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Abstract

We study the clustering problem for mixtures of bounded covariance distributions, under a fine-grained
separation assumption. Specifically, given samples from a k-component mixture distribution D =

∑k

i=1
wiPi,

where each wi g α for some known parameter α, and each Pi has unknown covariance Σi ¯ σ2
i · Id for some

unknown σi, the goal is to cluster the samples assuming a pairwise mean separation in the order of (σi+σj)/
√
α

between every pair of components Pi and Pj . Our main contributions are as follows:

• For the special case of nearly uniform mixtures, we give the first polynomial-time algorithm for this
clustering task. Prior work either required separation scaling with the maximum cluster standard deviation
(i.e. maxi σi) [DKK+22b] or required both additional structural assumptions and mean separation scaling as
a large degree polynomial in 1/α [BKK22].

• For arbitrary (i.e. general-weight) mixtures, we point out that accurate clustering is information-theoretically
impossible under our fine-grained mean separation assumptions. We introduce the notion of a clustering
refinement — a list of not-too-small subsets satisfying a similar separation, and which can be merged into a
clustering approximating the ground truth — and show that it is possible to efficiently compute an accurate
clustering refinement of the samples. Furthermore, under a variant of the “no large sub-cluster” condition
introduced in prior work [BKK22], we show that our algorithm will output an accurate clustering, not just a
refinement, even for general-weight mixtures. As a corollary, we obtain efficient clustering algorithms for
mixtures of well-conditioned high-dimensional log-concave distributions.

Moreover, our algorithm is robust to a fraction of adversarial outliers comparable to α.

At the technical level, our algorithm proceeds by first using list-decodable mean estimation to generate
a polynomial-size list of possible cluster means, before successively pruning candidates using a carefully
constructed convex program. In particular, the convex program takes as input a candidate mean µ̂ and a scale
parameter ŝ, and determines the existence of a subset of points that could plausibly form a cluster with scale
ŝ centered around µ̂. While the natural way of designing this program makes it non-convex, we construct a
convex relaxation which remains satisfiable by (and only by) not-too-small subsets of true clusters..

1 Introduction

Clustering mixture models is one of the most basic and widely-used statistical primitives on data samples from
high-dimensional distributions, with applications in a variety of fields, including bioinformatics, astrophysics, and
marketing [Lin95, GEGMMI10]; see [TSM85] for an extensive list of applications. Informally, the input is a set of

n samples drawn from a mixture distribution D =
∑k

i=1 wiPi over Rd, where wi is the mixing weight of component
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Pi. The goal is to cluster (most of) the samples such that the clustering is approximately equal to partitioning the
data according to the ground truth; namely, partitioning samples according to which mixture component they were
drawn from. For the clustering task to be information-theoretically possible, it is common to make concentration
assumptions on each mixture component Pi (e.g. sub-Gaussianity, or a bounded moments assumption), as well as
on the pairwise separation between the means of the components.

The prototypical case is that of Gaussian mixtures and has been extensively studied in the literature; see,
e.g. [VW02, KSV05, AM05] and references therein. In more detail, [VW02] studied the clustering of data drawn
from mixtures of separated spherical Gaussians. Subsequent work [KSV05, AM05] built on the approach of [VW02]
to design clustering algorithms for mixtures of separated Gaussians with general covariances. The main algorithmic
technique underlying these papers is to apply k-PCA in order to discover the subspace spanned by the means of
the mixture components.

The focus of this paper is the more general heavy-tailed setting, where each component is only assumed to have
bounded covariance instead of stronger concentration. Specifically, suppose that each component Pi has unknown
covariance matrix Σi that satisfies Σi ¯ Ã2 · Id, for some unknown parameter Ã > 0. For notational simplicity,
we restrict this discussion to uniform mixtures (corresponding to the case that wi = 1/k for all i ∈ [k]). Then,
unless the component means have pairwise ℓ2-distance k Ã

√
k, accurate clustering is information-theoretically

impossible in the worst-case. On the positive side, the recent work of [DKK+22b] gave a computationally efficient
algorithm which achieved the best worst-case separation: if all the components Pi have covariances Σi ¯ Ã2 · Id,
then [DKK+22b] showed that it is possible to accurately cluster when given a pairwise separation of CÃ

√
k, where

C > 0 is a sufficiently large universal constant1.
The preceding discussion suggests that the algorithmic problem of clustering mixtures of bounded covariance

distributions under the information-theoretically optimal mean estimation (within constant factors) is fully resolved.
Yet, consider the simple example shown in Figure 1 below.

Figure 1: Example “well-separated” mixture distribution that cannot be handled by the algorithm of [DKK+22b].

In this example, we have an identity-covariance distribution on the left, separated by distance v k 1 from a
pair of 0-covariance distributions on the right, which are in turn separated by some small distance 2w j 1. This
example is clearly clusterable and “well-separated”, since there is essentially no overlap between any of the mixture
components. However, the example cannot be handled by the algorithm of [DKK+22b] or earlier algorithms2 for
the following reason: the largest variance is Ã2 = 1, but the two 0-covariance distributions are separated only by
2w j 1 — instead of the required Θ(Ã

√
k) = Θ(1) separation.

The above example illustrates an important conceptual weakness of prior work in the heavy-tailed (bounded
covariance) setting: it requires that the pairwise mean separation is measured by the maximum covariance across
all the mixture components — even if the pair of components in question both have small covariances. This
distinction can make a large quantitative difference in both theory and practice. Indeed, even for the special case
that the components are of approximately the same size (cardinality), their relative radii may dramatically differ.

Motivation: Achieving fine-grained separation A more reasonable separation assumption that we focus
on in this paper is as follows. Suppose that the components Pi and Pj have maximum standard deviations Ãi and
Ãj respectively. Then we require the corresponding means µi and µj to be separated in ℓ2-distance by a quantity
scaling with Ãi + Ãj . Note that this is much weaker than the prior assumption scaling with maxi Ãi. We also

1We note that [DKK+22b] gave an almost-linear time algorithm that succeeds under slightly stronger separation (within a
log(k)-factor of the optimal). If one allows polynomial-time algorithms, this extra factor does not appear.

2We note, for example, that the algorithm [AS12] produces an accurate clustering under separation ∆ k kσ.
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point out that clustering under such fine-grained separation has been achieved for Gaussian components in earlier
works [AM05, KSV05, Bru09]. However, to the best of our knowledge, no such result was previously known for
the bounded covariance setting. Motivated by this gap in the literature, in this paper we ask:

Is it possible to efficiently cluster data from mixtures of bounded covariance distributions under the
fine-grained separation assumption? Specifically, can we efficiently achieve accurate clustering under
pairwise mean separation in the order of

√
k(Ãi + Ãj)?

As our main contribution, in this paper we study and essentially resolve this question.

We emphasize that the heavy-tailed setting introduces a number of technical challenges that do not appear
in the presence of strong concentration. For the sake of intuition, we explain below how k-PCA — a standard
spectral technique used in prior work — provably fails in our setting.

Failure of k-PCA One of the main standard techniques for clustering mixtures of separated components is to
perform k-PCA: find the top-k dimensional subspace of the sample covariance, and show that with high probability,
this subspace captures the span of the mixture component means. However, this technique fails for bounded
covariance distributions under our fine-grained separation assumption, even with infinitely many samples. This can
be demonstrated through a variant of the example in Figure 1. Consider the uniform (i.e. equal weights) mixture
with a component with unit covariance on a subspace V at the origin, and two components with 0-covariance,
located at points v + w and v − w with ∥v∥2 k 1 and ∥w∥2 j 1. Suppose also that V is Ω(d)-dimensional, and
V, v, w are orthogonal to each other. Denoting the identity matrix in the subspace V by IV , the covariance of the
full distribution is equal to 1

3IV + 2
9vv

¦ + 2
3ww

¦. Given that ∥v∥2 k 1 and ∥w∥2 j 1, the eigenvectors of this
covariance are v, any Ω(d)-dimensional basis of V , finally followed by w. Thus, in order to have the direction w in
the subspace found by k-PCA, we might need as many as k = Ω(d) dimensions, which reduces the dimensionality
only mildly.

Summary of contributions Our first goal focuses on uniform-weight mixture distributions, with the aim of
clustering assuming only a pairwise separation of C · (Ãi+Ãj)

√
k between mixture components Pi and Pj satisfying

Σi ¯ Ã2
i · Id and Σj ¯ Ã2

j · Id, for some sufficiently large universal constant C. We note that the individual standard
deviations Ãi are unknown to the algorithm.

For this setting, we give the first efficient algorithm (Algorithm 1) achieving this guarantee in Theorem 1.1.
We point out that the recent work of [BKK22] also studies the heavy-tailed setting under a fine-grained separation
assumption. However, they require separation which scales like (Ãi+Ãj) poly(k, log n), for a large degree polynomial3.
More importantly, they also require an additional “no large sub-cluster assumption” on the samples beyond bounded
covariance — even for the uniform-weight mixture setting.

Our second, more general goal is to study the limits of clustering general-weight mixtures of bounded covariance
distributions, under the same fine-grained pairwise separation assumption. Perhaps surprisingly, we point out that
it is information-theoretically impossible to achieve accurate clustering due to identifiability issues — there can be
multiple valid ground truths for the same mixture and there is no way to tell which one is the “correct” one — if
the mixing weights are (highly) non-uniform. Nonetheless, our main algorithm (Algorithm 1) efficiently produces
an accurate refinement of the ground truth clustering (Theorem 1.2): informally, a clustering refinement is a list of
not-too-small and disjoint subsets of samples such that there exists a way to combine them into a clustering close
to the ground truth, and furthermore, these subset are themselves well-separated like the ground truth distribution.
This essentially amounts to the information-theoretically strongest possible guarantee in our setting. We further
show that, under a “no large sub-cluster” condition (à la [BKK22]), the same algorithm outputs exactly the correct
k clusters (up to some small fraction of misclassified points).

Finally, we remark that our algorithm is robust to a fraction of adversarial outliers that is comparable to the
size of the smallest cluster.

1.1 Our results Even in the special case of uniform-weight mixtures, no prior work can find an accurate
clustering under a fine-grained separation assumption scaling with Ãi + Ãj between components Pi and Pj , even
if we allow a sub-optimal poly(k) scaling. Here we present our first result, solving both issues simultaneously.

3Their results do not explicit state the degree, but we believe it is at least degree-4 for k according to their algorithm, as opposed
to our optimal

√
k dependence.
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Algorithm 1 finds an accurate clustering in polynomial time, assuming the optimal (up-to-constants) separation in
the order of (Ãi + Ãj)

√
k, which is both fine-grained and has the information-theoretically optimal

√
k dependence.

Theorem 1.1. (Clustering uniform-weight bounded covariance mixtures) Let C be a sufficiently large

constant. Consider a uniform-weight mixture distribution D =
∑k

i=1
1
kPi with k components on R

d. Suppose that
³ is a parameter in [0.6/k, 1/k]. Let µi and Σi be the (unknown) mean and covariance of each Pi, and assume
that Σi ¯ Ã2

i · Id (with Ãi being unknown) and ∥µi − µj∥2 > C(Ãi + Ãj)/
√
³ for all i ̸= j.

Draw n samples from D, and let Si be the samples from the ith mixture component. Further fix a failure
probability ¶ > 0. If n > C(d log(d)+ log(1/(³¶)))/³2, then Algorithm 1 when given the samples, ³, and ¶ as input,
runs in polynomial time and outputs k disjoint sets {Bi}i∈k so that with probability at least 1− ¶ the following are
true, up to a permutation of indices of the output sets:

1. |Si△Bi| f 0.045n/k for every i ∈ [k].

2. The mean of Bi is close to Si: ∥µBi
− µi∥2 = O(Ãi) for every i ∈ [k].

Algorithm 1 is given as input a minimum-weight parameter ³ ∈ [0.6/k, 1/k], and in polynomial-time it returns
a list of exactly k sets, {Bi}, such that, up to a permutation, each Bi has a 95% overlap with the set Si of
samples drawn from the ith mixture component Pi and that the mean µBi

of Bi is indeed close to the mean µi of
Pi, under the minimal assumption that the means of the ith and jth clusters are separated by at least a large
constant multiple of (Ãi + Ãj)/

√
³. We note that i) the 95% overlap can be made an arbitrarily close constant to

1 by increasing the hidden constant in the separation assumption and adapting corresponding constants in the
algorithm, and ii) we do not require any “no large sub-cluster condition” in the uniform mixture setting.

We also stress that Algorithm 1 does not require knowing k precisely, and only needs to know a lower bound
³ for 1/k, which can be a (small) constant factor different.

We further remark that Item 1 above lower bounds the size of the union of all the Bis by 0.95n, namely that
at least 95% of all the points are clustered and returned. As noted above, the 95% can be made into any constant
arbitrarily close to 100%, by increasing the constant C in the separation assumption. Alternatively, if we drop
Item 2 in the theorem statement, namely that the requirement that the mean of Bi is indeed close to the mean µi

of component Pi, then it is possible to return all the input samples in the output clustering.
Moreover, Theorem 1.1 holds even for almost-uniform mixtures, where each mixing weight wi ∈ [0.9/k, 1.1/k],

and if ³ ∈ [0.7/k,mini wi].

The situation of general (non-uniform) mixing weights is somewhat more complicated. For example, in the
situation described below (also shown in Figure 2), even if we know the number k of components and even if
we have infinitely many samples, it is information-theoretically impossible to reliably achieve a 90%-accurate
clustering.

Example: Non-identifiability of general mixtures Consider a distribution consisting of 4 equal weight
0-covariance components, separated into 2 pairs. Each pair is at unit distance, and the two pairs are separated
by a large distance. Suppose we are given that k = 3 and ³ = 1/4, then there are two possible clusterings that
disagree with each other by at least 25% of the total mass: either group the first pair as a large cluster with weight
1/2 and leave the second pair as two smaller clusters, or by symmetry we can group the second pair instead. It is
allegorically impossible to determine which of these is the “true” ground truth clustering even with infinitely many
samples from the mixture.

Given the above impossibility example, the question remains, what is possible given only the mixing weight
lower bound parameter ³, and a separation assumption of C(Ãi + Ãj)/

√
³ between components Pi and Pj? The

example highlights the core of the non-identifiability issue: an impossibility to identify which small subsets to
group together. Consequently, we can perhaps hope to compute all the information in the ground truth clustering
except for such subset grouping. That is, we can try to identify only the small subsets themselves. Motivated
by this observation, we instead aim to return a refinement of the clustering: we will return a list of g k subsets
(which we will call sub-clusters), each of size at least ≈ ³n, such that there exists some way of grouping the subsets
into k larger clusters which then correspond to the ground truth mixture distribution.

For example, in the concrete setting of Figure 2, we could return the 4 small sub-clusters individually, which is
a common refinement of the two possible clusterings shown in the figure. Furthermore, (as we will show) we can
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Figure 2: Two different ground truth clusterings for k = 3.

even guarantee that the returned subsets satisfy a pairwise separation guarantee similar to what we assume of our
underlying mixture distribution.

Our main result (Theorem 1.2) of the paper shows that it is indeed possible to find an accurate refinement
of the ground truth clustering, using Õ(d/³2) samples and in polynomial time, with Algorithm 1. We define an
accurate refinement below, as well as state a simplified version of our main theorem.

Definition 1.1. (Accurate refinement of ground truth clustering) Let c > 0 be an absolute constant.

Suppose we draw n samples from the mixture distribution D =
∑k

i=1 wiPi, where each wi g ³ and each Pi has
mean µi and standard deviation Ãi. Let Si be the set of samples drawn from Pi.

An accurate refinement of the clustering Si is a list of m disjoint sets of samples {Bj}j∈[m] for some
m ∈ [k,O(1/³)], such that:

1. The sets B1, . . . , Bm each have size |Bj | g 0.92³n for all j ∈ [m].

2. The indices [m] can be partitioned into k sets H1, . . . , Hk, such that if Bi are defined as Bi := ∪j∈Hi
Bj, the

following hold:

(a) |Si \ Bi| f 0.045|Si| for every i ∈ [k].

(b) |Bi \ Si| f 0.03³n for every i ∈ [k].

(c) For any i ∈ [k] and any j ∈ Hi we have that ∥µBj
− µi∥2 f c Ãi

√

|Si|/|Bj |.
(d) For any pair j ̸= j′ we have that ∥µBj

− µBj′
∥2 > 100 c (ÃBj

+ ÃBj′
)/
√
³, where ÃBj

is the maximum
standard deviation of Bj.

3. As a consequence of Item 2a we have that |∪j∈[m]Bj | g 0.95n, namely that 95% of the input points are classified
into the output sets.

Item 1 above says that each returned set must have size at least ≈ ³n, given that each mixture component
is supposed to have weight at least ³. Item 2 captures the core idea of a refinement: there exists some way to
combining the returned sets into sets B1, . . . ,Bk, each corresponding to a mixture component P1, . . . , Pk, with
the following guarantees. Items 2a and 2b say that the symmetric difference between the samples Si drawn from
component Pi and the set Bi is small. Item 2c says that each output set Bj must be close to the true mean of

its corresponding mixture component Pi, with error scaling with Ãi as well as
√

|Si|/|Bj | — the larger Bj is,
containing more samples in Si, the closer µBj

should be to µi. Item 2d says that the returned subsets {Bj} must
themselves satisfy a mean separation akin to the one satisfied by the mixture components, up to a constant factor
loss. Lastly, Item 3 guarantees that at least 95% of the samples are indeed classified and returned in one of the
output sets.

