


size?

2) Is there a time- and energy-optimal trade-off between

reconstruction accuracy and data reduction?

3) Is the energy expended during compression beneficial

compared to the energy saved during I/O to persistent

storage?

4) In a multi-node setting of writing large files to a parallel

file system (PFS), does lossy compression save energy

compared to transferring the original data set?

In addition to answering these questions, we make the

following contributions:

1) We provide the first comprehensive energy characteriza-

tion of a suite of EBLCs across multiple data sets and

operation modes.

2) We demonstrate that EBLC for scientific floating point

data effectively reduces I/O energy overheads, saving

up to two orders of magnitude of energy compared to

uncompressed I/O.

3) We show that in distributed HPC settings with state-of-

the-art EBLC, compression saves nearly 25% of energy

compared to uncompressed I/O.

4) We extrapolate our findings to show that, on average,

an HPC system could save up to an order of magnitude

of energy on data writing and reduce storage device

counts by nearly two orders of magnitude with the use

of EBLC.

The paper is organized as follows. In Section II we present

relevant literature on HPC data I/O tools, EBLCs, and energy-

aware I/O. In Section III we formalize the trade-off between

the energy consumption of compression and I/O. Next, in Sec-

tion IV we describe the experimental platform and design of

our tests to answer our research questions. Then, in Section V

we present our energy characterization of several state-of-the-

art EBLCs. Building on this, in Section VI we show the trade-

offs between compression and I/O for HPC systems. Finally,

Section VII contextualizes our results through a discussion of

how these findings can be used by computational scientists

and system operators.

II. BACKGROUND AND RELATED WORKS

In this section, we discuss relevant background and related

works for energy usage of EBLC in three aspects: scientific

data I/O, error-bounded lossy compression, and energy-aware

data I/O.

A. Scientific Data I/O

Scientific HPC applications generate and process massive

amounts of data, necessitating efficient I/O systems. A first

solution is addressing storage which requires the ability to

read and write efficiently. Parallel file systems (PFS) such

as Lustre [24] and BeeGFS [25], provide high-throughput

access to shared storage across compute nodes, employing

techniques like data striping and distributed metadata man-

agement. To communicate with these file systems, HDF5 [26]

and NetCDF [27] offer self-describing file formats and parallel

I/O support, abstracting the complexities of data management.

ADIOS [28] provides a flexible framework allowing applica-

tions to switch between different I/O methods without code

changes. MPI-IO [29], part of the MPI-2 standard, offers

fine-grained control over parallel I/O operations, serving as

a foundation for higher-level libraries.

Other solutions include in-situ processing frameworks such

as SENSEI [30] that enable concurrent data processing and

analysis with simulation, reducing large-scale data move-

ment and storage requirements. Systems like Ceph [31] and

DAOS [32] explore object-based approaches to scientific data

storage, offering potential advantages in scalability and data

management. Techniques implemented in IOFSL [33] aim to

reduce contention on parallel file systems by aggregating and

optimizing I/O requests from compute nodes.

Despite these advancements, scientific data I/O remains a

significant challenge in HPC, often becoming a bottleneck

in large-scale simulations [23]. The increasing data volumes

generated by modern scientific applications, coupled with the

relatively slower pace of I/O performance improvements com-

pared to compute capabilities, leads to alternative solutions

like data reduction.

B. Error-Bounded Lossy Compression (EBLC)

EBLC has become essential for managing the growing vol-

ume of scientific data in HPC environments [34], [35]. Loss-

less compression techniques [17], [18], [36] are efficient and

maintain the data perfectly, yet suffer from low compression

ratios. In contrast, EBLCs aim to significantly reduce data size

while maintaining fidelity within user-specified error bounds.

Recent years have seen the development and refinement of

several compressors. Here we highlight the specific general

EBLCs we employ in our study.

• SZ2 [8] employs a prediction-based compression model,

processing data in small multi-dimensional blocks. It

uses a hybrid prediction method combining Lorenzo [37]

predictor and linear regression, followed by quantization

of prediction errors. The quantized data is then com-

pressed using Huffman encoding and Zstd [17], achieving

effective data reduction.

