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Abstract

We study the task of high-dimensional entangled mean estimation

in the subset-of-signals model. Speci�cally, given # independent

random points G1, . . . , G# in R� and a parameter U ∈ (0, 1) such
that each G8 is drawn from a Gaussian with mean ` and unknown

covariance, and an unknown U-fraction of the points have identity-

bounded covariances, the goal is to estimate the common mean `.

The one-dimensional version of this task has received signi�cant

attention in theoretical computer science and statistics over the

past decades. Recent work has given near-optimal upper and lower

bounds for the one-dimensional setting. On the other hand, our

understanding of even the information-theoretic aspects of the

multivariate setting has remained limited.

In this work, we design a computationally e�cient algorithm

achieving an information-theoretically near-optimal error. Speci�-

cally, we show that the optimal error (up to polylogarithmic factors)

is 5 (U, # ) +
√
�/(U# ), where the term 5 (U, # ) is the error of the

one-dimensional problem and the second term is the sub-Gaussian

error rate. Our algorithmic approach employs an iterative re�ne-

ment strategy, whereby we progressively learn more accurate ap-

proximations ̂̀ to `. This is achieved via a novel rejection sampling

procedure that removes points signi�cantly deviating from ̂̀, as an
attempt to �lter out unusually noisy samples. A complication that

arises is that rejection sampling introduces bias in the distribution

of the remaining points. To address this issue, we perform a care-

ful analysis of the bias, develop an iterative dimension-reduction

strategy, and employ a novel subroutine inspired by list-decodable

learning that leverages the one-dimensional result.
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1 Introduction

Classical statistics has traditionally focused on the idealized sce-

nario where the input dataset consists of independent and iden-

tically distributed samples drawn from a �xed but unknown dis-

tribution. In a wide range of modern data analysis applications,

there is an increasing need to move beyond this assumption since

datasets are often collected from heterogeneous sources [20, 22,

23, 25, 56, 62]. A natural formalization of heterogeneity in the con-

text of mean estimation (the focus of this work) involves having

each datapoint drawn independently from a potentially di�erent

distribution within a (known) family that shares a common mean

parameter. Distributions with this property are referred to as en-

tangled, and the setting is also known as sample heterogeneity or

heteroskedasticity.

The task of estimating the mean of entangled distributions has

gained signi�cant attention in recent years for a number of reasons.

First, from a practical viewpoint, entangled distributions intuitively

capture the idea of collecting samples from diverse sources. One of

the early works that studied this task [8] illustrates this with the

following crowdsourcing example. Suppose that multiple users rate

a product with some true value `. Each user 8 has their own level

of knowledge about the product, captured by a standard deviation

parameter f8 . The rating from user 8 is assumed to be sampled from

a Gaussian distribution with mean ` and covariance f28 , and the

goal is to estimate ` in small absolute error using these samples.

Other practical examples include datasets collected from sensors

under varying environmental conditions; see, e.g., [34].

From a theoretical viewpoint, statistical estimation given access

to non-identically distributed, heterogeneous data is a natural and

fundamental task, whose roots trace back several decades in the

statistics literature. Early work [29, 52, 53, 55, 57, 59] studied the

asymptotic properties of such distributions. Speci�cally, [5, 32]

studied maximum likelihood estimators and [27, 28, 45, 47] ana-

lyzed the median estimator for non-identically distributed samples.

Heterogeneity has also been studied for moments of distributions

[26] and linear regression [21, 36]. Mean estimation for entangled

distributions, including the Gaussian setting considered in [8], is
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also related to the classical task of parameter learning for mixture

models—albeit in a regime that is qualitatively di�erent than the one

commonly studied. While in the canonical setting—see [1, 2, 11, 35]

for classic references and [3, 4, 7, 16, 16, 18, 19, 30, 37, 39, 43, 46]

for more recent work—one typically assumes a small (constant)

number of components : j # with di�erent means, in the entan-

gled setting each sample comes from its own component (: = # ).

Importantly, the shared mean assumption allows for meaningful

results despite the high number of components.

Prior WorkWe now summarize prior work for mean estimation

of entangled Gaussians, starting with the (now well-understood)

one-dimensional case. In this setting, we have access to samples

G8 ∼ N(`, f28 ) with unknown f8 values. For a concrete and simple

con�guration for thef8 ’s, we consider the so-called subset-of-signals

model, introduced in [42]. In this model, it is assumed that at least

an U-fraction of the samples have f8 f 1, while the remaining

can have arbitrary variances. The goal is to estimate ` in absolute

error that is as small as possible in terms of the number of samples

# and the rate U . A series of works [8, 10, 12, 42, 48–50, 60, 61]

has established upper and lower bounds for this task. Speci�cally,

the recent work [10] gave an estimator with error matching (up

to polylogarithmic factors) the lower bound of [42] in the subset-

of-signals model (for a very wide regime of U values). Entangled

Gaussian mean estimation in the subset-of-signals model is thus

essentially resolved in one dimension. Additional discussion on

related work is provided in Section 1.3.

Entangled Mean Estimation in High Dimensions In contrast,

the multivariate version of this problem is much less understood.

Some of the prior work [8, 10, 48, 50] only tangentially considered

higher dimensions, focusing on the rather restricted setting that the

covariance matrices are spherical, i.e., of the form Σ8 = f28 I. For this

speci�c special case, it turns out that the problem becomes easier in

higher dimensions—as each coordinate provides more information

about the scalar parameter f8 . A more general formulation would

be to replace the sphericity assumption on the Σ8 ’s by a bound-

edness assumption. This leads to the following high-dimensional

formalization of the subset-of-signals model.

