Thus, this result will imply a lower bound for learning.

Proof. We assume throughout that d is sufficiently large, as
otherwise there is nothing to prove. We proceed by a reduction
from the problem in Corollary VIIL.2. In particular, let p be
a homogeneous degree-5 polynomial on R?. Let T be the
unique symmetric tensor so that p(x) = T(x,x,x,X,X). By
scaling T, we may assume that | T|js = 1. Let ¢(x) = (T -
H(x)), where H (x) is the tensor whose entries are the degree-
5 Hermite polynomials in x.

Morally, we would like to take f(x) = ¢(x). Unfortunately,
this does not work for two reasons.

First, f(x) needs to be Boolean, while ¢(x) distinctly is not.
We can fix this by taking f to be a random function, where
the expected value of f(x) equals g(x).

Unfortunately, this cannot work because the expected value
of f(x) must still be in [—1, 1], while ¢ is unbounded. To solve
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this, we first scale ¢ down substantially and then truncate its
extreme values. To do this, we define:

1 ifx>1
tx)=< -1 ifz< -1
T otherwise.

We then divide R? into tiny boxes of side length § for some
very small . For each box B, we pick an x € B and
then (independently for each box) let f be 1 on B with
probability (t(¢(x)/d) + 1)/2 and —1 on B otherwise. We
note that the expected value of f on B is t(¢(x)/d), where
x is the representative element. As the difference between ¢
at the representative element x of B and at any other point
in B will be small if § is (and if the box is not too far
from the origin), it is not hard to see that the expectation
over the randomness in defining f of | Exn[f(x)sign(v -
x)] — Exn[t(g(x)/d)sign(v - x)]| goes to 0 with 4. As the
variance of Ey.n[f(x)sign(v - x)| also goes to 0 with 4, if
we take J sufficiently small, then with high probability over
the randomness in f, we have that | Ex[f(x)sign(v-x)] —
Eyxn[t(g(x)/d)sign(v - x)]| < €/2 for all unit vectors v.
Therefore, finding an € additive approximation to the minimum
misclassification error between f and an LTF is equivalent to
finding a 2e-additive approximation to the maximum value of
Exn[f(x)sign(v - x)], which in turn is sufficient to find an
e-additive approximation of Exa[t(q(x)/d)sign(v - x)]. We
will show that this is computationally hard.

To start with, we note that Exn[g(x)?] = |T|l2 = 1.
Therefore, by standard concentration bounds, we have that
Pryn[lg(x)| > d] = exp(—Q(d?*/®)) < 3. Therefore, by
the Cauchy-Scwartz inequality, we have that

E llaG)/d = t(a(x))/dl] < \/xlz}"v(lq(X)\ >d) E [q(Gx)?]

x~N
<e€/2.

Thus, if one can approximate the maximum value of
Exn[t(q(x)/d)sign(v - x)] to additive error €, one can ap-
proximate the maximum value of Ey.xr[(g(x)/d)sign(v - x)]
to additive error €/2. However, we can compute this expec-
tation by comparing the Hermite expansions for ¢(x)/d and
sign(v - x). In particular, the former only has non-vanishing
terms in degree 5, where they are given by the tensor T /d. The
latter has its degree-5 Hermite tensor given by c5v®®, where
¢s = E,n[hs(2)sign(z)] = (3/2)4/1/(157). Therefore, we

have that
Ela()/dsign(v - x)] = (T/d) - (e5v*)
= (¢5/d)T(v,v,v,v,V)
= (es/d)p(v) -

Thus, finding an €/2-additive approximation to the maximum
value of Exn[(q(x)/d)sign(v - x)] for unit vectors v is
equivalent to finding an O(d~?)-additive approximation to
the maximum value of p(v) over unit vectors v. We claim
that doing this would give a constant-factor multiplicative
approximation to the maximum value of p(v), finishing our
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reduction to the problem of Corollary VIIL.2. To do this, we
need to show that the maximum value of p(v) is much larger
than d=°.

To show this, we note that because |T|2 = 1, the sum
of the squares of the entries of T is 1. Since T has only d°
entries, this means that it must have some entry with norm at
least d—°. Therefore, there must be unit vectors vy, vs,..., Vs
so that T'(v1, v, V3, V4, vs) > d~°. However, this value is
proportional to Eel,”_’eg)e{il} €169+ esp(e1Vi+eavat.. .+
€5Vs). As each term here is proportional to p of some unit
vector (using the fact that p is homogeneous), this implies that
there is some unit vector v with |p(v)| > d~°. Replacing v
by its negation if necessary, we have that the maximum value
of p(v) over unit vectors v is ©(d~°). This completes our
proof. O

Theorem VIII.4 (Hardness of Proper Learning for ReLUs).
Suppose that there is an algorithm that given query access
to a real-valued function f on RY runs in poly(d) time
and approximates the minimum L% error between f and a
homogeneous RelLU (with respect to the standard Gaussian
distribution) to additive error € for some € < d—*. Then there
is a polynomial-time algorithm for the small set expansion
problem.

The proof of Theorem VIII.4 can be found in the full version
of the paper.
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