Remark 1.1. The guarantees of Definition 1.1 imply that for every output set Bj there exists a true cluster Si

such that |Bj ∩Si| = |Bj |− |Bj \Si| g |Bj |− |Bi \Si| g |Bj |− 0.03³n g (1− 0.03/0.92)|Bj | g 0.967|Bj |, i.e. more
than 96% of the points in the output set come from the true cluster Si.
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Theorem 1.2. (Simplified version of Theorem 3.1) Consider a mixture distribution on R
d, D =

∑k
i=1 wiPi

with unknown positive weights wi g ³ for some known parameter ³ ∈ (0, 1). Let µi and Σi be the (unknown)
mean and covariance for each Pi, and assume that Σi ¯ Ã2

i · Id for all i ∈ [k] (with Ãi being unknown) and
∥µi − µj∥2 > C(Ãi + Ãj)/

√
³ for every i ̸= j, for a sufficiently large constant C.

There is an algorithm (Algorithm 1) which, when given ³ and n independent samples from D for n at least a
sufficiently large multiple of (d log d+ log(1/(³¶)))/³2, runs in polynomial time and with probability at least 1− ¶
(over the randomness of both the samples and the algorithm), outputs an accurate refinement clustering of these
samples in the sense of Definition 1.1.

As in Theorem 1.1, for Definition 1.1 to be satisfied by the algorithm output, we can make the constant 0.92
in Item 1 arbitrarily close to 1, and the constants in Items 2a and 2b arbitrarily close to 0, if we increased the
constant in the mean separation assumption in Theorem 1.2.

We also remark that the same algorithm (Algorithm 1) can even tolerate adversarial corruption in an
Ω(³)-fraction of the samples. See the full theorem, Theorem 3.1, for the detailed statement.

Clustering under “no large sub-clusters” We can further guarantee that Algorithm 1 returns only k
clusters (thereby corresponding exactly to the k ground truth components), if we also assume a “no large sub-cluster”
condition à la [BKK22], stated in Section 1.1. Informally, the condition says that for any large subset S′ of samples
Si drawn from the ith mixture component, the standard deviation ÃS′ of S′ is comparable to ÃSi

. This is intuitively
the contrapositive of not having any large sub-clusters: a large sub-cluster can be understood as a large subset that
is separated from the rest of the clusters, meaning that it has a substantially smaller covariance. Our condition
below is qualitatively the same condition as that of [BKK22], but with a stronger quantitative requirement on the
parameters of a sub-cluster. In Section 8.1, we show that such a stronger condition is information-theoretically
necessary, due to our much weaker (and optimal) mixture separation assumption. Afterwards, in Section 8.2, we
also show (see Corollary 1.1, an informal version of Corollary 8.1), that if the condition is satisfied, then there can
only be one possible ground truth (i.e., there are no identifiability issues anymore) and thus Algorithm 1 indeed
returns only one output set per real mixture component.

[NLSC condition] We say that the disjoint sets S1, . . . , Sk of total size n satisfy the “No Large Sub-Cluster”
condition with parameter ³ if for any cluster Si and any subset S′ ¢ Si with |S′| g 0.8³n, it holds that ÃS′ g 0.1ÃSi

,
where ÃS′ is the square root of the largest eigenvalue of the covariance matrix of S′.

Corollary 1.1. (Informal version of Corollary 8.1) If the samples Si from the ith mixture component
jointly satisfy the NLSC assumption with parameter ³ across all i ∈ [k], then Algorithm 1 returns exactly one
sample set per mixture component (with high probability). As a consequence, if Bi is the output set corresponding
to the ith mixture component, then we have ∥µBi

− µi∥ f O(Ãi), just like in Theorem 1.1.

Later in Section 8.2, we also show that well-conditioned and high-dimensional log-concave distributions have
samples that satisfy the NLSC condition with high probability. We remark that the high-dimensionality assumption
is necessary: the thin-shell behavior of log-concave distributions in high dimensions is critical to satisfy our NLSC
condition.

Proposition 1.1. (Informal version of Proposition 8.2) A sample of size Õ(d/³2) drawn from a well-
conditioned and high-dimensional log-concave distribution satisfies the NLSC condition (Section 1.1) with high
probability.

Before moving on to an overview of our algorithmic techniques, we emphasize that, even though we presented
multiple results in multiple settings (uniform vs general weight mixtures, with and without the NLSC condition),
they all apply to the same algorithm without needing any changes even in the hardcoded constants. Algorithm 1 does
not need any knowledge of whether any of the conditions hold; it achieves the corresponding results automatically
whenever the corresponding assumptions are satisfied.

1.2 Technical overview In this section, we give an overview of the components and techniques used in
Algorithm 1, our main algorithm.

Since the mixture component means are assumed to be well-separated, Algorithm 1 works by finding a list
of candidate mean vectors, each of which is close to a mixture component, with the entire list “covering” all the
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components. Once we have such a list, it suffices to consider the Voronoi partition of the samples; that is, to
assign each point to the cluster of the closest candidate mean. The mean separation assumption, along with the
concentration of bounded covariance distributions, guarantee that such a Voronoi partition will be close to a
refinement of the ground truth clustering.

The high-level idea of finding such a list of candidate mean vectors is to first generate a much larger (but
still polynomially-sized) list which potentially contains candidates that are far from all mixture components, and
then prune all the invalid candidate means out of the list. The first part is relatively straightforward, since there
are standard list-decodable mean estimation algorithms for bounded-covariance distributions (e.g. [DKK+21]).
The only minor complication is that, for these algorithms to return means with tight error guarantees, they need
good upper bounds on the standard deviation of each mixture component. We thus first generate a list of possible
standard deviations ŝ (Proposition 2.1), and for each ŝ, run the list-decodable mean estimation algorithm. After
this step, we have a list of candidate means such that, for each mixture component, there is at least one candidate
mean close to it.

The next step is at the heart of our algorithm: to prune candidate means that are not sufficiently close to any
mixture component (with distance threshold scaling with the standard deviation of the mixture component). A
natural way to do this would be to test each candidate mean by trying to find its corresponding cluster and seeing
if that exists. In particular, given a candidate mean µ̂ and candidate standard deviation ŝ, we would like to find a
subset of at least an ≈ ³-fraction of the samples whose covariance matrix is bounded by O(ŝ2) · Id and whose
mean is within O(ŝ/

√
³) of µ̂. If we can find this, it suggests that the cluster we are looking for actually exists.

Unfortunately, the natural approach of finding such a cluster is computationally hard, so we need to find
appropriate relaxations to make it tractable. Immediately, to avoid computational hardness from integrality issues,
we begin by allowing a weighted subset rather than an actual subset, which concretely is to find weights wi ∈ [0, 1]
over each sample xi, such that

∑

i wi is at least ≈ ³n. This nearly turns our problem into a convex program. In
particular, if we knew the mean of the cluster exactly, the covariance would be a linear function of {wi}i, making
it a convex program. However, as we do not know the real mean, the covariance matrix centered at µw — the
mean of the weighted cluster defined by {wi}i — is no longer linear in {wi}i, and the constraint bounding its
operator norm is no longer a convex constraint. So, instead, we compute the second moment matrix of {wi}i
centered at the candidate mean µ̂ (i.e. proportional to

∑

i wi(xi − µ̂)(xi − µ̂)¦). This gives us a convex program,
but unfortunately one that might not be satisfiable even by a correct cluster C whose mean is indeed O(ŝ/

√
³)

close to the candidate mean µ̂: the second moment matrix of C would actually be Cov(C) + (µ̂− µC)(µ̂− µC)
¦,

and the latter term might contribute to an eigenvector of size as large as Ω(ŝ2/³), which is too large when ³ is
small. We must therefore further relax our convex program. Instead of finding {wi} whose second moment matrix
centered at µ̂ has operator norm bounded by O(ŝ2) · Id, we constrain its O(1/³)-Ky-Fan norm by O(ŝ2/³). This
new, final program (Program (4.1) in Section 4) is now both convex and satisfiable by a true cluster.

The next obstacle, however, is that a solution {wi}i to the above convex program might not actually correspond
to a true cluster or mixture component. In particular, if there are other clusters with standard deviation much
smaller than ŝ, we might have found a solution that shares bits and pieces of these smaller clusters. This problem
can only occur though if there are other clusters with standard deviation smaller than ŝ, but which are close to
µ̂. Thus, we can avoid it by searching for clusters in increasing order of ŝ and then throwing away any µ̂ that
is within O(ŝ/

√
³) of some previously un-pruned candidate mean. Formally, Lemma 4.1 shows that if µ̂ is far

from all clusters with standard deviation smaller than ŝ, and if a solution to Program (4.1) exists for the pair
(µ̂, ŝ), then the found solution must overlap substantially with a true cluster. An induction applying Lemma 4.1
repeatedly then shows that, after this pruning, all candidate means must be close to some true cluster, and that
all clusters have candidate means close to them.

As discussed at the beginning of the section, we can now consider the Voronoi partition of the samples based
on the candidate means. A few issues remain, that this partition does not satisfy the guarantees of Theorem 1.2.
First, if there are too many candidate means remaining at this stage, a cluster in the Voronoi partition might be too
small in size (Section 5). To solve this, we repeatedly remove candidate means whose Voronoi cluster is too small,
noting that i) this never decreases the cluster size of un-removed candidate means, and ii) by the separation of the
mixture components, we will never accidentally remove all candidate means close to any true cluster. Second, due
to heavy-tailed noise and adversarial corruption, even for the Voronoi clusters that overlap well with true clusters,
their means might be very far from the candidate means we started out with. We fix this using the standard
filtering technique in robust statistics, removing at most 2% of the samples in each Voronoi cluster. Lastly, we
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need to guarantee that the returned clusters also satisfy (up to constant factors) the same separation assumption
we have on our underlying mixture distribution (Section 6). We enforce this again by removing candidate means
whenever we detect a pair of (filtered) clusters that are too close to each other. Crucially, we carefully choose
which corresponding candidate mean from the pair to remove, so that we never remove all the candidate means
close to a true cluster.

1.3 Related work Here we survey the most relevant prior work on clustering mixture models and algorithmic
robust statistics.

Mixture models A long line of work in theoretical computer science and machine learning has focused
on developing efficient clustering methods for various mixture models (with mixtures of Gaussians being the
prototypical example) under mean separation conditions; see, e.g. [Das99, AK01, VW02, AM05, KSV05, KK10,
AS12, CSV17, HL18, KSS18, DKK+22b, BKK22].

Early work [AM05] gave an efficient spectral algorithm for clustering mixtures of bounded covariance Gaussians
that succeeds under mean separation Θ((Ãi + Ãj)/

√
³) between components Pi and Pj , when the minimum mixing

weight ³ is much smaller than 1/k. However, even for the special case of uniform-weight k-mixtures of Gaussians
(and log-concave distributions), their result requires a separation of (Ãi + Ãj)Ω(k) — instead of scaling with

√
k

— and, in fact, also has additional spurious terms in the separation containing a logarithmic dependence on the
sample complexity n. It should be noted that the algorithm of [AM05] built on an earlier algorithm developed in
[VW02], which only works for mixtures of spherical Gaussians. They can cluster under the weaker mean separation
condition which (roughly) scales as (1/³)1/4; their separation condition also has a mild logarithmic dependence
on the ambient dimensionality d. The works mentioned in this line all employ k-PCA as a core algorithmic
technique; see the beginning of the introduction on why k-PCA fails in our heavy-tailed problem setting, under
our fine-grained separation assumption.

[AS12] provided another spectral algorithm, designed to cluster mixtures of bounded covariance data. Their
algorithm is able to cluster under a separation of (roughly) Ω(k)(maxi Ãi). Their specific separation assumption
can in fact be smaller than Ω(k)(maxi Ãi) in certain instances, but the bound is not improvable to o(k)(maxi Ãi) in
the worst case, contrasting the

√
k dependence we achieve. More importantly, their separation condition between

µi, µj scales with the maximum standard deviation maxi Ãi, as opposed to the fine-grained pair-dependent sum
Ãi + Ãj achieved by our algorithm.

Recently, [DKK+22b] gave an almost linear-time clustering algorithm for mixtures of bounded covariance
distributions. Their techniques inherently also cluster only under a maxi Ãi separation for the following reason:
their algorithm runs a list-decodable mean estimation routine once (with the goal to list-decode the mean of a
distribution with covariance Σ ¯ (maxi Ã

2
i ) · Id) to generate a list of O(1/³) possible candidate cluster means.

It then uses a coarse distance-based method to prune the means down to exactly k of them. As a result, their
approach only works under a uniform separation between all pairs of components.

Another recent work [BKK22] also studied efficient clustering of mixtures of bounded covariance distributions,
achieving a mean separation (between µi, µj) scaling with Ãi + Ãj . However, their separation assumption has
a highly sub-optimal poly(1/³) dependence, as well as an unnecessary logarithmic dependence on the sample
complexity n. More importantly, their clustering algorithm inherently requires an additional structural condition
on the components (which they term “no large sub-cluster” condition) beyond just bounded covariance, even for
the special case of uniform-weight mixtures.

A related line of work has obtained clustering algorithms with significantly improved separation using more
sophisticated algorithmic tools; see, e.g. [DKS18b, HL18, KSS18, DK20, LL22]. These works apply for families of
distributions with controlled higher moments (e.g. sub-Gaussians), and in particular have no implication for the
bounded covariance setting studied here.

Beyond clustering, a line of research developed efficient algorithms for learning mixtures of Gaussians, even in
the presence of a constant fraction of corruptions; see, e.g. [MV10, BS10, BDH+20, Kan21, LM20, BDJ+20]. The
aforementioned algorithms make essential use of the assumption that the mixture components are Gaussian.

Robust statistics and list-decodable learning Our paper is also related to the field of algorithmic robust
statistics in high dimensions. Early work in the statistics community [Hub64, Tuk75] solidified the statistical
foundations of this field. Unfortunately, the underlying estimators lead to exponential time algorithms. A line of
work in computer science, starting with [DKK+16, LRV16], developed polynomial-time algorithms for a wide range
of robust high-dimensional estimation tasks. The reader is referred to the recent book [DK23] for an overview.
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The list-decodable learning setting that we leverage in this work was defined, in a somewhat different context,
in [BBV08]. [CSV17] gave the first polynomial-time algorithm for the task of list-decodable mean estimation
under a bounded covariance assumption. Specifically, if the clean data has covariance bounded by the identity,
their achieved error guarantee is Õ(1/

√
³). This error bound was slightly refined in [CMY20] to O(1/

√
³) with an

asymptotically faster algorithm; a matching information-theoretic lower bound of Ω(1/
√
³) was shown in [DKS18a].

We note that [CSV17] also obtains a corollary for clustering mixtures, but their method requires sub-Gaussian
components, and it only outputs a clustering refinement with O(1/³) subsets. Finally, [DKK+22b], building
on [DKK20a, DKK+20b], developed an almost-linear time algorithm for this task; in fact, they built their clustering
result for mixtures of bounded covariance distributions via a reduction to list-decodable mean estimation.

In this work, we also use list-decodable mean estimation as a blackbox (Fact 2.4 in Section 2). An important
difference compared to prior work is that our processing of the candidate means is substantially more involved,
which is required due to our fine-grained separation assumption.

Finally, we point out other work which developed efficient list-decodable mean estimators with significantly
improved error guarantees under much stronger distributional assumptions [DKS18a, KSS18, DKK+22a].

1.4 Organization Section 2 gives basic notations and facts that we use in the rest of the paper. Section 3
states our main algorithm (Algorithm 1) as well as the full version of our main result (Theorem 3.1). Sections 4
to 6 analyzes the three main steps of the algorithm. Section 7 uses the guarantees from the prior three sections to
prove our main result. Finally, Section 8 discusses the implications of the no large sub-cluster condition in our
problem setting.

2 Preliminaries

In this section, we state useful notations and facts that the rest of the paper depends on.

2.1 Notation For a vector v, we let ∥v∥2 denote its ℓ2-norm. We use Id to denote the d× d identity matrix;
We will drop the subscript when it is clear from the context. For a matrix A, we use ∥A∥F and ∥A∥op to denote
the Frobenius and spectral (or operator) norms, respectively. We use ∥A∥(k) to denote the Ky-Fan norm which

is defined as ∥A∥(k) =
∑k

j=1 sj(A), where sj(A) for j = 1, . . . , k are the first k singular values of A. If V is a
subspace, we denote by ProjV its the orthogonal projection matrix.

We use X ∼ D to denote that a random variable X is distributed according to the distribution D. We use
N (µ,Σ) for the Gaussian distribution with mean µ and covariance matrix Σ. For a set S, we use X ∼ S to denote
that X is distributed uniformly at random from S. When S is a set of points in R

d, we will use the shorter
notation µS := EX∼S [X],Cov(S) := EX∼S [(X − µS)(X − µS)

¦], and ÃS :=
√

∥Cov(S)∥op.
We use a ≲ b to denote that there exists an absolute universal constant C > 0 (independent of the variables or

parameters on which a and b depend) such that a f Cb. We use ak b to denote that ³ > Cb for a sufficiently
large absolute constant C.

2.2 Deterministic conditions and useful facts
Stability condition Our algorithm will succeed if the following condition is satisfied for the samples of each

true cluster. The condition, referred to as “stability”, is standard in algorithmic robust statistics. Intuitively, it
requires that any large subset of the dataset has mean and covariance that do not shift significantly. We provide the
definition below. In the fact that follows, we state that large sets of points from bounded covariance distributions
indeed satisfy the stability condition with high probability.

Definition 2.1. (Stability condition) For C > 0 and ϵ ∈ (0, 1/2), a multiset S of m points x1, . . . , xm

in R
d is called (C, ϵ)-stable with respect to µ ∈ R

d and Ã ∈ R
+ if, for any weights w1, . . . , wm ∈ [0, 1] with

∑

xi∈S wi g (1− ϵ)m it holds:

•

∥

∥

∥

1∑
xi∈S wi

∑

xi∈S wixi − µ
∥

∥

∥

2
f CÃ

√
ϵ

• Σw,µ ¯ C2Ã2 · Id,

where Σw,µ := 1∑
xi∈S wi

∑

xi∈S wi(xi − µ)(xi − µ)¦.
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Fact 2.1. (Sample complexity of stability [DKP20]) Let S be a set of m points drawn i.i.d. from a
distribution on R

d with mean µ and covariance Σ ¯ Ã2 · Id. If m k (d log(d) + log(1/¶))/min{ϵ, ³} then,
with probability 1− ¶, there exists a (1− 0.001³)m-sized subset S′ of S that is (100, ϵ)-stable with respect to µ ∈ R

d

and Ã.