De�nition 1.1. Let ` ∈ R� be a target vector and U ∈ (0, 1)
be a parameter. A set of # points in R� is generated as follows:

First, an adversary chooses # positive semide�nite (PSD) matrices

Σ1, . . . ,Σ# ∈ R�×� under the constraint that
∑#
8=1 1(Σ8 ¯ I) g

U# . Then, for each 8 = 1, . . . , # , the sample G8 is drawn indepen-

dently from N(`,Σ8 ). The �nal dataset {G1, . . . , G# } is the input
provided to the learning algorithm. We call ` the common mean

and U the signal-to-noise rate of the model.

This natural de�nition was suggested by Jerry Li [41] at the TTIC

Workshop on New Frontiers in Robust Statistics, where the com-

plexity of the problem was posed as an open question.

We emphasize that our understanding of entangled mean estima-

tion in the aforementioned setting is fairly limited—even information-

theoretically. The results in [8, 10, 42] already imply that any es-

timator for the arbitrary covariance setting must incur error that

is larger, by at least a polynomial factor, than the error achievable

in the spherical covariance case (see Section 1.3.2 for more details).

This suggests that the bounded covariance setting is more chal-

lenging than the spherical case and requires new ideas. Speci�cally,

prior to this work, the optimal rate for the bounded covariance case

was open—even ignoring computational considerations.

A standard attempt to obtain a (potentially tight) upper bound

on the error involves using the one-dimensional estimator along

an exponentially large cover of the unit ball in R� , and combin-

ing these estimates into a vector via a linear program (ala Tukey

median) [58]. Unfortunately, this approach may fail in our setting,

due to the following issue. Establishing correctness of the approach

requires that the failure probability of the one-dimensional estima-

tor is exponentially small in � . However, the currently best known

error guarantees [10] hold only with probability 1 − poly(# ).1
Moreover, even if this obstacle could be circumvented, we would

still end up with an exponential-time estimator. Finally, we note

that a simple and natural computationally e�cient approach in-

volves applying a one-dimensional estimator for each axis of the

space. Unfortunately, the error incurred by this approach is
√
�

times that of the one-dimensional estimator, which turns out to be

signi�cantly suboptimal.

In summary, none of the known approaches yields error better

than poly(�) 5 (U, # ), where 5 (U, # ) is the error of the optimal one-

dimensional estimator, leaving even the information-theoretically

tight bound wide open. This leads to the core question of our work:

What is the optimal error rate for high-dimensional entangled mean

estimation, both

(i) from an information-theoretic perspective, and (ii) for

computationally e�cient algorithms?

In this work, we resolve both aspects of this question (up to poly-

logarithmic factors) for a wide range of the parameters #, �, U .

1.1 Main Result

Before we formally state our contributions, we recall the error

guarantee of the 1-d estimator given in [10]. In particular, if we

denote by # the number of samples and U the signal-to-noise rate

(fraction of points with variances bounded from above by one),

then their estimator ̂̀ ∈ R satis�es |̂̀− ` | f 5 (U, # ) with high

probability, where 5 (U, # ) is de�ned as

(log(# /U))$ (1) ·




U−2# −3/2, ¬

(
log#
#

)
f U f # −3/4

U−2/3# −1/2, # −3/4 < U < 1

∞, otherwise .

(1)

The above error upper bound had been previously shown [42]

to be best possible up to polylogarithmic factors in the regime

¬ (log# /# ) f U f $ (# 1−n ) for any arbitrarily small constant

n > 0.

Roughly speaking, the error of our high-dimensional estimator

is equal, up to polylogarithmic factors, to the sum of the above

1-d error and the statistical error for mean estimation of isotropic

Gaussians. Speci�cally, our main result is the following:

Theorem 1.2 (High-Dimensional Entangled Mean Estima-

tion). EntangledMeanEstimation(# ) in Algorithm 1 satis�es the

following guarantee: The algorithm draws # samples in R� from the

1Though one could amplify the success probability of [10] in a black-box manner using
the standard “median trick”, we remark that such a strategy will lead to a factor of �
loss in the error guarantee if the goal is to achieve success probability 1−exp(−Θ(� ) ) .
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subset-of-signals model of De�nition 1.1 with common mean ` ∈ R�
and signal-to-noise rate U ∈ (0, 1). If # g �

U log� (�U ), where �
is a su�ciently large absolute constant, the output ̂̀ ∈ R� of the

algorithm satis�es the following with probability at least 0.99:

∥̂̀− `∥2 f log$ (1) (# )
(√

�

U#
+ 5 (U, # )

)
,

where 5 (·) is the function de�ned in Equation (1). Moreover, the

algorithm runs in time poly(�, # ).

We remark that the error bound achieved by our algorithm is op-

timal up to poly-logarithmic factors in the subset-of-signals model,

provided that # g ¬̃(�/U). To show that the second error term,

5 (U, # ), is necessary, we can simply embed the 1-d hard instance of

[42] in the �-dimensional space. Speci�cally, we can set the mean

and variance of the �rst coordinate according to the 1-d hard in-

stance, and set the remaining coordinates to be deterministically 0.

The second term
√
�/(U# ) is the statistical error rate of estimating

the mean of isotropic Gaussians. This term is also necessary, as can

be seen by embedding the standard hard instance of �-dimensional

isotropic Gaussian mean estimation into the U# many samples

with bounded covariances, and setting the covariances of the rest

of the samples to be su�ciently large so that they reveal almost no

information.

Finally, the algorithm succeeds whenever # > �/U (times poly-

logarithmic factors). We remark that this is necessary for any esti-

mator to achieve errors smaller than a constant, i.e., n < 1/2, even
when the identities of the samples with bounded covariances are

revealed to the algorithm. Extending the result to any # ∈ Z+ is an
interesting open question that we leave for future work.

