
Fast and Effective Lossy Compression on GPUs

and CPUs with Guaranteed Error Bounds

Alex Fallin∗, Noushin Azami∗, Sheng Di†‡, Franck Cappello†‡, Martin Burtscher∗

∗Texas State University, USA
†Argonne National Laboratory, USA

‡University of Chicago, USA

Emails: {waf13,noushin.azami,burtscher}@txstate.edu, {sdi1,cappello}@anl.gov

AbstractÐHigh-throughput data compression is increasingly
important for large scientific projects. This paper presents PFPL,
a lossy floating-point data compressor with guaranteed error
bounds that is fully compatible between CPUs and GPUs.
Despite this compatibility, PFPL delivers some of the highest
compression and decompression speeds and compression ratios
on both single- and double-precision data. For example, using
an absolute error bound of 1E-3, it yields a single-precision
compression throughput on the SDRBench inputs of 5 GB/s on
a Ryzen 2950X CPU and 423 GB/s on an RTX 4090 GPU. This
is at least 4.6 times higher than the throughput of seven leading
compressors on both devices. Moreover, PFPL’s compression ratio
is higher than that of all tested GPU codes.

Index TermsÐlossy data compression, guaranteed error
bounds, CPU/GPU compatibility

I. INTRODUCTION

Many scientific instruments and simulations generate more

data than can reasonably be handled, both in terms of through-

put and in terms of total size [20]. There are two types of

data compression, lossy and lossless, to alleviate this problem.

Lossless compressors exactly reproduce the original data bit-

for-bit. However, they are often not able to deliver the desired

compression ratios. For example, ZFP [11] can losslessly

compress the NYX file baryon density [30] by only a factor

of 1.34. In contrast, lossy compression can yield much higher

compression ratios, depending on the selected error bound.

Using the same NYX input with an absolute error bound of

0.01, ZFP obtains a compression ratio of 4.92. This increase

in compression ratio comes at a price. As the name suggests,

lossy compressors ªloseº some information and are unable to

perfectly reconstruct the data.

There are three critical issues in state-of-the-art error-

bounded lossy compressors: (1) unguaranteed error bounds,

(2) no support across heterogeneous devices, and (3) low

compression ratio or throughput. Our PFPL compressor in-

corporates novel solutions to address these issues.

(1) Unguaranteed error bounds. The three most widely used

error-bound types are point-wise absolute error (ABS), point-

wise relative error (REL), and point-wise normalized absolute

error (NOA). ABS with a bound of ε means each individual

decompressed floating-point value will not vary by more than

a difference of ε from its original value. REL bounds the error

relative to the original value such that each reconstructed value

will not vary by more than a factor of 1 + ε. NOA ensures

that an individual value will not differ by more than ε times

the value range of the input (i.e., the maximum minus the

minimum value). Which error-bound type is most appropriate

depends on the data and for what it will be used. Guaranteeing

the specified error bound is important to domain scientists who

already distrust lossy compression [4].

Guaranteeing the error bound for any of the 3 types is quite

difficult. In fact, our experiments show that most existing error-

bounded compressors, including MGARD-X [6], SPERR [21],

SZ2 [23], and ZFP, violate the bound in some cases, mainly

due to the finite precision of floating-point operations. For

example, the quantization used in SZ2 performs a floating-

point division by the error bound during compression and a

corresponding multiplication by the same error bound dur-

ing decompression. Due to rounding, this does not always

yield the expected value, sometimes leading to error-bound

violations. Other compressors have even more serious issues.

For instance, cuSZp [15] performs a pre-quantization of the

floating-point data that may cause integer overflow.

(2) No support across heterogeneous devices. In today’s

heterogeneous HPC environments, scientific data is often

generated and compressed on one device but decompressed

on a different device. On the one hand, GPU-based com-

pression may be critical for applications that produce data

at a very high throughput, whereas CPU-based compression

may be sufficient in other environments. On the other hand,

the resulting data may be decompressed and analyzed by

various users who may or may not have a GPU. Hence, cross-

device compression and decompression is important but rarely

supported by today’s state-of-the-art lossy compressors.

(3) Low compression ratio or throughput. Existing error-

bounded lossy compressors typically either deliver high com-

pression ratios with limited throughput or high throughputs

with limited compression ratios. For example, the CPU-based

SZ3 [24, 26, 36] relies on Huffman coding and ZSTD to

greatly reduce the data size, but these coders suffer from

low throughput. In contrast, the GPU-based cuSZp yields high

throughputs at the cost of low compression ratios. Improving

compression and decompression throughput while delivering a

high compression ratio is challenging because transformations

that compress well tend to be slow and not GPU friendly, and

transformations that are fast tend to not compress well.

The current state of the art is disconcerting. Of the 7 leading

lossy compressors from the literature that we evaluate in this

paper, only one (SZ2) supports all three major error-bound

types but does not guarantee the error bound. Only one (SZ3)

guarantees the error bound but does not support the REL

error-bound type. Only one (MGARD-X) provides CPU/GPU

compatibility but does not guarantee the error bound nor does

it support REL, and only one (SZ3 OpenMP) combines a

high compression ratio and a reasonably high throughput but

does not support GPUs. Table III provides more detail on the

features that each compressor supports.

To remedy these shortcomings, we developed the error-

bounded PFPL (Portable Floating-Point Lossy) compression

algorithm that yields high compression ratios for all three main

error-bound types while also being efficiently implementable

on both CPUs and GPUs and guaranteeing the error bound

in all cases. On the SDRBench inputs [30], it delivers higher

compression ratios than the other tested compressors that reach

the same throughput, and it delivers higher throughputs than

all other tested compressors that reach the same compression

ratio. PFPL handles all single- and double-precision values,

including infinities, NaNs (not a number), and denormals.

This paper makes the following main contributions.

• It presents PFPL, a new lossy compression algorithm, and

its CPU and GPU implementations that guarantee bit-for-

bit identical deterministic compressed and decompressed

output on both types of devices.

• It describes how PFPL guarantees the error bound for all

three major point-wise error-bound types by losslessly

encoding the single- and double-precision values that

would otherwise violate the bound.

• It explains how PFPL, whose compression pipeline com-

prises a novel combination of parallelism-friendly trans-

formations, is optimized to yield the highest compression

ratios on the tested GPUs and the highest throughputs on

the tested CPUs.

Our PFPL C++/OpenMP and CUDA implementations are

freely available through GitHub [12].

The rest of this paper is organized as follows. Section II

provides background. Section III explains the PFPL algorithm.

Section IV describes the evaluation methodology. Section V

presents and discusses the results. Section VI summarizes

related work. Section VII concludes the paper with a summary.

II. BACKGROUND

This section describes the three point-wise error-control

metrics, point-wise absolute (ABS), point-wise relative (REL),

and point-wise normalized absolute (NOA), that are most

commonly used in the literature [15, 22, 25, 27, 34, 37].

A. Point-Wise Absolute Error (ABS)

The point-wise absolute error of a data value is the dif-

ference between the original value of the data point and its

reconstructed value [32]. The absolute error of a data value x
is defined as eabs = |xoriginal − xreconstructed|. Therefore,

to guarantee an absolute error bound of ε, each value in

the reconstructed file must satisfy eabs ≤ ε. In other words,

each reconstructed value must be in the following range:

xoriginal − ε ≤ xreconstructed ≤ xoriginal + ε.

ABS error bounds are useful when the data is quite ho-

mogeneous in terms of magnitude or when the user does not

have a particular interest in areas where values may be small

relative to the error bound, that is, when the user cares mainly

about the ªbig pictureº.

B. Point-Wise Relative Error (REL)

The point-wise relative error of a data value is the ratio

between the difference of the original and its reconstructed

value and the original value [22]. The relative error of a

value x is expressed as erel = |
xoriginal−xreconstructed

xoriginal
| =

|1 − xreconstructed

xoriginal
|. To guarantee a relative error bound of ε,

each value in the reconstructed file must satisfy erel ≤ ε.