Facts from robust statistics We record the following facts that will be useful later on. First, we recall in
Fact 2.2 a stability-based filtering algorithm that, given any stable set of samples with bounded covariance and
with 4% of its points arbitrarily corrupted, removes 4% of the points in a way that the resulting output set is
guaranteed to have bounded covariance and mean close to the true one.

Definition 2.2. (Strong contamination model) Given a parameter 0 < ϵ < 1/2, the strong adversary
operates as follows: The algorithm specifies a set of n samples, then the adversary inspects the samples, removes up
to ϵn of them and replaces them with arbitrary points. The resulting set is given as input to the learning algorithm.
We call a set ϵ-corrupted if it has been generated by the above process.

Fact 2.2. (Filtering; see, e.g. [DK23]) There exists an algorithm for which the following is true: Let ¶ ∈ (0, 1)
be a parameter. Let S be a set of points in R

d that is (C, ϵ)-stable with respect to µ and Ã for some C > 0 and
ϵ f 0.04. Let T be an ϵ-corrupted version of S (cf. Definition 2.2) and assume |T | k log(1/¶). Then the algorithm
having as input any set T of the above form and ¶ terminates in time poly(|T |, d) and returns a subset T ′ ¦ T
such that, with probability at least 1− ¶, the following hold:

• |T ′| g (1− ϵ)|T |.
• ∥µT ′ − µ∥2 f 10CÃ

√
ϵ.

• ΣT ′,µ ¯ 10C2Ã2 · Id.
The following fact states that taking subsets of a set S with bounded covariance does not shifts the mean

significantly. This (or its contrapositive version) will be used in a lot of the core arguments. In particular, one
corollary of this fact is Lemma 2.1, stating that subsets of stable sets are also stable with worse parameters. This
will be useful for applying the aforementioned filtering algorithm at the very last step of our main algorithm to
ensure that the final clusters have means and covariances that are close to what they should be. For completeness,
we provide a proof of Lemma 2.1 in Section A.

Fact 2.3. Let S be a multiset, and denote by µS ,ΣS the mean vector and covariance matrix of the uniform
distribution on S. If S satisfies ΣS ¯ Ã2 · Id and wx ∈ [0, 1] are weights for the points x ∈ S that satisfy
∑

x∈S wx g ³|S|, then we have that
∥

∥

∥

∥

∑

x∈S wxx
∑

x∈S wx
− µS

∥

∥

∥

∥

2

f Ã√
³

.

Lemma 2.1. Let S be a set of points that is (C, ϵ)-stable with respect to µ and Ã for some C g 1 and ϵ < 1/2.
Then, any subset S′ ¦ S with |S′| g ³|S| is (1.23C/

√
0.04³, 0.04)-stable with respect to µ and Ã.

We finally state in Proposition 2.1 and fact 2.4 the subroutines that we will use for creating a list of candidate
covariances and means of the true clusters. We defer the proof of Proposition 2.1 to Section A. The algorithm
consists of simply returning a list with all the values starting from ∥x−y∥2 down to ∥x−y∥2/(2|S|2) in multiples of√
2, for all pairs of points x, y. By the definition of the covariance matrix as Cov(S) = 1

2|S|2
∑

x,y∈S(x−y)(x−y)¦,

one of these quantities should be within a factor of two from ∥Cov(S)∥op.

Proposition 2.1. Let T be a set of m points in R
d. There is a poly(m, d)-time algorithm that outputs a list of

size O(m2 log(m)) that for any S ¦ T contains an estimate ŝ such that ∥Cov(S)∥op f ŝ2 f 2∥Cov(S)∥op.
Fact 2.4. (List-decodable mean estimation; see, e.g. [DKK+21]) Let S be a multi-set in R

d that satisfies
1
m

∑

x∈S(x− µ)(x− µ)¦ ¯ Ã2 · Id for some µ ∈ R
d and Ã > 0, and T be another multi-set in R

d such that S ¦ T
and |S| g ³|T |. There exists an algorithm and absolute constant C > 1, that on any input T of the aforementioned
form and the standard deviation parameter Ã, the algorithm runs in polynomial time and returns a O(1/³)-sized
list of vectors that contains at least one vector µ̂ such that ∥µ̂− µ∥2 f CÃ/

√
³.
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3 Main algorithm and result

We present our main algorithm in the paper, Algorithm 1, which follows the outline described in Section 1.2.
Lines 1 and 2 first generates a list of plausible component means and standard deviations. Then, Line 4 is
responsible for pruning the list such that every remaining candidate mean is indeed close to a true component.
This is useful because the Voronoi partition of the samples based on such a list is an accurate refinement of the
ground truth clustering. Lines 5 and 6 further prune the list, to ensure that the returned refinement have subsets
that are not too small (at least ≈ ³n in size) and that they are well-separated. Finally, Line 7 returns filtered
versions of the final Voronoi partition, in order to filter out adversarial and heavy-tailed outliers, to make sure
that the mean of each returned subset is reasonably close to its corresponding mixture component.

Algorithm 1 Clustering algorithm

Input: Parameter ³ ∈ (0, 1), and multi-set T of n points in R
d for which there exists a ground truth clustering

S1, . . . , Sk according to the assumptions of Theorem 3.2.
Output: Disjoint subsets of T that form an accurate refinement (cf. Definition 1.1) of the ground truth clustering.

1. Generate a list Lstdev of candidate standard deviations using the algorithm from Proposition 2.1.

2. Generate a list of candidate means, Lmean, by applying the list-decoding algorithm of Fact 2.4 for each candidate
s in the list Lstdev, and appending the output of each run to Lmean.

3. Initialize L← ∅.

4. For every s ∈ Lstdev in increasing order of s:

(a) For every µ ∈ Lmean:

i. If ∥µ− µ̂∥2 > 99Cs/
√
³ for all µ̂ ∈ L, decide the satisfiability of the convex program defined in (4.1)

in Section 4.

ii. If satisfiable, add µ to the list L.

5. L′ ← SizeBasedPruning(L, T, ³). ▷ cf. Algorithm 2

6. L′′ ← DistanceBasedPruning(L′, T, ³). ▷ cf. Algorithm 4

7. Output FilteredVoronoi(L′′, T ).

We will now state the full version of our main theorem (Theorem 3.1). As discussed in the introduction,
our algorithm can also handle a small amount of adversarial corruption in the samples. Recall the “Strong
Contamination Model” from Definition 2.2, commonly used in the robust statistics literature, capturing the
powerful adversary that our algorithm can handle. In that model, a computationally unbounded adversary can
inspect and edit a small fraction of the input points however it wants.

We now give the version of our main result (Theorem 3.1) that works under this adversarial corruption. The
statement says that Algorithm 1 outputs an accurate refinement of the ground truth clustering of the samples:
a list of sets {Bj}j∈[m] for some m ∈ [k,O(1/³)], each of which has size at least 0.92³n, such that the sets are
90% close to a refinement of the ground truth clustering. We also ensure that the output clusters also enjoy a
mean separation guarantee that is qualitatively similar to the one at the distributional level (Item 2d below).
Furthermore, if the output set Bj corresponds a subset of the samples Si drawn from component i, then the mean
µBj

of Bj is close to µi (Item 2c), by a distance bound that depends on the ratio |Si|/|Bj |, namely that the larger
the fraction that Bj covers in Si, the closer their means are.

Theorem 3.1. (Main result, formal statement) Consider a mixture distribution on R
d, D =

∑k
i=1 wiPi

with unknown positive weights wi g ³ for some known parameter ³ ∈ (0, 1). Let µi and Σi be the (unknown)
mean and covariance for each Pi, and assume that Σi ¯ Ã2

i · Id for all i ∈ [k] (with Ãi being unknown) and
∥µi − µj∥2 > 591 c2(Ãi + Ãj)/

√
³ for every i ̸= j, for a sufficiently large constant c.

Let a set T0 of n samples drawn from D independently, and let Si be the samples from the ith mixture

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

298

D
o
w

n
lo

ad
ed

 0
6
/1

3
/2

5
 t

o
 1

3
7
.1

1
0
.3

5
.4

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



component. Let T be any 0.01³-corruption of T0 according to the model defined in Definition 2.2. Further fix a
failure probability ¶ ∈ (0, 1).

If nk (d log(d) + log(1/(³¶)))/³2, then on input the set T and the parameter ³, with probability at least 1− ¶
(over the randomness of both the samples and the algorithm), Algorithm 1 runs in time poly(nd/³) and outputs
m f 1/(0.92³) disjoint sets {Bj}j∈[m] such that:

1. The output sets B1, . . . , Bm each have size |Bj | g 0.92³n for all j ∈ [m].

2. The set of indices [m] can be partitioned into k subsets H1, . . . , Hk, such that if Bi are defined as Bi := ∪j∈Hi
Bj ,

the following hold:

(a) |Si \ Bi| f 0.045|Si| for every i ∈ [k].

(b) |Bi \ Si| f 0.03³n for every i ∈ [k].

(c) For any i ∈ [k] and any j ∈ Hi, we have that ∥µBj
− µi∥2 f c Ãi

√

|Si|/|Bj |.
(d) For any pair j ̸= j′, we have that ∥µBj

− µBj′
∥2 > 366 c (ÃBj

+ ÃBj′
)/
√
³.

3. As a consequence of Item 2a, we have that | ∪j∈[m] Bj | g 0.95n, namely that 95% of the input points are
classified into the output sets.

Before we prove Theorem 3.1, we first show Theorem 1.1 concerning the special case of uniform-weight mixture
distributions. As we show below, Theorem 1.1 is a direct consequence of Theorem 3.1.

Proof. [Proof of Theorem 1.1] Theorem 1.1 is a special case of Theorem 3.1. It can be readily checked that all the
assumptions of Theorem 3.1 are satisfied for ³ ∈ [0.6/k, 1/k]. Moreover, the sizes |Si| have expected value n/k, and
thus by the Chernoff-Hoefding bound it must be the case that 0.999n/k f |Si| f 1.001n/k with high probability.
Since the sets Bj (j ∈ [m]) mentioned in Theorem 3.1 are disjoint with sizes |Bj | g 0.92³n > 0.552n/k (Item 1 of
the theorem statement) and their unions Bi corresponding to ith cluster satisfy |Bi \ Si| f 0.03n/k (Item 2b), this
means that each Bi has size |Bi| f 1.031n/k and thus every Bi must consist of exactly one of the Bj ’s. Thus, the
algorithm outputs exactly k sets B1, . . . , Bk, where (up to a permutation of the labels) Bi corresponds to the ith

mixture component. Then, Items 2a and 2b of Theorem 3.1 imply that |Si△Bi| f 0.044max(|Si|, ³n) f 0.045n/k
since ³ f 1/k and |Si| f 1.001n/k. Item 2 of Theorem 1.1 follows from Item 2c of Theorem 3.1 after noting that

|Bj | g |Bj ∩ Sj | g |Sj | − |Sj△Bj | g 0.999n/k − 0.044n/k = 0.955n/k g (0.955/1.001)|Sj | .

This completes the proof of Theorem 1.1.

It remains to analyze Algorithm 1, which we do in Sections 4 to 7. Section 4 states and analyzes the convex
program used in Line 4 of the algorithm, as well as the guarantees-by-induction right after Line 4 finishes. Section 5
gives Algorithm 2 used in Line 5, which ensures that every set in the Voronoi partition computed from the
remaining candidate means is of size at least ≈ ³n. Section 6 gives Algorithm 4 used in Line 6, which in turn
ensures that the Voronoi partition from the remaining means corresponds to a refinement with well-separated
subsets. Finally, in Section 7, we prove Theorem 3.2 stated below, which is a version of Theorem 3.1 conditioned
on samples satisfying deterministic stability conditions (cf. Section 2.2).

Theorem 3.2. (Stable set version of Theorem 3.1) Let d ∈ Z+, ¶, ³ ∈ (0, 1) be parameters, and let C > 1
be a sufficiently large absolute constant. Consider a (multi-)set T of nk log(1/(³¶))/³ points in R

d with k disjoint
subsets S1, . . . , Sk ¦ T , where | ∪i Si| g (1− 0.02³)|T |, satisfying the following for each i ∈ [k]: (i) |Si| g 0.97³n,
(ii) Si is (C, 0.04)-stable (cf. Definition 2.1) with respect to mean µi and maximum standard deviation parameter Ãi

(where µi, Ãi are unknown), (iii) for every pair i ≠ j we have ∥µi − µj∥2 > 105C2(Ãi + Ãj)/
√
³. Then Algorithm 1

on input T, ³, runs in poly(nd/³)-time and with probability at least 1− ¶ (over the internal randomness of the
algorithm) outputs m f 1.07/³ disjoint sets {Bj}j∈[m] that satisfy the following:

1. The output sets B1, . . . , Bm are disjoint and have size |Bj | g 0.92³n for all j ∈ [m].

2. The set [m] can be partitioned into k sets H1, . . . , Hk, such that if Bi are defined as Bi := ∪j∈Hi
Bj , the following

hold:
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(a) Bi ̸= ∅ for i ∈ [k].

(b) |Si \ Bi| f 0.033|Si| for every i ∈ [k].

(c) |Bi \ Si| f 0.03³n for every i ∈ [k].

(d) For any i ∈ [k] and any j ∈ Hi we have that ∥µBj
− µi∥2 f 13CÃi

√

|Si|/|Bj |.
(e) For any pair j ̸= j′ we have that ∥µBj

− µBj′
∥2 > 4761C(ÃBj

+ ÃBj′
)/
√
³.

To end this section, we prove that Theorem 3.1 does indeed follow from Theorem 3.2.

Proof. [Proof of Theorem 3.1] Before we begin the proof, we note that, despite the notation Si appearing in both
Theorem 3.1, Theorem 3.2, they mean slightly different sets in the context. In Theorem 3.1, the Si sets refer to
all the samples generated from the ith mixture component, prior to any corruptions. On the other hand, when
applying Theorem 3.2, we will instead consider large subsets of the samples that are stable. For this proof, we
will use the notation S̃1, . . . , S̃k to denote the samples from the ith component, and we will later choose Si in the
context of Theorem 3.2 to be large subsets of S̃i that are stable, essentially guaranteed by Fact 2.1.

We now check explicitly that with high probability (i.e. at least 1− ¶/2), the set T in Theorem 3.1 has subsets
S1, . . . , Sk satisfying the assumptions of Theorem 3.2. We choose the constant c that appears in the statement of
Theorem 3.1 to be the same as 13C in Theorem 3.2.

We can think of the mixture model as first deciding the number of samples drawn from each component, and
then generating each set of samples by drawing i.i.d. samples from the component. Since each component has
weight at least ³ and the number of samples is nk (d log(d) + log(1/(³¶)))/³2, by Chernoff-Hoeffding bounds
and a union bound, with probability at least 1− ¶/100, |S̃i| g 0.999³nk (d log(d) + log(1/(³¶)))/³ for all i ∈ [k].
Then, by Fact 2.1 applied to the samples S̃i from each component, and a union bound over all components, we
have that with probability at least 1− ¶/100, there exist subsets S′

i ¦ S̃i for i ∈ [k] with |S′
i| g (1− 0.001³)|S̃i|

that are (C/2, 0.05)-stable with respect to µi and Ãi. This, combined with the fact that the adversary can corrupt
only 0.01³n points, means that if we let Si for i ∈ [k] be the sets S′

i ∩ T (i.e. parts of S′
i that are not corrupted

by the adversary), the assumptions of Theorem 3.2 that | ∪i Si| g (1 − 0.02³)|T |, |Si| g 0.97³n and Si being
(C, 0.04)-stable are all satisfied with probability at least 1− ¶/2.

Continuing our check of the assumptions of Theorem 3.2, the separation assumption ∥µi − µj∥2 >
105C2(Ãi + Ãj)/

√
³ trivially follows from the corresponding assumption in Theorem 3.1 (and the fact that

we have chosen c = 13C).
The conclusion of Theorem 3.2 is guaranteed to hold with probability 1 − ¶/2 over the randomness of the

algorithm. By a union bound over the failure event of the Theorem 3.2 and the failure event of Fact 2.1 (which
are both at most ¶/2), we get that the conclusion holds with probability at least 1− ¶ over both the randomness
of the samples and the randomness of the algorithm.

We finally check that the conclusion of Theorem 3.2 implies the conclusion in Theorem 3.1. Item 1 of
Theorem 3.1, stating that |Bj | g 0.92³n, is the same as in Theorem 3.2. Item 2a of Theorem 3.1, stating

that |S̃i \ Bi| f 0.034|S̃i| is derived from Item 2b of Theorem 3.2 as follows: |S̃i \ Bi| f |Si \ Bi| + |S̃i \ Si| f
0.033|Si|+ |S̃i \Si| f 0.033|S̃i|+0.001|S̃i|+0.01³n = 0.045|S̃i|, where the second step used Item 2b of Theorem 3.2,
the third step used that Si ¦ S′

i ¦ S̃i, |S′
i| g (1 − 0.001³)|S̃i| and that the adversary can edit at most 0.01³n

points. The last step used that |S̃i| g 0.999³n. Item 2b of Theorem 3.1, stating that |Bi \ S̃i| f 0.03³n can be
derived from Item 2c of Theorem 3.2 as follows: |Bi \ S̃i| f |Bi \ Si| f 0.03³n, the first step is because Si ¦ S̃i

and the second step uses the guarantee from Theorem 3.2. The last two parts of the conclusion of Theorem 3.1
follow similarly.

