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Abstract—High-throughput data compression is increasingly
important for large scientific projects. This paper presents PFPL,
a lossy floating-point data compressor with guaranteed error
bounds that is fully compatible between CPUs and GPUs.
Despite this compatibility, PFPL delivers some of the highest
compression and decompression speeds and compression ratios
on both single- and double-precision data. For example, using
an absolute error bound of 1E-3, it yields a single-precision
compression throughput on the SDRBench inputs of 5 GB/s on
a Ryzen 2950X CPU and 423 GB/s on an RTX 4090 GPU. This
is at least 4.6 times higher than the throughput of seven leading
compressors on both devices. Moreover, PFPL’s compression ratio
is higher than that of all tested GPU codes.

Index Terms—lossy data compression,
bounds, CPU/GPU compatibility

guaranteed error

I. INTRODUCTION

Many scientific instruments and simulations generate more
data than can reasonably be handled, both in terms of through-
put and in terms of total size [20]. There are two types of
data compression, lossy and lossless, to alleviate this problem.
Lossless compressors exactly reproduce the original data bit-
for-bit. However, they are often not able to deliver the desired
compression ratios. For example, ZFP [11] can losslessly
compress the NYX file baryon_density [30] by only a factor
of 1.34. In contrast, lossy compression can yield much higher
compression ratios, depending on the selected error bound.
Using the same NYX input with an absolute error bound of
0.01, ZFP obtains a compression ratio of 4.92. This increase
in compression ratio comes at a price. As the name suggests,
lossy compressors “lose” some information and are unable to
perfectly reconstruct the data.

There are three critical issues in state-of-the-art error-
bounded lossy compressors: (1) unguaranteed error bounds,
(2) no support across heterogeneous devices, and (3) low
compression ratio or throughput. Our PFPL compressor in-
corporates novel solutions to address these issues.

(1) Unguaranteed error bounds. The three most widely used
error-bound types are point-wise absolute error (ABS), point-
wise relative error (REL), and point-wise normalized absolute
error (NOA). ABS with a bound of € means each individual
decompressed floating-point value will not vary by more than
a difference of € from its original value. REL bounds the error
relative to the original value such that each reconstructed value
will not vary by more than a factor of 1 + . NOA ensures

that an individual value will not differ by more than ¢ times
the value range of the input (i.e., the maximum minus the
minimum value). Which error-bound type is most appropriate
depends on the data and for what it will be used. Guaranteeing
the specified error bound is important to domain scientists who
already distrust lossy compression [4].

Guaranteeing the error bound for any of the 3 types is quite
difficult. In fact, our experiments show that most existing error-
bounded compressors, including MGARD-X [6], SPERR [21],
SZ2 [23], and ZFP, violate the bound in some cases, mainly
due to the finite precision of floating-point operations. For
example, the quantization used in SZ2 performs a floating-
point division by the error bound during compression and a
corresponding multiplication by the same error bound dur-
ing decompression. Due to rounding, this does not always
yield the expected value, sometimes leading to error-bound
violations. Other compressors have even more serious issues.
For instance, cuSZp [15] performs a pre-quantization of the
floating-point data that may cause integer overflow.

(2) No support across heterogeneous devices. In today’s
heterogeneous HPC environments, scientific data is often
generated and compressed on one device but decompressed
on a different device. On the one hand, GPU-based com-
pression may be critical for applications that produce data
at a very high throughput, whereas CPU-based compression
may be sufficient in other environments. On the other hand,
the resulting data may be decompressed and analyzed by
various users who may or may not have a GPU. Hence, cross-
device compression and decompression is important but rarely
supported by today’s state-of-the-art lossy compressors.

(3) Low compression ratio or throughput. Existing error-
bounded lossy compressors typically either deliver high com-
pression ratios with limited throughput or high throughputs
with limited compression ratios. For example, the CPU-based
SZ3 [24, 26, 36] relies on Huffman coding and ZSTD to
greatly reduce the data size, but these coders suffer from
low throughput. In contrast, the GPU-based cuSZp yields high
throughputs at the cost of low compression ratios. Improving
compression and decompression throughput while delivering a
high compression ratio is challenging because transformations
that compress well tend to be slow and not GPU friendly, and
transformations that are fast tend to not compress well.