In other words, each reconstructed value must have the same

sign as the original value and be in the following range:

|xoriginal|/(1 + ε) ≤ |xreconstructed| ≤ |xoriginal| × (1 + ε).
The point-wise relative error is often referred to as PW REL

or PWR in the literature [1, 22]. We omit the ªPWº as it is

not used for any of the other point-wise error-bound names.

REL error bounds are employed when the user wants to

preserve a high level of detail in areas where the values are

close to zero but does not mind a higher absolute error in areas

where the absolute values are larger.

C. Point-Wise Normalized Absolute Error (NOA)

The point-wise normalized absolute error is the ABS error

normalized by the value range R = xmax − xmin, that is, the

range between the largest and the smallest value in the input.

The normalized absolute error of a data value x is defined as

enoa = | eabs

R
|. To guarantee an error bound of ε, each value

in the reconstructed file must satisfy enoa ≤ ε. Hence, each

reconstructed value must be in the range: xoriginal − εR ≤
xreconstructed ≤ xoriginal + εR. Unfortunately, the literature

often refers to NOA as ªrelative errorº or ªRELº [1, 5, 16].

We find this nomenclature misleading because, aside from

multiplying the error bound by a constant, the quantization

is identical to that of ABS (and not REL). Hence, we call it

the normalized absolute error bound.

NOA error bounds are convenient when the user has mul-

tiple datasets at different scales but only wants to specify one

absolute error bound for all of them.

III. PFPL ALGORITHM AND IMPLEMENTATION

Supporting compatible compression and decompression be-

tween CPUs and GPUs while maintaining efficiency led us to

use a modular approach in PFPL. Like other algorithms (see

Section VI), PFPL employs a pipeline of data transformations,

all of which are shared between the ABS, REL, and NOA

error-bounded versions, as shown in Figure 1.

A. Enhanced Lossy Quantizers

Irrespective of the error-bound type, PFPL always starts

with a lossy quantizer (Step 1 in Figure 1). ABS and REL are

distinct quantizers whereas NOA is a special case of ABS.

01000101111001111110001000001100 01000101111110001001111101010101 01000101111011011001111011100001

00000000000010110101001010001010 00000000000011000010001111001000 00000000000010111001101001000010

Quantization and TCMS

Float Value:

Integer Value:

7420.2559 7955.9165 7603.8599

117320060911739216211172824588

Integer Value: 742026 795592 760386

Fig. 2: ABS quantization with an error bound of 0.01. Successfully quantized values are stored as bin numbers in magnitude-sign

format, values that cannot be quantized within the error bound are stored losslessly without changing any bits (not shown)

compressible integer bin numbers as outlined in Figure 2. To

find a good lossless compression algorithm for the output of

our quantizers, we tested a large number of combinations of

data transformations (see below). To ensure a high throughput,

we only considered transformations that can be implemented

efficiently on CPUs and GPUs. The 3 lossless pipeline stages

of PFPL (Step 2 in Figure 1) are the result of this search.

We designed these stages with the LC framework [3], which

can automatically synthesize parallelized data compressors for

CPUs and GPUs. In particular, we used LC to generate many

algorithms and then optimized the best. This led to the cre-

ation of the transformations described below, which boost the

compression ratio while maintaining a high throughput. Note

that PFPL employs the same lossless compression pipeline for

all three quantizers. Moreover, the double-precision code uses

the same pipeline as the single-precision code but with the

word size of all but the last stage increased to 64 bits.

The first lossless stage, an example of whose operation is

shown in Figure 3, computes the difference sequence of the

quantizer output, that is, it performs delta modulation [19].

This means each value (e.g., 3, 4, 4, 3) is replaced by

itself minus the previous value (e.g., 3, 1, 0, -1). If the bin

numbers are close to each other, which they are for many

scientific datasets, this transformation yields residuals that

cluster around zero. Importantly, this stage stores the residuals

in negabinary format. Negabinary is a representation of values

in base -2. Unlike in twos-complement representation, small

positive and small negative negabinary values both have many

leading zero bits, as shown in the third row of Figure 3. This

is exploited in the later compression stages.

The second lossless stage performs bit shuffling (aka bit

transposition) [28] as outlined in Figure 4. It outputs the

most significant bit of all residuals, followed by the second-

most significant bit of all residuals, and so on. If consecutive

residuals have ‘0’ bits in the same position, which they often

do due to the negabinary values from the prior stage, this

transformation yields long runs of ‘0’ bits.

Unlike all other stages, the final stage operates at byte

granularity. As illustrated in Figure 5, it generates a bitmap in

which each bit corresponds to a byte of the input. A cleared bit

indicates that the corresponding byte is zero. Otherwise, the bit

is set. All zero bytes are then removed from the input. Hence,

the compressed output consists of the bitmap and the non-zero

bytes from the input. The size of the bitmap is always the size

of the input divided by 8, but the number of non-zero bytes

depends on the data. Since the bitmap represents considerable

overhead, we compress it using a similar algorithm that creates

a second, smaller bitmap in which a cleared bit means the byte

repeats and a set bit means it does not. Only the non-repeating

bytes of the first bitmap are emitted along with the second

8-times-smaller bitmap. This process is iteratively applied 4

times, generating a shorter bitmap in each iteration (plus the

non-repeating bytes), until the bitmap is only a few bytes long.

By themselves, none of these transformations produce high

compression ratios. In fact, only the last stage compresses

at all. The overall performance stems from the specific se-

quence described. Removing any one of these transformations

decreases the compression ratio by a substantial factor.

PFPL is designed to target a wide range of scientific

data since this domain is one of the largest producers of

floating-point data. For numeric stability, such data tends

to be smooth, which our compressors exploit. As described

above, data in which the consecutive values differ by relatively

small amounts are transformed into long sequences of ‘0’

bits. These ‘0’ bits are then eliminated in the last stage.

PFPL should, therefore, compress relatively smooth data from

various domains well. We do not expect our lossy compressors

to work as well on data that is not smooth. However, the wide

range of scientific inputs we use for evaluation (see Section IV)

tend to be quite smooth, are centered around zero, and contain

no denormals, NaNs, or infinities [37].

E. Parallelization and Optimization

We implemented PFPL in OpenMP for parallel CPU ex-

ecution and in CUDA for parallel GPU execution. Since

our quantizers do not separately record outliers, ABS and

REL are embarrassingly parallel and trivial to parallelize, i.e.,

every floating-point value in the input can be independently

quantized. The same is true for NOA, except it first needs

to perform a parallel minimum and maximum reduction. The

resulting range is recorded in the compressed file so the

decoder has access to it, making it embarrassingly parallel.

The lossless pipeline stages are parallelized for the CPU by

breaking the data into 16 kB chunks that are independently

00000000000010110101001010001010 00000000000011000010001111001000 00000000000010111001101001000010

00000000000010110101001010001010 00000000000000001101000100111110 11111111111111110111011001111010

00000000000000011101000101000010 00000000000010111001101001000010 00000000000000001000101110001110

Difference Coding

Conversion to Negabinary

Fig. 3: Difference coding and negabinary conversion in the first lossless stage

00000000000111110101011110011110 00000000000000011101000101000010 00000000000000001000101110001110

00000000000000000000000000000000 01001001001001100111100001100011 00101111101010000100101101111000

Bit Shuffling

Fig. 4: Bit shuffling in the second lossless stage; for larger inputs, the sequences of bits with the same color will be longer

00000000000000000000000000000000 01001001001001100111100001100011 00101111101010000100101101111000

00000000 00000000 00000000 0110001100000000 0010111101001001 00100110 01111000 10101000 0111100001001011

1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12

01100011 0010111101001001 00100110 01111000 10101000 0111100001001011

5 6 7 8 9 10 11 12

Fig. 5: Zero-byte elimination in the final lossless stage; further compression of the bitmap is not shown

processed by different threads. A similar approach is used

for the GPU, where each chunk is assigned to a separate

thread block. Since not all chunks are equally compressible,

we dynamically assign the chunks to the threads or thread

blocks to improve the load balance. If a chunk cannot be

compressed, the original chunk data is emitted and the chunk

is flagged as uncompressed to cap the worst-case expansion.