4 Candidate mean pruning via convex programming

This section states and analyzes the convex program (in (4.1) below) used in Line 4 of Algorithm 1. Line 4 assumes
that for all mixture components Pi and its stable subset of samples Si, the list Lstdev contains an ŝ ∈ [ÃSi

,
√
2ÃSi

]
by Proposition 2.1, and the list Lmean contains a µ̂ with ∥µ̂ − µSi

∥ f O(ÃSi
/
√
³) by Fact 2.4—recall that we

denote by ÃSi
=
√

∥Cov(Si)∥op the maximum standard deviation of the points in Si. At the end of the section, we
will then guarantee that, after the double-loop of Line 4 finishes, the list L ¢ Lmean also contains mean estimates
close to every Si, and moreover, every µ̂ ∈ L is close to some Si.
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We will use the notation of Theorem 3.2 in the following. Recall that we denote by T the input set of samples.
For every vector µ ∈ R

d and s > 0, we define the convex program below, where the constant C is the same constant
appearing in Fact 2.4.

Find: wx ∈ [0, 1] for all x ∈ T

s.t.:

∥

∥

∥

∥

∥

∑

x∈T

wx(x− µ)(x− µ)¦

∥

∥

∥

∥

∥

(1/³)

f 2C2s2

³

∑

x∈T

wx,

0.97³n f
∑

x∈T

wx

(4.1)

The following lemma (Lemma 4.1) analyzes the convex program (4.1). If for some standard deviation candidate
s and candidate mean µ, we are guaranteed that µ is far from all Sj with ÃSj

j s, and furthermore, there is a
solution for the program (4.1), then every Sj whose mean is far away from µ has negligible overlap with the solution
{wx}x. The first assumption corresponds to the check in Line 4(a)i—Lemma 4.1 will be used in the context of
an induction over the outer loop, where we assume that all clusters Sj with ÃSj

f s have some “representative”
candidate mean in L that is close to µSj

. The conclusion of Lemma 4.1 certifies that µ must be close to some true
cluster Si if Line 4(a)i passes, thus allowing us to safely add this µ to the list L.

Lemma 4.1. Consider the setting of Theorem 3.2 and consider an arbitrary pair of parameters µ ∈ R
d and s > 0.

Suppose that: (i) for every cluster Sj with ÃSj
< s/100 it holds that ∥µ− µSj

∥2 g 46Cs/
√
³, and (ii) a solution

wx for x ∈ T to the program defined in (4.1) exists. Then there exists a unique true cluster Si with ÃSi
g s/100

such that ∥µSi
− µ∥2 f 4600CÃSi

/
√
³.

Proof. By the constraint 0.97³n f ∑

x∈T wx of the program, it suffices to show that all clusters Sj with
∥µSi

−µ∥2 > 4600CÃSi
/
√
³ have (in the aggregate) small overlap with the solution of the program {wx}x, namely,

that
∑

j:∥µSi
−µ∥2>4600CÃSi

/
√
³

∑

x∈Sj
wx f 0.01

∑

x∈T wx. In order to show this, we consider a number of cases.

We first consider clusters that have standard deviation at most s/100 (which satisfy assumption (i) in the lemma
statement), and then clusters with bigger standard deviation. At the end, we combine the two analyses to conclude
the proof of the lemma.

For clusters Sj with ÃSj
< s/100: We first show that across cluster indices j with ÃSj

< s/100, we must have
that

∑

j :ÃSj
<s/100

∑

x∈Sj
wx f 0.003

∑

x∈T wx. For every cluster index j ∈ [k], we denote by vj the unit vector in

the direction of µSj
− µ and consider the partition Sj = Sf

j ∪ S>
j , where S>

j = {x ∈ Sj : v
¦
j (x− µ) > 45Cs/

√
³}

and Sf
j = S \ S>

j . That is, S>
j is the part of the cluster Sj that is far away from µ in the direction µSj

− µ and

Sf
j the points that are close. We bound the overlap of the solution {wx}x∈T with each kind of points individually

in Claims 1 and 2 that follow. The argument for the points that are far away is that a large number of them would
cause a violation of the Ky-Fan norm constraint of the program defined in (4.1). For the points that are close to µ,
the argument is that a large number of these points would move the mean of the cluster close to µ and violate our
assumption that ∥µ− µSj

∥2 g 46Cs/
√
³ for every cluster Sj with ÃSj

< s/100.

Claim 1.
∑k

j=1

∑

x∈S>
j
wx f 0.001

∑

x∈T wx.

Proof. This follows by the Ky-Fan norm constraint of the the program defined in (4.1). Let V be an arbitrary
(1/³)-dimensional subspace containing the span of v1, . . . , vk (where the vi’s are defined as the unit vectors in the
directions µSi

− µ for i ∈ [k]). Then we have that:

2C2s2

³

∑

x∈T

wx g
∥

∥

∥

∥

∥

∑

x∈T

wx(x− µ)(x− µ)¦

∥

∥

∥

∥

∥

(1/³

)(by the Ky-Fan norm constraint)

g tr

(

∑

x∈T

wxProjV (x− µ)(x− µ)¦Proj¦V

)

(by def. of the Ky-Fan norm)
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=
∑

x∈T

wx ∥ProjV (x− µ)∥22

g
k
∑

j=1

∑

x∈S>
j

wx ∥ProjV (x− µ)∥22

g
k
∑

j=1

∑

x∈S>
j

wx(vj(x− µ))2(since vj ∈ V )

g 2000C2
k
∑

j=1

∑

x∈S>
j

wx
1

³
s2 .(by definition of set S>

j )

The above implies that
∑k

j=1

∑

x∈S>
j
wx f 0.001

∑

x∈T wx.

Claim 2. We have that
∑

j :ÃSj
<s/100

∑

x∈S
f
j

wx f 0.002
∑

x∈T wx.

Proof. Let ³f
j :=

(

∑

x∈S
f
j

wx

)

/|Sf
j | denote the intersection of the solution with Sf

j ; the part of the j-th cluster

that is close to µ. We will show that
∑

j∈[k]:ÃSj
<s/100 ³

f
j f 0.001.

Since Sf
j contains by definition the points x ∈ Sj that v¦j (x − µ) f 45Cs/

√
³, then their mean satisfies

v¦j (µS
f
j

− µ) f 45Cs/
√
³. Then we can write

v¦j (µSj
− µ

S
f
j

) = v¦j (µSj
− µ)− v¦j (µS

f
j

− µ) g 46Cs/
√
³− 45Cs/

√
³ g Cs/

√
³ > 100CÃSj

/
√
³ ,

where the first inequality used the assumption that ∥µSj
−µ∥2 g 46Cs/

√
³ for ÃSj

< s/100 (and that vj is the unit
vector in the direction of µSj

− µ), and the last inequality used that we consider only clusters with ÃSj
< s/100.

The above implies that ∥µSj
− µ

S
f
j

∥2 > 100CÃSj
/
√
³. If, for the sake of contradiction, we had ³f

j g 0.001³,

then Fact 2.3 (and the fact that C > 1) implies ∥µ
S

f
j

− µSj
∥2 f 100ÃSj

/
√
³ f 100CÃSj

/
√
³, which is a

contradiction. Thus, it must be the case that ³f
j < 0.001³.

The above implies that
∑

j :ÃSj
<s/100

∑

x∈S
f
j

wx f 0.001³
∑

j :ÃSj
<s/100 |Sf

j | f 0.001³n f
(0.001/0.97)

∑

x∈T wx < 0.002
∑

x∈T wx, where the last inequality used that
∑

x∈T wx g 0.97³n is a constraint in
the program (4.1).

For clusters Sj with ÃSj
g s/100: For every cluster Sj , we define a similar notation as in the previous case

³j :=
(

∑

x∈Sj
wx

)

/|Sj |, which quantifies the overlap of the cluster with the solution of the program. As explained

in the beginning, the goal is to show that all clusters Sj with mean far away from µ have (in the aggregate) small
overlap with the solution {wx}x of the program. In the previous paragraph (the one analyzing clusters with
ÃSj
g s/100), we did not have to use that the means are far from µ because we could argue separately for the points

that are close to µ; but here considering only clusters with mean far away from µ will become crucial. We will
furthermore only consider clusters for which ³j > 0.001³—since our goal is to show small overlap in the aggregate, it
suffices to do so for the clusters that individually have non-trivial overlap. In summary, the clusters that we consider
in this paragraph are ones from the set Bad := {j ∈ [k] : ÃSj

g s/100, ³j > 0.001³, ∥µSj
− µ∥2 > 4600CÃSj

/
√
³},

and the goal is to show that
∑

j∈Bad

∑

x∈Sj
wx f 0.001

∑

x∈T wx. To do this, we will show that the part of the
solution coming from clusters in the set Bad causes large variance in the subspace connecting the µSj

’s with µ;
thus, by the Ky-Fan norm constraint, such contributions should be limited.

Recall that for any cluster Sj , the notation vj denotes the unit vector in the direction of µSj
− µ, and V

denotes a subspace of dimension 1/³ that includes the span of v1, . . . , vk (recall k f 1/³). Using calculations
similar to Claim 1, we have that

k
∑

j=1

∑

x∈Sj

wx (vj(x− µ))
2 f

k
∑

j=1

∑

x∈Sj

wx ∥ProjV (x− µ)∥22
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=
∑

x∈T

wx ∥ProjV (x− µ)∥22

f
∥

∥

∥

∥

∥

∑

x∈T

wx(x− µ)(x− µ)¦

∥

∥

∥

∥

∥

(1/³)

f 2C2s2

³

∑

x∈T

wx ,(4.2)

where the last inequality is, again, by definition of the the program (4.1).
Now consider a cluster Sj with j ∈ Bad, i.e. a cluster for which ÃSj

> s/100, ³j > 0.001³ and

∥µSj
− µ∥2 > 4600CÃSj

/
√
³. Let µ′

j :=
(

∑

x∈Sj
wxx

)

/
(

∑

x∈Sj
wx

)

. We have the following by Fact 2.3:

∥µ′
j − µSj

∥2 f ÃSj
/
√
³j f 100ÃSj

/
√
³ f 100CÃSj

/
√
³ .(4.3)

The above implies that v¦j (µ
′
j − µ) g 4500CÃSj

/
√
³, because otherwise we would have

∥µSj
− µ∥2 = v¦j (µSj

− µ)

= v¦j (µSj
− µ′

j) + v¦j (µ
′
j − µ)

f ∥µSj
− µ′

j∥2 + 4500CÃSj
/
√
³

f 100CÃSj
/
√
³+ 4500CÃSj

/
√
³(by (4.3))

f 4600CÃSj
/
√
³ ,

which is a contradiction to j ∈ Bad. Thus,

∑

x∈Sj

wx(v
¦
j (x− µ))2 = |Sj |

³j
∑

x∈Sj
wx

∑

x∈Sj

wx(v
¦
j (x− µ))2

g |Sj |³j





1
∑

x∈Sj
wx

∑

x∈Sj

wxv
¦
j (x− µ)





2

(by Jensen’s inequality)

= |Sj |³j

(

v¦j (µ
′
j − µ)

)2

g |Sj |³j · 2 · 107 · C2³−1Ã2
Sj

g |Sj |³j · 2000C2 · ³−1s2(since ÃSj
g s/100)

g





∑

x∈Sj

wx



 2000C2³−1s2 .

Combining with (4.2) the above shows that
∑

j∈Bad

∑

x∈Sj
wx f 0.001

∑

x∈T wx.

Putting everything together: We now show how the two previous analyses for the clusters j with
ÃSj

< s/100 and ÃSj
g s/100 for j ∈ Bad can be combined to conclude the proof of Lemma 4.1.

We first argue that there exists exactly one cluster i with ∥µSj
− µ∥2 f 4600CÃSi

/
√
³: Indeed, there cannot

be more than one such clusters because if there were two clusters i ̸= j then by the triangle inequality and stability
condition we would have

∥µi − µj∥2 f ∥µSi
− µ∥2 + ∥µSj

− µ∥2 + ∥µi − µSi
∥2 + ∥µj − µSj

∥2(by the triangle inequality)

f ∥µSi
− µ∥2 + ∥µSj

− µ∥2 + C(Ãi + Ãj)(by stability condition for means)

f 4600C(ÃSi
+ ÃSj

)/
√
³+ C(Ãi + Ãj)

f 4600C2(Ãi + Ãj)/
√
³+ C(Ãi + Ãj)(by stability condition for covariances)

f 4601C2(Ãi + Ãj)/
√
³ ,(using C > 1)
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which would violate our separation assumption in Theorem 3.2. It also cannot be the case that none of the clusters
satisfy the condition that ∥µSi

−µ∥2 f 4600CÃSi
/
√
³, because in that case we will show that we could also obtain

a contradiction. Recall that in our notation T is the entire dataset and Sj ’s are the stable sets (which we often
call “clusters”). The contradiction can be derived as follows (step by step explanations are provided in the next
paragraph):

∑

x∈T

wx =
∑

j:ÃSj
<s/100

∑

x∈Sj

wx +
∑

j:ÃSj
gs/100

∑

x∈Sj

wx +
∑

x∈T\∪jSj

wx(4.4)

=
∑

j:ÃSj
<s/100

∑

x∈Sj

wx +
∑

j∈Bad

∑

x∈Sj

wx +
∑

j:ÃSj
gs/100,j ̸∈Bad

∑

x∈Sj

wx +
∑

x∈T\∪jSj

wx(4.5)

f 0.003
∑

x∈T

wx + 0.002
∑

x∈T

wx + 0.001
∑

x∈T

wx + 0.02³n(4.6)

f 0.003
∑

x∈T

wx + 0.002
∑

x∈T

wx + 0.001
∑

x∈T

wx + 0.021
∑

x∈T

wx f 0.05
∑

x∈T

wx .(4.7)

We explain the steps here: (4.4) splits the summation into a part for the large covariance clusters and one for the
small covariance ones, and the part of the dataset that does not belong to any of the clusters. (4.5) further splits
the sum due to large variance clusters into two parts: the clusters that belong in the set Bad and the rest of them.
(4.6) bounds each one of the resulting terms as follows: The bound of the first term uses the analysis of small
covariance clusters. The bound of the second term uses the analysis of large covariance clusters. The bound of
the third term uses that, since we have assumed that ∥µSj

− µ∥2 > 4600CÃSj
/
√
³ for all clusters, the only way

that j ̸∈ Bad can happen is because of ³j < 0.001³. The bound of the last term comes from the assumption in
Theorem 3.2 that ∪iSi contains most of the points in T (this is one of the assumptions in Theorem 3.2). Finally,
(4.7) uses the fact that

∑

x∈T wx g 0.97³n by construction of the the program constraints in (4.1).
Equation (4.7) yields the desired contradiction, thus there must be exactly one cluster Si with ∥µSi

− µ∥2 f
4600CÃSi

/
√
³. This completes the proof of Lemma 4.1.

Having shown Lemma 4.1 which gives guarantees about solutions of the convex program (4.1), we can now
state and prove the induction (Lemma 4.2) which guarantees that throughout the execution of the double loop in
Line 4, every candidate mean added to the list L must be close to some true cluster Si, and every true cluster Si

with standard deviation at most s must have a corresponding candidate mean in L.

Lemma 4.2. (Induction) Consider the setting of Theorem 3.2 and Algorithm 1. The first statement below holds
throughout the execution and the second statement holds at the start of every iteration of the loop of line 4:

1. (Every element from the list is being mapped to a true cluster): For every element µ̂i in the list L there exists a
true cluster Sj such that ∥µ̂i − µSj

∥ f 4600CÃSj
/
√
³.

2. (Every cluster of smaller covariance has already been found): For every true cluster Si with ÃSi
f s, there

exists µ̂j in the list L such that ∥µ̂j − µSi
∥2 f 4600CÃSi

/
√
³.

Before we prove the lemma, we note that the guarantee of the lemma involves the empirical quantities
µSi

and ÃSi
as opposed to the “true” means and standard deviations µi, Ãi of the mixture components, which

are the parameters that each Si is stable with respect to. Later on in the paper, we will use the following
straightforward corollary of Lemma 4.2, which can be derived directly by the two stability conditions ÃSi

f CÃi

and ∥µSi
− µi∥2 f CÃi.

Corollary 4.1. In the setting of Lemma 4.2, the first statement holds throughout the execution of the algorithm
and the second holds at the start of every iteration of the loop of line 4:

1. For every element µ̂i in the list L, there exists a true cluster Sj such that ∥µ̂i − µj∥ f 4601C2Ãj/
√
³.

2. For every true cluster Si with ÃSi
f s, there exists µ̂j in the list L such that ∥µ̂j − µi∥2 f 4601C2Ãi/

√
³.
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We now prove Lemma 4.2.

Proof. [Proof of Lemma 4.2]
In everything that follows, we will informally use the phrase that “cluster Si has been found” as a shorthand

to the statement that there exists µ̂j in the list L such that ∥µ̂j − µSi
∥2 f 4600CÃi/

√
³.

We prove the lemma by induction. Suppose the algorithm enters a new iteration of the outer loop (line 4),
and suppose that Items 1 and 2 (our inductive hypothesis) hold for all prior steps of the algorithm. We will show
that Item 1 remains true each time a new element is inserted into the list L in iterations of the inner loop and
that Item 2 remains true in the next iteration of the outer loop. Since showing Item 2 is more involved, we will
start with that.

Proof of Item 2: For Item 2 we want to show that every cluster Sj with ÃSj
f s will be found. We consider

two cases: The first case is ÃSj
< s/100. In that case, by the guarantee of list-decoding for the covariances

(Proposition 2.1), there must exist a candidate standard deviation ŝ in the list Lstdev such that ÃSj
f ŝ f

√
2ÃSj

.
Note that combining with ÃSj

< s/100 this implies that ŝ < s. This means that, as the algorithm has gone through
the list Lstdev, it must have examined that candidate covariance ŝ in an earlier step. For that step, the inductive
hypothesis along with the fact that ÃSj

f ŝ implies that the cluster Sj must have already been found at that
earlier step.

Now let us consider the case s/100 f ÃSj
f s. We will show that, if the cluster has not been already found,

then it will be found at the current iteration of the loop of line 4. We will do this by showing that there exists a
candidate mean µ ∈ Lmean such that:

(a) ∥µ− µSj
∥2 f CÃSj

/
√
³.

