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Abstract

We study the task of high-dimensional entangled mean estimation
in the subset-of-signals model. Specifically, given N independent
random points x1,...,xxN in RP and a parameter a € (0,1) such
that each x; is drawn from a Gaussian with mean y and unknown
covariance, and an unknown a-fraction of the points have identity-
bounded covariances, the goal is to estimate the common mean p.
The one-dimensional version of this task has received significant
attention in theoretical computer science and statistics over the
past decades. Recent work has given near-optimal upper and lower
bounds for the one-dimensional setting. On the other hand, our
understanding of even the information-theoretic aspects of the
multivariate setting has remained limited.

In this work, we design a computationally efficient algorithm
achieving an information-theoretically near-optimal error. Specifi-
cally, we show that the optimal error (up to polylogarithmic factors)
is f(a,N) + /D/(aN), where the term f(a, N) is the error of the
one-dimensional problem and the second term is the sub-Gaussian
error rate. Our algorithmic approach employs an iterative refine-
ment strategy, whereby we progressively learn more accurate ap-
proximations y to p. This is achieved via a novel rejection sampling
procedure that removes points significantly deviating from i, as an
attempt to filter out unusually noisy samples. A complication that
arises is that rejection sampling introduces bias in the distribution
of the remaining points. To address this issue, we perform a care-
ful analysis of the bias, develop an iterative dimension-reduction
strategy, and employ a novel subroutine inspired by list-decodable
learning that leverages the one-dimensional result.
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1 Introduction

Classical statistics has traditionally focused on the idealized sce-
nario where the input dataset consists of independent and iden-
tically distributed samples drawn from a fixed but unknown dis-
tribution. In a wide range of modern data analysis applications,
there is an increasing need to move beyond this assumption since
datasets are often collected from heterogeneous sources [20, 22,
23, 25, 56, 62]. A natural formalization of heterogeneity in the con-
text of mean estimation (the focus of this work) involves having
each datapoint drawn independently from a potentially different
distribution within a (known) family that shares a common mean
parameter. Distributions with this property are referred to as en-
tangled, and the setting is also known as sample heterogeneity or
heteroskedasticity.

The task of estimating the mean of entangled distributions has
gained significant attention in recent years for a number of reasons.
First, from a practical viewpoint, entangled distributions intuitively
capture the idea of collecting samples from diverse sources. One of
the early works that studied this task [8] illustrates this with the
following crowdsourcing example. Suppose that multiple users rate
a product with some true value p. Each user i has their own level
of knowledge about the product, captured by a standard deviation
parameter o;. The rating from user i is assumed to be sampled from
a Gaussian distribution with mean p and covariance aiz, and the
goal is to estimate y in small absolute error using these samples.
Other practical examples include datasets collected from sensors
under varying environmental conditions; see, e.g., [34].

From a theoretical viewpoint, statistical estimation given access
to non-identically distributed, heterogeneous data is a natural and
fundamental task, whose roots trace back several decades in the
statistics literature. Early work [29, 52, 53, 55, 57, 59] studied the
asymptotic properties of such distributions. Specifically, [5, 32]
studied maximum likelihood estimators and [27, 28, 45, 47] ana-
lyzed the median estimator for non-identically distributed samples.
Heterogeneity has also been studied for moments of distributions
[26] and linear regression [21, 36]. Mean estimation for entangled
distributions, including the Gaussian setting considered in [8], is
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also related to the classical task of parameter learning for mixture
models—albeit in a regime that is qualitatively different than the one
commonly studied. While in the canonical setting—see [1, 2, 11, 35]
for classic references and [3, 4, 7, 16, 16, 18, 19, 30, 37, 39, 43, 46]
for more recent work—one typically assumes a small (constant)
number of components k < N with different means, in the entan-
gled setting each sample comes from its own component (k = N).
Importantly, the shared mean assumption allows for meaningful
results despite the high number of components.

Prior Work We now summarize prior work for mean estimation
of entangled Gaussians, starting with the (now well-understood)
one-dimensional case. In this setting, we have access to samples
xi ~ N(p, Uiz) with unknown o; values. For a concrete and simple
configuration for the g;’s, we consider the so-called subset-of-signals
model, introduced in [42]. In this model, it is assumed that at least
an a-fraction of the samples have ¢; < 1, while the remaining
can have arbitrary variances. The goal is to estimate y in absolute
error that is as small as possible in terms of the number of samples
N and the rate a. A series of works [8, 10, 12, 42, 48-50, 60, 61]
has established upper and lower bounds for this task. Specifically,
the recent work [10] gave an estimator with error matching (up
to polylogarithmic factors) the lower bound of [42] in the subset-
of-signals model (for a very wide regime of a values). Entangled
Gaussian mean estimation in the subset-of-signals model is thus
essentially resolved in one dimension. Additional discussion on
related work is provided in Section 1.3.

Entangled Mean Estimation in High Dimensions In contrast,
the multivariate version of this problem is much less understood.
Some of the prior work [8, 10, 48, 50] only tangentially considered
higher dimensions, focusing on the rather restricted setting that the
covariance matrices are spherical, i.e., of the form %; = al.zl. For this
specific special case, it turns out that the problem becomes easier in
higher dimensions—as each coordinate provides more information
about the scalar parameter o;. A more general formulation would
be to replace the sphericity assumption on the X;’s by a bound-
edness assumption. This leads to the following high-dimensional
formalization of the subset-of-signals model.