On both the CPU and the GPU, the resulting compressed

chunks are concatenated and their sizes are separately stored

in the compressed file. The concatenation is implemented by

propagating the cumulative size of all prior compressed chunks

to the next thread or thread block so it knows where to start

writing its output. On the CPU, we use a shared carry array

for this purpose that is accessed with atomic reads and writes.

On the GPU, we use Merrill and Garland’s decoupled look-

back technique [29]. On both devices, the decoder computes

a prefix sum over the stored chunk sizes to determine where

to start reading each chunk.

In the CUDA code, each lossless stage is further parallelized

across the threads within a thread block. This is trivial for the

delta encoder, which is embarrassingly parallel. The decoder

requires a block-wide prefix sum. The bit-shuffle encoder

and decoder operate at warp granularity, where each warp is

independently responsible for a chunk of 32 or 64 values.

They employ log2(wordsize) shuffling steps, which are im-

plemented using warp shuffle instructions that exchange data

without accessing memory. Creating the bitmaps in the zero-

elimination encoder is embarrassingly parallel and can be done

without atomic operations as we assign 8 consecutive bytes to

each thread. Outputting the non-zero (or non-repeating) bytes

to the correct location requires a block-wide prefix sum. The

decoder similarly performs a block-wide prefix sum over the

bits in the bitmap to compute the location where each thread

can find the non-zero (or non-repeating) bytes it needs to

recreate the uncompressed data.

To maximize performance, we optimized our PFPL imple-

mentation as much as we could. In the GPU code, we use

coalesced memory accesses wherever possible (even when

reading and writing ªunalignedº compressed data) to improve

the memory throughput. We minimize the size of the relatively

expensive prefix sums by allocating multiple values to each

thread and computing a thread-local result before invoking

the block-wide prefix sum. We maximize the use of shuffle

instructions to exchange data between threads without access-

ing memory. In the CPU code, we avoid almost all prefix

sums by having each thread process an entire chunk at a time.

The most important optimization is fusing all four stages in

both the CPU and the GPU code, including the quantizer.

This way, the data is only read from main memory once,

then all transformations are performed, and finally the data is

written back to main memory. The GPU code keeps almost all

intermediate data in shared memory (a software-controlled L1

data cache). The CPU code keeps most of the intermediate data

in two 16 kB buffers that are alternately used and, therefore,

likely resident in the L1 data cache.

IV. EXPERIMENTAL METHODOLOGY

We compare PFPL to 7 state-of-the-art lossy compressors,

described in Section VI, on the two systems listed in Table I.

We compiled the CPU codes using the build processes

supplied by their respective authors. When not specified, we

used the ª-O3 -march=nativeº flags. Unless automatically

determined, the thread count was set to the number of CPU

cores as hyperthreading usually does not help. We compiled

the GPU codes using the ª-O3 -arch=sm 89º flags for the

RTX 4090 and the ª-O3 -arch=sm 80º flags for the A100.

For all compressors, we measured the execution time of the

compression and decompression functions, excluding reading

the input file, verifying the results, and transferring data to

and from the device. We ran each experiment 9 times and col-

lected the compression ratio, median compression throughput,

and median decompression throughput. The plots report the

geometric mean of the geometric mean of each suite so as not

to overemphasize suites with more files. Additionally, the use

of the geometric rather than arithmetic mean helps dampen

any inputs that significantly outperform the general case [14].

TABLE I: Systems used for experiments

System 1 System 2

CPU Threadripper 2950X Xeon Gold 6226R

Base Clock 3.5 GHz 2.9 GHz

Sockets 1 2

Cores Per Socket 16 16

Threads Per Core 2 2

Main memory 64 GB 64 GB

GPU RTX 4090 A100

Compute Capability 8.9 8.0

Base Clock 2.2 GHz 0.8 GHz

Boost Clock 2.5 GHz 1.4 GHz

SMs 128 108

CUDA Cores per SM 128 64

Main memory 24 GB HBM2e 40 GB GDDR6x

Operating System Fedora 37 Fedora 36

g++ Version 12.2.1 12.2.1

nvcc Version 12.0 12.0

GPU Driver 525.85 535.113

TABLE II: Information about the used input suites

Name Description Format Files Dimensions Size (MB)

CESM-ATM Climate Single 33 26 × 1800 × 3600 674

EXAALT Copper Molecular Dyn. Single 6 Various 2D 68 to 358

Hurricane Isabel Weather Sim. Single 13 100 × 500 × 500 100

HACC Cosmology Single 6 280,953,867 1124

NYX Cosmology Single 6 512 × 512 × 512 537

SCALE Climate Single 12 98 × 1200 × 1200 564

QMCPACK Quantum MC Single 2 33,120 × 69 × 69 631

NWChem Molecular Dyn. Double 1 102,953,248 824

Miranda Hydrodynamics Double 7 256 × 384 × 384 302

Brown Samples Synthetic Double 3 33,554,433 268

We used the 7 single-precision and 3 double-precision suites

shown in Table II as inputs for the compressors (if supported),

a total of 89 files. These inputs are sourced from the SDR-

Bench repository [30, 37], which hosts real-world scientific

datasets from various domains for compression evaluation. The

table lists the suite’s name, short description, floating-point

format, number of files, input dimensions, and file size.

To keep the number of inputs reasonable and make the

comparison as fair as possible, we excluded some SDRBench

datasets. We only use the 3D CESM-ATM inputs as they are

similar to the other CESM-ATM inputs and 3D is a commonly

used dimension. We use only the EXAALT Copper dataset as

it is in the middle in terms of size for the EXAALT sets.

We use the raw (i.e., not cleared) data from the Hurricane

ISABEL set. Additionally, we exclude SDRBench datasets that

are incompatible with the tested compressors because they are

either too large or in a proprietary format.

We present the results in x/y-scatter plots. The two di-

mensions are compression ratio and either compression or

decompression throughput. Note that, for space reasons, the

plots include serial and parallel CPU results as well as GPU

results. One or both axes are logarithmic to capture the

wide range of compression ratios and/or throughputs. For all

compressors, the circular data point is for an error bound

of 1E-1, the triangle for 1E-2, the square for 1E-3, and the

pentagon for an error bound of 1E-4. The Pareto fronts, sets

of empirical optima, are marked with light blue lines. For

a compressor to be on the Pareto front, it must outperform

every other compressor in at least one dimension for the given

error bound. For the third-party compressors that support serial

and parallel execution or CPU and GPU execution, we only

show the fastest version if the compression ratio is the same

between the versions. Otherwise, we show all versions. For

ZFP, which supports serial and parallel compression but only

serial decompression, we show serial results only. We always

show all versions of PFPL.

We only compare to SPERR-3D because SPERR-2D does

not run in parallel and SPERR-3D supports more of the

input suites. However, SPERR-3D does not run in parallel

on double-precision inputs. We only compare to SZ2 in

Section V-C. In the other subsections, we instead compare to

SZ3 because it performs better in terms of compression ratio

and is comparable in terms of throughput. However, SZ3 does

not support the REL error bound whereas SZ2 does. For the

ABS and NOA error bounds, we show results for two versions

of SZ3: SZ3Serial and SZ3OMP . The OpenMP version

of SZ3 produces different compression ratios, and therefore

different files, than the serial version, but both versions can

be used to compress and decompress interchangeably and still

yield correct (but different) output. Since not all compressors

perform a warm-up before timing, where present, we disabled

the warm-up code to make the performance comparisons fairer.