1.2 Brief Overview of Techniques

In this section, we summarize our approach for obtaining an esti-

mator achieving the guarantees of Theorem 1.2. Towards this end,

we will start by explaining how to obtain an initial rough estimate ˜̀
such that ∥˜̀− `∥2 ≲

√
� . We note that the main novelty (and bulk)

of our technical work will be on developing a recursive procedure

that iteratively improves upon ˜̀.
We now provide an e�cient method to achieve the warm start.

Speci�cally, provided that we are in the regime where 5 (U, # ) =
$ (1), such an estimate ˜̀can be easily obtained by running the 1-d

estimator from [10] along each axis. For the other regime, we design

a sophisticated tournament procedure that outputs an estimate

within $ (
√
�) from the true mean (see the full version [17] for

more details).

We next describe how to achieve improved estimation accuracy.

Naïve approaches such as sample means are destined to fail in the

subset-of-signals model, due to the fact that no assumptions are

made on the covariances of (1 − U)-fraction of the samples. Specif-

ically, these matrices can have arbitrarily large operator norms,

which can cause the average of the samples to su�er from arbitrar-

ily high statistical errors in ℓ2 distance. Our approach to overcome

this issue is to use our initial estimator ˜̀ (warm start) to detect and

reject samples that are too far from the true mean ` in Euclidean

norm. Algorithmically, the rejection sampling procedure is to ac-

cept each sample G with probability exp(−∥G − ˜̀∥22/�). On the

one hand, most of the “good” samples (the U# points with bounded

covariance) survive the rejection sampling: this is because a Gauss-

ian sample with covariance bounded above by I is $ (
√
�)-far from

` (and hence from ˜̀) with high probability, which causes its ac-

ceptance with high probability. Regarding the remaining points

(i.e., the ones with covariances Σ8 such that tr (Σ8 ) k �), the re-

jection sampling step ensures that the probability of acceptance is

small enough so that the average of the covariance matrices of the

surviving points (inliers and outliers), which we denote by Σ̃avg,

will have its trace bounded from above by $ (�). We show that

this essentially allows for accurate estimation of the population

mean of the surviving points; roughly speaking, this follows from

the fact that the standard error for mean estimation of a bounded

covariance random variable - is $ (
√
tr (Cov(- ))/# ).

Unfortunately, the aforementioned approach does not quite work

for the following reason: the rejection sampling procedure will also

cause the population mean of the surviving samples to be biased. In

particular, since the acceptance probability is given by the exponen-

tial of some quadratic in the input point, the resulting distribution

of each point G8 conditioned on its acceptance will be some new

Gaussian distribution whose means and covariances are functions

of the true mean `, the covariance Σ8 of G8 , and the center ˜̀used

in the rejection sampling. After a careful calculation, one can show

that the bias of the new population mean of a set of samples, condi-

tioned on their acceptance, will be given by Σ̃avg (` − ˜̀) /� , where

Σ̃avg is the average of the conditional covariance of the surviving

points. Since the operator norm of Σ̃avg could be as large as its trace,

which could itself be as large as � , the bias caused by the rejection

sampling over the entire space could hence be prohibitively large.

That being said, if we can �nd some low-variance subspaceV such

that E¦Σ̃avgE is small for any E ∈ V , the magnitude of the bias

withinV will be only a small constant multiple of ∥` − ˜̀∥2. Fortu-
nately, since the trace of Σ̃avg is at most$ (�), by a simple averaging

argument, Σ̃avg must have at least �/2 many eigenvalues that are

at most $ (1). Thus, the subspace spanned by the corresponding

eigenvectors gives the desired low-variance subspace. Moreover, we

show that this subspace can be approximately computed from the

samples (more precisely, we can compute a subspace of similarly

low variance, up to polylogarithmic factors). It then remains to es-

timate the mean ` within the complement high-variance subspace

V§. To achieve this goal, the idea is to just project the datapoints

onto V§, and recursively run the same algorithm in that lower

dimensional (of dimension �/2) subspace.2 When the recursive

procedure reaches a subspace with dimension polylog(�), we can
simply run the 1-d estimator along each axis to �nish the recursion.

SinceV§ now has dimension only �/2, the recursion terminates

after log� many iterations.

In our description so far, one full execution of the recursive algo-

rithm yields some ̂̀with error ∥̂̀−`∥2 f ∥˜̀− `∥2/2+
√
�/(U# ) +

5 (U, # ) (up to polylogarithmic factors). The �rst term corresponds

to the bias caused by the rejection sampling and the second term

2Here we assume that the algorithm can take multiple datasets, where each of them is
generated by De�nition 1.1. We argue that this can be easily simulated with a single
dataset generated by De�nition 1.1; see the full version of the paper [17] for more
details.
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corresponds to the statistical error of �-dimensional mean esti-

mation of the “good” U# samples of bounded covariance. Finally,

the last term corresponds to the error of the 1-d estimator used in

the base case of the recursion. Thus, the execution of this recur-

sive algorithm improves the estimation error by a constant factor,

provided that ∥˜̀− `∥2 is still signi�cantly larger than the error

bound stated in Theorem 1.2. By iteratively repeating this process

for log(#�) many iterations, the estimation error can be brought

down to the error bound of Theorem 1.2.

1.3 Related Work

1.3.1 Additional Related Work on Entangled Mean Estimation. In

this section we discuss the works that are most closely related to

this paper. We refer the reader to [48–50] and [12] for additional

references and in-depth discussion of earlier work in the statistics

literature.