• SZ3 [9], [10] builds upon SZ2’s foundation, introducing

multi-dimensional dynamic spline interpolation for pre-

diction. This approach eliminates the need to store linear

regression coefficients, leading to improved compression

ratios, particularly at higher error bounds. The prediction

step is followed by quantization, Huffman encoding, and

Zstd compression.

• ZFP [5] utilizes a transform-based compression model.

It applies a custom orthogonal transform to fixed-size

blocks of data, then encodes the transformed coefficients

using specialized bitplane encoders. This method allows

ZFP to achieve high compression ratios and speeds, lever-

aging its optimized transform and encoding techniques.

• QoZ [16] introduces a quality-oriented compression

framework. It features a novel multi-level interpolation-

based predictor with adaptive parameter tuning. QoZ



can optimize compression based on user-specified qual-

ity metrics such as peak-signal-to-noise-ratio (PSNR) or

autocorrelation of errors, while still maintaining EBLC.

• SZx [7] is an ultra-fast EBLC designed for both CPU and

GPU. It uses a block-based approach with lightweight

operations, achieving very high compression and de-

compression speeds at the cost of lower compression

ratios. SZx is particularly suitable for scenarios where

processing speed is critical.

These compressors have demonstrated significant improve-

ments, often achieving compression ratios of 10 − 100× for

scientific data sets [5], [10]. Current research focuses on

adaptive error control, GPU acceleration (e.g., cuSZ [38],

MGARD-X [15]), integration with scientific workflows, and

error impact analysis [39].

Despite these advancements, challenges persist in compress-

ing high-dimensional data sets, handling mixed data types, and

optimizing for emerging hardware architectures. The ongoing

research into trade-offs between compression ratio, speed, and

data quality continues to drive the development of more so-

phisticated and adaptable compression techniques for scientific

data [16]. In general, maintaining data quality is at odds with

compression ratio and runtime, and by extension energy, as we

will discuss in our study. Typical and acceptable error-bounds

vary greatly between applications and use-cases. In general,

most users want to maximize the fidelity of the data and the

compression ratio achieved, yet the amount of error that one

can tolerate is a user-and application-based decision [16], [40],

[41].

C. Energy Consumption of Data Reduction and I/O

Little work has been done directly to analyze the energy

consumption and benefits of data reduction strategies and

I/O in HPC systems. However, there is a significant body

of work in the derivation of energy models of I/O in cloud

and HPC systems [42]±[48]. Our work differs from these by

instead explaining the energy benefits EBLCs can bring to

I/O. Chasapis et al. [49] directly approach a similar problem

by looking at how lossless compression on a storage server

would reduce long-term energy consumption. Similarly, Barr

et al. [50] investigate the impacts compression has on energy

consumption of a device before sending data over a network;

however, this is with very small packets for mobile computing.

Wilkins et al. [21] focus on modeling the energy consumption

of EBLCs from the standpoint of DVFS, but their study fails

to address the larger question of how lossy compression can

be used to reduce I/O energy consumption. Wang et al. created

zPerf [51], which allows for performance estimation for SZ2

and ZFP; however, it does not include energy consumption in

its analysis.

Our work differs from these studies by considering several

state-of-the-art EBLCs and their energy consumption on mul-

tiple systems. We then used this information to expand the

current understanding of the energy costs associated with I/O

and the benefits of using EBLCs. In this study, we quantify

the energy and runtime benefits of using lossy compression

for data storage and writing and provide actionable takeaways

for computational scientists and practitioners that, to the best

of our knowledge, do not currently exist.

III. PROBLEM FORMULATION

The writing and storage of floating-point data in scientific

computing is a critical operation with significant time and

energy costs [52]±[54]. EBLC offers the potential to reduce

data size and improve I/O runtime and energy efficiency. How-

ever, the computational overhead introduced by compression

and decompression processes must be carefully evaluated.

This section formalizes the conditions under which lossy

compression is useful in terms of time, energy, and data

fidelity.