(b) ∥µ− µ̂i∥2 > 99Cs/
√
³ for every µ̂i in the list L.

(c) The program defined by (4.1) is satisfiable.

Before establishing the individual claims, we point out that they indeed imply that the cluster j will be found
at the current iteration. To see this, first note that claim (b) above implies that the algorithmic check in line 4(a)i
will go through when the algorithm uses the candidate mean µ. Then, because of claim (c), the program will be
satisfiable, and an application of Lemma 4.1 combined with claim (a) will yield that ∥µ− µSj

∥2 f 4600CÃSj
/
√
³,

i.e. the cluster Sj is indeed found. We explain the application of Lemma 4.1 in detail in the next two paragraphs.
First, we check that the preconditions of Lemma 4.1 are established, i.e. we will check that for every cluster

ℓ with ÃSℓ
< s/100 it holds that ∥µ − µSℓ

∥2 g 46Cs/
√
³ and that a solution to the program exists. The

satisfiability of the program is due to claim (c). In the reminder of the paragraph, we show the part that
∥µ− µSℓ

∥2 g 46Cs/
√
³ for all clusters ℓ with ÃSℓ

< s/100: By the inductive hypothesis, all clusters with standard
deviation at most s/100 have already been found, meaning that if Sℓ is a cluster with ÃSℓ

< s/100, then there is a
µ̂t in the list with ∥µ̂t − µSℓ

∥2 f 4600CÃSℓ
/
√
³. Putting everything together, if Sℓ is a cluster with ÃSℓ

< s/100,
then ∥µ − µSℓ

∥2 g ∥µ − µ̂t∥2 − ∥µ̂t − µSℓ
∥2 g 99Cs/

√
³ − 4600CÃSℓ

/
√
³ g 99Cs/

√
³ − 46Cs/

√
³ g 46Cs/

√
³

(where the first step uses the reverse triangle inequality, the second step uses claim (b) for the first term and
∥µ̂t − µℓ∥2 f 4600CÃSℓ

/
√
³ for the second term and the next step uses that ÃSℓ

< s/100).
We have thus checked that Lemma 4.1 is applicable. We now check that the conclusion of the lemma indeed

implies that cluster Sj will be found. The conclusion of the lemma (after a renaming of the index) is that there
exists a unique true cluster St with ÃSt

g s/100 such that ∥µ− µSt
∥2 f 4600CÃSt

/
√
³. Note the “unique” part:

there cannot be any other cluster St′ for which ∥µ−µSt′
∥2 f 4600CÃSt′

/
√
³ (otherwise the separation assumption

between clusters is violated). This combined with claim (a) means that the cluster St from the conclusion of
Lemma 4.1 must be the same cluster that we originally denoted by Sj . Thus, we showed that cluster Sj is found,
as desired.

We now show that the claims (a), (c), and (b) hold for µ being the mean candidate for which it holds
∥µ − µSj

∥2 f CÃSj
/
√
³ by the list-decoding guarantee (Fact 2.4). Thus, (a) is satisfied by that fact. We now

show that this µ also satisfies (c): Using (a) and that the standard deviation of Sj in every direction is at most
ÃSj

(by definition), we can show the following for the Ky-Fan norm of the centered around µ second moment of
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that true cluster:
∥

∥

∥

∥

∥

∥

1

|Sj |
∑

x∈Sj

(x− µ)(x− µ)¦

∥

∥

∥

∥

∥

∥

(1/³)

f

∥

∥

∥

∥

∥

∥

1

|Sj |
∑

x∈Sj

(x− µSj
)(x− µSj

)¦

∥

∥

∥

∥

∥

∥

(1/³)

+ ∥µ− µSj
∥22

f 1

³

∥

∥

∥

∥

∥

∥

1

|Sj |
∑

x∈Sj

(x− µSj
)(x− µSj

)¦

∥

∥

∥

∥

∥

∥

(op)

+ C2 1

³
Ã2
Sj

f 1

³

(

Ã2
Sj

+ C2Ã2
Sj

)

f 2C2 s
2

³
,

where the first step uses the inverse triangle inequality and the last step uses that we only consider true clusters
with ÃSj

f s. Thus, the program is satisfiable by the binary weights wx = 1(x ∈ Sj).
We now move to establishing the claim (b), i.e. that ∥µ− µ̂i∥2 > 99Cs/

√
³ for every µ̂i in the list L. Consider

an arbitrary µ̂i from the list L corresponding to a previously found cluster. By the inductive hypothesis, for every
µ̂i ∈ L, there exists a true cluster Sℓ for which ∥µ̂i − µSℓ

∥2 f 4600CÃSℓ
/
√
³. By assumption in the context of the

claim, cluster j has not been found, and thus ℓ ̸= j. Then, by the reverse triangle inequality, we obtain:

∥µ− µ̂i∥2 g ∥µj − µℓ∥2 − ∥µj − µSj
∥2 − ∥µℓ − µSℓ

∥2 − ∥µSℓ
− µ̂i∥2 − ∥µ− µSj

∥2
> 104C2(Ãℓ + Ãj)/

√
³− CÃj − CÃℓ − 4600CÃSℓ

/
√
³− CÃSj

/
√
³

g (104 − 1)C2(Ãj + Ãℓ)/
√
³− 4600CÃSℓ

/
√
³− CÃSj

/
√
³

g (104 − 1)C(ÃSj
+ ÃSℓ

)/
√
³− 4600CÃSℓ

/
√
³− CÃSj

/
√
³

(ÃSj
f CÃj by stability condition for covariances)

g (104 − 2)CÃSj

g 99Cs/
√
³ ,(using s/100 < ÃSj

)

where the second line uses the separation assumption between clusters ℓ, j to bound below the first term, the stability
condition to bound the next two terms, and the facts that ∥µ− µj∥2 f CÃSj

/
√
³ and ∥µ̂i − µSℓ

∥2 f 4600CÃℓ/
√
³

that we had already established in the previous paragraph. The last line uses that we are analyzing only the case
s/100 < ÃSj

.

Proof of Item 1: Consider an iteration of the (inner) loop of the algorithm. We assume that the inductive
hypothesis holds for the past iterations and we will show that Item 1 continues to be true after the current one is
finished. It suffices to only consider an iteration where a new element µ̂ gets inserted to the list L in line 4(a)ii
(otherwise the claim is trivial). The fact that µ̂ corresponds to a true cluster will be a direct consequence of
Lemma 4.1.

It remains to check that Lemma 4.1 is applicable, i.e. we will check that for every cluster ℓ with ÃSℓ
< s/100 it

holds that ∥µ− µSℓ
∥2 g 46Cs/

√
³ and that a solution to the program exists. The satisfiablitity of the program is

due to the fact that the algorithm has reached line 4(a)ii. In the reminder of the paragraph, we show the part that
∥µ− µSℓ

∥2 g 46Cs/
√
³ for all clusters ℓ with ÃSℓ

< s/100: By the inductive hypothesis, all clusters with standard
deviation at most s/100 have already been found, meaning that if Sℓ is a cluster with ÃSℓ

< s/100, then there is a µ̂t

in the list with ∥µ̂t−µSℓ
∥2 f 4600CÃSℓ

/
√
³. Putting everything together, if Sℓ is a cluster with ÃSℓ

< s/100, then
∥µ− µSℓ

∥2 g ∥µ− µ̂t∥2 − ∥µ̂t − µSℓ
∥2 g 99Cs/

√
³− 4600CÃSℓ

/
√
³ g 99Cs/

√
³− 46Cs/

√
³ g 46Cs/

√
³, where

the inequalities used are the following: The first step uses the reverse triangle inequality, the second step uses the
condition in line 4(a)i of the pseudocode line 4(a)ii in order to bound the first term and ∥µ̂t−µSℓ

∥2 f 4600CÃSℓ
/
√
³

for the second term, and the next inequality uses that ÃSℓ
< s/100.

5 Cardinality-based pruning of candidate means

This section concerns Line 5 of Algorithm 1. Right before Line 5 is executed, we are guaranteed that the list
L of candidate means consists only of candidates close to one of the Si sets. Concretely, every µ̂ ∈ L is close

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

306

D
o
w

n
lo

ad
ed

 0
6
/1

3
/2

5
 t

o
 1

3
7
.1

1
0
.3

5
.4

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



to some Si with distance at most O(ÃSi
/
√
³), and that every Si has some µ̂ ∈ L close to it. At this point, the

Voronoi partition of the samples is already an accurate refinement of the ground truth clustering (Lemma 5.1
below). However, we want to further ensure that the returned clustering “looks like” what we assume of our
underlying mixture distribution; namely, that each subset has at least ≈ ³ mass, and that the subsets are pairwise
well-separated. Line 5 prunes candidate means, via Algorithm 2 stated below, to ensure that the corresponding
Voronoi cell has sufficient mass.

We first show Lemma 5.1, which states that the Voronoi partition based on the candidate means in L does
form an accurate refinement to the ground truth clustering.

Lemma 5.1. (Voronoi clustering properties) Consider the notation and assumptions of Theorem 3.2. Let
L be an m-sized list of vectors µ̂1, . . . , µ̂m with m g k. Suppose the list L can be partitioned into sets H1, . . . , Hk

such that for every i ∈ [k], Hi consists of the vectors µ̂j with ∥µ̂j − µi∥2 f 4601C2Ãi/
√
³, and further assume that

Hi ≠ ∅ for all i ∈ [k]. Let Aj = {x ∈ T : argminj′∈[m] ∥x− µ̂j′∥2 = j} for j ∈ [m] be the Voronoi partition (recall
that T denotes the entire dataset). For each i ∈ [k] define Ai := ∪j:µ̂j∈Hi

Aj. Then, the following hold:

1. (Points from Si assigned to sub-clusters associated with the wrong true cluster are few)
|Si \ Ai| f 0.011|Si| for every i ∈ [k], and

2. (Points from the sub-clusters associated with a true cluster mostly include points from that true cluster)
|Ai \ Si| f 0.03³n for every i ∈ [k].

3. |Ai| g 0.959³n for i ∈ [k].

Proof. First, observe that Item 3 in the lemma follows directly from Item 1 and the assumption |Si| g 0.97³n.
Namely,

|Ai| g |Ai ∩ Si| g |Si| − |Si \ Ai| g 0.989|Si| g 0.959³n .(5.8)

Thus it suffices to prove Items 1 and 2.
For i ∈ [k] and for every i′ ̸= i define the intersection of the true cluster i with the union of the sub-clusters

associated with cluster i′ as S′
i,i′ := Si ∩ Ai′ . We claim that it suffices to show that |S′

i,i′ | < (0.01³)|Si| for every
i′ ̸= i, that Items 1 and 2 follow.

For the first part of the lemma statement (Item 1), we have that

|Si \ Ai| =
∑

i′ ̸=i

|Si ∩ Ai′ | =
∑

i′ ̸=i

|S′
i,i′ | f 0.01|Si|³k f 0.011|Si| ,

where we used that the sets A1, . . . , Am form a partition of T , and the number of true clusters is k f 1/(0.97³)
(since we assumed |Si| g 0.97³n).

Similarly, for the second part of the lemma statement (Item 2),

|Ai \ Si| f
∑

i′ ̸=i

|Ai ∩ Si′ |+ 0.02³n f 0.01³
∑

i′∈[k]

|Si′ |+ 0.02³n f 0.01³n+ 0.02³n f 0.03³n ,

where the first inequality uses the assumption from Theorem 3.2, that there are at most 0.02³n points that do not
belong to any of the sets S1, . . . , Sn.

We now show the claim that |S′
i,i′ | < (0.01³)|Si| for every i, i′ ∈ [k] with i′ ≠ i. Recall our notation µi

(for i ∈ [k]) representing the vectors that each true cluster Si is stable for (see setup of Theorem 3.2). These
vectors should not be confused with the µ̂j ones (for j ∈ [m]), which are the approximate centers used to produce
the Voronoi partition. Since we have assumed that the µi’s are separated from each other and Hi contains (by
definition) the candidate means that are close to µi, every pair of vectors µ̂ ∈ Hi and µ̂′ ∈ Hi′ for i ̸= i′ must also
be separated:

∥µ̂− µ̂′∥2 g ∥µi − µi′∥2 − ∥µ̂− µi∥2 − ∥µ̂′ − µi′∥2(by reverse triangle inequality)

g 105C2(Ãi + Ãi′)/
√
³− 4601C2Ãi/

√
³− 4601C2Ãi′/

√
³

g 95399C2(Ãi + Ãi′)/
√
³ .(5.9)
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Given that every point in S′
i,i′ is closer to some µ̂′ ∈ Hi′ than every µ̂ ∈ Hi, and furthermore given that µ̂ and

µ̂′ are far from each other according to (5.9), we now show that ∥µS′
i,i′
− µi∥2 > 10C2Ãi/

√
³. Combining this with

Fact 2.3, we can extract that |S′
i,i′ | < (0.01³)|Si|. To see that by contradiction, assume that |S′

i,i′ | g (0.01³)|Si|.
Then, Fact 2.3 ensures that ∥µS′

i,i′
− µi∥2 f 10ÃSi

/
√
³ f 10CÃSi

/
√
³ f 10C2Ãi/

√
³, where we used C > 1 as

well as the stability condition for the covariance (the fact that ÃSi
f CÃi).

To see that ∥µS′
i,i′
− µi∥2 > 10C2Ãi/

√
³, consider an arbitrary point

x ∈ S′
i,i′ and let µ̂′ ∈ Hi′ be the center from L that is the closest one to x (by definition of S′

i,i′ that closest
center belongs in Hi′). Letting µ̂ again be an arbitrary center from Hi, since x is closer to µ̂′ than µ̂, we have
∥x− µ̂∥2 g 1

2∥µ̂− µ̂′∥2. Finally,

∥x− µi∥2 g ∥x− µ̂∥2 − ∥µ̂− µi∥2(by reverse triangle inequality)

g 1

2
∥µ̂− µ̂′∥2 − ∥µ̂− µi∥2

g 1

2
· 95399C2(Ãi + Ãi′)/

√
³− 4601C2Ãi/

√
³(by (5.9) and µ̂ ∈ Hi)

> 10C2Ãi/
√
³ .

Since the above holds for every x ∈ S′
i,i′ , it also holds for the mean of that set, i.e. ∥µS′

i,i′
− µi∥2 > 10C2Ãi/

√
³.

As we mentioned above, combining this with Fact 2.3 shows that |S′
i,i′ | < (0.01³)|Si|, as desired.

We now state Algorithm 2, which is used in Line 5 of Algorithm 1.

Algorithm 2 Pruning of sub-clusters based on cardinality.

Input: Dataset T of n points, centers µ̂1, . . . , µ̂m and parameter ³ ∈ (0, 1).
Output: A subset µ̂1, . . . , µ̂m′ of the input centers.

1. Jdeleted ← ∅ .

2. Construct the Voronoi partition Aj = {x : argminj′∈[m] ∥x− µ̂j′∥2 = j} for j ∈ [m].

3. While there exists j ∈ [m] \ Jdeleted with |Aj | < 0.96³n do:

(a) Update Jdeleted ← Jdeleted ∪ {j}.
(b) For all j /∈ Jdeleted, update Aj = {x : argminj′∈[m]\Jdeleted

∥x− µ̂j′∥2 = j}.

4. Return {µ̂j}j∈[m]\Jdeleted
.

Lemma 5.2 below analyzes Algorithm 2.

Lemma 5.2. (Pruning of sub-clusters based on cardinality) Consider the notation and assumptions of
Theorem 3.2. Let L be an m-sized list of vectors µ̂1, . . . , µ̂m with m g k. Suppose the list L can be partitioned into
sets H1, . . . , Hk such that for every i ∈ [k], Hi consists of the vectors µ̂j with ∥µ̂j − µi∥2 f 4061C2Ãi/

√
³, and

further assume that Hi ̸= ∅ for all i ∈ [k].
Suppose that we run Algorithm 2 on L as the input and denote by µ̂1, . . . , µ̂m′ the sublist of centers output

by the algorithm. Then, if we define the sets H ′
i := {µ̂j for j ∈ [m′] : ∥µ̂j − µi∥2 f 4061C2Ãi/

√
³} for i ∈ [k],

then H ′
1, . . . , H

′
k is a partition of {µ̂1, . . . , µ̂m′} and it also holds that H ′

i ̸= ∅ for all i ∈ [k]. Moreover, in the final
Voronoi clustering that corresponds to these output centers, Aj := {x : argminj′∈[m′] ∥x− µ̂j′∥2 = j} for j ∈ [m′],
it holds true that |Aj | g 0.96³n.

Proof. Consider the notation Aj for the Voronoi clusters as in the pseudocode of Algorithm 2. The claim that
|Aj | g 0.96³n for all j ∈ [m′] follows by construction of the algorithm (line 3). We thus focus on the remaining
part of the lemma conclusion (the one about the sets H ′

i).
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To show the remaining parts of the lemma conclusion, it suffices to show that at any point during the
algorithm’s execution, if we define the sets H ′

i := {µ̂j for j ∈ [m] \ Jdeleted : ∥µ̂j − µi∥2 f 4061C2Ãj/
√
³}, then

H ′
i ≠ ∅ for all i ∈ [k] (the fact that H ′

1, . . . , H
′
k is a partition of L holds trivially by our assumption on the input).

In order to show that H ′
i ≠ ∅ for all i ∈ [k], suppose that at some point during the algorithm’s execution there

exists i ∈ [k] for which we are left with only a single center µ̂j satisfying ∥µ̂j − µi∥2 f 4061C2Ãi/
√
³. Then, we

will show that this µ̂j will never get deleted. To do so, we claim that at least 0.99|Si| points of Si have µ̂j as their
closest center among the non-deleted centers {µ̂t}t∈[m]\Jdeleted

. From this claim, it follows that the set Aj in the
Voronoi partition corresponding to that center will have size |Aj | g 0.99|Si| g 0.99 · 0.97³n g 0.96³n (using our
assumption |Si| > 0.97³n) and therefore µ̂j will never be deleted because of the deletion condition in line 3.