The work of [8] studied entangled mean estimation in one dimen-

sion. Instead of assuming that a subset of the samples have bounded

variances, like in De�nition 1.1, the # samples are G8 ∼ N(`, f28 )
with f1 f f2 f · · · f f# and the error guarantee is stated directly

as a function of the f8 ’s. They show that the best possible esti-

mation error is on the order of 1/
√∑#

8=1 f
−2
8 when the variances

are known a priori. Otherwise, they show an error of $̃ (
√
#flog=)

is achievable in the absence of such knowledge. [8] also studies

the high-dimensional setting where the samples follow spherical

Gaussian distributions, i.e., with covariances equal to f28 I. As al-

ready mentioned, the task with the spherical covariances becomes

easier in higher dimensions, as it is possible to estimate the covari-

ance scale parameter f8 . Using this, they achieve an error bound

on the order of 1/
√∑#

8=2 f
−2
8 in ℓ∞ distance when � k log# . No-

tably, this almost recovers the error bound when the covariances

are known a priori, except for missing the dependency on f1.

Subsequent works [48–50] explore the more challenging non-

Gaussian setting under only the assumptions of unimodality and

radial (spherical) symmetry. Speci�cally, they give a hybrid estima-

tor that achieves an error rate of
√
�
√
#
1/�

f provided that at least

¬ (log# /# )-fraction of samples have marginal variance bound f .

One could see that this result recovers that of [8] by setting � = 1.

The authors also consider the more general settings where the

distributions are only assumed to be centrally symmetric, i.e., the

density function d : R3 ↦→ R+ satis�es d (G) = d (−G), and achieve

an error of $ (
√
# ). This setting covers our setup of non-spherical

Gaussians. Yet, as pointed out in [10], the error bound given in [48]

is sub-optimal under the subset-of-signals model even in the 1-d

case.

The work of [12] also uses symmetry in place of Gaussianity.

Their algorithm is fully adaptive, i.e., requiring no parameter tuning

for speci�c distribution families, and is made possible by the tech-

niques of intersecting con�dence intervals, which has later inspired

the work of [10] that leads to (nearly) optimal 1-d estimators in the

subset-of-signals model.

The work [42, 61] introduced the subset-of- signals model, pro-

vided a nearly optimal lower bound within the model, and showed

theoretical guarantees for the iterative trimming algorithm—awidely

used heuristic for entangled mean estimation. Notably, the algo-

rithm works by iteratively searching for a mean parameter that

minimizes the square distance to a subset of samples, and then

searching for a subset of samples that minimize the squared dis-

tance to a given estimate of the mean parameter. Our algorithm

bears some similarity to these techniques as we are also using

estimates from past iterations to perform rejection sampling on

samples, and then use the surviving samples to construct new es-

timates. We refer the readers to Section 2 for a detailed outline of

our techniques.

Finally, Theorem 1 in [10] gives a nearly optimal 1-d estimator

for the subset-of-signals model. Similar to [8], they show that the

result can be easily applied in the multivariate spherical Gaussians

setting to nearly recover the error bound achievable with prior

knowledge on variance scales. Moreover, as an improvement, they

only require the dimension to be at least 2 for the multivariate

bound to be e�ective.

1.3.2 Comparison of Optimal Error in Spherical vs Arbitrary Gaus-

sians. From the results of [8, 10] and [42], it can be seen that

there is a polynomial gap between the the errors in the cases of

spherical Gaussians and those with arbitrary covariances in the

subset-of-signals model. The �rst observation is that in the arbi-

trary covariance matrix setting, any estimator must have an error

of 5 (U, # ) (up to polylogarithmic factors) as shown in [42] (this

is because by allowing arbitrary covariances one can encode the

hard one-dimensional instance in one of the axes). This means that

the error is at least 5 (U, # ) g ¬̃(1/(U2/3
√
# )). On the other hand,

for spherical Gaussians, [8] and [10] give estimators with errors

$ (1/
√∑#

8=1 f
−2
8 ). Using f1 f . . . f fU# f 1 to translate that to

the subset-of-signals model, the estimator for the spherical Gaus-

sians can achieve an error $ (1/
√
U# ). This shows that there is a

poly(1/U) gap between the optimal errors in the two settings.

1.3.3 Further Related Work.

Robust Statistics. From a robustness perspective, samples with

arbitrarily large covariances in De�nition 1.1 can be viewed as out-

liers. Robust statistics typically considers stronger outlier models,

such as the Huber contamination model [31], where each outlier

point is sampled from an unknown and potentially arbitrary dis-

tribution; or the strong contamination model where outliers can be

adversarial and even violate the independence between samples.

Unlike the results of this paper, consistency in these more challeng-

ing models is impossible, with the error bounded from below by

some positive function of the fraction of outliers. E�cient high-

dimensional mean estimation in the aforementioned corruption

models was �rst achieved in [13, 40], where the outlier fraction is a

constant smaller than 1/2. When this fraction is more than 1/2, it
is no longer possible to produce a single estimate with worst-case

guarantee. This setting is known as ‘list-decodable’ mean estima-

tion, �rst studied in [7]. We refer to the recent book [14] for an

overview of algorithmic robust statistics.

Other models of semi-oblivious adversaries. Similar to the subset-

of-signals model, there are other frameworks for modeling less

adversarial outliers that are assumed to be independent and have
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additional (Gaussian) structure. These models are commonly re-

ferred as semi-oblivious noise models. One such model assumes

that inlier points are distributed as G8 ∼ N(`, 1) and an U < 1/2
fraction of outlier points are sampled as G8 ∼ N(I8 , 1) where I8 ’s are
arbitrary centers. Recent work [38] has characterized the error for

estimating ` in this model, improving upon a line of work [6, 9, 33].

[9] studies the multivariate extension of the model. Finally, beyond

mean estimation, the idea of modeling outliers via mean shifts has

also been explored in the context of regression in [24, 44, 51, 54].

2 The Dimensionality Reduction Algorithm and

Proof Roadmap

This section describes our main algorithm in tandem with a de-

tailed sketch of its correctness proof. The pseudocode is provided

in Algorithms 1 to 4. Algorithm 1 describes our main algorithm that

computes a rough initial estimate, and then leverages a dimension-

ality reduction routine to iteratively improve the estimation error.