Definition 1.1. Let y € RP be a target vector and a € (0,1)
be a parameter. A set of N points in RP is generated as follows:
First, an adversary chooses N positive semidefinite (PSD) matrices
1,...,ZN € RP*XD yunder the constraint that Zfil 1% =1 >
aN. Then, for each i = 1,..., N, the sample x; is drawn indepen-
dently from N (y, X;). The final dataset {xi,...,xn} is the input
provided to the learning algorithm. We call y the common mean
and « the signal-to-noise rate of the model.

This natural definition was suggested by Jerry Li [41] at the TTIC
Workshop on New Frontiers in Robust Statistics, where the com-
plexity of the problem was posed as an open question.

We emphasize that our understanding of entangled mean estima-
tion in the aforementioned setting is fairly limited—even information-
theoretically. The results in [8, 10, 42] already imply that any es-
timator for the arbitrary covariance setting must incur error that
is larger, by at least a polynomial factor, than the error achievable
in the spherical covariance case (see Section 1.3.2 for more details).
This suggests that the bounded covariance setting is more chal-
lenging than the spherical case and requires new ideas. Specifically,
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prior to this work, the optimal rate for the bounded covariance case
was open—even ignoring computational considerations.

A standard attempt to obtain a (potentially tight) upper bound
on the error involves using the one-dimensional estimator along
an exponentially large cover of the unit ball in RP, and combin-
ing these estimates into a vector via a linear program (ala Tukey
median) [58]. Unfortunately, this approach may fail in our setting,
due to the following issue. Establishing correctness of the approach
requires that the failure probability of the one-dimensional estima-
tor is exponentially small in D. However, the currently best known
error guarantees [10] hold only with probability 1 — poly(N).!
Moreover, even if this obstacle could be circumvented, we would
still end up with an exponential-time estimator. Finally, we note
that a simple and natural computationally efficient approach in-
volves applying a one-dimensional estimator for each axis of the
space. Unfortunately, the error incurred by this approach is VD
times that of the one-dimensional estimator, which turns out to be
significantly suboptimal.

In summary, none of the known approaches yields error better
than poly(D) f (a, N), where f(a, N) is the error of the optimal one-
dimensional estimator, leaving even the information-theoretically
tight bound wide open. This leads to the core question of our work:

What is the optimal error rate for high-dimensional entangled mean
estimation, both
(i) from an information-theoretic perspective, and (ii) for
computationally efficient algorithms?
In this work, we resolve both aspects of this question (up to poly-
logarithmic factors) for a wide range of the parameters N, D, a.

1.1 Main Result

Before we formally state our contributions, we recall the error
guarantee of the 1-d estimator given in [10]. In particular, if we
denote by N the number of samples and « the signal-to-noise rate
(fraction of points with variances bounded from above by one),
then their estimator j € R satisfies | — p| < f(a, N) with high
probability, where f(a, N) is defined as

a N2 (REN) < < N3
(log(N /)0 3 y=23N-1/2, N=3/4 < g < 1 1)

00, otherwise .

The above error upper bound had been previously shown [42]
to be best possible up to polylogarithmic factors in the regime
Q (log N/N) < a < O(N'7€) for any arbitrarily small constant
€>0.

Roughly speaking, the error of our high-dimensional estimator
is equal, up to polylogarithmic factors, to the sum of the above
1-d error and the statistical error for mean estimation of isotropic
Gaussians. Specifically, our main result is the following:

THEOREM 1.2 (HIGH-DIMENSIONAL ENTANGLED MEAN EsSTIMA-
TION). ENTANGLEDMEANESTIMATION(N ) in Algorithm 1 satisfies the
following guarantee: The algorithm draws N samples in RP from the

Though one could amplify the success probability of [10] in a black-box manner using
the standard “median trick”, we remark that such a strategy will lead to a factor of D
loss in the error guarantee if the goal is to achieve success probability 1 —exp(—©(D)).
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subset-of-signals model of Definition 1.1 with common mean yi € RP
and signal-to-noise rate « € (0,1). If N > % logc(g), where C
is a sufficiently large absolute constant, the output i € RP of the
algorithm satisfies the following with probability at least 0.99:

17 - pllz < log® D (N) (\/% +f(a, N)) ,

where f(-) is the function defined in Equation (1). Moreover, the
algorithm runs in time poly(D, N).

We remark that the error bound achieved by our algorithm is op-
timal up to poly-logarithmic factors in the subset-of-signals model,
provided that N > Q(D/a). To show that the second error term,
f(a,N), is necessary, we can simply embed the 1-d hard instance of
[42] in the D-dimensional space. Specifically, we can set the mean
and variance of the first coordinate according to the 1-d hard in-
stance, and set the remaining coordinates to be deterministically 0.
The second term /D/(aN) is the statistical error rate of estimating
the mean of isotropic Gaussians. This term is also necessary, as can
be seen by embedding the standard hard instance of D-dimensional
isotropic Gaussian mean estimation into the «N many samples
with bounded covariances, and setting the covariances of the rest
of the samples to be sufficiently large so that they reveal almost no
information.