We now prove the above claim that at least 0.99|Si| points of Si have µ̂j as their closest non-deleted center.
Denote by S′

i,i′ := {x ∈ Si : argmaxt∈[m]\Jdeleted
∥x− µ̂t∥2 ∈ Hi′}, i.e. the part of Si consisting of the points that

are closer to centers belonging in Hi′ than Hi. First we argue that it suffices to show that |S′
i,i′ | < 0.01³|Si|. This

implies
∑

i′ ̸=i |S′
i,i′ | f 0.01k³|Si| f 0.01|Si|, which means that, at least 0.99|Si| of the points from Si must have

argmaxj′∈[m]\Jdeleted
∥x− µ̂j′∥2 ∈ Hi. Finally, since we are under the assumption that µ̂j is the only center in Hi

from the non-deleted ones (j ∈ [m] \ Jdeleted), the previous implies that at least 0.99|Si| points of Si have µ̂j as
their closest center.

In order to show |S′
i,i′ | < 0.01³|Si| for any i′ ̸= i, we will show that ∥µS′

i,i′
− µi∥2 > 10C2Ãi/

√
³; this is

enough because of Fact 2.3 and the fact that Si,i′ ¦ Si.
It thus remains to show that ∥µS′

i,i′
− µi∥2 > 10C2Ãi/

√
³. To do so, consider any center µ̂ℓ that satisfies

∥µ̂ℓ − µi′∥2 f 4061C2Ãi′/
√
³ and observe the following (recall that in our notation µ̂j is the only center from

{µ̂t}t∈[m]\Jdeleted
that satisfies ∥µ̂j − µi∥2 f 4061C2Ãi/

√
³):

∥µ̂j − µ̂ℓ∥2 g ∥µi − µi′∥2 − ∥µ̂ℓ − µi′∥2 − ∥µ̂j − µi∥2(by reverse triangle inequality)

g 105C2(Ãi + Ãi′)/
√
³− 4061C2Ãi′/

√
³− 4061C2Ãi/

√
³

g 95399C2(Ãi + Ãi′)/
√
³ .(5.10)

Now, consider S′
i,i′ := {x ∈ Si : argmaxt∈[m]\Jdeleted

∥x − µ̂t∥2 ∈ Hi′} and fix an x ∈ S′
i,i′ . If ℓ denotes the

argmaxt∈[m]\Jdeleted
∥x− µ̂t∥2, then it holds ∥x− µ̂j∥2 g 1

2∥µ̂j − µ̂ℓ∥2. Then,

∥x− µi∥2 g ∥x− µ̂j∥2 − ∥µ̂j − µi∥2

g 1

2
∥µ̂j − µ̂ℓ∥2 − ∥µ̂j − µi∥2

g 1

2
· 95399C2(Ãi + Ãi′)/

√
³− 4061C2Ãi/

√
³(by (5.10))

> 10C2Ãi/
√
³ .

Since, the above holds for every x ∈ S′
i,i′ , then it must also hold for their mean of the set, i.e. ∥µS′

i,i′
− µi∥2 >

10C2Ãi/
√
³.

6 Distance-based pruning of candidate means

In the previous section, we gave Algorithm 2 used in Line 5 of Algorithm 1, which ensures that the list L of
candidate means corresponds to a Voronoi partition that is an accurate refinement of the true clustering {Si}i,
and furthermore, that each subset in the partition has size at least ≈ ³n.

This section concerns Line 6 of Algorithm 1, which additionally prunes the list L so that the Voronoi cells are
in fact far apart from each other, satisfying a pairwise separation that is qualitatively identical to the separation
assumption we impose on the underlying mixture distribution.

Due to the existence of adversarial corruptions and heavy-tailed noise in the data set, we first need to use
filtering on each Voronoi cell (Algorithm 3), in order to make sure that the mean of the filtered Voronoi cell is
actually close to the mean of the Si that the cell corresponds to. Corollary 6.1 states the guarantees after such
filtering.
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Algorithm 3 Filtered Voronoi partitioning

Input: Dataset T of n points and centers µ̂1, . . . , µ̂m.
Output: Disjoint subsets B1, . . . , Bm of T .

1. Construct the Voronoi partition Aj = {x ∈ T : argminj′∈[m] ∥x− µ̂j′∥2 = j}.

2. Bj ← Filter(Aj) for j ∈ [m], where Filter denotes the filtering algorithm from Fact 2.2.

3. Output B1, . . . , Bm.

Corollary 6.1. (Filtered Voronoi clustering properties) Consider the setting of Lemma 5.1 and fur-
thermore assume that the Voronoi sets have size |Aj | g 0.96³n for every j ∈ [m]. Then the algorithm
FilteredVoronoi(T, {µ̂i}i∈[m]) outputs disjoint sets B1, . . . , Bm such that with probability 1−³¶/10, the following
are true (denote Bi = ∪j:µ̂j∈Hi

Bj, where Hi’s are defined as in Lemma 5.1):

1. |Si \ Bi| f 0.033|Si| for every i ∈ [k].

2. |Bi \ Si| f 0.03³n for every i ∈ [k] and |Aj \Bj | f 0.04|Aj | for every j ∈ [m].

3. For any j ∈ [m] such that µ̂j ∈ Hi, it holds ∥µBj
− µi∥2 f 13CÃi

√

|Si|/|Bj | and ÃBj
f 20CÃi

√

|Si|/|Bj |.
4. |Bi| g 0.93³n for i ∈ [k].

Proof. As in the previous lemma, we first note that Item 4 follows directly from Item 1.

|Bi| g |Bi ∩ Si| g 0.967|Si| g 0.93³n ,

where the second inquality uses Item 1 and the last inequality uses |Si| g 0.97³n by the setup in Theorem 3.2.
If A1, . . . , Am is the Voronoi clustering before filtering and A1, . . . ,Ak as in Lemma 5.1, then by that lemma:

|Si \ Ai| f 0.011|Si|, |Ai \ Si| f 0.03³n and |Ai| g 0.959³n for all i ∈ [k]. In everything that follows we assume
|Aj | g 0.96³n. Let Bj denote the filtered sets output by the algorithm of Fact 2.2 on input Aj .

Proof of Item 3: Recall that the outputs Bj of Algorithm 3 are filtered versions of the sets Aj from the
Voronoi partition. Item 3 states that the filtered version Bj ¦ Bi must have mean close to µi and covariance not
too large. We check this by showing the preconditions of Fact 2.2 (applied with ϵ = 0.04), and then Item 3 follows
from applying the fact with Aj as the set T from the fact statement and Aj ∩ Si as the set S in that statement,
where i here is the index for which Aj ¦ Ai.

We will apply Fact 2.2 with ϵ = 0.04. For this to be applicable, we need to ensure that |T \S| f 0.04|T |, which
using Aj in place of T and Aj ∩ Si in place of S becomes |Aj \ Si| f 0.04|Aj |. Applying Fact 2.2 also requires
that Aj ∩ Si is stable (Definition 2.1). We start by establishing the first requirement, that |Aj \ Si| f 0.04|Aj |:

|Aj ∩ Si| = |Aj | − |Aj \ Si|
g |Aj | − |Ai \ Si|(since Aj ¦ Ai)

g |Aj | − 0.03³n(|Ai \ Si| f 0.03³n by Lemma 5.1)

g 0.96|Aj | ,(6.11)

where the last line uses that we have assumed |Aj | g 0.96³n. Using the above |Aj \Si| = |Aj |−|Aj∩Si| f 0.04|Aj |,
as desired.

We now establish the second requirement, that Aj ∩ Si is stable (Definition 2.1). To this end, since Si

was assumed to be (C, 0.04)-stable with respect to µi and Ãi, then using Lemma 2.1 we have that Aj ∩ Si is

(1.23C
√

|Si|/
√

0.04|Aj ∩ Si|, 0.04)-stable with respect to µi, Ãi.
The first part of the conclusion of Fact 2.2 is that if Bj denotes the output of the filtering algorithm run on

Aj , it holds |Bj | g 0.96|Aj |, the second part states that

∥µBj
− µi∥2 f 12.3CÃi

√

|Si|
0.04|Aj ∩ Si|

√
0.04 f 13CÃi

√

|Si|
|Bj |
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where the last inequality above is because |Bj | f |Aj | f |Aj ∩ Si|/0.96, where the last step here is because of
(6.11).

Similarly, the third part of the conclusion of Fact 2.2 is that ÃBj
f 20CÃi

√

|Si|/|Bj |. Lastly, we check that
the condition on the size of the sets from Fact 2.2 is indeed satisfied because |Aj | g 0.96³nk log(1/(³¶)), where
we used the assumption on the size of n from Theorem 3.2.

Proof of Item 1: We have already shown that Fact 2.2 is applicable for analyzing the effect of the filtering
algorithm on input Aj and thus |Aj \Bj | f 0.04|Aj | (first part of the conclusion of Fact 2.2). Then,

|Si \ Bi| = |Si \ Ai|+
∑

j:Aj¦Ai

|Aj \Bj |

f 0.011|Si|+ 0.04
∑

j:Aj¦Ai

|Aj |(by Lemma 5.1 and Fact 2.2)

= 0.011|Si|+ 0.04|Ai|(Aj ’s are disjoint)

= 0.011|Si|+ 0.04(|Ai ∩ Si|+ |Ai \ Si|)
f 0.011|Si|+ 0.04(|Si|+ 0.03³n)( |Ai \ Si| f 0.012³n by Lemma 5.1)

f 0.011|Si|+ 0.04

(

|Si|+
0.03

0.97
|Si|

)

f 0.033|Si|(by assumption that |Si| g 0.97³n)

Proof of Item 2: We have that |Ai \Si| f 0.03³n before the filtering takes place. Since filtering only removes
points, Bi ¦ Ai and thus |Bi \ Si| f 0.03³n continues to hold after the filtering.

Having shown guarantees on the filtered Voronoi cells, we now give Algorithm 4, used in Line 6 of Algorithm 1,
which is responsible for further pruning the candidate means in L such that the resulting filtered Voronoi cells are
well-separated. Lemma 6.1 gives the guarantees of Algorithm 4.

Algorithm 4 Distance-based pruning of sub-clusters

Input: Dataset T of n points, centers µ̂1, . . . , µ̂m, and parameter ³ ∈ (0, 1).
Output: A subset µ̂1, . . . , µ̂m′ of the input centers.

1. {B1, . . . , Bm} ← FilteredVoronoi({µ̂1, . . . , µ̂m}, T ).

2. Jdeleted ← ∅.

3. While there exist j, j′ with ∥µBj
− µBj′

∥2 f 4761C(ÃBj
+ ÃBj′

)/
√
³:

(a) Calculate d = mint∈[m] ∥µBj
− µBt

∥2/ÃBj
and d′ = mint∈[m] ∥µBj′

− µBt
∥2/ÃBj′

.

(b) If d < d′:

i. jdeleted ← j.

(c) Else:

i. jdeleted ← j′.

(d) Update Jdeleted ← Jdeleted ∩ {jdeleted}
(e) Update {Bj}j∈[m]\Jdeleted

← FilteredVoronoi({µ̂j}j∈[m]\Jdeleted
, T ).

4. Output µ̂j for j ∈ [m] \ Jdeleted after relabeling the indices so that they are from 1 to m− |Jdeleted|.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

311

D
o
w

n
lo

ad
ed

 0
6
/1

3
/2

5
 t

o
 1

3
7
.1

1
0
.3

5
.4

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



Lemma 6.1. (Distance-based pruning of sub-clusters) Consider the setting and notation of Theorem 3.2.
Let L = {µ̂1, . . . , µ̂m} be a list of vectors for some m g k. Suppose the list L can be partitioned into sets H1, . . . , Hk

such that for every i ∈ [k], Hi consists of the vectors µ̂j with ∥µ̂j − µi∥2 f 4061C2Ãi/
√
³, and that Hi ≠ ∅ for all

i ∈ [k]. Also assume that every set in the Voronoi partition Aj = {x : argminj′ ∥x− µ̂j′∥2 = j} for j ∈ [m] has
size |Aj | g 0.96³n. Consider an execution of DistanceBasedPruning(L, T, ³) algorithm (Algorithm 4) with
the list L, the entire dataset of points T and the parameter ³ as input.

After the algorithm terminates, let µ̂′
1, . . . , µ̂

′
m′ be the output list (where we denote by m′ its size). Then the

following three statements hold with probability at least 1− ¶/2:

1. The output list {µ̂′
j}j∈[m′] can be partitioned into sets H ′

1, . . . , H
′
k such that for every i ∈ [k], H ′

i consists of the

vectors of µ̂′
j with ∥µ̂′

j − µi∥2 f 4061C2Ãi/
√
³ and it holds H ′

i ̸= ∅ for all i ∈ [k].

2. Every set in the Voronoi partition corresponding to the output centers A′
j = {x : argminj′∈[m′] ∥x− µ̂j′∥2 = j}

for j ∈ [m′] has size |A′
j | g 0.96³n.

3. If B′
1, . . . , B

′
m′ denote the output of FilteredVoronoi({µ̂′

1, . . . , µ̂
′
m′}, T ) for the non-deleted centers, then it

holds that ∥µB′
j
− µB′

j′
∥2 g 4761C(ÃB′

j
+ ÃB′

j′
)/
√
³ for every j, j′ ∈ [m′] with j ̸= j′.

Proof. The final part of the lemma conclusion, Item 3, holds by design of the stopping condition of our algorithm
(line 3).

We show the remaining parts (Items 1 and 2) by induction. That is, we will fix an iteration of the algorithm,
assume that Items 1 and 2 hold just before the iteration starts, and prove that they continue to hold after the
iteration ends. More specifically, since in each iteration we use FilteredVoronoi, which is randomized, we may
allow a probability of failure for each step in our inductive hypothesis, in particular, we will use probability of
failure (¶/2) divided by the maximum number of iterations (so that by Fact 6.1, the conclusion holds after all
iterations end with probability at least 1− ¶/2).

Fact 6.1. If event A happens with probability 1− Ä1 and event B happens with probability 1− Ä2 conditioned on
event A, then the probability of both A and B happening is at least 1− Ä1 − Ä2.

The upper bound on the number of iterations can be trivially seen to be 1/(0.96³). This is because we assumed
that every Voronoi set in the beginning has size |Aj | g 0.96³n and the algorithm only deletes one of the candidate
means at a time, thus the algorithm will trivially terminate after 1/(0.96³) steps. It therefore suffices to show that
the inductive step of our proof holds with probability at least 1− 0.1³¶.

Since the iteration under consideration alters the list of vectors and some associated quantities, we must ensure
that our notation reflects the specific moment within the algorithm. To achieve this, we will use unprimed letters
to represent quantities at the moment just before the iteration begins (Jdeleted, Hi, Ai, Bi) for the set of deleted
indices appearing in the pseudocode, the partition, the Voronoi clustering, and the filtered Voronoi clustering),
and primes to denote the quantities (J ′

deleted, H
′
i, A

′
i, B

′
i) after the iteration ends. That is, our inductive hypothesis

is that

(a) The list {µ̂j}j∈[m]\Jdeleted
can be partitioned into sets H1, . . . , Hk such that for every i ∈ [k], Hi consists of

the vectors of µ̂j with ∥µ̂j − µi∥2 f 4061C2Ãi/
√
³ and it holds Hi ̸= ∅ for all i ∈ [k].

(b) Every set in the Voronoi partition corresponding to the centers Aj = {x : argminj∈[m]\Jdeleted
∥x− µ̂j′∥2 = j}

for j ∈ [m] \ Jdeleted has size |Aj | g 0.96³n.

And we will show that after the iteration ends, if J ′
deleted denotes the updated set of deleted indices (i.e. the set

that also includes the index that was deleted during the current iteration), and A′
j , B

′
j denote the Voronoi sets and

filtered Voronoi sets corresponding to the centers µ̂j for j ∈ [m] \ J ′
deleted, the following hold with probability at

least 1− 0.1³¶:

1. The updated list {µ̂j}j∈[m]\J ′
deleted

can be partitioned into sets H ′
1, . . . , H

′
k such that for every i ∈ [k], H ′

i consists

of the vectors of µ̂j with ∥µ̂j − µi∥2 f 4061C2Ãi/
√
³ and it holds H ′

i ̸= ∅ for all i ∈ [k].

2. Every set in the Voronoi partition corresponding to the updated centers A′
j , where A′

j = {x :
argminj∈[m]\J ′

deleted
∥x− µ̂j′∥2 = j} for j ∈ [m] \ J ′

deleted has size |A′
j | g 0.96³n.
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Now observe that, by construction, every iteration only deletes a vector from the list, and therefore the list
{µ̂j}j∈[m]\J′

deleted
can be partitioned into the sets H ′

1, . . . , H
′
k satisfying the first part of Item 1 (that H ′

i consists

of the vectors of µ̂j with ∥µ̂j − µi∥2 f 4061C2Ãi/
√
³). Regarding Item 2, this trivially holds because deleting a

point, can only make the Voronoi clusters bigger in size. The only nontrivial condition to check is that H ′
i remains

non-empty for all i ∈ [k]. Equivalently, we need to show that, if at the beginning of an iteration, Hi consists of
only a single vector, then it will never be removed in the iteration.

By our inductive hypothesis that the partition H1, . . . , Hk with the aforementioned properties exists (Item (a))
and our assumption that |Aj | g 0.96³n (Item (b) of inductive hypothesis), Corollary 6.1 is applicable.
The application of that implies that the following holds with probability at least 1 − 0.1³¶: Denote by
Bi = ∪j∈[m]\Jdeleted:µ̂j∈Hi

Bj for i ∈ [k], i.e. Bi is the union of all Voronoi clusters corresponding to (non-deleted)
centers in Hi. Then,

(i) Bi ̸= ∅ for i ∈ [k].