The current state of the art is disconcerting. Of the 7 leading



lossy compressors from the literature that we evaluate in this
paper, only one (SZ2) supports all three major error-bound
types but does not guarantee the error bound. Only one (SZ3)
guarantees the error bound but does not support the REL
error-bound type. Only one (MGARD-X) provides CPU/GPU
compatibility but does not guarantee the error bound nor does
it support REL, and only one (SZ3 OpenMP) combines a
high compression ratio and a reasonably high throughput but
does not support GPUs. Table III provides more detail on the
features that each compressor supports.

To remedy these shortcomings, we developed the error-
bounded PFPL (Portable Floating-Point Lossy) compression
algorithm that yields high compression ratios for all three main
error-bound types while also being efficiently implementable
on both CPUs and GPUs and guaranteeing the error bound
in all cases. On the SDRBench inputs [30], it delivers higher
compression ratios than the other tested compressors that reach
the same throughput, and it delivers higher throughputs than
all other tested compressors that reach the same compression
ratio. PFPL handles all single- and double-precision values,
including infinities, NaNs (not a number), and denormals.

This paper makes the following main contributions.

o It presents PFPL, a new lossy compression algorithm, and
its CPU and GPU implementations that guarantee bit-for-
bit identical deterministic compressed and decompressed
output on both types of devices.

o It describes how PFPL guarantees the error bound for all
three major point-wise error-bound types by losslessly
encoding the single- and double-precision values that
would otherwise violate the bound.

o It explains how PFPL, whose compression pipeline com-
prises a novel combination of parallelism-friendly trans-
formations, is optimized to yield the highest compression
ratios on the tested GPUs and the highest throughputs on
the tested CPUs.

Our PFPL C++/OpenMP and CUDA implementations are
freely available through GitHub [12].

The rest of this paper is organized as follows. Section II
provides background. Section III explains the PFPL algorithm.
Section IV describes the evaluation methodology. Section V
presents and discusses the results. Section VI summarizes
related work. Section VII concludes the paper with a summary.

II. BACKGROUND

This section describes the three point-wise error-control
metrics, point-wise absolute (ABS), point-wise relative (REL),
and point-wise normalized absolute (NOA), that are most
commonly used in the literature [15, 22, 25, 27, 34, 37].

A. Point-Wise Absolute Error (ABS)

The point-wise absolute error of a data value is the dif-
ference between the original value of the data point and its
reconstructed value [32]. The absolute error of a data value x
is defined as €abs = ‘xoriginal - (Ereconstructed|~ Therefore,
to guarantee an absolute error bound of &, each value in
the reconstructed file must satisfy eqps < €. In other words,

each reconstructed value must be in the following range:
Zoriginal — € < Lreconstructed < Loriginal +e.

ABS error bounds are useful when the data is quite ho-
mogeneous in terms of magnitude or when the user does not
have a particular interest in areas where values may be small
relative to the error bound, that is, when the user cares mainly
about the “big picture”.

B. Point-Wise Relative Error (REL)

The point-wise relative error of a data value is the ratio
between the difference of the original and its reconstructed
value and the original value [22]. The relative error of a
value = is expressed as e, = |Toriginel_Treconstructed

| 1 _ Zreconstructed

Zoriginal

Gomstrusted |, To guarantee a relative error bound of e,
each value in the reconstructed file must satisfy e, < e.
In other words, each reconstructed value must have the same
sign as the original value and be in the following range:
|xo7'z'ginal|/(1 + 6) < ‘ereconstructed| < |xoriginal| X (1 + 5)-
The point-wise relative error is often referred to as PW_REL
or PWR in the literature [1, 22]. We omit the “PW” as it is
not used for any of the other point-wise error-bound names.
REL error bounds are employed when the user wants to
preserve a high level of detail in areas where the values are
close to zero but does not mind a higher absolute error in areas
where the absolute values are larger.