Finally, the algorithm succeeds whenever N > D/« (times poly-
logarithmic factors). We remark that this is necessary for any esti-
mator to achieve errors smaller than a constant, i.e., € < 1/2, even
when the identities of the samples with bounded covariances are
revealed to the algorithm. Extending the result to any N € Z, is an
interesting open question that we leave for future work.

1.2 Brief Overview of Techniques

In this section, we summarize our approach for obtaining an esti-
mator achieving the guarantees of Theorem 1.2. Towards this end,
we will start by explaining how to obtain an initial rough estimate pi
such that ||[7— p||lz < VD. We note that the main novelty (and bulk)
of our technical work will be on developing a recursive procedure
that iteratively improves upon f.

We now provide an efficient method to achieve the warm start.
Specifically, provided that we are in the regime where f(a,N) =
O(1), such an estimate zz can be easily obtained by running the 1-d
estimator from [10] along each axis. For the other regime, we design
a sophisticated tournament procedure that outputs an estimate
within O(VD) from the true mean (see the full version [17] for
more details).

We next describe how to achieve improved estimation accuracy.
Naive approaches such as sample means are destined to fail in the
subset-of-signals model, due to the fact that no assumptions are
made on the covariances of (1 — a)-fraction of the samples. Specif-
ically, these matrices can have arbitrarily large operator norms,
which can cause the average of the samples to suffer from arbitrar-
ily high statistical errors in ¢, distance. Our approach to overcome
this issue is to use our initial estimator i (warm start) to detect and
reject samples that are too far from the true mean p in Euclidean
norm. Algorithmically, the rejection sampling procedure is to ac-
cept each sample x with probability exp(—||x — ﬁl|%/D). On the
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one hand, most of the “good” samples (the aN points with bounded
covariance) survive the rejection sampling: this is because a Gauss-
ian sample with covariance bounded above by I is O(VD)-far from
4 (and hence from p) with high probability, which causes its ac-
ceptance with high probability. Regarding the remaining points
(i.e., the ones with covariances ¥; such that tr (X;) > D), the re-
jection sampling step ensures that the probability of acceptance is
small enough so that the average of the covariance matrices of the
surviving points (inliers and outliers), which we denote by Eavg,
will have its trace bounded from above by O(D). We show that
this essentially allows for accurate estimation of the population
mean of the surviving points; roughly speaking, this follows from
the fact that the standard error for mean estimation of a bounded
covariance random variable X is O(4/tr (Cov(X))/N).
Unfortunately, the aforementioned approach does not quite work
for the following reason: the rejection sampling procedure will also
cause the population mean of the surviving samples to be biased. In
particular, since the acceptance probability is given by the exponen-
tial of some quadratic in the input point, the resulting distribution
of each point x; conditioned on its acceptance will be some new
Gaussian distribution whose means and covariances are functions
of the true mean p, the covariance ¥; of x;, and the center y used
in the rejection sampling. After a careful calculation, one can show
that the bias of the new population mean of a set of samples, condi-
tioned on their acceptance, will be given by favg (¢ — 1) /D, where

Yavg is the average of the conditional covariance of the surviving
points. Since the operator norm of favg could be as large as its trace,
which could itself be as large as D, the bias caused by the rejection
sampling over the entire space could hence be prohibitively large.
That being said, if we can find some low-variance subspace V such
that vaang is small for any v € V, the magnitude of the bias
within V will be only a small constant multiple of || — pl|2. Fortu-
nately, since the trace of Eavg is at most O(D), by a simple averaging

argument, Eavg must have at least D/2 many eigenvalues that are
at most O(1). Thus, the subspace spanned by the corresponding
eigenvectors gives the desired low-variance subspace. Moreover, we
show that this subspace can be approximately computed from the
samples (more precisely, we can compute a subspace of similarly
low variance, up to polylogarithmic factors). It then remains to es-
timate the mean p within the complement high-variance subspace
VL. To achieve this goal, the idea is to just project the datapoints
onto V1, and recursively run the same algorithm in that lower
dimensional (of dimension D/2) subspace.? When the recursive
procedure reaches a subspace with dimension polylog(D), we can
simply run the 1-d estimator along each axis to finish the recursion.
Since V+ now has dimension only D/2, the recursion terminates
after log D many iterations.

In our description so far, one full execution of the recursive algo-
rithm yields some i with error ||z —pll2 < |lg—pll2/2++/D/(aN) +
f(a,N) (up to polylogarithmic factors). The first term corresponds
to the bias caused by the rejection sampling and the second term

2Here we assume that the algorithm can take multiple datasets, where each of them is
generated by Definition 1.1. We argue that this can be easily simulated with a single
dataset generated by Definition 1.1; see the full version of the paper [17] for more
details.
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corresponds to the statistical error of D-dimensional mean esti-
mation of the “good” aN samples of bounded covariance. Finally,
the last term corresponds to the error of the 1-d estimator used in
the base case of the recursion. Thus, the execution of this recur-
sive algorithm improves the estimation error by a constant factor,
provided that || — |2 is still significantly larger than the error
bound stated in Theorem 1.2. By iteratively repeating this process
for log(ND) many iterations, the estimation error can be brought
down to the error bound of Theorem 1.2.

1.3 Related Work

1.3.1 Additional Related Work on Entangled Mean Estimation. In
this section we discuss the works that are most closely related to
this paper. We refer the reader to [48-50] and [12] for additional
references and in-depth discussion of earlier work in the statistics
literature.