We begin by defining a set of lossy compression algorithms

C = {C1, C2, . . . , Cm}, where each Cj : R
d1×d2×...×dk ×

[0, 1] → R
d′

1
×d′

2
×...×d′

k takes a parameter ϵ ∈ [0, 1] repre-

senting a value range-based relative error bound1. Here, k

is the number of dimensions, di represents the size of the

i-th dimension of the input data set, and d′i represents the

size of the i-th dimension of the compressed data set. The

corresponding decompression algorithm is denoted as C−1

j .

Let D = {D1, D2, . . . , Dn} be a set of scientific floating-

point data sets. Each data set Di is a multi-dimensional array

represented as Di ∈ R
d1×d2×...×dk .

We denote a data set compressed with compressor Cj and

error bound ϵ as D′

i,j,ϵ = Cj(Di, ϵ), and its decompressed

version as D̂i,j,ϵ = C−1

j (D′

i,j,ϵ). For each compression algo-

rithm Cj , the error bound ϵ ∈ [0, 1] constrains the maximum

allowed deviation of each element in the reconstructed data

set D̂i,j,ϵ from the corresponding element in the original data

set Di, relative to the magnitude of the original element.

Mathematically, for each element k in the data set, we ensure

that:
|Di[k]− D̂i,j,ϵ[k]|

|Di[k]|
≤ ϵ. (1)

For each compression algorithm Cj , we define key perfor-

mance metrics. The compression time Tc(Cj , Di, ϵ) represents

the time taken to compress the raw data set Di using algo-

rithm Cj with error bound ϵ. Similarly, the decompression

time Td(Cj , Di, ϵ) is the time required to decompress the

compressed data set. The energy consumption for compres-

sion and decompression are denoted by Ec(Cj , Di, ϵ) and

Ed(Cj , Di, ϵ), respectively.

To assess the quality of the reconstructed data, we use the

Peak Signal-to-Noise Ratio (PSNR) between the original data

set Di and the decompressed data set D̂i,j,ϵ, calculated as:

PSNR(Di, D̂i,j,ϵ) = 20 · log
10





max(Di)
√

MSE(Di, D̂i,j,ϵ)



 (2)

where max(Di) is the maximum value in Di, and MSE is the

Mean Squared Error between Di and D̂i,j,ϵ.

1The value range-based relative error bound is widely adopted in the EBLC
community [9], [16], [55], [56].









to note that this energy efficiency may come at the expense of

lower compression ratios, a trade-off explored in Section VI.

TABLE III: Select EBLC Statistics for Various Data Sets and

Error Bounds

SZ3 ZFP SZx

Data Set REL CR PSNR CR PSNR CR PSNR

NYX
1e-01 102105.50 53.28 120.71 68.04 16.00 45.91
1e-03 545.13 72.81 25.28 92.68 15.82 80.82
1e-05 13.72 105.11 4.31 130.68 3.20 111.55

HACC
1e-01 216.99 31.62 7.99 40.95 3.44 53.35
1e-03 6.35 65.70 3.00 81.02 2.08 89.15
1e-05 2.74 105.67 1.92 117.15 1.44 131.35

S3D
1e-01 4055.78 35.29 200.04 72.02 31.21 26.77
1e-03 308.79 70.08 36.15 106.20 27.28 70.29
1e-05 51.11 108.03 14.12 139.07 6.28 106.75

CR: Compression Ratio, PSNR: Peak Signal-to-Noise Ratio (dB)
REL: relative error bound

B. Multi-Threaded Lossy Compression

Figure 10 illustrates the energy consumption patterns of

various EBLCs operating in OpenMP parallel mode across

different data sets and CPU architectures. This experiment

demonstrates the strong scaling capabilities of the EBLCs, as

the problem size stays fixed while we increase the number

of threads. We notice that as thread count increases, there

is a trend of decreasing energy consumption, though this

improvement tends to plateau at higher thread counts.