C. Point-Wise Normalized Absolute Error (NOA)

The point-wise normalized absolute error is the ABS error
normalized by the value range R = %42 — Tmin, that is, the
range between the largest and the smallest value in the input.
The normalized absolute error of a data value x is defined as
Cnoa = |e‘}}i’5 . To guarantee an error bound of ¢, each value
in the reconstructed file must satisfy e,,, < €. Hence, each
reconstructed value must be in the range: Zorigina — €R <
Treconstructed < Toriginal + €IX. Unfortunately, the literature
often refers to NOA as “relative error” or “REL” [1, 5, 16].
We find this nomenclature misleading because, aside from
multiplying the error bound by a constant, the quantization
is identical to that of ABS (and not REL). Hence, we call it
the normalized absolute error bound.

NOA error bounds are convenient when the user has mul-
tiple datasets at different scales but only wants to specify one
absolute error bound for all of them.

III. PFPL ALGORITHM AND IMPLEMENTATION

Supporting compatible compression and decompression be-
tween CPUs and GPUs while maintaining efficiency led us to
use a modular approach in PFPL. Like other algorithms (see
Section VI), PFPL employs a pipeline of data transformations,
all of which are shared between the ABS, REL, and NOA
error-bounded versions, as shown in Figure 1.

A. Enhanced Lossy Quantizers

Irrespective of the error-bound type, PFPL always starts
with a lossy quantizer (Step 1 in Figure 1). ABS and REL are
distinct quantizers whereas NOA is a special case of ABS.
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Fig. 1: Visual representation of the PFPL compression al-
gorithm. Step 1 quantizes the input values using one of
three error-bound types. Step 2 losslessly compresses the
quantized values. Decompression employs the inverse of these
transformations in the opposite order.

Output

—>

Delta using . Zero
Negabinary Bit shuffle

The ABS quantizer uses the supplied point-wise absolute
error bound ¢ to quantize each floating-point value into a bin.
This is accomplished by multiplying the value by 0.5/¢ (i.e.,
the inverse of twice the error bound) and rounding the result
to the nearest integer, which yields the bin number. All values
within £¢ of the center of a bin are thus mapped to the same
bin and will be reconstructed to the center value. For any value
v, this quantizer guarantees that v will be decoded to a value
v’ such that v — e <v' <wv +e.

The REL quantizer operates similarly but in logarithmic
space. It quantizes each floating-point value into a bin by
multiplying the logarithm of its absolute value by 0.5/log(e),
rounding the result to the nearest integer, and applying the
sign of the original value. It reconstructs all values from a
given bin into the same value. Operating in log space makes
the error bound relative. For a value v and error bound ¢, this
quantizer guarantees v will be decoded to a value v’ with the
same sign as v such that [v|/(1 4 ¢) < |V/| < |v| x (1 +¢).

The NOA quantizer is identical to ABS except it first
determines the minimum and maximum values in the input and
multiplies the error bound € by the resulting range, yielding
abs = € x (max — min). This abs error bound is then used
for quantization as if it were passed directly to ABS.

B. Guaranteeing Error Bounds

The three PFPL quantizers guarantee the user-provided error
bound by losslessly encoding all values that would otherwise
violate the bound. In the case of denormals, infinities, and
NaNs, the quantizers simply check for these special values.
Regular values are more complex to guarantee. Due to the
finite precision of floating-point values, there are cases where
operations that ought to yield results within the error bound
do not as outlined in Section I. This is why the encoder
in all PFPL quantizers immediately decodes each value to
check whether it meets the error bound. If it does, the
bin number is emitted. Otherwise, the unmodified floating-
point value is emitted. The cost of this error-bound-guarantee
approach is relatively low. The throughput is unaffected and
the compression ratio is, on average, lower by about 5% [13].
The loss in compression ratio varies based on the error bound,
type, and number of unquantizable values. The ABS error-
bound type is most affected, and smaller error bounds are more
likely to yield unquantizable values. At an ABS error bound

of 1E-3, on average 0.7% of the values in all our inputs are
unquantizable with a maximum of 11.2% on a single input.