ZFP bounds the relative error by truncating a requested

number of least significant bits in the floating-point representa-

tion. Bounding the REL error by a specific value (e.g., 1E-3)

is not always possible with ZFP. We report results for bit-

truncations that yield similar errors to the bounds used when

running the other two REL compressors.

The presented compression ratios are the uncompressed

file size divided by the compressed file size. Rather than

listing the measured runtimes, we show throughputs (i.e.,

the uncompressed file size divided by the runtime) because

throughput, like compression ratio, is a higher-is-better metric.

V. PERFORMANCE EVALUATION

In this section, we evaluate 7 leading lossy compressors

from the literature as well as PFPL. We first compare the

error-bound guarantees and other features of each compressor.

Then, we analyze the throughputs and compression ratios on

different error bounds and data types for ABS, REL, and NOA.

Next, we present results on the reconstruction quality of the

lossily decompressed data. Finally, we discuss the performance

of PFPL on additional GPU generations and our findings when

profiling the CUDA version of PFPL.

A. Supported Features

This subsection compares the 8 lossy compressors in terms

of which error-bound types they support, whether they guar-

antee the error bound, whether they support CPU and GPU

execution, and other properties. Table III shows the results.

The top row lists the features; each remaining row corresponds

to one compressor.

TABLE III: All tested compressors (ordered by initial release

date) and the features they support. ‘✓’ indicates the compres-

sor supports the feature, ‘×’ indicates that it does not, and ‘◦’

indicates that the compressor supports an error bound type but

does not always adhere to the requested error bound.

Compressor ABS REL NOA Float Double CPU GPU

ZFP ◦ ✓ × ✓ ✓ ✓ ×

SZ2 ✓ ◦ ✓ ✓ ✓ ✓ ×

SZ3 ✓ × ✓ ✓ ✓ ✓ ×

MGARD-X ◦ × ◦ ✓ ✓ ✓ ✓

SPERR ◦ × × ✓ ✓ ✓ ×

FZ-GPU × × ◦ ✓ × × ✓

cuSZp ◦ × ✓ ✓ ✓ × ✓

PFPL ✓ ✓ ✓ ✓ ✓ ✓ ✓

‘ABS’, ‘REL’, and ‘NOA’ denote the error-bound type. Note

that SZ2, the only other compressor to support all three error

bound types, fails to guarantee the error bound when using

REL. In contrast, the related SZ3 guarantees the error bound

because it does not support REL. Like SZ2, ZFP and SPERR

also violate the error bounds in a few cases due to rounding

issues. PFPL avoids such problems by double-checking each

value after compression and storing it losslessly whenever the

error bound would be violated. ‘Float’ and ‘Double’ indicate

support for 32-bit single-precision and 64-bit double-precision

data. ‘CPU’ and ‘GPU’ display support for compression and

decompression on the respective device.

Even though lossy compression is quite mature, PFPL

advances the state of the art in that, to our knowledge, it is the

only compressor that supports all listed features. Moreover, it

compresses on par with many other tested compressors and

is at least as fast as all of them, including compressors that

exploit input dimensionality or only run on and are optimized

for a specific type of device, as illustrated below.

B. ABS Error Bounds

Compression: Figures 6a and 6b show scatter plots of the

compression ratio versus the compression throughput for the

ABS error bounds on System 1 for the single- and double-

precision inputs, respectively. To produce these results, we

excluded the EXAALT and HACC inputs because they are

not 3D, which causes issues with SPERR, and because HACC

makes MGARD-X run out of memory. Note that cuSZp and

ZFP have major (≥ 1.5×) error-bound violations for all tested

error bounds and that SPERR has minor (< 1.5×) violations

for the 1E-2 error bound. MGARD-X has major error bound

violations on all tested error bounds, but only for the double-

precision inputs. SPERR is not listed for the double results as

it does not support the majority of those inputs. FZ-GPU is

not listed as it does not support ABS.

PFPLCUDA delivers the highest throughput for all tested error

bounds, and PFPLOMP yields the highest throughputs on the

CPU. PFPLOMP performs particularly well; it is 7.1 times

faster than the next fastest CPU code (SZ3OMP) on average

and almost on par with the slowest GPU code. This good

performance is primarily because we built our algorithm out

of only fast transformations, fused all stages, and only read the

input data once from main memory and write the output data

once to main memory. In general, the throughput of the various

compressors decreases with smaller error bounds, but by less

than the decrease in compression ratio. PFPLCUDA achieves a

compression throughput of 446 GB/s at the coarsest and 423

GB/s at the finest tested bound on the single-precision inputs.

SZ3Serial delivers the highest compression ratio for all tested

error bounds. The two versions of SZ3 compress more than

PFPL on both data types, and SPERR compresses more on

single-precision data. They are all CPU-only compressors that

use GPU-unfriendly transformations to boost their compres-

sion ratio such as Huffman coding. For the same reason, the

OpenMP version of SZ3 compresses significantly less than

serial SZ3, that is, the serial version includes well-compressing

transformations that are not parallelism friendly. We note that

ZFP’s compression ratios are not on par with the other CPU-

only compressors. One reason is that ZFP often over-preserves

the compression errors, meaning it tends to deliver a lower

maximum error than allowed by the error bound. All tested

GPU compressors (and ZFP) are both slower and compress

less than PFPLCUDA.

Since the three versions of PFPL are compatible and pro-

duce bit-for-bit identical output, their compression ratios are

identical. For all tested compressors, the compression ratio

decreases with a tighter error bound, as one would expect.

However, for the compressors that deliver particularly high

compression ratios for an error bound of 1E-1, the drop

in compression ratio is more pronounced than for the other

compressors. For example, at the largest error bound, PFPL

produces a compression ratio of 68 whereas SZ3Serial yields a

ratio of 863, a factor of almost 13. At the smallest error bound,

the difference is only a factor of 3 with SZ3Serial yielding a

compression ratio of 38 versus PFPL’s ratio of 14. The reason

SZ3 delivers higher compression ratios than PFPL is that SZ3

employs a more sophisticated data decorrelation method and

lossless encoder at a cost of significantly lower throughput.

Decompression: Figures 7a and 7b show scatter plots of

10−1 100 101 102 103
100

101

102

103

104

105

106

Compression Throughput (GB/s)

C
o
m

p
re

ss
io

n
R

at
io

ZFPSerial SZ3Serial
SZ3OMP MGARD-XCUDA

SPERROMP cuSZpCUDA

PFPLSerial PFPLOMP

PFPLCUDA

(a) System 1 geo-mean compression ra-
tio and compression throughput on single-
precision data with 4 ABS error bounds

10−1 100 101 102 103

101

102

103

104

105

106

Compression Throughput (GB/s)

C
o
m

p
re

ss
io

n
R

at
io

ZFPSerial SZ3Serial
SZ3OMP MGARD-XCUDA

cuSZpCUDA PFPLSerial

PFPLOMP PFPLCUDA

(b) System 1 geo-mean compression ratio
and compression throughput on double-
precision data with 4 ABS error bounds

10−1 100 101 102 103
100

101

102

103

104

105

106

Compression Throughput (GB/s)

C
o
m

p
re

ss
io

n
R

at
io

ZFPSerial SZ3Serial
SZ3OMP MGARD-XCUDA

SPERROMP cuSZpCUDA

PFPLSerial PFPLOMP

PFPLCUDA

(c) System 2 geo-mean compression ra-
tio and compression throughput on single-
precision data with 4 ABS error bounds

Fig. 6: Compression results for the ABS error-bound type, including Pareto fronts for the 4 error bounds

100 101 102 103
100

101

102

103

104

105

106

Decompression Throughput (GB/s)