Algorithm 4 contains the main subroutine RecursiveEstimate.

Aided by two subroutines, FindSubSpace and PartialEstimate (cf.

Algorithms 2 and 3) whose functionalities will be explained later

on, RecursiveEstimate takes as input an estimate ̂̀ ∈ R� and a

batch of Θ
(
# /

(
log# log�

) )
independent samples from the data-

generating model of De�nition 1.1, and produces a more re�ned

estimate ̂̀′ satisfying the following guarantee: if ∥̂̀− `∥2 is sig-
ni�cantly larger than the error bound speci�ed in Theorem 1.2,

then the new estimate ̂̀′ satis�es ∥̂̀′ − `∥2 f ∥̂̀− `∥2/2. This is
summarized in the following statement (see the full version [17]

for the formal statement). 3

Algorithm 1 Entangled Mean Estimation in High Dimension

1: function EntangledMeanEstimation(# )

2: Input: Total number of samples # to use, and noise-to-

signal ratio U ∈ (0, 1).
3: Output: `′ ∈ R� .
4: < ← log2 � , A ← +log2 # , ² max depth of recursion and

number of outer loop iterations

5: Set X to be some su�ciently large constant. 4

6: g ← # −X/A, = ← #
2+< (3A+1) ² Probability of failure g and

sample budget = per iteration.

7: ̂̀← TournamentImprove(0, =, g). ² Rough estimate ̂̀
with $ (

√
�) error

8: If 5X (U, =) g
√
� then return ̂̀ ² where 5X (·) is de�ned

in Equation (1)

9: for 8 = 1, . . . , A do ² each iteration improves estimation

error

10: ̂̀′ ← RecursiveEstimate(I, =, ̂̀, g), ² Iterative

improvement (cf. Algorithm 4)

11: ̂̀← ̂̀′
12: end for

13: return ̂̀
14: end function

3As will be explained later on, the routine is designed to operate in any subspace V
provided in the input. For this reason, the formal statement in the full version [17]
uses a matrix P whose rows are the orthonormal vectors that span that subspace
(P¦P is the orthogonal projection matrix). What we present here corresponds to the
simpli�ed case P = I and 3 = � .

Lemma 2.1 (Iterative Refinement (Informal; see the full

version [17])). There exists an algorithm RecursiveEstimate that

takes as input ̂̀ ∈ R� satisfying ∥̂̀− `∥2 ≲
√
� , uses a dataset of

= = Θ
(
# /

(
log# log�

) )
independent samples from the model of

De�nition 1.1, and produces some ̂̀′ such that the following holds

with high probability (where 5 (U, =) is de�ned in Equation (1)):



̂̀′ − `



2
f 1

2
∥̂̀− `∥2 + polylog(#�)

(√
�

U#
+ 5 (U, =)

)
.

Suppose that we have a rough estimate ̂̀ satisfying ∥̂̀− `∥2 ≲√
� . It is easy to see that running RecursiveEstimate for at most

Θ(log(# )) many iterations5 will bring this error down to the one

presented in Theorem 1.2. This iterative reduction is accomplished

using the for loop in Algorithm 1.

We now summarize the idea behind Lemma 2.1. Let ̂̀ be the

rough estimate provided as input. The routine RecursiveEsti-

mate is a recursive function that performs divide-and-concur on

the dimension � . In particular, in each step, it receives a batch

of = = Θ (# /(log(# ) log(�))) many samples, and uses the sub-

routine FindSubSpace to partition the current subspace further

into a low-variance and a high-variance subspace6, each with di-

mension at most half of the original subspace. Then the algorithm

invokes PartialEstimate to compute an estimate within the low-

variance subspace that has improved error; while for the high-

variance subspace it makes a recursive call. The recursion continues

until we reach a subspace of dimension 3 ≲ polylog(#�). In that

case, we can simply use the 1-d estimator from [10] along each

axis in that low-dimensional subspace; the corresponding error

guarantee will be at most
√
3 = polylog(#�) factor larger than

that of the error 5 (U, # ) of the 1-d base estimator (see [17]).

Suppose that the dimension of the current subspace is 3 , i.e.,

assume that the samples are now vectors in R3 with mean ` ∈ R3 .
The analysis consists of the following inductive claim: as long as

the dimension is not too small, i.e., 3 k polylog(#�), a single step
of RecursiveEstimate produces a subspace V ¢ R3 of dimen-

sion dim(V) f 3/2 (this is the low-variance subspace identi�ed
by FindSubSpace) together with an estimate `low ∈ V such that

with high probability

∥`low −ΠV`∥2 f ∥̂̀− `∥2/(2 log2 �) + $̃
(√

dim(V)/(U# )
)
,

(2)

where ΠV is the orthonormal projector ontoV . If � denotes the

original dimension of the space for which RecursiveEstimate is

�rst called, after the end of all recursive calls, the algorithmwill have

partitioned the entire space R� into at most log2 � orthogonal low-

variance subspaces and will have produced an estimate for each of

these subspaces with error as in Equation (2). The �nal estimate ̂̀′
returned is a combination of the estimate for each subspace as well

4More formally, with = input samples, the 1-d estimator from [10] with probability

1 − =−X achieves error 5X (U,=) (cf. Equation (1)). For the purpose of our algorithm,
we require its success probability to be a su�ciently large polynomial in =. Hence, we
set X to be some su�ciently large constant.
5For the purpose of this introductory section, we will pretend as if the algorithm
can draw an independent dataset from De�nition 1.1 in each iteration. This type of
access can be simulated by randomly splitting a large dataset into smaller ones and is
presented formally in the full version [17].
6It will be explained later on in this introductory section in what sense we call the
subspace “low-variance”.
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as the base case estimator (which has error polylog(#�) 5 (U, # )).
By summing all the errors together, it can be seen that the error

of ̂̀′ is the one provided in Lemma 2.1. The rest of this section

provides a sketch of the correctness proof for Equation (2).