Other lossy compressors record such unquantizable values
in a separate list and use a reserved bin number to tell the
decoder when the next value from that list must be used [9, 21,
32]. This approach increases the amount of emitted data and
complicates parallelization. Our quantizers avoid both issues
by emitting a single data stream in which each value is either
a bin number or the original floating-point value. We use the
following technique to correctly decode the data.

For ABS and NOA, the error bound cannot be less than
the smallest positive non-denormal floating-point value. This
means that denormals are always quantized to zero. Hence,
we can use the 8-million-value-wide denormal range in the
floating-point representation for recording the bin numbers (in
magnitude-sign format). Bin numbers that would be too large
are not used and the corresponding value is encoded losslessly.

For REL, this approach does not work as it requires particu-
larly high precision in the denormal range. Instead, we use the
negative 8-million-value-wide NaN range for storing the bin
numbers. To free it up, we make all negative NaNs positive.
Since negative NaNs (i.e., bin numbers) have a large number
of leading ‘1’ bits, we invert those bits of all emitted values
(bin numbers and losslessly encoded floating-point values) to
make the data easier to compress in the later stages.

Double-precision values are handled in the same way.
However, their denormal and NaN ranges are much larger,
allowing for a wider range of bin numbers to be encoded.

C. Guaranteeing CPU/GPU Compatibility

Since we want the same bit-for-bit compression and de-
compression result on CPUs and GPUs, we only use oper-
ations that are guaranteed to yield the same result on both
kinds of devices. In particular, we exclusively use floating-
point operations that are fully IEEE 754 compliant [2] and,
importantly, employ flags to prevent the compiler from intro-
ducing non-compliant operations. Hence, we implemented our
three quantizers with only floating-point addition, subtraction,
multiplication, and division (no fused multiply-adds) as well
as integer operations. This was relatively straightforward for
ABS and NOA. However, REL includes log() and pow()
function calls, which often do not produce the same result
on the GPU as they do on the CPU. To address this issue,
we wrote approximations for both functions that use only
IEEE-compliant operations. These approximations introduce
small inaccuracies, which are fine in most cases because the
result is still within the error bound. In cases where it is
not, the aforementioned immediate verification catches the
problem and losslessly encodes the affected values. On the
tested inputs, our approximations for guaranteeing CPU/GPU
compatibility cause a 5% loss in compression ratio, on average,
and cause no change in throughput.

D. Lossless Compression

Quantization by itself does not shrink the data but only
transforms the 32- or 64-bit floating-point values into more
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Fig. 2: ABS quantization with an error bound of 0.01. Successfully quantized values are stored as bin numbers in magnitude-sign
format, values that cannot be quantized within the error bound are stored losslessly without changing any bits (not shown)

compressible integer bin numbers as outlined in Figure 2. To
find a good lossless compression algorithm for the output of
our quantizers, we tested a large number of combinations of
data transformations (see below). To ensure a high throughput,
we only considered transformations that can be implemented
efficiently on CPUs and GPUs. The 3 lossless pipeline stages
of PFPL (Step 2 in Figure 1) are the result of this search.

We designed these stages with the LC framework [3], which
can automatically synthesize parallelized data compressors for
CPUs and GPUs. In particular, we used LC to generate many
algorithms and then optimized the best. This led to the cre-
ation of the transformations described below, which boost the
compression ratio while maintaining a high throughput. Note
that PFPL employs the same lossless compression pipeline for
all three quantizers. Moreover, the double-precision code uses
the same pipeline as the single-precision code but with the
word size of all but the last stage increased to 64 bits.