The work of [8] studied entangled mean estimation in one dimen-
sion. Instead of assuming that a subset of the samples have bounded
variances, like in Definition 1.1, the N samples are x; ~ N (g, al.z)
with o1 < 03 < -+ < on and the error guarantee is stated directly
as a function of the o;’s. They show that the best possible esti-

mation error is on the order of 1/ /Zi\i 1 O'l._z when the variances

are known a priori. Otherwise, they show an error of O(VN Ologn)
is achievable in the absence of such knowledge. [8] also studies
the high-dimensional setting where the samples follow spherical
Gaussian distributions, i.e., with covariances equal to criZI. As al-
ready mentioned, the task with the spherical covariances becomes
easier in higher dimensions, as it is possible to estimate the covari-
ance scale parameter o;. Using this, they achieve an error bound

on the order of 1/,/2{12 crl._z in £y distance when D > log N. No-
tably, this almost recovers the error bound when the covariances

are known a priori, except for missing the dependency on oy.
Subsequent works [48-50] explore the more challenging non-

Gaussian setting under only the assumptions of unimodality and

radial (spherical) symmetry. Specifically, they give a hybrid estima-

tor that achieves an error rate of VDVN I/Da provided that at least
Q (log N/N)-fraction of samples have marginal variance bound o.
One could see that this result recovers that of [8] by setting D = 1.
The authors also consider the more general settings where the
distributions are only assumed to be centrally symmetric, i.e., the
density function p : R¢ - R, satisfies p(x) = p(—x), and achieve
an error of O(VN). This setting covers our setup of non-spherical
Gaussians. Yet, as pointed out in [10], the error bound given in [48]
is sub-optimal under the subset-of-signals model even in the 1-d
case.

The work of [12] also uses symmetry in place of Gaussianity.
Their algorithm is fully adaptive, i.e., requiring no parameter tuning
for specific distribution families, and is made possible by the tech-
niques of intersecting confidence intervals, which has later inspired
the work of [10] that leads to (nearly) optimal 1-d estimators in the
subset-of-signals model.

The work [42, 61] introduced the subset-of- signals model, pro-
vided a nearly optimal lower bound within the model, and showed
theoretical guarantees for the iterative trimming algorithm—a widely
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used heuristic for entangled mean estimation. Notably, the algo-
rithm works by iteratively searching for a mean parameter that
minimizes the square distance to a subset of samples, and then
searching for a subset of samples that minimize the squared dis-
tance to a given estimate of the mean parameter. Our algorithm
bears some similarity to these techniques as we are also using
estimates from past iterations to perform rejection sampling on
samples, and then use the surviving samples to construct new es-
timates. We refer the readers to Section 2 for a detailed outline of
our techniques.

Finally, Theorem 1 in [10] gives a nearly optimal 1-d estimator
for the subset-of-signals model. Similar to [8], they show that the
result can be easily applied in the multivariate spherical Gaussians
setting to nearly recover the error bound achievable with prior
knowledge on variance scales. Moreover, as an improvement, they
only require the dimension to be at least 2 for the multivariate
bound to be effective.

1.3.2  Comparison of Optimal Error in Spherical vs Arbitrary Gaus-
sians. From the results of [8, 10] and [42], it can be seen that
there is a polynomial gap between the the errors in the cases of
spherical Gaussians and those with arbitrary covariances in the
subset-of-signals model. The first observation is that in the arbi-
trary covariance matrix setting, any estimator must have an error
of f(a, N) (up to polylogarithmic factors) as shown in [42] (this
is because by allowing arbitrary covariances one can encode the
hard one-dimensional instance in one of the axes). This means that
the error is at least f(a, N) > E)(l/(az/3\/ﬁ)). On the other hand,
for spherical Gaussians, [8] and [10] give estimators with errors

0(1/|ZN, 672). Using 1 < ...
the subset-of-signals model, the estimator for the spherical Gaus-

sians can achieve an error O(1/VaN). This shows that there is a
poly(1/a) gap between the optimal errors in the two settings.

< 04N < 1 to translate that to

1.3.3  Further Related Work.

Robust Statistics. From a robustness perspective, samples with
arbitrarily large covariances in Definition 1.1 can be viewed as out-
liers. Robust statistics typically considers stronger outlier models,
such as the Huber contamination model [31], where each outlier
point is sampled from an unknown and potentially arbitrary dis-
tribution; or the strong contamination model where outliers can be
adversarial and even violate the independence between samples.
Unlike the results of this paper, consistency in these more challeng-
ing models is impossible, with the error bounded from below by
some positive function of the fraction of outliers. Efficient high-
dimensional mean estimation in the aforementioned corruption
models was first achieved in [13, 40], where the outlier fraction is a
constant smaller than 1/2. When this fraction is more than 1/2, it
is no longer possible to produce a single estimate with worst-case
guarantee. This setting is known as ‘list-decodable’ mean estima-
tion, first studied in [7]. We refer to the recent book [14] for an
overview of algorithmic robust statistics.