C
o
m

p
re

ss
io

n
R

at
io

ZFPSerial SZ3Serial
SZ3OMP MGARD-XCUDA

SPERROMP cuSZpCUDA

PFPLSerial PFPLOMP

PFPLCUDA

(a) System 1 geo-mean compression ratio
and decompression throughput on single-
precision data with 4 ABS error bounds

10−1 100 101 102 103

101

102

103

104

105

106

Decompression Throughput (GB/s)

C
o
m

p
re

ss
io

n
R

at
io

ZFPSerial SZ3Serial
SZ3OMP MGARD-XCUDA

cuSZpCUDA PFPLSerial

PFPLOMP PFPLCUDA

(b) System 1 geo-mean compression ratio
and decompression throughput on double-
precision data with 4 ABS error bounds

100 101 102 103
100

101

102

103

104

105

106

Decompression Throughput (GB/s)

C
o
m

p
re

ss
io

n
R

at
io

ZFPSerial SZ3Serial
SZ3OMP MGARD-XCUDA

SPERROMP cuSZpCUDA

PFPLSerial PFPLOMP

PFPLCUDA

(c) System 2 geo-mean compression ratio
and decompression throughput on single-
precision data with 4 ABS error bounds

Fig. 7: Decompression results for the ABS error-bound type, including Pareto fronts for the 4 error bounds

the compression ratio vs. the decompression throughput for

the ABS error bounds on System 1 for the single- and double-

precision inputs, respectively. The compression ratios are the

same as in Figures 6a and 6b. Only the throughputs differ.

At a decompression throughput of between 327 GB/s and

344 GB/s, PFPLCUDA is still the fastest on the single-precision

data, but cuSZpCUDA is faster on the two coarsest error bounds

on the double-precision data. This is because cuSZpCUDA

decompresses much faster than it compresses due to its

lightweight fixed-length decoding step. In contrast, our three

PFPL versions compress faster than they decompress due to

prefix-sum computations in the decoder. MGARD-X com-

presses noticeably faster than it decompresses, especially on

double-precision values, where it is the slowest decompressor

even though it runs on the GPU. Otherwise, the decompression

performance trends are similar to the compression trends.

System 2: Figures 6c and 7c show the single-precision

results for System 2. The compression ratios between the

two systems are, of course, the same, but the throughputs

differ because System 2 has a more powerful CPU and a less

powerful GPU. Otherwise, the trends between the systems are

very similar, including for the double-precision results and the

other error-bound types. Hence, we only show results from

System 1 in the following subsections.

Takeaway 1. In environments where not only compression

ratio but also throughput is important, PFPL provides the

currently best solution. Despite having features that other

compressors do not, in particular full CPU/GPU compati-

bility, PFPLOMP is faster than the CPU-only compressors

and PFPLCUDA is generally faster and compresses more

than the GPU-only compressors. MGARD-X, the only other

compressor that is CPU/GPU compatible, is 37 times slower

at compression and 63 times slower at decompression and

compresses between 6 and 13 times less than PFPL.

C. REL Error Bounds

Compression: Figures 8 and 9 show scatter plots of the

compression ratio versus the compression throughput for the

REL error bounds on System 1 for the single- and double-

precision inputs, respectively. We used all inputs to produce

the results shown in these charts. Note that SZ2 has large error-

bound violations on CESM for all tested error bounds and

ZFP does not conform to the error bound due to its different

bounding technique. Only PFPL, SZ2, and ZFP are shown as

they are the only tested compressors that support REL.

10−1 100 101 102 103
0

10

20

30

Compression Throughput (GB/s)

C
o

m
p

re
ss

io
n

R
at

io

SZ2Serial
ZFPSerial

PFPLSerial

PFPLOMP

PFPLCUDA

Fig. 8: System 1 geometric-mean compression ratio and com-

pression throughput on single-precision data with REL error

bounds, including Pareto fronts for the 4 error bounds

100 101 102 103

101

102

103

Compression Throughput (GB/s)

C
o

m
p

re
ss

io
n

R
at

io

SZ2Serial
PFPLSerial

PFPLOMP

PFPLCUDA

Fig. 9: System 1 geometric-mean compression ratio and com-

pression throughput on double-precision data with REL error

bounds, including Pareto fronts for the 4 error bounds

SZ2 yields higher compression ratios than PFPL. It is,

however, unclear how much of that is due to the error-

bound violations by SZ2. ZFP delivers lower compression

ratios than the other compressors mainly due to its truncation-

based REL implementation. Like with ABS, the advantage of

SZ2 over PFPL shrinks as the error bound gets smaller. SZ2

outcompresses PFPL by a factor of 1.7 at an error bound of

1E-1 but only by a factor of 1.4 at an error bound of 1E-4.

This is because, when the error bound is large, the bin values

tend to be relatively smooth and easy to compress. Hence,

compressors like SZ2 can get very high compression ratios

from their sophisticated yet expensive designs.

PFPLCUDA delivers the highest throughput, followed by the

two CPU versions of PFPL, all of which outperform serial

SZ2 in terms of throughput due to our lightweight design and

performance optimization (see Section III-D and III-E). At the

highest error bound, ZFP reaches the compression throughput

of PFPLSerial. At all tested error bounds, PFPLCUDA compresses

the single-precision inputs on the order of 3000 times faster

than SZ2 and the double-precision inputs roughly 500 times

faster. On the CPU, PFPLOMP compresses 41.4 times faster on

average than serial SZ2.

Decompression: Figures 10 and 11 show scatter plots of

the compression ratio versus the decompression throughput

for the REL error bounds on System 1 for the single- and

double-precision inputs, respectively.

10−1 100 101 102 103
0

10

20

30

Decompression Throughput (GB/s)

C
o

m
p

re
ss

io
n

R
at

io

SZ2Serial
ZFPSerial

PFPLSerial

PFPLOMP

PFPLCUDA

Fig. 10: System 1 geo-mean compression ratio and decom-

pression throughput on single-precision data with REL error

bounds, including Pareto fronts for the 4 error bounds

100 101 102 103

101

102

103

Decompression Throughput (GB/s)

C
o

m
p

re
ss

io
n

R
at

io

SZ2Serial
PFPLSerial

PFPLOMP

PFPLCUDA

Fig. 11: System 1 geo-mean compression ratio and decom-

pression throughput on double-precision data with REL error

bounds, including Pareto fronts for the 4 error bounds

Decompression exhibits the same trends as compression.

The three versions of PFPL outperform SZ2 and ZFP in

terms of throughput. PFPLCUDA is hundreds to thousands of

times faster than SZ2. Interestingly, the CPU-based codes

decompress faster than they compress whereas PFPLCUDA

compresses faster than it decompresses. The reason is that

our first lossless stage requires a prefix sum for parallelizing

the decoder on the GPU but not the encoder, making decom-

pression slower.

Takeaway 2. PFPL greatly outperforms SZ2 in throughput

and guarantees the error bound. SZ2 yields a higher com-

pression ratio but violates the error bound on some inputs.

ZFP has similar compression throughput to PFPLSerial but

significantly lower compression ratios. Additionally, PFPL

supports parallel CPU and GPU execution, a unique feature

for the REL error-bound type, whereas SZ2 and ZFP are

only available as serial CPU code.

D. NOA Error Bounds

Compression: Figures 12 and 13 show scatter plots of the

compression ratio versus the compression throughput for the

NOA error bounds on System 1 for the single- and double-

precision inputs, respectively. These results again exclude the

EXAALT and HACC inputs as they are not 3D and, therefore,

unsupported by FZ-GPU. ZFP and SPERR do not support

NOA error bounds and are not shown. FZ-GPU does not

support double-precision data and crashes for the 1E-3 and 1E-

4 bounds on some of the single-precision inputs. It has minor

error bound violations for the other two bounds. MGARD-

X and cuSZp have major error-bound violations on all tested

double-precision inputs.