The first lossless stage, an example of whose operation is
shown in Figure 3, computes the difference sequence of the
quantizer output, that is, it performs delta modulation [19].
This means each value (e.g., 3, 4, 4, 3) is replaced by
itself minus the previous value (e.g., 3, 1, 0, -1). If the bin
numbers are close to each other, which they are for many
scientific datasets, this transformation yields residuals that
cluster around zero. Importantly, this stage stores the residuals
in negabinary format. Negabinary is a representation of values
in base -2. Unlike in twos-complement representation, small
positive and small negative negabinary values both have many
leading zero bits, as shown in the third row of Figure 3. This
is exploited in the later compression stages.

The second lossless stage performs bit shuffling (aka bit
transposition) [28] as outlined in Figure 4. It outputs the
most significant bit of all residuals, followed by the second-
most significant bit of all residuals, and so on. If consecutive
residuals have ‘0’ bits in the same position, which they often
do due to the negabinary values from the prior stage, this
transformation yields long runs of ‘0’ bits.

Unlike all other stages, the final stage operates at byte
granularity. As illustrated in Figure 5, it generates a bitmap in
which each bit corresponds to a byte of the input. A cleared bit
indicates that the corresponding byte is zero. Otherwise, the bit
is set. All zero bytes are then removed from the input. Hence,

the compressed output consists of the bitmap and the non-zero
bytes from the input. The size of the bitmap is always the size
of the input divided by 8, but the number of non-zero bytes
depends on the data. Since the bitmap represents considerable
overhead, we compress it using a similar algorithm that creates
a second, smaller bitmap in which a cleared bit means the byte
repeats and a set bit means it does not. Only the non-repeating
bytes of the first bitmap are emitted along with the second
8-times-smaller bitmap. This process is iteratively applied 4
times, generating a shorter bitmap in each iteration (plus the
non-repeating bytes), until the bitmap is only a few bytes long.

By themselves, none of these transformations produce high
compression ratios. In fact, only the last stage compresses
at all. The overall performance stems from the specific se-
quence described. Removing any one of these transformations
decreases the compression ratio by a substantial factor.

PFPL is designed to target a wide range of scientific
data since this domain is one of the largest producers of
floating-point data. For numeric stability, such data tends
to be smooth, which our compressors exploit. As described
above, data in which the consecutive values differ by relatively
small amounts are transformed into long sequences of ‘0’
bits. These ‘O’ bits are then eliminated in the last stage.
PFPL should, therefore, compress relatively smooth data from
various domains well. We do not expect our lossy compressors
to work as well on data that is not smooth. However, the wide
range of scientific inputs we use for evaluation (see Section IV)
tend to be quite smooth, are centered around zero, and contain
no denormals, NaNs, or infinities [37].

E. Parallelization and Optimization

We implemented PFPL in OpenMP for parallel CPU ex-
ecution and in CUDA for parallel GPU execution. Since
our quantizers do not separately record outliers, ABS and
REL are embarrassingly parallel and trivial to parallelize, i.e.,
every floating-point value in the input can be independently
quantized. The same is true for NOA, except it first needs
to perform a parallel minimum and maximum reduction. The
resulting range is recorded in the compressed file so the
decoder has access to it, making it embarrassingly parallel.

The lossless pipeline stages are parallelized for the CPU by
breaking the data into 16 kB chunks that are independently
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Fig. 5: Zero-byte elimination in the final lossless stage; further compression of the bitmap is not shown