Other models of semi-oblivious adversaries. Similar to the subset-
of-signals model, there are other frameworks for modeling less
adversarial outliers that are assumed to be independent and have
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additional (Gaussian) structure. These models are commonly re-
ferred as semi-oblivious noise models. One such model assumes
that inlier points are distributed as x; ~ N(p, 1) and an o < 1/2
fraction of outlier points are sampled as x; ~ N (z;, 1) where z;’s are
arbitrary centers. Recent work [38] has characterized the error for
estimating p in this model, improving upon a line of work [6, 9, 33].
[9] studies the multivariate extension of the model. Finally, beyond
mean estimation, the idea of modeling outliers via mean shifts has
also been explored in the context of regression in [24, 44, 51, 54].

2 The Dimensionality Reduction Algorithm and
Proof Roadmap

This section describes our main algorithm in tandem with a de-
tailed sketch of its correctness proof. The pseudocode is provided
in Algorithms 1 to 4. Algorithm 1 describes our main algorithm that
computes a rough initial estimate, and then leverages a dimension-
ality reduction routine to iteratively improve the estimation error.
Algorithm 4 contains the main subroutine RECURSIVEESTIMATE.
Aided by two subroutines, FINDSUBSPACE and PARTIALESTIMATE (cf.
Algorithms 2 and 3) whose functionalities will be explained later
on, RECURSIVEESTIMATE takes as input an estimate i € RP and a
batch of © (N/(log N log D)) independent samples from the data-
generating model of Definition 1.1, and produces a more refined
estimate I’ satisfying the following guarantee: if ||z — p|2 is sig-
nificantly larger than the error bound specified in Theorem 1.2,
then the new estimate 1’ satisfies ||' — pll2 < ||z — pl|2/2. This is
summarized in the following statement (see the full version [17]
for the formal statement). 3

Algorithm 1 Entangled Mean Estimation in High Dimension

1: function ENTANGLEDMEANESTIMATION(N)
2 Input: Total number of samples N to use, and noise-to-
signal ratio a € (0, 1).

Output: i/ € RP.

4 m « log, D, r < [log, N1 »max depth of recursion and
number of outer loop iterations
5 Set § to be some sufficiently large constant. *
6: re N9 /r,n « m > Probability of failure r and
sample budget n per iteration.
7: H «— ToUuRNAMENTIMPROVE(O, n, 7). > Rough estimate
with O(VD) error
8: If f5(a,n) > VD thenreturn [ > where f5(-) is defined
in Equation (1)
9: fori=1,...,rdo » each iteration improves estimation
error
10: '« RecUrsIVEESTIMATE(L n, [, 7), > Iterative
improvement (cf. Algorithm 4)
11: ﬁ — '17
12: end for
13: return j
14: end function

3As will be explained later on, the routine is designed to operate in any subspace V.
provided in the input. For this reason, the formal statement in the full version [17]
uses a matrix P whose rows are the orthonormal vectors that span that subspace
(PTP is the orthogonal projection matrix). What we present here corresponds to the
simplified case P =Tand d = D.
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LEMMA 2.1 (ITERATIVE REFINEMENT (INFORMAL; SEE THE FULL
VERSION [17])). There exists an algorithm RECURSIVEESTIMATE that
takes as input I € RP satisfying ||i — pll2 < VD, uses a dataset of
n = © (N/(logNlogD)) independent samples from the model of
Definition 1.1, and produces some [’ such that the following holds
with high probability (where f(a, n) is defined in Equation (1)):

ﬂaEN+f(a,n)) .

Suppose that we have a rough estimate y satisfying || — pll2 <
VD. 1t is easy to see that running RECURSIVEESTIMATE for at most
O(log(N)) many iterations® will bring this error down to the one
presented in Theorem 1.2. This iterative reduction is accomplished
using the for loop in Algorithm 1.

We now summarize the idea behind Lemma 2.1. Let 11 be the
rough estimate provided as input. The routine RECURSIVEESTI-
MATE is a recursive function that performs divide-and-concur on
the dimension D. In particular, in each step, it receives a batch
of n = ® (N/(log(N)log(D))) many samples, and uses the sub-
routine FINDSUBSPACE to partition the current subspace further
into a low-variance and a high-variance subspace®, each with di-
mension at most half of the original subspace. Then the algorithm
invokes PARTIALESTIMATE to compute an estimate within the low-
variance subspace that has improved error; while for the high-
variance subspace it makes a recursive call. The recursion continues
until we reach a subspace of dimension d < polylog(ND). In that
case, we can simply use the 1-d estimator from [10] along each
axis in that low-dimensional subspace; the corresponding error

1, -
7 = wll, < 5 1= ull, + polylog(ND)

guarantee will be at most Vd = polylog(ND) factor larger than
that of the error f(a, N) of the 1-d base estimator (see [17]).

Suppose that the dimension of the current subspace is d, ie.,
assume that the samples are now vectors in R¢ with mean y € R?,
The analysis consists of the following inductive claim: as long as
the dimension is not too small, i.e., d > polylog(ND), a single step
of RECURSIVEESTIMATE produces a subspace V C R? of dimen-
sion dim(V) < d/2 (this is the low-variance subspace identified
by FINDSUBSPACE) together with an estimate oy, € V such that
with high probability

litow = Tyl < 7 = plz/ (2 1og, D) + O (Vaim(V)/(aN) )

)
where Il is the orthonormal projector onto V. If D denotes the
original dimension of the space for which RECURSIVEESTIMATE is
first called, after the end of all recursive calls, the algorithm will have
partitioned the entire space RP into at most log, D orthogonal low-
variance subspaces and will have produced an estimate for each of
these subspaces with error as in Equation (2). The final estimate 1’
returned is a combination of the estimate for each subspace as well

4More formally, with n input samples, the 1-d estimator from [10] with probability
1 — n~% achieves error f5(a, n) (cf. Equation (1)). For the purpose of our algorithm,
we require its success probability to be a sufficiently large polynomial in n. Hence, we
set 8 to be some sufficiently large constant.