(ii) For any j ∈ [m] \ Jdeleted such that µ̂j ∈ Hi it holds ∥µBj
− µi∥2 f 14CÃi/

√
³ and ÃBj

f 21CÃi/
√
³.

(iii) For every i ∈ [k] with |Hi| = 1, if j ∈ [m] \ Jdeleted denotes the unique index for which Bj = Bi, then it holds
ÃBj
f 21CÃi.

The second statement above can be extracted from Item 3 of Corollary 6.1 after noting that |Bj | g |Aj |−|Aj \Bj | g
0.96|Aj | g 0.92³n g 0.94³|Si|, where we used |Aj \Bj | f 0.04|Aj | (Item 3 of Corollary 6.1) and the assumption
that |Aj | g 0.96³n. The third statement ((iii) above) can be extracted from Item 3 of Corollary 6.1 after noting
that |Bj | g |Bj ∩ Si| g |Si| − |Si \ Bj | g 0.967|Si|, where we used that |Si \ Bj | f 0.033|Si| by Item 1 of
Corollary 6.1.

We will also use the notation par(Bj) to denote the index i ∈ [k] for which it holds ∥µBj
− µi∥2 f 35CÃi/

√
³

(by the fact that Bi ≠ ∅ mentioned above and the separation assumption for the µi’s, such an index indeed exists
and it is unique). We will call par(Bj) the “parent” of Bj . By slightly overloading this notation, we will also use
par(µ̂j) to denote the index i for which it holds µ̂j ∈ Hi, i.e. ∥µ̂j − µi∥2 f 4061C2Ãi/

√
³ . We will also informally

call the Bj ’s “sub-clusters” (as opposed to the sets Si that we call “true” or “parent” clusters).
Using this notation, and further denoting by jdeleted the index of the vector deleted in the current iteration,

what remains to check is equivalent to the statement that |Hpar(jdeleted)| > 1.
To show this, we need Claim 3 below, which states the straightforward fact that sub-clusters with the same

parent cluster will have means close to each other, and sub-clusters with different parents necessarily have means
much farther. This in particular implies that, given a sub-cluster Bj , the closest sub-cluster must share the
same parent if |Bj | > 1. We will now use Claim 3 to show the statement that the deleted vector µ̂jdeleted must
have |H ′

par(jdeleted)
| > 1, and provide the simple proof of Claim 3 at the end, which follows from straightforward

applications of the reverse triangle inequality.

Claim 3. The following holds for every for j, j′ ∈ [m]\Jdeleted with j ≠ j′: Denote by ℓ := par(Bj), ℓ
′ := par(Bj′).

If ℓ = ℓ′, then ∥µBj
− µBj′

∥2 f 28CÃℓ/
√
³, otherwise, ∥µBj

− µBj′
∥2 > 104C2(Ãℓ + Ãℓ′)/

√
³.

We will now show our end goal using a case analysis (and Claim 3). Denote by Bj , Bj′ the sub-clusters that
are identified in line 3 of Algorithm 4 (i.e. one of j or j′ will eventually be what we called jdeleted before). We need
to show that, if the index j is the one that gets deleted, then |H ′

par(j)| > 1, and similarly for j′. We check each of
the following cases:

1. (Case where |Hpar(Bj)| = 1, |Hpar(Bj′ )
| > 1) Let ℓ, ℓ′ be the parents of Bj and Bj′ respectively. We first note

that ÃBj
f 21CÃℓ by the third property of Bj (Item (iii)). Now we argue that, since j and j′ are flagged by

line 3 of Algorithm 4, it must be the case that ÃBj′
> 21CÃℓ′ , for otherwise:

∥µBj
− µBj′

∥ g ∥µℓ − µℓ′∥ − ∥µBj′
− µℓ′∥ − ∥µBj

− µℓ∥(reverse triangle inequality)

g 105C2(Ãℓ + Ãℓ′)/
√
³− 14CÃℓ′/

√
³− 14CÃℓ/

√
³(by separation assumption and Item (ii))

g (105 − 14)C2(Ãℓ + Ãℓ′)/
√
³(6.12)

g 4761C(ÃBj
+ ÃBj′

)/
√
³(using ÃBj

f 21CÃℓ, ÃBj′
f 21CÃℓ′)
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Having shown that ÃBj
f 21CÃℓ and ÃBj′

> 21CÃℓ′ , we will now show that the center µ̂j corresponding to Bj

will not be the one deleted in this loop iteration, and instead the center µ̂j′ corresponding to Bj′ will be the
one that will get deleted. To see that, denote by d and d′ the same quantities as in line 3a of the pseudocode,
i.e. the normalized distances of the sub-clusters from their closest other sub-clusters.

On the one hand, we have that

d :=
mint∈[m]\Jdeleted

∥µBj
− µBt

∥2
ÃBj

g (105 − 14)C2Ãℓ√
³ÃBj

g 4761C√
³

,

where the first step follows by the fact that the closest sub-cluster to Bj must have as parent a different true
cluster (because |par(Bj)| = 1), and since true clusters are sufficiently separated, the closest sub-cluster to Bj

must be at least (105 − 14)C2Ãℓ/
√
³-away (see the derivation of (6.12) for an identical proof). The last step

uses that ÃBj
f 21CÃℓ.

On the other hand, for the (normalized) distance of Bj′ to its closest sub-cluster (denote that sub-cluster
by Bt∗) we have the following: First note that Bt∗ must have the same parent as Bj′ due to Claim 3 and
|par(Bj′)| > 1. Then, since both have ℓ′ as their parent,

d′ :=
mint∈[m]\Jdeleted

∥µBj′
− µBt

∥2
ÃBj′

=
∥µBj′

− µBt∗
∥2

ÃBj′

f
∥µBj′

− µℓ′∥2
ÃBj′

+
∥µℓ′ − µBt∗

∥2
ÃBj′

f 2 · 14C
2Ãℓ′√

³ÃBj′

(by Item (ii) and C > 1)

f 2C/
√
³ .(using ÃBj′

g 21CÃℓ′)

This means that d′ < d and line 3(c)i of the algorithm will delete µ̂j′ , i.e. the eliminated center is not the only
center of its parent.

2. (Case |Hpar(Bj)| > 1, |Hpar(Bj′ )
| = 1) Symmetric to the previous case.

3. (Case |Hpar(Bj)| > 1, |Hpar(Bj′ )
| > 1) This case is straightforward. In this case, both parents have more than

one centers, thus no matter which center the algorithm deletes, the eliminated center is not the only center of
its parent.

4. (|Hpar(Bj)| = 1, |Hpar(Bj′ )
| = 1) In this case we argue that Bj , Bj′ could not have been identified in line 3 of

Algorithm 4, meaning that this is not a valid case to consider. To show this, let ℓ, ℓ′ be the parents of Bj

and Bj′ respectively. By the second and third properties of Bj , ÃBj
f 21CÃℓ and ∥µBj

− µℓ∥ f 14CÃℓ/
√
³.

Similarly, ÃBj′
f 21CÃℓ′ and ∥µBj′

− µℓ′∥ f 14CÃℓ′/
√
³.

∥µBj
− µBj′

∥ g ∥µℓ − µℓ′∥ − ∥µBj
− µℓ∥ − ∥µBj′

− µℓ′∥
g 105C2(Ãℓ + Ãℓ′)/

√
³− 14CÃℓ/

√
³− 14CÃℓ′/

√
³

g (105 − 14)C2(Ãℓ + Ãℓ′)/
√
³

> 4761C(ÃBj
+ ÃBj′

)/
√
³ .

The above means that the check of line 3 in Algorithm 4 could not be satisfied for Bj , Bj′ .

It only remains to prove Claim 3.

Proof. [Proof of Claim 3] Let Bj , Bj′ be sub-clusters with the same parent ℓ. Then by Item (ii) and a triangle
inequality, ∥µBj

− µBj′
∥ f ∥µBj

− µℓ∥+ ∥µBj′
− µℓ∥ f 28CÃℓ/

√
³.
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Now, if Bj has parent ℓ and Bj′ has parent ℓ′, then by Item (ii) and reverse triangle inequality:

∥µBj
− µBj′

∥ g ∥µℓ − µℓ′∥ − ∥µℓ − µBj
∥ − ∥µℓ′ − µBj′

∥
g 105C2(Ãℓ + Ãℓ′)/

√
³− 14CÃℓ/

√
³− 14CÃℓ′/

√
³

> 104C2(Ãℓ + Ãℓ′)/
√
³ .(C > 1)

7 Overall analysis of Algorithm 1

In this brief section, we combine the results and analyses in Sections 4 to 6 to prove Theorem 3.2.

Proof. [Proof of Theorem 3.2]
Let smax denote the maximum element of the list Lstdev created in line 1. By Corollary 4.1, after the loop of

line 4 ends, the list L of candidate mean vectors that the algorithm has created is such that (i) for every element
µ̂j ∈ L there exists a true cluster Si such that ∥µ̂j − µi∥2 f 4061C2Ãj/

√
³, and (ii) for every true cluster Si

with ÃSi
f smax, there exists a µ̂j ∈ L such that ∥µ̂j − µi∥2 f 4061C2Ãj/

√
³. Furthermore, we also know by

Proposition 2.1 that, for every true cluster Si, there exists an ŝ in the list such that ÃSi
f ŝ. This implies that

smax g maxi ÃSi
, and guarantee (ii) above applies to every true cluster Si.

Following the structure of the algorithm, we use Lemma 5.2 to reason about line 5 of Algorithm 1. To check
that the lemma is indeed applicable, we need to show that L can be partitioned into disjoint sets H1, . . . , Hk such
that for every i ∈ [k], Hi consists of the vectors µ̂j satisfying ∥µ̂j − µi∥2 f 4061C2Ãi/

√
³, and that Hi ≠ ∅ for all

i ∈ [k]. This is indeed true for the sets Hi := {µ̂ ∈ L : ∥µ̂− µi∥2 f 4061C2Ãi/
√
³}. The sets are disjoint because

of our assumption that ∥µi − µi′∥2 > 105C2(Ãi + Ãi′)/
√
³ for every i ≠ i′, and their union is equal to the entire

L because of the guarantee (i) from the previous paragraph. Finally, the fact that Hi ≠ ∅ for all i ∈ [k] holds
because of the guarantee (ii) of the previous paragraph.

The conclusion of Lemma 5.2 is that, after we apply the SizeBasedPruning algorithm in line 5 of Algorithm 1,
the resulting list L′ will admit a partition H ′

1, . . . , H
′
k with the same properties as before, but also with the added

property that every Voronoi cluster A′
j := {x ∈ T : argminµ̂j′∈L′ ∥x− µ̂j′∥2 = j} for j ∈ [|L′|] that corresponds to

the centers of the output list L′, satisfies |A′
j | g 0.96³n.

Next we use Lemma 6.1 to analyze the application of DistanceBasedPruning to the list L′ in line 6 of
Algorithm 1. Let us use L′′ to denote the output of DistanceBasedPruning(L′, T, ³). The lemma is applicable
because of the conclusion of the previous paragraph. In turn, the conclusion of Lemma 6.1 is that with probability
at least 1− ¶/2 (over the randomness of the algorithm, in particular, the uses of filtering from Fact 2.2),

(a) The list L′′ of centers admits a partition H ′′
1 , . . . , H

′′
k with the same properties as before.

(b) Every set in the Voronoi partition corresponding to these centers A′′
j = {x : argminµ̂j′∈L′′ ∥x− µ̂j′∥2 = j}

have sizes |A′′
j | g 0.96³n.

(c) If B′′
1 , . . . , B

′′
|L′′| denote the output of FilteredVoronoi(L′′, T ) then it holds that ∥µB′′

j
− µB′′

j′
∥2 g

4761C(ÃB′′
j
+ ÃB′′

j′
)/
√
³ for every j ̸= j′.

Note that FilteredVoronoi(L′′, T ) is the last step of Algorithm 1. We will show that all the guarantees of
the output Theorem 3.2 follow by Items (a) to (c) and a final application of Corollary 6.1 (which is applicable
because of Items (a) and (b) above):

Item 1 in the conclusion of Theorem 3.2 is true by the fact that |A′′
j | g 0.96³n from Item (b) and the fact

that the filtering in FilteredVoronoi(L, T ) only removes 4% of the points in A′′
j (see Item 2 in Corollary 6.1)

with probability 1− ¶/2.
For Item 2 in the conclusion of Theorem 3.2, we have the following: Item 2a holds by Item 4 in Corollary 6.1.

Item 2b holds by Item 1 in Corollary 6.1. Item 2c holds by Item 2 in Corollary 6.1. Item 2d follows from Item 3 in
Corollary 6.1. Item 2e holds by Item (c) above.

Moreover, the number m of the output sets B1, . . . , Bm is at most 1/(0.92³) since each set has at least 0.94³n
points and the sets are disjoint.
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Finally, the algorithm runs in time poly(nd/³)-time because the size of the lists Lmean, Lstdev is polynomial in
n and 1/³, which means that the size of L is also polynomial, and finally since the two pruning algorithms in lines
5 and 6 delete one element of L at each step until termination, the overall number of steps is polynomial. It can
also be checked that each step involves calculations that can be implemented in poly(nd/³)-time.

8 Clustering under the no large sub-cluster condition

The previous section analyzes Algorithm 1 in the general case, where the underlying mixture satisfies information-
theoretically optimal separation, and the algorithm only knows a lower bound ³ to the mixing weight. As we have
shown in the introduction, we cannot aim to return an accurate clustering close to the ground truth, but instead,
we return an accurate refinement of the ground truth clustering.

In this section, we study the no large sub-cluster (NLSC) condition (Section 1.1), which is a deterministic
condition on the sample set that guarantees that Algorithm 1 in fact returns an accurate clustering instead of just
a refinement. We first compare our NLSC condition with that proposed by [BKK22]. Even though the conditions
are qualitatively similar, our choice of parameters makes our NLSC condition a stronger assumption. We explain
in Section 8.1 why the stronger NLSC assumption is necessary due to our weaker separation assumption.

We then show in Section 8.2 that, under the NLSC condition (Section 1.1), Algorithm 1 will return exactly
k sets, one per mixture component, despite not knowing k. This is stated as Corollary 8.1, the formal version
Corollary 1.1. Afterwards, we also show that the general class of well-conditioned log-concave distributions yield
samples that satisfy this condition with high probability, as long as the dimensionality is large and the sample
complexity is polynomially large.

8.1 Comparison with the NLSC condition from [BKK22] In this subsection, we compare our NLSC
condition (Section 1.1) with the NLSC condition proposed by [BKK22]. For the reader’s convenience, we restate
Section 1.1 below.

[NLSC condition] We say that the disjoint sets S1, . . . , Sk of total size n satisfy the “No Large Sub-Cluster”
condition with parameter ³ if for any cluster Si and any subset S′ ¢ Si with |S′| g 0.8³n, it holds that ÃS′ g 0.1ÃSi

,
where ÃS′ is the square root of the largest eigenvalue of the covariance matrix of S′.

For contrast, the NLSC condition of [BKK22] is weaker. Instead of ÃS′ being within a constant factor of ÃSi
,

their requirement can be as small as an ³ factor of ÃSi
.

Definition 8.1. (NLSC condition of [BKK22]) We say that the disjoint sets S1, . . . , Sk of total size n satisfy
the “No Large Sub-Cluster” condition of [BKK22] with parameter ³ if for any cluster Si and any subset S′ ¢ Si

with |S′| g 0.01
√
n log n, it holds that ÃS′ g 1

5
√
5

|S′|
|Si|ÃSi

, where ÃS′ is the square root of the largest eigenvalue of

the covariance matrix of S′.

The two differences between the definitions are (i) the minimum size of the subset S′ being considered, which
is an insignificant difference, and more importantly (ii) the lower bound of ÃS′ . In our definition, the lower bound
is a small constant factor of ÃSi

, but their definition uses a factor that scales with the ratio of the set sizes,
potentially interpolating between Θ(³) and Θ(1).

We will now show that, under the separation assumption of C · (Ãi + Ãj)/
√
³ between pairs of clusters, for any

large constant C, there is an explicit construction of a sample set where the NLSC condition of [BKK22] allows
for two substantially different clusterings satisfying the separation assumption, whereas our NLSC condition (by
the result of Corollary 8.1 below) only allow clusterings that are essentially the same as each other.

First consider a 1-dimensional set of points U of ³n points, distributed as a uniform grid over the interval
[− 1

2 ,
1
2 ]. Its mean is 0, and its variance is 1

12 −o(1), where the o(1) term goes to 0 as ³n→∞. It is straightforward
to check via a “swapping” argument that, for any subset U ′ of size at least 0.8³n (which is thus at least a

0.8-fraction of U), we have ÃU ′ g 0.8ÃU g 1
5
√
5

|U ′|
|U | ÃU .

We then use U to construct a high-dimensional sample set. Set the ambient dimensionality to be d = 1/(2³).
We will embed a set U along each Euclidean axis, symmetrically in the positive and negative coordinates. For
i ∈ [d], construct the set S+

i = {(x+ (C/
√
³))ei : x ∈ U}, which is a set of points that are non-zero only in the ith

coordinate, embedded on the positive side of the ith axis, and similarly construct S−
i = {(x− (C/

√
³))ei : x ∈ U}.

Let the set S be the union of all these S+
i and S−

i across i ∈ [d], giving a total of n points.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

316

D
o
w

n
lo

ad
ed

 0
6
/1

3
/2

5
 t

o
 1

3
7
.1

1
0
.3

5
.4

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



We claim that, according to the NLSC condition of [BKK22], there are two very different but both valid
clusterings of S: i) treating every S+

i and S−
i as a separate cluster, and ii) treating the entire S as a single cluster.