processed by different threads. A similar approach is used without accessing memory. Creating the bitmaps in the zero-
for the GPU, where each chunk is assigned to a separate elimination encoder is embarrassingly parallel and can be done
thread block. Since not all chunks are equally compressible, without atomic operations as we assign 8 consecutive bytes to
we dynamically assign the chunks to the threads or thread each thread. Outputting the non-zero (or non-repeating) bytes
blocks to improve the load balance. If a chunk cannot be to the correct location requires a block-wide prefix sum. The
compressed, the original chunk data is emitted and the chunk decoder similarly performs a block-wide prefix sum over the
is flagged as uncompressed to cap the worst-case expansion.  bits in the bitmap to compute the location where each thread
On both the CPU and the GPU, the resulting compressed can find the non-zero (or non-repeating) bytes it needs to
chunks are concatenated and their sizes are separately stored recreate the uncompressed data.
in the compressed file. The concatenation is implemented by To maximize performance, we optimized our PFPL imple-
propagating the cumulative size of all prior compressed chunks  mentation as much as we could. In the GPU code, we use
to the next thread or thread block so it knows where to start coalesced memory accesses wherever possible (even when
writing its output. On the CPU, we use a shared carry array  reading and writing “unaligned” compressed data) to improve
for this purpose that is accessed with atomic reads and writes.  the memory throughput. We minimize the size of the relatively
On the GPU, we use Merrill and Garland’s decoupled look-  expensive prefix sums by allocating multiple values to each
back technique [29]. On both devices, the decoder computes  thread and computing a thread-local result before invoking
a prefix sum over the stored chunk sizes to determine where the block-wide prefix sum. We maximize the use of shuffle
to start reading each chunk. instructions to exchange data between threads without access-
In the CUDA code, each lossless stage is further parallelized ing memory. In the CPU code, we avoid almost all prefix
across the threads within a thread block. This is trivial for the sums by having each thread process an entire chunk at a time.
delta encoder, which is embarrassingly parallel. The decoder The most important optimization is fusing all four stages in
requires a block-wide prefix sum. The bit-shuffle encoder both the CPU and the GPU code, including the quantizer.
and decoder operate at warp granularity, where each warp is This way, the data is only read from main memory once,
independently responsible for a chunk of 32 or 64 values. then all transformations are performed, and finally the data is
They employ logs(wordsize) shuffling steps, which are im-  written back to main memory. The GPU code keeps almost all
plemented using warp shuffle instructions that exchange data intermediate data in shared memory (a software-controlled L1



data cache). The CPU code keeps most of the intermediate data
in two 16 kB buffers that are alternately used and, therefore,
likely resident in the L1 data cache.

IV. EXPERIMENTAL METHODOLOGY

We compare PFPL to 7 state-of-the-art lossy compressors,
described in Section VI, on the two systems listed in Table I.

We compiled the CPU codes using the build processes
supplied by their respective authors. When not specified, we
used the “-O3 -march=native” flags. Unless automatically
determined, the thread count was set to the number of CPU
cores as hyperthreading usually does not help. We compiled
the GPU codes using the “-O3 -arch=sm_89” flags for the
RTX 4090 and the “-O3 -arch=sm_80” flags for the A100.

For all compressors, we measured the execution time of the
compression and decompression functions, excluding reading
the input file, verifying the results, and transferring data to
and from the device. We ran each experiment 9 times and col-
lected the compression ratio, median compression throughput,
and median decompression throughput. The plots report the
geometric mean of the geometric mean of each suite so as not
to overemphasize suites with more files. Additionally, the use
of the geometric rather than arithmetic mean helps dampen
any inputs that significantly outperform the general case [14].

TABLE I: Systems used for experiments

‘ ‘ System 1 ‘ System 2 ‘
CPU Threadripper 2950X | Xeon Gold 6226R
Base Clock 3.5 GHz 2.9 GHz
Sockets 1 2
Cores Per Socket 16 16
Threads Per Core 2 2
Main memory 64 GB 64 GB
GPU RTX 4090 A100
Compute Capability 8.9 8.0
Base Clock 2.2 GHz 0.8 GHz
Boost Clock 2.5 GHz 1.4 GHz
SMs 128 108
CUDA Cores per SM 128 64
Main memory 24 GB HBM2e 40 GB GDDR6x
Operating System Fedora 37 Fedora 36
g++ Version 12.2.1 12.2.1
nvcce Version 12.0 12.0
GPU Driver 525.85 535.113