SFor the purpose of this introductory section, we will pretend as if the algorithm
can draw an independent dataset from Definition 1.1 in each iteration. This type of
access can be simulated by randomly splitting a large dataset into smaller ones and is
presented formally in the full version [17].

®Tt will be explained later on in this introductory section in what sense we call the
subspace “low-variance”.
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as the base case estimator (which has error polylog(ND) f(a, N)).
By summing all the errors together, it can be seen that the error
of [’ is the one provided in Lemma 2.1. The rest of this section
provides a sketch of the correctness proof for Equation (2).

2.1 Warm-Start Estimate via Tournament

RECURSIVEESTIMATE from Lemma 2.1 requires some i such that
Il = pll2 < VD.If the 1-d estimator achieves accuracy € = O(1),
we can simply use it along each axis to obtain such a zi. In the more
challenging regime when € = w(1), we will exploit the fact that a
sample with covariance bounded by I is within distance of VD from
1 in expectation. While accurately identifying such a sample is hard,
by taking roughly 1/a many samples 11, ..., i1 /4, one p;j of them
will satisfy ||p; — pill2 < VD with high probability. We then design a
tournament procedure to choose a vector fi from py, . . ., 11/ Which
is almost as good as that y;.

LEMMA 2.2 (TOURNAMENT (INFORMAL; SEE [17])). There exists an
algorithm that takes as input a list L = {1, - - , .} € RP, draws a
dataset of sizen from the model of Definition 3.5 from [17], and outputs
anestimateij € L such that ||pj—pll2 < mine(x |lpi—pll2+f5(en)
with high probability.

The algorithm establishing the above lemma is inspired by ideas
developed in the context of list-decodable mean estimation [15]. In
particular, for every pair of candidate estimates 1, yi¢, the algorithm
compares y1; — p and pp — pi projected along the direction of yj — pg
to decide wether or not to remove j from the list. This kind of
comparisons, essentially reduce the problem into one-dimensional
tasks, where we can again just use the 1-d estimator to learn the
projection of y along the direction of y, — pj. We remark that
while the goal of a tournament procedure is to prune the candidate
list down to a shorter list containing a good estimate in the list-
decodable setting, our tournament procedure needs to produce a
single estimate that has nearly optimal error. To achieve this, we
require a novel analysis leveraging the structure of our setting. The
formal statement and proof can be found in ??.

2.2 Rejection Sampling

Recall that our procedure RECURSIVEESTIMATE relies critically on
finding a low-variance subspace. Unfortunately, a low-variance
subspace may not exist in general—as even a single noisy sample
can cause the variance to be arbitrarily large. Our key idea is to use
the warm-start estimate i obtained from the tournament procedure
as a rejection sampling center to filter out unusually noisy samples:
If x; ~ N(i, ;) denote the original samples, for each i we sample
a decision variable b; ~ Ber (exp (—||x; — ;7||%/d)) independently
to decide whether or not to accept the sample.

Distribution of Accepted Samples. To analyze the effect of rejec-
tion sampling, denote by A; the distribution of the i-th sample
conditioned on its acceptance, i.e., the distribution of x; ~ N (1, Z;)
conditioned on b; = 1. A convenient fact is that A; is simply another
Gaussian N (1, Ei), for some y;j, 3; defined as functions of JIAT
that are provided in [17]. Denote by S = {i € [n] : b; = 1} the set
of all accepted indices (which is a random set). By independence
between samples and the aforementioned fact, if we condition on
a set Sg = S, then the conditional joint distribution of {x;};es is
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equal to the product distribution of the Gaussians N (fi;, %;) for
i € S (with pj, 3; defined in equation (5) in the full version [17]). We
can thus adopt the following more convenient view of the random
process that generates the accepted samples.

Definition 2.3 (Generation of accepted samples—alternative view).

(1) S is generated by independently including i € [n] with
probability E,, _n .z, le” ”xﬁ”llé/d].

(2) For each i € S, x; is drawn independently from A; :
N (i, %).

Thus, if we condition on a particular S # of accepted indices, we
could view the accepted vectors simply as independent samples
from the distributions {A; = N (;, %:)}. This property makes it
manageable to analyze the statistical properties of subroutines that
work on the accepted samples.

Rejection of Noisy Samples. Let x1, . .., x;. € R be the accepted
samples (by renaming S # to [k]). On the one hand, by definition of
our acceptance rule, we will rarely see samples that are at a distance
more than Vd from the rejection center i (where d is the dimension
of the subspace we are currently working in). This ensures that
the averaged covariance matrix of the accepted samples, % Z{-‘zl %,
must have its trace appropriately bounded. In particular, we show in
the full version [17] that with high probability over the randomness
of the accepted indices S #, the distributions A; for i € S 4 satisfy
that E, 4, [||z,- - ;7||§] < dlog(nd). Via a linear algebraic argu-
ment, this immediately implies that tr (% Zi.c:l El) < dlog(nd). By
a simple averaging argument, we therefore know that there must
exist a subspace of dimension at least d/2 such that the eigenval-
ues of % Z{;l ¥; within the subspace is at most O (log(nd)). This
therefore guarantees the existence of a low-variance subspace of
the average population covariance matrix. Finally, note that %, are
unknown population covariances; thus, even though we showed
that a low-variance subspace exists, we yet have to provide a way
to compute such a subspace from samples. This will be done in
Section 2.3.