10−1 100 101 102 103
100

101

102

103

104

105

106

Compression Throughput (GB/s)

C
o

m
p

re
ss

io
n

R
at

io

SZ3Serial SZ3OMP

MGARD-XCUDA FZ-GPUCUDA

cuSZpCUDA PFPLSerial

PFPLOMP PFPLCUDA

Fig. 12: System 1 geometric-mean compression ratio and

compression throughput on single-precision data with NOA

error bounds, including Pareto fronts for the 4 error bounds

Both versions of SZ3 yield high compression ratios com-

pared to the other compressors. As noted in the ABS section,

the more parallelism-friendly algorithm used in SZ3OMP is

10−1 100 101 102 103

101

102

103

104

105

106

107

108

Compression Throughput (GB/s)

C
o

m
p

re
ss

io
n

R
at

io

SZ3Serial SZ3OMP

MGARD-XCUDA cuSZpCUDA

PFPLSerial PFPLOMP

PFPLCUDA

Fig. 13: System 1 geometric-mean compression ratio and

compression throughput on double-precision data with NOA

error bounds, including Pareto fronts for the 4 error bounds

less effective than SZ3Serial. SZ3OMP is the second-fastest CPU

code behind PFPLOMP, which is 4.4 times faster on average.

The next best compressor for both data types is PFPL. On the

single-precision inputs, PFPLCUDA is the fastest for all tested

error bounds. On the double-precision inputs, cuSZp is faster

but yields a lower compression ratio and violates the error

bound. At the tightest error bound, cuSZp yields a compression

ratio of 13 compared to PFPL’s compression ratio of 50.

Decompression: Figures 14 and 15 show scatter plots of

the compression ratio versus the decompression throughput

for the NOA error bounds on System 1 for the single- and

double-precision inputs, respectively.

100 101 102 103
100

101

102

103

104

105

106

Decompression Throughput (GB/s)

C
o

m
p

re
ss

io
n

R
at

io

SZ3Serial SZ3OMP

MGARD-XCUDA FZ-GPUCUDA

cuSZpCUDA PFPLSerial

PFPLOMP PFPLCUDA

Fig. 14: System 1 geo-mean compression ratio and decom-

pression throughput on single-precision data with NOA error

bounds, including Pareto fronts for the 4 error bounds

The general trend for decompression is similar to the

compression results. The only major difference is that cuSZp

100 101 102 103

101

102

103

104

105

106

107

108

Decompression Throughput (GB/s)

C
o

m
p

re
ss

io
n

R
at

io
SZ3Serial SZ3OMP

MGARD-XCUDA cuSZpCUDA

PFPLSerial PFPLOMP

PFPLCUDA

Fig. 15: System 1 geo-mean compression ratio and decom-

pression throughput on double-precision data with NOA error

bounds, including Pareto fronts for the 4 error bounds

now outperforms PFPL in decompression speed on one of the

error bounds for the single-precision data. The reverse is true

for the double-precision inputs, where cuSZp is fastest on

three out of the four tested bounds. PFPLOMP delivers high

decompression throughputs on the CPU. On average, it is 5

times faster than the next fastest CPU code and 2.7 times faster

than the slowest GPU code.

Takeaway 3. For the NOA error-bound type, if both

throughput and compression ratio are important, PFPL is

the preferred solution. SZ3 is the best choice if only

the compression ratio matters. PFPL is much faster and

compresses more than MGARD-X, the only other tested

compressor that is CPU/GPU compatible.

E. Quality of Reconstructed Data

Figure 16 shows the relationship between the peak-signal-

to-noise ratio (PSNR) and the compression ratio at different

error bounds for all tested compressors and error-bound types.

The inputs used for producing each PSNR chart match those

of the respective result sections above. Higher PSNR values

are better as they indicate higher reconstruction quality. A user

may want to select the compressor that has the best PSNR.

PFPL yields a PSNR-to-compression-ratio relationship that

falls in-between the CPU-only compressors and the GPU-

compatible compressors, that is, PFPL delivers the best results

among the GPU codes. In absolute terms, its PSNR is similar

to that of the best CPU compressors, but at a lower com-

pression ratio. These results demonstrate that the quantization

method we use in PFPL delivers comparable data quality to

the CPU-only compressors.

F. Other GPU Generations and CUDA Profiling

In addition to the aforementioned RTX 4090 and A100

GPUs, we also evaluated PFPL on a TITAN Xp, an RTX 2070

Super, and an RTX 3080 Ti. This experiment shows that the

performance correlates primarily with the amount of compute

provided by the GPU. For example, the RTX 2070 Super has a

maximum number of threads per block of only 1024, which is

fewer than any of the other GPUs. The corresponding decrease

in the number of resident thread blocks, and thus available

compute, causes the 2070 Super to perform similarly to the

3-year-older TITAN Xp. The RTX 4090 has more SMs and a

higher clock speed than the A100, but the A100 has greater

memory bandwidth. As shown in Section V-B, PFPL is faster

on the RTX 4090 than on the A100 on both single- and

double-precision inputs. The A100 also has more FP64 units

than the RTX 4090. Yet, we do not see a large difference in

performance because PFPL, and the other tested compressors,

only execute a few floating-point operations in the quantizer.

The rest of the quantizer and all other stages exclusively use

integer operations.

Our profiling results back up the above findings and show

that PFPL is not main-memory bound. After all, it reads the

input from main memory only once, performs most of the

work while the data resides in shared memory, then writes

the output to main memory once. On the A100, we only

utilize 15% of the available DRAM throughput while using

the majority of the available compute power. The results for

the RTX 4090 are similar, but the DRAM utilization is a little

higher due to the lower available throughput.

VI. RELATED WORK

This section describes the seven state-of-the-art lossy

floating-point compressors [10] with which we compare PFPL.

There are four main versions of SZ. They all have an overar-

ching theme of using prediction in their compression pipeline.

SZ2 [23] uses Lorenzo prediction [18] and linear regression

followed by quantization. SZ3 [24, 26, 36] is an improvement

that generally produces better compression ratios with similar

throughput. Both SZ2 and SZ3 adopt entropy coding plus

lossless compression after the lossy stage (e.g., Huffman [17]

followed by GZIP [8] or ZSTD [7]). SZ2 and SZ3 are both

CPU-only compressors. cuSZ [33, 34] is a CUDA implemen-

tation that employs a different, more GPU-friendly algorithm.

It performs Lorenzo prediction and quantization followed by

multi-byte Huffman coding. FZ-GPU [35] is a specialized

version of cuSZ that fuses multiple kernels together for better

throughput. Compared to FZ-GPU, cuSZp [15] yields higher

compression ratios and higher decompression throughputs. It

splits the data into blocks and then quantizes and predicts

the values in all nonzero blocks, which are ultimately com-

pressed by a fixed-length encoder. The fixed-length encoding

is implemented using a bit-shuffle operation. Similar to the

SZ compressors, we also use quantization as a lossy step,

and our lossless stages also rearrange the data but utilizing

different transformations. Compared with the SZ compressors,

the key advantages of PFPL are (1) guaranteeing the error

bound for ABS, REL, and NOA, (2) a higher throughput due

to the complete kernel fusion, inlining of outliers, and other

optimizations, and (3) full CPU/GPU compatibility.