TABLE II: Information about the used input suites

Name Description Format | Files Di Size (MB)
CESM-ATM Climate Single 33 26 x 1800 x 3600 674
EXAALT Copper | Molecular Dyn. | Single 6 Various 2D 68 to 358
Hurricane Isabel Weather Sim. Single 13 100 x 500 x 500 100
HACC Cosmology Single 6 280,953,867 1124
NYX Cosmology Single 6 512 x 512 x 512 537
SCALE Climate Single 12 98 x 1200 x 1200 564
QMCPACK Quantum MC Single 2 33,120 x 69 x 69 631
NWChem Molecular Dyn. | Double 1 102,953,248 824
Miranda Hydrodynamics | Double 7 256 x 384 x 384 302
Brown Samples Synthetic Double 3 33,554,433 268

We used the 7 single-precision and 3 double-precision suites
shown in Table II as inputs for the compressors (if supported),
a total of 89 files. These inputs are sourced from the SDR-
Bench repository [30, 37], which hosts real-world scientific
datasets from various domains for compression evaluation. The
table lists the suite’s name, short description, floating-point
format, number of files, input dimensions, and file size.

To keep the number of inputs reasonable and make the
comparison as fair as possible, we excluded some SDRBench
datasets. We only use the 3D CESM-ATM inputs as they are
similar to the other CESM-ATM inputs and 3D is a commonly
used dimension. We use only the EXAALT Copper dataset as
it is in the middle in terms of size for the EXAALT sets.
We use the raw (i.e., not cleared) data from the Hurricane
ISABEL set. Additionally, we exclude SDRBench datasets that
are incompatible with the tested compressors because they are
either too large or in a proprietary format.

We present the results in x/y-scatter plots. The two di-
mensions are compression ratio and either compression or
decompression throughput. Note that, for space reasons, the
plots include serial and parallel CPU results as well as GPU
results. One or both axes are logarithmic to capture the
wide range of compression ratios and/or throughputs. For all
compressors, the circular data point is for an error bound
of 1E-1, the triangle for 1E-2, the square for 1E-3, and the
pentagon for an error bound of 1E-4. The Pareto fronts, sets
of empirical optima, are marked with light blue lines. For
a compressor to be on the Pareto front, it must outperform
every other compressor in at least one dimension for the given
error bound. For the third-party compressors that support serial
and parallel execution or CPU and GPU execution, we only
show the fastest version if the compression ratio is the same
between the versions. Otherwise, we show all versions. For
ZFP, which supports serial and parallel compression but only
serial decompression, we show serial results only. We always
show all versions of PFPL.

We only compare to SPERR-3D because SPERR-2D does
not run in parallel and SPERR-3D supports more of the
input suites. However, SPERR-3D does not run in parallel
on double-precision inputs. We only compare to SZ2 in
Section V-C. In the other subsections, we instead compare to
SZ3 because it performs better in terms of compression ratio
and is comparable in terms of throughput. However, SZ3 does
not support the REL error bound whereas SZ2 does. For the
ABS and NOA error bounds, we show results for two versions
of SZ3: SZ3geriai and SZ3oprp. The OpenMP version
of SZ3 produces different compression ratios, and therefore
different files, than the serial version, but both versions can
be used to compress and decompress interchangeably and still
yield correct (but different) output. Since not all compressors
perform a warm-up before timing, where present, we disabled
the warm-up code to make the performance comparisons fairer.

ZFP bounds the relative error by truncating a requested
number of least significant bits in the floating-point representa-
tion. Bounding the REL error by a specific value (e.g., 1E-3)
is not always possible with ZFP. We report results for bit-
truncations that yield similar errors to the bounds used when
running the other two REL compressors.

The presented compression ratios are the uncompressed
file size divided by the compressed file size. Rather than
listing the measured runtimes, we show throughputs (i.e.,
the uncompressed file size divided by the runtime) because
throughput, like compression ratio, is a higher-is-better metric.



V. PERFORMANCE EVALUATION

In this section, we evaluate 7 leading lossy compressors
from the literature as well as PFPL. We first compare the
error-bound guarantees and other features of each compressor.
Then, we analyze the throughputs and compression ratios on
different error bounds and data types for ABS, REL, and NOA.
Next, we present results on the reconstruction quality of the
lossily decompressed data. Finally, we discuss the performance
of PFPL on additional GPU generations and our findings when
profiling the CUDA version of PFPL.