We now verify both clusterings.
Recall that, to verify the validity of a clustering, we need to check that a) each cluster has size at least ³n, b)

the clusters are well-separated, and c) the NLSC condition of [BKK22] is satisfied.
For the clustering treating each S+

i and S−
i as separate clusters, point (a) is trivial, and (c) is true by

construction of U . It remains to check the cluster separation assumption (point (b) above). The minimum distance
between (the means of) a pair of clusters is

√
2C/
√
³, and each cluster has variance upper bounded by 1/12. On

the other hand, the required separation is C · (1/
√
12 + 1/

√
12)/
√
³ <
√
2C/
√
³. Thus the separation assumption

is indeed satisfied.
Now consider the clustering treating the entire set S as a single cluster. Point (a) is again trivial, and so is

point (b). It remains to check point (c), which is the NLSC condition of [BKK22].
By construction of the set S, its mean is 0 and its covariance matrix is a multiple of the identity. We bound

above its variance along an axis direction, in order to establish the NLSC condition of [BKK22]. By the law of
total variance, we can write

Cov(S)ii = 2³Var(U) + 2³(C/
√
³)2 f ³/6 + 2C2,

since Var(U) f 1/12. As long as ³j 1 and C > 1, we have that ∥Cov(S)∥op = Cov(S)ii f 2.1C2.
Now consider an arbitrary subset S′ ¦ S (in fact, we will not need to lower bound its size for the analysis).

By an averaging argument, there must exist some dimension i such that at least 2³|S′| points of S′ lie in S+
i ∪ S−

i .
We will lower bound the variance of S′ in direction ei.

Either at least 50% of the points in |S′| lie in S+
i ∪S−

i or at least 50% of the points lie at the origin in direction
ei.

In the former case, since S+
i ∪S−

i has size 2³n, we know that |S′| f 2³n/0.5 = 4³n. Moreover, by an averaging
argument, there are at least |S′|/4 points in one of S′ ∩ S+

i or S′ ∩ S−
i . Without loss of generality, we assume it is

the + side. By construction of U , the variance of S′ ∩S+
i in the ei direction is at least 1

13

|S′∩S+

i
|

³n g 0.01 |S′|
³n , where

the first lower bound follows from having a sufficiently large ³n. This in turn lower bounds the variance of S′ in

the ei direction by 0.01 |S′|
³n · |S′ ∩ S+

i |/|S′| g 0.002 |S′|
³n . The variance lower bound for S′ required by the NLSC

condition of [BKK22] is at most 1
125 (

|S′|
n )2 · 2.1C2 f 0.07³ |S′|

n · C2. Thus, as long as ³ is upper bounded by some

constant much smaller than 1/C, we will have 0.07³ |S′|
n · C2 f 0.002 |S′|

³n , and the NLSC condition of [BKK22] is
satisfied in this case.

In the latter case, we know that there are at least 0.5|S′| points that project to the origin in dimension i, and
we also showed previously that there are at least 2³|S′| points in S′ ∩ (S+

i ∪ S−
i ). Further observe that points in

S′ ∩ (S+
i ∪ S−

i ) have distance at least C/
√
³− 1

2 from the origin in the direction ei. Using the formula that the
variance of S′ in direction ei is equal to

1

2|S′|2
∑

x∈S′

∑

y∈S′

(xi − yi)
2 ,

we can thus lower bound this directional variance by

1

2|S′|2 2(0.5|S
′|)(2³|S′|) ·

(

C/
√
³− 1

2

)2

g 0.25C2

whenever C > 1 and ³ < 1. Finally, we note that 0.25C2 g 1
125

(

|S′|
|S|

)2

· 2.1C2, where the right hand side is the

NLSC condition (of [BKK22]) variance lower bound, meaning that the NLSC condition is also satisfied in this case.
To summarize, we have exhibited a set S such that, under the separation assumption of C · (Ãi + Ãj)/

√
³,

the NLSC condition of [BKK22] still allows for two very different clusterings of the set S as long as we choose ³
sufficiently small as a function of the assumed constant C.

On the other hand, our stronger NLSC condition lets us prove Corollary 8.1 below, which shows that the
algorithm will always output a clustering close to the ground truth. As such, there cannot be two substantially-
different ground truth clusterings under our stronger assumption.
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8.2 NLSC implies accurate clustering We prove Corollary 8.1, which states that, if we assume the NLSC
condition (Section 1.1), then Algorithm 1 returns a clustering instead of just a refinement. That is, it returns
exactly k sets. After that, we show that well-conditioned high-dimensional log-concave distributions give samples
that satisfy the NLSC condition with high probability.

Corollary 8.1. If in the setting of Theorem 3.2 we additionally assume that the sets Si jointly satisfy the NLSC
assumption with parameter ³ across all i ∈ [k], then the algorithm returns exactly one sample set per mixture
component. More precisely, for all i ∈ [k], the set Hi mentioned in the statement of Theorem 3.2 is a singleton.
As a consequence, if j is the unique index in Hi in the context of Theorem 3.2, then we have ∥µBj

− µi∥ f O(Ãi).

Proof. [Proof of Corollary 8.1] To show this by contradiction, suppose that there are two output sets B,B′ that
correspond to the same cluster Si, i.e. B ¦ Bi and B′ ¦ Bi according to Item 2 of Theorem 3.1.

For the set B, observe that we have |B ∩ Si| g 0.96|B| g 0.88³|Si|. The first inequality is a consequence of
Items 1 and 2b (see Remark 1.1), and the second inequality uses |B| g 0.92³n and |Si| f n.

By an application of Fact 2.3, and a subsequent usage of the NLSC assumption, we have that

∥µB∩Si
− µSi

∥2 f
ÃSi√
0.88³

f 10ÃB∩Si√
0.88³

f 10ÃB

0.96
√
0.88³

f 12ÃB√
³

,(8.13)

where the first inequality is an application of Fact 2.3 using |B ∩ Si| g 0.88³|Si|, the second inequality uses
the NLSC assumption, and the third inequality uses the fact that |B ∩ Si| g 0.96|B| implies ÃB∩Si

f ÃB/0.96.
Moreover, since |B ∩ Si| g 0.96|B|, by another application of Fact 2.3,

∥µB∩Si
− µB∥2 f ÃB/

√
0.96 .(8.14)

The above two inequalities together imply ∥µB − µSi
∥ f 13ÃB/

√
³. By symmetric arguments for B′, we also

have ∥µB′ − µSi
∥ f 13ÃB′/

√
³. This then implies ∥µB − µB′∥2 f 13(ÃB + ÃB′)/

√
³. We have thus contradicted

Item 2e of the theorem (because the constant C there is C > 1).

We now show that well-conditioned log-concave distributions yield samples that satisfy the no large sub-cluster
condition with high probability. We first start with isotropic distributions.

Proposition 8.1. Consider an arbitrary d-dimensional isotropic log-concave distribution D. If d g c · log8 1
³ for

some sufficiently large constant c, then it suffices to take a set S of Õ((d+ log 1
¶ )/³

2) samples from D so that,
with probability at least 1− ¶, for any subset S′ ¦ S with |S′| g 0.8³, we have ∥Cov(S′)∥op g 0.7.

Proof. First observe that isotropic log-concave distributions D concentrate around a thin spherical shell. Specifically,
a result of [Fle10] shows that

P
X∼D

[(

1− t

d1/8

)√
d f ∥X∥2 f

(

1 +
t

d1/8

)√
d

]

g 1−O
(

e−Ω(t)
)

for all t ∈ [0, d1/8]. Taking t = Θ(log 1
³ ) and using the assumption that d k log8 1

³ , this implies that with

probability at least 1− ³/1000, we have ∥X∥2 g
√
0.99d. Thus, by standard Chernoff bounds, if we take at least

O((1/³) log 1
¶ ) many samples for some sufficiently large hidden constant, then with probability at least 1− ¶/2, at

most an ³/100 fraction of the samples have ∥X∥2 <
√
0.99d.

We will further show that the following claim that with high probability over the entire sample set, any
³-fraction of the samples must have mean not too far from the origin.

Claim 4. Suppose S is a set of samples drawn from distribution D, of size at least a large constant multiple of
(d+ log 1

¶ )/³
2. Then, with probability at least 1− ¶/2 over the randomness of S, for any arbitrary subset S′ ¢ S

of size at least 0.9³|S|, we have ∥µS′∥2 f O(log 1
³ ).

Proof. We will use the standard fact that isotropic log-concave distributions are sub-exponential, whose samples
are in turn stable with high probability, as long as the sample size is sufficiently large (see Exercise 3.1 in [DK23]
for example). In particular, with probability at least 1− ¶/2 over a set S of Õ((d+ log 1

¶ )/³
2) samples from a

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

318

D
o
w

n
lo

ad
ed

 0
6
/1

3
/2

5
 t

o
 1

3
7
.1

1
0
.3

5
.4

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



log-concave distribution D with unit covariance D and mean 0, it holds that for every subset S̃ ¦ S of size at least
(1− ³)|S|, we have ∥µS̃∥2 f O(³ log 1

³ ).

Now consider any subset S′′ ¦ S of size between (³/2)|S| and ³|S|. Its complement S̃ = S \ S′′ satisfies
∥µS̃∥2 f O(³ log 1

³ ). Furthermore, by alternatively taking S̃ = S, we have ∥µS∥2 = O(³ log 1
³ ). Thus,

∥µS′′∥2 f 2
³∥µS − (1− ³)µS̃∥2 f 1

³O(³ log 1
³ ) = O(log 1

³ ) by the triangle inequality.
Finally, consider any subset S′ of size at least 0.8³|S|. Observe that this set S′ can always be partitioned into

sets S′′ of sizes between (³/2)|S| and ³|S|, each of which satisfies ∥µS′′∥2 f O(log 1
³ ). Moreover, the mean µS′ of S′

is just the convex combination of the means of these smaller disjoint subsets. This implies that ∥µS′∥2 f O(log 1
³ ).

To summarize, we have shown that, with probability at least 1− ¶ over the randomness of the samples S, we
have (a) at most an ³/100 fraction of the samples x have ∥x∥2 <

√
0.99d, and (b) for any subset S′ ¦ S of size at

least 0.9³n g 0.9³|S|, ∥µS′∥2 f O(log 1
³ ). We are now ready to show the NLSC condition for S conditioned on

these two facts.
First, take any subset S′ of size at least 0.8³n. By condition (a) above, there are at least 0.75|S′| many points

x ∈ S′ with ∥x∥2 g
√
0.99d. Thus, we have

tr

(

1

|S′|
∑

x∈S′

xx¦
)

g 0.75d .

Second, observe that the covariance of S′ is

Cov(S′) =
1

|S′|
∑

x∈S′

(x− µS′)(x− µS′)¦ =
1

|S′|
∑

x∈S′

xx¦ − µS′µ¦
S′ .

Thus, we have

tr(Cov(S′)) = tr

(

1

|S′|
∑

x∈S′

xx¦
)

− tr(µS′µ¦
S′) g 0.75d−O

(

log2
1

³

)

g 0.7d ,(8.15)

where the last inequality uses dk log8 1
³ k log2 1

³ . Since the trace is equal to the sum of all eigenvalues, (8.15)
states that the average eigenvalue is at least 0.7, thus the largest one should be ∥Cov(S′)∥op g 0.7.

Now we use the above proposition to show that samples from well-conditioned log-concave distributions satisfy
Section 1.1 with high probability. In fact, the guarantees apply even to log-concave distributions for which there is
a high-dimensional subspace V that both i) contains the largest variance direction and ii) is well-conditioned in
the projection onto V .

Proposition 8.2. Consider an arbitrary d-dimensional log-concave distribution D with covariance matrix Σ such
that there exists a subspace V of dimension dim(V ) k c · log8 1

³ which: (i) contains the top eigenvector of Σ

and (ii) the covariance matrix of the projected distribution ProjV ΣProj¦V has condition number at most 2. Then
Õ((d + log 1

¶ )/³
2) samples from D suffice for the sample set to satisfy the NLSC condition (Section 1.1) with

probability at least 1− ¶.

Proof. We first show the special case when V is the entire R
d, and by assumption, the condition number

of Σ is » f 2. Observe that, by the property of the operator norm, for every matrix A it holds ∥A∥op =
∥Σ−1/2Σ1/2AΣ1/2Σ−1/2∥op f ∥Σ−1/2∥2op∥Σ1/2AΣ1/2∥op, which rearranging gives

∥Σ1/2AΣ1/2∥op g ∥A∥op/∥Σ−1/2∥2op .(8.16)

Let S be the samples from D, and consider an arbitrary subset S′ ¢ S with |S′| g 0.8³n. Moreover, let the
normalized versions of these sets be S̃ = {Σ−1/2x : x ∈ S} and S̃′ = {Σ−1/2x : x ∈ S′}. The normalization means
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that the samples in S̃, S̃′ come from an isotropic log-concave distribution. Thus, by Proposition 8.1 we know that
with probability at least 1− ¶/2, it holds

∥Cov(S̃′)∥op g 0.7 .(8.17)

Putting everything together, we have

∥Cov(S′)∥op g
1

∥Σ−1/2∥2op
∥Cov(S̃′)∥op(using (8.16) with A = Cov(S̃′))

g 0.7

∥Σ−1/2∥2op
(by (8.17))

g 0.35∥Σ∥op(since condition number of Σ is at most » f 2)

Finally, we again note that isotropic log-concave distributions are sub-exponential and thus by standard arguments
(see, e.g. Exercise 3.1 in [DK23]), Õ((d+ log 1

¶ )) samples suffice to have that ∥Cov(S̃)∥op f 1.001 with probability

at least 1 − ¶/2. This means that ∥Cov(S)∥op = ∥Σ1/2 Cov(S̃)Σ1/2∥op f ∥Σ∥op∥Cov(S̃)∥op f 1.001∥Σ∥op.
Combining this with the fact that ∥Cov(S′)∥op g 0.35∥Σ∥op (that we showed earlier), we obtain that
∥Cov(S′)∥op g 0.1∥Cov(S)∥op, i.e. that the NLSC condition holds.

It is easy to extend the argument for a general subspace V in the corollary statement. To see this, note that
orthogonal projections preserve log-concavity, thus if we restrict everything to the subspace V , we could first
show that NLSC holds in that subspace. That is, for any subset S′ ¦ S with |S′| g 0.8³|S| of the data points,
if SV := {ProjV x : x ∈ S} and S′

V := {ProjV x : x ∈ S′} denote the projected versions of the sets onto V then
ÃS′

V
g 0.1ÃSV

. Then, the two inequalities ÃS′ g ÃS′
V

and ÃSV
g 0.99ÃS would imply that NLSC holds in the

full-dimensional space. The first inequality is due to the fact that orthogonal projections can only decrease the
variance, and the second inequality is because both ÃSV

and ÃS are with high probability close to
√

∥Σ∥op, by
concentration of the empirical covariance matrix in every direction (Exercise 3.1 in [DK23]).
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Appendix

A Omitted Proofs from Section 2

We restate and prove the following statements.

Lemma 2.1. Let S be a set of points that is (C, ϵ)-stable with respect to µ and Ã for some C g 1 and ϵ < 1/2.
Then, any subset S′ ¦ S with |S′| g ³|S| is (1.23C/

√
0.04³, 0.04)-stable with respect to µ and Ã.

Proof. [Proof] Let S′ be a subset of S with |S′| g ³|S|. According to Definition 2.1, in order to show
that S′ is (1.23C/

√
0.04³, 0.04)-stable, we have to show that for any weight function w : S′ → [0, 1] with

∑

x∈S′ wx g (1− 0.04)|S′|, the weighted mean and second moment centered around µ are at most 1.23C/
√
³ and

38C2Ã2/³ respectively.
For the mean, by an application of Fact 2.3, we have that

∥

∥

∥

∥

∑

x∈S′ wxx
∑

x∈S′ wx
− µ

∥

∥

∥

∥

2

f
∥

∥

∥

∥

∑

x∈S′ wxx
∑

x∈S′ wx
− µS

∥

∥

∥

∥

2

+ ∥µS − µ∥2

f ÃS
√

(1− 0.04)³
+ CÃ

√
0.04

f CÃ
√

(1− 0.04)³
+ CÃ

√
0.04

f 1.23CÃ√
³

,

where the first step is triangle inequality, the second step uses Fact 2.3 for the first term and stability of S for the
second term, and the next step uses stability condition for the covariance.

For the second moment, we have that

1
∑

x∈S′ wx

∑

x∈S′

wx(x− µ)(x− µ)¦ ¯ 1

(1− 0.04)³

1

|S|
∑

x∈S

wx(x− µ)(x− µ)¦

¯ 1

(1− 0.04)³

1

|S|
∑

x∈S

(x− µ)(x− µ)¦

¯ 1

(1− 0.04)³
C2Ã2I ¯ 38

C2Ã2

³
I ,

where the first step uses that
∑

x∈S′ wx g (1− 0.04)³|S|, and the last line uses stability for S.

Proposition 2.1. Let T be a set of m points in R
d. There is a poly(m, d)-time algorithm that outputs a list of

size O(m2 log(m)) that for any S ¦ T contains an estimate ŝ such that ∥Cov(S)∥op f ŝ2 f 2∥Cov(S)∥op.

Proof. The algorithm is the following:

1. L← ∅.
2. For every pair x, y ∈ T :

(a) Add
√

2−j∥x− y∥22 to the list L for every j = 0, 1, . . . , log(2m2).

3. Let L′ ← {
√
2s : s ∈ L}.

4. Return L′.

Using the definition of the covariance matrix Cov(S) = 1
2|S|2

∑

x,y∈S(x − y)(x − y)¦, we have that

maxx,y∈S ∥x − y∥22/(2|S|2) f ∥Cov(S)∥op f maxx,y∈S ∥x − y∥22. The algorithm adds to the output list every

number starting from maxx,y∈S ∥x− y∥2 down to maxx,y∈S ∥x− y∥2/
√

2|S|2 in factors of
√
2. This means that

the list L contains an s such that s2 f ∥Cov(S)∥op f 2s2. By multiplying each element in the list by
√
2, the

final list L′ contains an ŝ such that ∥Cov(S)∥op f ŝ2 f 2∥Cov(S)∥op.
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