Survival of Samples with Bounded Covariance. On the other hand,
by standard Gaussian norm concentration, a sample x; € R? with
covariance bounded by I is rarely at a distance more than Vd from
the mean p. Provided that ||z — p|| S Vd, we thus have that such
samples will pass the rejection sampling procedure with at least
constant probability. A slight issue is that as we go deeper into the
recursion tree of the algorithm, each call of the recursive routine
projects everything onto a subspace with half the dimension d of
the parent call. Thus, the requirement || — p|| < Vd, although true
in the beginning when d = D, may no longer hold in later steps of
the recursion. Fortunately, at each call of the routine, we can take
more fresh samples, project them onto the current subspace V, and
invoke the tournament procedure from Lemma 2.2 to produce some
new estimate 7i € R that is guaranteed to be within distance Vd
from the projected mean (cf. Algorithm 4 in Algorithm 4).

Bias of Rejection Sampling. A more significant issue concerns
the bias in the mean of the accepted samples. Let us examine the
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averaged mean over the accepted samples. A straightforward com-
putation (see [17]) shows that this expectation is:

k
Zﬁi—u=
i=1

where we define Eavg = % Z’;zl Ei for convenience. The ques-
tion then is what is the best upper bound that we can use for the
operator norm of Eavg. A basic fact is that, conditioned on the ac-
cepted indices, each accepted sample x; follows the Gaussian A; :=
N (i, %) with B = 3 (2i/d + =7 ) and 37 = (271 + (2/d)1) ™
(cf. [17]). This immediately implies that ||Z;||s < d/2. However,

2

: ©)

iEavg (ﬁ -1,

if the operator norm of the averaged covariance X,y could be as
large as d/2, then the bias of the accepted samples would not be
any better than the error of 1 that we started with! Fortunately,
as discussed earlier, the fact that Eavg has bounded trace implies
that there must exist a subspace V of dimension at least d/2 such
that the eigenvalues of favg constrained to V are at most log(nd).
Hence, the empirical mean over the accepted samples would con-
stitute a good estimator within this low-variance subspace V—if
we could successfully identify it. After that, we can recurse on the
orthogonal complement of V, and that would complete the analysis
of RECURSIVEESTIMATE. The remaining task is therefore to design
a procedure that can identify this subspace.

2.3 Searching for a Low-Variance Subspace

We devise a procedure FINDSUBSPACE (cf. Algorithm 2) for identify-
ing a low-variance subspace with respect to the accepted samples.

Algorithm 2 Function to find a subspace in which the accepted
samples have low variance

1: function FINDSUBSPACE(, X1, - « -, Xk)
2 Input: Rough mean estimate g € R?, and samples
X1, , Xk € Rd‘

Output: Matrices Ploy, Phigh € R4/2%d whose rows form

an orthonormal basis of R4,
Let Memp) = § Siefk] (xi = (xi =)

5 Let v1,02, - -+ ,v4 be the d eigenvectors of M(emp) in de-
scending order of their eigenvalues.

6: Let  Ppigh = [o1,. .., U|_d/2J]T and Piyy =
[o1d/2)415- - 0al -

7. return Pioy, Phigh, flow
s8: end function

LEMMA 2.4 (LOW-VARIANCE SUBSPACE IDENTIFICATION (INFOR-
MAL; SEE FULL VERSION [17])). Letx; ~ N (7i;, %) € RY fori € [k]
be the set of accepted samples. Assume that k > d polylog(nd). The
procedure FINDSUBSPACE takes the samples as input, and produces
a subspace V such that the following holds with high probability:
UT% Zielk] %0 < log(nd) for all unit vectorsv € V.

To search for the low-variance subspace, we take the following
natural approach. Given accepted samples x1,- -+ ,x € R? that
pass through the rejection sampling centered at g, we compute the

1686

STOC 25, June 23-27, 2025, Prague, Czechia

second moment matrix ﬁ(emp) = % Z;C:l (xi =) (xi =7, and
take the subspace spanned by the bottom d/2 eigenvectors. The
challenging part is to show that the averaged covariance matrix
favg will indeed have small eigenvalues within this subspace with
high probability. The proof strategy comprises of showing that the
following two claims hold with high probability:

(1) There is a subspace V in which the empirical second moment
M emp) of accepted samples has small operator norm.

(2) The averaged covariance matrix Eavg can be bounded from
above (in Lowner order) by the sample second moment ma-
trix M(emp) (up to a constant factor).

It is not hard to see that combining the two statements above yields
that, with high probability, iavg will have bounded eigenvalues
within the subspace V. The formal statement of Item 1 is given
n [17]. Its proof follows mostly from the properties of rejection
sampling and the details can be found in the full version of the
paper [17]. The formal statement of Item 2 also is given in [17]. The
proof idea is to use the “truncation” technique. In particular, define
X; = (xi — ) (x; — @) T . We will decompose X; into

Y; = 1{|lx; - fill2 < ©(Vd)}X; and Z; = 1{||x; — ill2 > ©(Vd)}.