2.1 Warm-Start Estimate via Tournament

RecursiveEstimate from Lemma 2.1 requires some ̂̀ such that

∥̂̀− `∥2 ≲
√
� . If the 1-d estimator achieves accuracy n = $ (1),

we can simply use it along each axis to obtain such a ̂̀. In the more

challenging regime when n = l (1), we will exploit the fact that a
sample with covariance bounded by I is within distance of

√
� from

` in expectation. While accurately identifying such a sample is hard,

by taking roughly 1/U many samples `1, . . . , `1/U , one `8 of them
will satisfy ∥`8 − `∥2 ≲

√
� with high probability. We then design a

tournament procedure to choose a vector ˜̀from `1, . . . , `1/U which

is almost as good as that `8 .

Lemma 2.2 (Tournament (Informal; see [17])). There exists an

algorithm that takes as input a list ! = {`1, · · · , `: } ¢ R� , draws a
dataset of size= from themodel of De�nition 3.5 from [17], and outputs

an estimate ` 9 ∈ ! such that ∥` 9−`∥2 ≲ min8∈[: ] ∥`8−`∥2+5X (U, =)
with high probability.

The algorithm establishing the above lemma is inspired by ideas

developed in the context of list-decodable mean estimation [15]. In

particular, for every pair of candidate estimates ` 9 , `ℓ , the algorithm

compares ` 9 − ` and `ℓ − ` projected along the direction of ` 9 − `ℓ
to decide wether or not to remove 9 from the list. This kind of

comparisons, essentially reduce the problem into one-dimensional

tasks, where we can again just use the 1-d estimator to learn the

projection of ` along the direction of `ℓ − ` 9 . We remark that

while the goal of a tournament procedure is to prune the candidate

list down to a shorter list containing a good estimate in the list-

decodable setting, our tournament procedure needs to produce a

single estimate that has nearly optimal error. To achieve this, we

require a novel analysis leveraging the structure of our setting. The

formal statement and proof can be found in ??.

2.2 Rejection Sampling

Recall that our procedure RecursiveEstimate relies critically on

�nding a low-variance subspace. Unfortunately, a low-variance

subspace may not exist in general—as even a single noisy sample

can cause the variance to be arbitrarily large. Our key idea is to use

the warm-start estimate ˜̀obtained from the tournament procedure

as a rejection sampling center to �lter out unusually noisy samples:

If G8 ∼ N(`,Σ8 ) denote the original samples, for each 8 we sample

a decision variable 18 ∼ Ber
(
exp

(
−∥G8 − ˜̀∥22/3

) )
independently

to decide whether or not to accept the sample.

Distribution of Accepted Samples. To analyze the e�ect of rejec-

tion sampling, denote by A8 the distribution of the 8-th sample

conditioned on its acceptance, i.e., the distribution of G8 ∼ N(`,Σ8 )
conditioned on18 = 1. A convenient fact is thatA8 is simply another

Gaussian N(˜̀8 , Σ̃8 ), for some ˜̀8 , Σ̃8 de�ned as functions of `, ˜̀,Σ8
that are provided in [17]. Denote by (A = {8 ∈ [=] : 18 = 1} the set
of all accepted indices (which is a random set). By independence

between samples and the aforementioned fact, if we condition on

a set (A = ( , then the conditional joint distribution of {G8 }8∈( is

equal to the product distribution of the Gaussians N(˜̀8 , Σ̃8 ) for
8 ∈ ( (with ˜̀8 , Σ̃8 de�ned in equation (5) in the full version [17]). We

can thus adopt the following more convenient view of the random

process that generates the accepted samples.

De�nition 2.3 (Generation of accepted samples—alternative view).

(1) (A is generated by independently including 8 ∈ [=] with
probability EG8∼N(`,Σ8 ) [4

−∥G8−˜̀∥22/3 ].
(2) For each 8 ∈ (A , G8 is drawn independently from A8 :=

N(˜̀8 , Σ̃8 ).

Thus, if we condition on a particular (A of accepted indices, we

could view the accepted vectors simply as independent samples

from the distributions {A8 = N(˜̀8 , Σ̃8 )}. This property makes it

manageable to analyze the statistical properties of subroutines that

work on the accepted samples.

Rejection of Noisy Samples. Let G1, . . . , G: ∈ R3 be the accepted

samples (by renaming (A to [:]). On the one hand, by de�nition of

our acceptance rule, we will rarely see samples that are at a distance

more than
√
3 from the rejection center ˜̀(where 3 is the dimension

of the subspace we are currently working in). This ensures that

the averaged covariance matrix of the accepted samples, 1
:

∑:
8=1 Σ̃8 ,

must have its trace appropriately bounded. In particular, we show in

the full version [17] that with high probability over the randomness

of the accepted indices (A , the distributions A8 for 8 ∈ (A satisfy

that EI∼A8

[
∥I8 − ˜̀∥22

]
≲ 3 log(=3) . Via a linear algebraic argu-

ment, this immediately implies that tr
(
1
:

∑:
8=1 Σ̃8

)
≲ 3 log(=3). By

a simple averaging argument, we therefore know that there must

exist a subspace of dimension at least 3/2 such that the eigenval-

ues of 1
:

∑:
8=1 Σ̃8 within the subspace is at most $ (log(=3)). This

therefore guarantees the existence of a low-variance subspace of

the average population covariance matrix. Finally, note that Σ̃8 are

unknown population covariances; thus, even though we showed

that a low-variance subspace exists, we yet have to provide a way

to compute such a subspace from samples. This will be done in

Section 2.3.