101.7 101.8 101.9 102

101

102

103

104

105

PSNR

C
o
m

p
re

ss
io

n
R

at
io

ZFPSerial SZ3Serial
SZ3OMP MGARD-XCUDA

SPERROMP cuSZpCUDA

PFPL

(a) System 1 geo-mean compression ratio
and PSNR on single-precision data for the
four ABS error bounds

101.7 101.8 101.9 102
0

10

20

30

PSNR

C
o
m

p
re

ss
io

n
R

at
io

SZ2Serial
ZFPSerial

PFPL

(b) System 1 geo-mean compression ratio
and PSNR on single-precision data for the
four REL error bounds

101.5 101.6 101.7 101.8 101.9 102

101

102

103

104

105

106

PSNR

C
o
m

p
re

ss
io

n
R

at
io

SZ3Serial SZ3OMP

MGARD-XCUDA FZ-GPUCUDA

cuSZpCUDA PFPL

(c) System 1 geo-mean compression ratio
and PSNR on single-precision data for the
four NOA error bounds

Fig. 16: Compression ratio vs. PSNR results for the 3 error-bound types

ZFP [11, 27] is a widely used tranform-based compressor.

It is specifically designed for in-memory array compression

and supports on-the-fly random-access decompression. ZFP

splits the input into blocks, converts each value into an integer,

performs the aforementioned decorrelation, reorders the data,

and converts the values from twos-complement to negabinary

representation. Then, it groups the bits from most to least

significant. Finally, the shuffled bits are losslessly compressed.

Our approach only has a few commonalities with ZFP (e.g.,

converting to negabinary format).

MGARD [25] is the only other compressor that supports

compression and decompression across CPUs and GPUs. This

compressor uses multigrid hierarchical data refactoring to de-

compose the data and recompose it to a specified accuracy via

selective loading based on the hierarchy after decomposition.

Compared with MGARD, PFPL exhibits significantly higher

compression ratios and throughput on both CPUs and GPUs

but does not support progressive operation.

SPERR [21], a successor of SPECK [31], uses advanced

wavelet transforms that are applied recursively to the input.

SPERR detects outliers that do not meet the error bound and

stores correction factors for those values. The coded wavelet

coefficients and the outliers are compressed using ZSTD.

Like some of the other transformation-based compressors, our

approach does not have much in common with SPERR. We

do, however, keep track of outliers that cannot be correctly

handled within the error bound. Unlike SPERR, we leave these

outliers inline with the rest of the values.

VII. SUMMARY AND CONCLUSIONS

We developed the Portable Floating-Point Lossy (PFPL)

compressor to address three critical issues in existing lossy

compressors: violated error bounds, missing CPU/GPU sup-

port, and low compression ratio or throughput.

We evaluated 8 lossy compressors on 2 systems using 7

single- and 3 double-precision input sets from the SDRBench

suite, a total of 89 files. PFPL yields the highest CPU-parallel

compression and decompression throughput compared to the

codes from the literature. Furthermore, it outperforms all tested

GPU codes in compression ratio. Consequently, PFPL is on

the Pareto front in all sets of results, which is otherwise only

the case for SZ, a CPU-only compressor that is orders of

magnitude slower than PFPL on the GPU. PFPL achieves high

throughputs and compression ratios even though it supports

key features that the other lossy compressors lack.

• It is fully CPU/GPU compatible, which is otherwise only

the case for MGARD-X, but MGARD-X does not support

REL and does not guarantee the error bound.

• It supports the ABS, REL, and NOA error-bound types,

which is otherwise only the case for SZ2, but SZ2 does

not guarantee the error bound on REL.

• It guarantees the error bound for all supported error-

bound types, which is otherwise only the case for SZ3,

but SZ3 does not support REL.

• It combines a high throughput with a good compression

ratio whereas the other studied tools either compress well

or deliver a high throughput but not both.

Hence, PFPL is currently the only CPU/GPU compatible

lossy compressor that guarantees point-wise absolute, relative,

and normalized-absolute error bounds. We hope that PFPL

will enable more scientists to lossily compress their data

with confidence and promote the inclusion of error-bound

guarantees in other lossy compressors.

VIII. ACKNOWLEDGMENTS

This work has been supported in part by the Department

of Energy, Office of Science, Advanced Scientific Computing

Research (ASCR), under Award Numbers DE-SC0022223 and

DE-AC02-06CH11357 as well as by an equipment donation

from NVIDIA Corporation. This material was supported by the

National Science Foundation under Grant Numbers CSSI/OAC

#2311875 and CSSI/OAC #2104023.

REFERENCES

[1] SZ Website. https://github.com/szcompressor/SZ.

[2] IEEE Standard for Floating-Point Arithmetic. IEEE Std

754-2019 (Revision of IEEE 754-2008), pages 1±84,

2019.

[3] Noushin Azami, Alex Fallin, Brandon Burtchell, An-

drew Rodriguez, Benila Jerald, Yiqian Liu, and Mar-

tin Burtscher. LC Git Repository. https://github.com/

burtscher/LC-framework, 2025. Accessed: 2025-01-07.

[4] Allison H. Baker, Alexander Pinard, and Dorit M. Ham-

merling. On a Structural Similarity Index Approach for

Floating-Point Data. IEEE Transactions on Visualization

and Computer Graphics, 30(9):6261±6274, 2024.

[5] Franck Cappello, Sheng Di, Sihuan Li, Xin Liang,

Ali Murat Gok, Dingwen Tao, Chun Hong Yoon, Xin-

Chuan Wu, Yuri Alexeev, and Frederic T Chong. Use

cases of lossy compression for floating-point data in

scientific data sets. The International Journal of High

Performance Computing Applications, 33(6):1201±1220,

2019.

[6] Jieyang Chen, Lipeng Wan, Xin Liang, Ben Whit-

ney, Qing Liu, David Pugmire, Nicholas Thompson,

Jong Youl Choi, Matthew Wolf, Todd Munson, Ian

Foster, and Scott Klasky. Accelerating Multigrid-based

Hierarchical Scientific Data Refactoring on GPUs. In

2021 IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS), pages 859±868, 2021.

[7] Yann Collet and Murray Kucherawy. Zstandard Com-

pression and the ‘application/zstd’ Media Type. RFC

8878, February 2021.

[8] L. Peter Deutsch. GZIP file format specification version

4.3. RFC 1952, May 1996.

[9] Sheng Di and Franck Cappello. Fast Error-Bounded

Lossy HPC Data Compression with SZ. In 2016 IEEE

International Parallel and Distributed Processing Sym-

posium (IPDPS), pages 730±739, Los Alamitos, CA,

USA, may 2016. IEEE Computer Society.

[10] Sheng Di, Jinyang Liu, Kai Zhao, Xin Liang, Robert

Underwood, Zhaorui Zhang, Milan Shah, Yafan Huang,

Jiajun Huang, Xiaodong Yu, Congrong Ren, Hanqi Guo,

Grant Wilkins, Dingwen Tao, Jiannan Tian, Sian Jin,

Zizhe Jian, Daoce Wang, MD Hasanur Rahman, Boyuan

Zhang, Jon C. Calhoun, Guanpeng Li, Kazutomo Yoshii,

Khalid Ayed Alharthi, and Franck Cappello. A survey on

error-bounded lossy compression for scientific datasets.

https://arxiv.org/abs/2404.02840, 2024.

[11] James Diffenderfer, Alyson L. Fox, Jeffrey A. Hittinger,

Geoffrey Sanders, and Peter G. Lindstrom. Error Analy-

sis of ZFP Compression for Floating-Point Data. SIAM

Journal on Scientific Computing, 41(3):A1867±A1898,

2019.

[12] Alex Fallin, Noushin Azami, Sheng Di, Franck Cappello,

and Martin Burtscher. PFPL Git Repository. https://

github.com/burtscher/PFPL, 2025. Accessed: 2025-02-

10.

[13] Alex Fallin and Martin Burtscher. Lessons learned on the

path to guaranteeing the error bound in lossy quantizers,

2024.

[14] Philip J. Fleming and John J. Wallace. How not to lie

with statistics: the correct way to summarize benchmark

results. Commun. ACM, 29(3):218±221, March 1986.