Parallelization efficiency varies considerably among com-

pressors, as illustrated in Figure 10. When scaling from 1 to

64 threads on the S3D data set using the Sapphire Rapids

CPU, energy reduction factors range from no benefit for ZFP

to nearly 6× for SZx. This disparity in scaling efficiency

suggests that SZx and SZ3 are likely to provide superior

energy efficiency in highly parallel environments. The benefits

of parallelization also differ across data sets, as they are

less pronounced for the CESM data set, likely due to its

smaller size. The S3D data set, being the largest, shows the

most substantial energy reductions with increased parallelism,

especially on newer CPU architectures like the Intel Xeon CPU

Max 9480. It is worth noting that some compressors, such as

SZ2 and ZFP, do not scale based on thread counts, suggesting

that their parallel implementations may not be properly using

the available resources. Additionally, the energy consumption

gap between compressors tends to narrow at higher thread

counts, particularly for larger data sets.

C. Energy Efficiency Trade-offs and Scaling Behavior

Our energy consumption results for serial and multi-

threaded lossy compression reveal complex trade-offs and

scaling behaviors across different compressors, data sets,

and CPU architectures. First, the relationship between error

bounds/compression ratio and energy consumption exhibits a

clear inverse correlation, as evidenced in Figures 7 and 8.

Comparing ϵ = 1e−1 and ϵ = 1e−5, energy consumption

increases by factors ranging from 2.1× for SZx to 7.2×
for SZ3. This is likely due to SZ3 being able to compress

more accurately but at the expense of a much longer time, as

evidenced by the PSNR values shown in Table III.

Data set characteristics play a crucial role in energy con-

sumption patterns. Comparing the largest (S3D) and smallest

(CESM) data sets at ϵ = 1e−3 reveals energy consumption

ratios ranging from 8.3× for SZx to 14.2× for SZ2. This

non-linear scaling with data set size indicates that SZx may

be particularly well-suited for smaller data sets in energy-

constrained environments, as it has less overhead and can

guarantee an acceptable compression ratio.

The trade-off between energy efficiency and compression

performance is particularly noteworthy. Figure 8 provides a

compelling visualization of this relationship, plotting compres-

sion ratio against total energy consumption. This graph reveals

that while SZx consistently achieves the lowest energy con-

sumption, it also tends to produce lower compression ratios.

Conversely, SZ3 and QoZ often achieve higher compression

ratios but at the cost of increased energy consumption. This

trade-off will have further implications on data writing energy

costs in Section VI.

Figure 9 further emphasizes the trade-off between size

reduction, accuracy, and energy by showing a roughly opposite

trend to that of Figure 8. Here we see that achieving a higher

PSNR, as calculated in Equation 2, requires more energy. This

is not surprising, considering that PSNR quantifies the quality

of data reconstruction. Hence, higher fidelity compression

and decompression require greater amounts of energy. The

notable exception is QoZ, which has the express design goal

of maintaining quality regardless of error bound, meaning it

does not follow the trends of the other EBLCs.

For applications prioritizing energy efficiency, especially

those dealing with smaller data sets or not needing a high

PSNR, SZx and ZFP emerge as strong candidates. However, in

scenarios where storage reduction is critical or where data files

are going to be accessed several times, the higher energy cost

of SZ3 or QoZ may be justified by their superior compression

ratios. Furthermore, the substantial energy savings offered by

newer CPU architectures suggest that hardware upgrades can

play a significant role in improving overall system efficiency

for compression-heavy workloads. In multi-threaded environ-

ments, the superior scaling of SZx and SZ3 indicates that these

compressors should be used on systems with high core counts.

VI. ENERGY TRADE-OFFS FOR DATA I/O

In this section, we analyze the energy trade-offs involved

in data I/O operations when using lossy compression. We

examine how different compressors, error bounds, and I/O

libraries affect energy consumption during data writing, and

explore the potential benefits of using compressed I/O in HPC

environments. We note that in general when energy is lower,

runtime is also lower.

A. Single Node Data Writing

Figure 11 presents the results of the experiments detailed

in Section IV-D, revealing several trends in lossy compressed
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