Survival of Samples with Bounded Covariance. On the other hand,

by standard Gaussian norm concentration, a sample G8 ∈ R3 with

covariance bounded by I is rarely at a distance more than
√
3 from

the mean `. Provided that ∥˜̀− `∥ ≲
√
3 , we thus have that such

samples will pass the rejection sampling procedure with at least

constant probability. A slight issue is that as we go deeper into the

recursion tree of the algorithm, each call of the recursive routine

projects everything onto a subspace with half the dimension 3 of

the parent call. Thus, the requirement ∥˜̀− `∥ ≲
√
3 , although true

in the beginning when 3 = � , may no longer hold in later steps of

the recursion. Fortunately, at each call of the routine, we can take

more fresh samples, project them onto the current subspaceV , and

invoke the tournament procedure from Lemma 2.2 to produce some

new estimate ˜̀ ∈ R3 that is guaranteed to be within distance
√
3

from the projected mean (cf. Algorithm 4 in Algorithm 4).

Bias of Rejection Sampling. A more signi�cant issue concerns

the bias in the mean of the accepted samples. Let us examine the
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averaged mean over the accepted samples. A straightforward com-

putation (see [17]) shows that this expectation is:

1

:

:∑

8=1

˜̀8 − ` =

2

3
Σ̃avg (˜̀− `) , (3)

where we de�ne Σ̃avg := 1
:

∑:
8=1 Σ̃8 for convenience. The ques-

tion then is what is the best upper bound that we can use for the

operator norm of Σ̃avg. A basic fact is that, conditioned on the ac-

cepted indices, each accepted sample G8 follows the GaussianA8 :=

N(˜̀8 , Σ̃8 ) with ˜̀8 = Σ̃8
(
2˜̀/3 + Σ−18 `

)
and Σ̃8 =

(
Σ
−1
8 + (2/3)I

)−1

(cf. [17]). This immediately implies that ∥Σ̃8 ∥2 f 3/2. However,
if the operator norm of the averaged covariance Σ̃avg could be as

large as 3/2, then the bias of the accepted samples would not be

any better than the error of ˜̀ that we started with! Fortunately,

as discussed earlier, the fact that Σ̃avg has bounded trace implies

that there must exist a subspaceV of dimension at least 3/2 such
that the eigenvalues of Σ̃avg constrained toV are at most log(=3).
Hence, the empirical mean over the accepted samples would con-

stitute a good estimator within this low-variance subspaceV—if

we could successfully identify it. After that, we can recurse on the

orthogonal complement ofV , and that would complete the analysis

of RecursiveEstimate. The remaining task is therefore to design

a procedure that can identify this subspace.

2.3 Searching for a Low-Variance Subspace

We devise a procedure FindSubSpace (cf. Algorithm 2) for identify-

ing a low-variance subspace with respect to the accepted samples.

Algorithm 2 Function to �nd a subspace in which the accepted

samples have low variance

1: function FindSubSpace(˜̀, G1, · · · , G: )
2: Input: Rough mean estimate ˜̀ ∈ R3 , and samples

G1, · · · , G: ∈ R3 .
3: Output: Matrices Plow, Phigh ∈ R3/2×3 whose rows form

an orthonormal basis of R3 .
4: Let M̃(emp) =

1
:

∑
8∈[: ] (G8 − ˜̀) (G8 − ˜̀)¦.

5: Let E1, E2, · · · , E3 be the 3 eigenvectors of M̃(emp) in de-

scending order of their eigenvalues.

6: Let Phigh = [E1, . . . , E +3/2, ]¦ and Plow =

[E +3/2,+1, . . . , E3 ]¦.
7: return Plow, Phigh, `low
8: end function

Lemma 2.4 (Low-Variance Subspace Identification (Infor-

mal; see full version [17])). Let G8 ∼ N(˜̀8 , Σ̃8 ) ∈ R3 for 8 ∈ [:]
be the set of accepted samples. Assume that : k 3 polylog(=3). The
procedure FindSubSpace takes the samples as input, and produces

a subspace V such that the following holds with high probability:

E¦ 1
:

∑
8∈[: ] Σ̃8E ≲ log(=3) for all unit vectors E ∈ V .

To search for the low-variance subspace, we take the following

natural approach. Given accepted samples G1, · · · , G: ∈ R3 that

pass through the rejection sampling centered at ˜̀, we compute the

second moment matrix M̃(emp) :=
1
:

∑:
8=1 (G8 − ˜̀) (G8 − ˜̀)¦, and

take the subspace spanned by the bottom 3/2 eigenvectors. The
challenging part is to show that the averaged covariance matrix

Σ̃avg will indeed have small eigenvalues within this subspace with

high probability. The proof strategy comprises of showing that the

following two claims hold with high probability:

(1) There is a subspaceV in which the empirical secondmoment

M̃(emp) of accepted samples has small operator norm.

(2) The averaged covariance matrix Σ̃avg can be bounded from

above (in Lowner order) by the sample second moment ma-

trix M̃(emp) (up to a constant factor).

It is not hard to see that combining the two statements above yields

that, with high probability, Σ̃avg will have bounded eigenvalues

within the subspace V . The formal statement of Item 1 is given

in [17]. Its proof follows mostly from the properties of rejection

sampling and the details can be found in the full version of the

paper [17]. The formal statement of Item 2 also is given in [17]. The

proof idea is to use the “truncation” technique. In particular, de�ne

X8 = (G8 − ˜̀) (G8 − ˜̀)¦. We will decompose X8 into

Y8 = 1{∥G8 − ˜̀∥2 f Θ̃(
√
3)}X8 and Z8 = 1{∥G8 − ˜̀∥2 > Θ̃(

√
3)}.