[15] Yafan Huang, Sheng Di, Xiaodong Yu, Guanpeng Li,

and Franck Cappello. cuSZp: An Ultra-Fast GPU Error-

Bounded Lossy Compression Framework with Optimized

End-to-End Performance. In Proceedings of the Inter-

national Conference for High Performance Computing,

Networking, Storage and Analysis, SC’23, Denver, CO,

USA, 2023. Association for Computing Machinery.

[16] Yafan Huang, Kai Zhao, Sheng Di, Guanpeng Li, Maxim

Dmitriev, Thierry-Laurent D Tonellot, and Franck Cap-

pello. Towards improving reverse time migration per-

formance by high-speed lossy compression. In 2023

IEEE/ACM 23rd International Symposium on Cluster,

Cloud and Internet Computing (CCGrid), pages 651±

661. IEEE, 2023.

[17] David A. Huffman. A Method for the Construction of

Minimum-Redundancy Codes. Proceedings of the IRE,

40(9):1098±1101, 1952.

[18] Lawrence Ibarria, Peter Lindstrom, Jarek Rossignac, and

Andrzej Szymczak. Out-of-core compression and decom-

pression of large n-dimensional scalar fields. Comput.

Graph. Forum, 22:343±348, 09 2003.

[19] F. Jager. Delta Modulation Ð A Method of PCM

Transmission Using the One Unit Code. Philips Res.

Repts., 7, 01 1952.

[20] J. E. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay,

G. Strand, J. M. Arblaster, S. C. Bates, G. Danabasoglu,

J. Edwards, M. Holland, P. Kushner, J.-F. Lamarque,

D. Lawrence, K. Lindsay, A. Middleton, E. Munoz,

R. Neale, K. Oleson, L. Polvani, and M. Vertenstein.

ºThe Community Earth System Model (CESM) Large

Ensemble Project: A Community Resource for Studying

Climate Change in the Presence of Internal Climate

Variabilityº. Bulletin of the American Meteorological

Society, 96(8):1333 ± 1349, 2015.

[21] Shaomeng Li, Peter Lindstrom, and John Clyne. Lossy

Scientific Data Compression With SPERR. In 2023

IEEE International Parallel and Distributed Processing

Symposium (IPDPS), pages 1007±1017, 2023.

[22] Xin Liang, Sheng Di, Dingwen Tao, Zizhong Chen, and

Franck Cappello. An efficient transformation scheme

for lossy data compression with point-wise relative error

bound. In 2018 IEEE International Conference on

Cluster Computing (CLUSTER), pages 179±189, 2018.

[23] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li,

Shaomeng Li, Hanqi Guo, Zizhong Chen, and Franck

Cappello. Error-Controlled Lossy Compression Op-

timized for High Compression Ratios of Scientific

Datasets. In 2018 IEEE International Conference on Big

Data (Big Data), pages 438±447, 2018.

[24] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li,

Shaomeng Li, Hanqi Guo, Zizhong Chen, and Franck

Cappello. Error-controlled lossy compression optimized

for high compression ratios of scientific datasets. In 2018

IEEE International Conference on Big Data (Big Data),

pages 438±447, 2018.

[25] Xin Liang, Ben Whitney, Jieyang Chen, Lipeng Wan,

Qing Liu, Dingwen Tao, James Kress, David Pugmire,

Matthew Wolf, Norbert Podhorszki, and Scott Klasky.

MGARD+: Optimizing Multilevel Methods for Error-

Bounded Scientific Data Reduction. IEEE Transactions

on Computers, 71(7):1522±1536, 2022.

[26] Xin Liang, Kai Zhao, Sheng Di, Sihuan Li, Robert

Underwood, Ali M. Gok, Jiannan Tian, Junjing Deng,

Jon C. Calhoun, Dingwen Tao, Zizhong Chen, and

Franck Cappello. SZ3: A Modular Framework for Com-

posing Prediction-Based Error-Bounded Lossy Compres-

sors. IEEE Transactions on Big Data, 9(2):485±498,

2023.

[27] Peter Lindstrom. Fixed-rate compressed floating-point ar-

rays. IEEE Transactions on Visualization and Computer

Graphics, 20(12):2674±2683, 2014.

[28] K. Masui, M. Amiri, L. Connor, M. Deng, M. Fandino,

C. HÈofer, M. Halpern, D. Hanna, A.D. Hincks, G. Hin-

shaw, J.M. Parra, L.B. Newburgh, J.R. Shaw, and K. Van-

derlinde. A compression scheme for radio data in high

performance computing. Astronomy and Computing,

12:181±190, 2015.

[29] D. Merrill and M. Garland. Single-pass parallel prefix

scan with decoupled look-back. Technical Report NVR-

2016-002, NVIDIA, March 2016.

[30] SDRBench Inputs, https://sdrbench.github.io/, 2023.

[31] Xiaoli Tang and William A. Pearlman. Three-

Dimensional Wavelet-Based Compression of Hyperspec-

tral Images, pages 273±308. Springer US, Boston, MA,

2006.

[32] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck

Cappello. Significantly improving lossy compression for

scientific data sets based on multidimensional prediction

and error-controlled quantization. In 2017 IEEE Inter-

national Parallel and Distributed Processing Symposium

(IPDPS), pages 1129±1139, 2017.

[33] Jiannan Tian, Sheng Di, Xiaodong Yu, Cody Rivera, Kai

Zhao, Sian Jin, Yunhe Feng, Xin Liang, Dingwen Tao,

and Franck Cappello. Optimizing Error-Bounded Lossy

Compression for Scientific Data on GPUs. In 2021

IEEE International Conference on Cluster Computing

(CLUSTER), pages 283±293, Los Alamitos, CA, USA,

September 2021. IEEE Computer Society.

[34] Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera,

Megan Hickman Fulp, Robert Underwood, Sian Jin, Xin

Liang, Jon Calhoun, Dingwen Tao, and Franck Cappello.

cusz: An efficient gpu-based error-bounded lossy com-

pression framework for scientific data. In Proceedings of

the ACM International Conference on Parallel Architec-

tures and Compilation Techniques, PACT ’20, page 3±15,

New York, NY, USA, 2020. Association for Computing

Machinery.

[35] Boyuan Zhang, Jiannan Tian, Sheng Di, Xiaodong Yu,

Yunhe Feng, Xin Liang, Dingwen Tao, and Franck Cap-

pello. FZ-GPU: A Fast and High-Ratio Lossy Com-

pressor for Scientific Computing Applications on GPUs.

In Proceedings of the 32nd International Symposium on

High-Performance Parallel and Distributed Computing,

HPDC ’23, New York, NY, USA, 2023. Association for

Computing Machinery.

[36] Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-

Laurent D. Tonellot, Zizhong Chen, and Franck Cap-

pello. Optimizing Error-Bounded Lossy Compression

for Scientific Data by Dynamic Spline Interpolation.

In 2021 IEEE 37th International Conference on Data

Engineering (ICDE), pages 1643±1654, 2021.

[37] Kai Zhao, Sheng Di, Xin Lian, Sihuan Li, Dingwen Tao,

Julie Bessac, Zizhong Chen, and Franck Cappello. SDR-

Bench: Scientific Data Reduction Benchmark for Lossy

Compressors. In 2020 IEEE International Conference on

Big Data (Big Data), pages 2716±2724, 2020.

	Introduction
	Background
	Point-Wise Absolute Error (ABS)
	Point-Wise Relative Error (REL)
	Point-Wise Normalized Absolute Error (NOA)

	PFPL Algorithm and Implementation
	Enhanced Lossy Quantizers
	Guaranteeing Error Bounds
	Guaranteeing CPU/GPU Compatibility
	Lossless Compression
	Parallelization and Optimization

	Experimental Methodology
	Performance Evaluation
	Supported Features
	ABS Error Bounds
	REL Error Bounds
	NOA Error Bounds
	Quality of Reconstructed Data
	Other GPU Generations and CUDA Profiling

	Related Work
	Summary and Conclusions
	Acknowledgments