By the property of the rejection sampling procedure, the Z; are
almost always 0. On the other hand, the Y; now have bounded oper-
ator norm almost surely. We could then apply the Matrix Bernstein
Inequality to argue about the spectral concentration of };c (k] Yi-
The details are provided in [17].

2.4 Improvement within the Low-Variance
Subspace

Building on top of FINDSUBSPACE, we give another procedure
PARTIALESTIMATE (cf. Algorithm 4) that simultaneously identifies a
low variance subspace V C R and an estimate Hiow such that they
satisfy Equation (2) with high probability. See [17] for the formal
statement. Notably, the routine uses the same batch of accepted
samples to search for the low-variance subspace, and to compute
the empirical mean estimator fi,y,. To avoid adaptive conditioning
(i.e., conditioning on concentration of the sample mean within the
subspace V defined by the samples), we instead show that with
high probability the deviation of the sample mean from the popula-
tion mean along every direction is bounded from above by some
quantity proportional to the population variance along that direc-
tion. That is, conditioned on that {1,..., k} are the indices of the
accepted samples, then with probability at least 1 — 7, the following
holds for all 0 € R?

1 k 1 k 1
T — f— ~» —_—

This is because, conditioned on the acceptance set being {1, ..., k},
the accepted samples are just independent Gaussians conditioned
on a specific set S of accepted indices; thus, standard Gaussian
concentration can be applied. The detailed proof is given in [17].

©)
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Algorithm 3 Function to estimate the mean within the Low-
Variance Subspace

1: function PARTIALESTIMATE( X1, - « - , Xp)

2 Input: Rough mean estimate p € R4, and samples
X1, ,Xn e R4,
3: Output: Matrix Pyg, € R4/2%d 3 an estimate How € R,
N2
4 For each i € [n] draw b; ~ Ber(e~Ixi—Hlz/dy Rejection

sampling
Piows Phigh < FINDSUBSPACE(f, {x; : bi = 1}).
space (cf. Section 2.3)
1 T
Hlow <= 3., Lien] biPygy,
of surviving samples after projection
return Ppgh, fow
: end function

> Split

Piowxi > Empirical mean

Algorithm 4 Recursive Function for Mean Estimation

1: function RECURSIVEESTIMATE(P, n, 11, 7)

2 Input: Row orthonormal matrix P € R?*P| sample budget
n € N, failure probability 7 € (0, 1), mean estimate ji € R
from last iteration, and noise-to-signal ratio & € (0, 1).
3: Output: Better mean estimate I’ € RY.
4 Let C, 6 be sufficiently large absolute constants.
5 Draw an independent batch of n samples yy, - - - , y, € RP
from the model of Definition 1.1 (see Footnote 5).
6: Form a projected set of samples: S «— {x; = Py; Vi € [n]} C
RY.
7: H «— ToUuRNAMENTIMPROVE(] 1, 7) of [17]. > Ensures
|E=Pull2 < Vd+f5(a, n).
8 if d < Clog(nd/t)(log D)? then
9: Let 7' € RY be the output of the estimator from [17]

computed on the dataset S.

10: return j// > End the recursion
11: else if Vd < fs(a,n) then> Recall that f5(-) is defined in
Equation (1)
12: return ' = .. > We already have
[[Z=Pull2 £ fs(a, n) in this case
13: else
14: Ppigh, Hlow <~ PARTIALESTIMATE(E, X1, - -+, xn) = (cf.
Algorithm 3) Returns an orthonormal matrix Ppgy, €
R4/2xd corresponding to the high-variance subspace
and some mean estimate oy € R in the low-variance
subspace.
15: Hhigh < RECURSIVEESTIMATE(Ppio, P, 1, Phighﬁ: T) >
Recurse on high-variance subspace
16: B piow + P;l—ighllhigh > Combination of the two
estimates in R?
17: return 1/’
18: end if

19: end function
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Putting everything together to show (2). We are now ready to put
everything together to prove (2). Recall that the procedure RECUR-
SIVEESTIMATE works in a d-dimensional subspace of R defined by
some orthonormal matrix P € RZ¥P given as its input. After project-
ing the sample points into the subspace with P, it runs the tourna-
ment procedure from Lemma 2.2 to obtain a rough estimate g € R4
within the subspace. It then performs rejection sampling as outlined
in Section 2.2 centered at pi. Let x1, - - - , X be the set of accepted
samples. By Equation (3), the bias of the samples will be of the form
(2/d) favg (7 — p). With high probability, the routine FINDSUB-
SpACE yields a subspace V such that vaanv = O(1) (up to poly-
logarithmic factors) for all v € V. Via a linear algebraic argument

My (£ 25, Blxl - ) |, < 17— pll
On the other hand, as shown in Equation (4), the deviation of the

(cf. ??), one can show that

empirical mean % Zif:l x; from its expected value will be at most

\/om (up to polylogarithmic factors). Combining the above two
observations with the triangle inequality then concludes the proof
of Equation (2).

The detailed pseudocode of RECURSIVEESTIMATE is given in Al-
gorithm 4. For the formal statement and proof, we refer the reader
to [17].
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