By the property of the rejection sampling procedure, the Z8 are

almost always 0. On the other hand, the Y8 now have bounded oper-

ator norm almost surely. We could then apply the Matrix Bernstein

Inequality to argue about the spectral concentration of
∑
8∈[: ] Y8 .

The details are provided in [17].

2.4 Improvement within the Low-Variance

Subspace

Building on top of FindSubSpace, we give another procedure

PartialEstimate (cf. Algorithm 4) that simultaneously identi�es a

low variance subspaceV ¢ R3 and an estimate `low such that they

satisfy Equation (2) with high probability. See [17] for the formal

statement. Notably, the routine uses the same batch of accepted

samples to search for the low-variance subspace, and to compute

the empirical mean estimator `low. To avoid adaptive conditioning

(i.e., conditioning on concentration of the sample mean within the

subspace V de�ned by the samples), we instead show that with

high probability the deviation of the sample mean from the popula-

tion mean along every direction is bounded from above by some

quantity proportional to the population variance along that direc-

tion. That is, conditioned on that {1, . . . , :} are the indices of the
accepted samples, then with probability at least 1− g , the following
holds for all E ∈ R3

E¦
(
1

:

:∑

8=1

G8 −
1

:

:∑

8=1

˜̀8
)
≲

√
1

3

√√√
1

:

:∑

8=1

E¦Σ̃8E . (4)

This is because, conditioned on the acceptance set being {1, . . . , :},
the accepted samples are just independent Gaussians conditioned

on a speci�c set ( of accepted indices; thus, standard Gaussian

concentration can be applied. The detailed proof is given in [17].
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Algorithm 3 Function to estimate the mean within the Low-

Variance Subspace

1: function PartialEstimate(˜̀, G1, · · · , G=)
2: Input: Rough mean estimate ˜̀ ∈ R3 , and samples

G1, · · · , G= ∈ R3 .
3: Output: Matrix Phigh ∈ R3/2×3 and an estimate `low ∈ R3 .

4: For each 8 ∈ [=] draw 18 ∼ Ber(4−∥G8−˜̀∥22/3 ). ² Rejection

sampling

5: Plow, Phigh ← FindSubSpace(˜̀, {G8 : 18 = 1}). ² Split

space (cf. Section 2.3)

6: `low ← 1∑
8∈ [=] 18

∑
8∈[=] 18P

¦
low

PlowG8 ² Empirical mean

of surviving samples after projection

7: return Phigh, `low
8: end function

Algorithm 4 Recursive Function for Mean Estimation

1: function RecursiveEstimate(P, =, ̂̀, g)
2: Input: Row orthonormal matrix P ∈ R3×� , sample budget

= ∈ N, failure probability g ∈ (0, 1), mean estimate ̂̀ ∈ R3
from last iteration, and noise-to-signal ratio U ∈ (0, 1).

3: Output: Better mean estimate ̂̀′ ∈ R3 .
4: Let �, X be su�ciently large absolute constants.

5: Draw an independent batch of = samples ~1, · · · , ~= ∈ R�
from the model of De�nition 1.1 (see Footnote 5).

6: Form a projected set of samples: ( ← {G8 = P~8 ∀8 ∈ [=]} ¢
R
3 .

7: ˜̀← TournamentImprove(̂̀, =, g) of [17]. ² Ensures

∥˜̀−P`∥2≲
√
3+5X (U, =).

8: if 3 f � log(=3/g) (log�)2 then
9: Let ̂̀′ ∈ R3 be the output of the estimator from [17]

computed on the dataset ( .

10: return ̂̀′ ² End the recursion

11: else if
√
3 f 5X (U, =) then² Recall that 5X (·) is de�ned in

Equation (1)

12: return ̂̀′ = ˜̀. ² We already have

∥˜̀− P`∥2 ≲ 5X (U, =) in this case

13: else

14: Phigh, `low ← PartialEstimate(˜̀, G1, · · · , G=) ² (cf.

Algorithm 3) Returns an orthonormal matrix Phigh ∈
R
3/2×3 corresponding to the high-variance subspace

and some mean estimate `low ∈ R3 in the low-variance

subspace.

15: `high ←RecursiveEstimate(PhighP, =, Phigĥ̀, g) ²

Recurse on high-variance subspace

16: ̂̀′ ← `low + P¦high`high ² Combination of the two

estimates in R3

17: return ̂̀′
18: end if

19: end function

Putting everything together to show (2). We are now ready to put

everything together to prove (2). Recall that the procedure Recur-

siveEstimate works in a 3-dimensional subspace of R� de�ned by

some orthonormalmatrix P ∈ R3×� given as its input. After project-

ing the sample points into the subspace with P, it runs the tourna-

ment procedure from Lemma 2.2 to obtain a rough estimate ˜̀ ∈ R3
within the subspace. It then performs rejection sampling as outlined

in Section 2.2 centered at ˜̀. Let G1, · · · , G: be the set of accepted

samples. By Equation (3), the bias of the samples will be of the form

(2/3) Σ̃avg (˜̀− `). With high probability, the routine FindSub-

Space yields a subspaceV such that E) Σ̃avgE = $ (1) (up to poly-

logarithmic factors) for all E ∈ V . Via a linear algebraic argument

(cf. ??), one can show that



ΠV

(
1
:

∑:
8=1 E[G8 ] − `

)



2
j ∥˜̀− `∥2.

On the other hand, as shown in Equation (4), the deviation of the

empirical mean 1
:

∑:
8=1 G8 from its expected value will be at most√

3/: (up to polylogarithmic factors). Combining the above two

observations with the triangle inequality then concludes the proof

of Equation (2).

The detailed pseudocode of RecursiveEstimate is given in Al-

gorithm 4. For the formal statement and proof, we refer the reader

to [17].
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