A. Supported Features

This subsection compares the 8 lossy compressors in terms
of which error-bound types they support, whether they guar-
antee the error bound, whether they support CPU and GPU
execution, and other properties. Table III shows the results.
The top row lists the features; each remaining row corresponds
to one compressor.

TABLE III: All tested compressors (ordered by initial release
date) and the features they support. ‘v indicates the compres-
sor supports the feature, ‘<’ indicates that it does not, and ‘©’
indicates that the compressor supports an error bound type but
does not always adhere to the requested error bound.

Compressor ABS REL NOA Float Double CPU GPU
ZFP X X
SZ2 X
SZ3 X
MGARD-X
SPERR
FZ-GPU X
cuSZp

PFPL

X

XX | X|X|[X
X

‘ABS’, ‘REL’, and ‘NOA’ denote the error-bound type. Note
that SZ2, the only other compressor to support all three error
bound types, fails to guarantee the error bound when using
REL. In contrast, the related SZ3 guarantees the error bound
because it does not support REL. Like SZ2, ZFP and SPERR
also violate the error bounds in a few cases due to rounding
issues. PFPL avoids such problems by double-checking each
value after compression and storing it losslessly whenever the
error bound would be violated. ‘Float’ and ‘Double’ indicate
support for 32-bit single-precision and 64-bit double-precision
data. ‘CPU’ and ‘GPU’ display support for compression and
decompression on the respective device.

Even though lossy compression is quite mature, PFPL
advances the state of the art in that, to our knowledge, it is the
only compressor that supports all listed features. Moreover, it
compresses on par with many other tested compressors and
is at least as fast as all of them, including compressors that
exploit input dimensionality or only run on and are optimized
for a specific type of device, as illustrated below.

B. ABS Error Bounds

Compression: Figures 6a and 6b show scatter plots of the
compression ratio versus the compression throughput for the

ABS error bounds on System 1 for the single- and double-
precision inputs, respectively. To produce these results, we
excluded the EXAALT and HACC inputs because they are
not 3D, which causes issues with SPERR, and because HACC
makes MGARD-X run out of memory. Note that cuSZp and
ZFP have major (> 1.5X) error-bound violations for all tested
error bounds and that SPERR has minor (< 1.5X) violations
for the 1E-2 error bound. MGARD-X has major error bound
violations on all tested error bounds, but only for the double-
precision inputs. SPERR is not listed for the double results as
it does not support the majority of those inputs. FZ-GPU is
not listed as it does not support ABS.

PFPLcypa delivers the highest throughput for all tested error
bounds, and PFPLoyp yields the highest throughputs on the
CPU. PFPLopp performs particularly well; it is 7.1 times
faster than the next fastest CPU code (SZ3oMmp) On average
and almost on par with the slowest GPU code. This good
performance is primarily because we built our algorithm out
of only fast transformations, fused all stages, and only read the
input data once from main memory and write the output data
once to main memory. In general, the throughput of the various
compressors decreases with smaller error bounds, but by less
than the decrease in compression ratio. PFPLcypa achieves a
compression throughput of 446 GB/s at the coarsest and 423
GB/s at the finest tested bound on the single-precision inputs.

SZ3seriar delivers the highest compression ratio for all tested
error bounds. The two versions of SZ3 compress more than
PFPL on both data types, and SPERR compresses more on
single-precision data. They are all CPU-only compressors that
use GPU-unfriendly transformations to boost their compres-
sion ratio such as Huffman coding. For the same reason, the
OpenMP version of SZ3 compresses significantly less than
serial SZ3, that is, the serial version includes well-compressing
transformations that are not parallelism friendly. We note that
ZFP’s compression ratios are not on par with the other CPU-
only compressors. One reason is that ZFP often over-preserves
the compression errors, meaning it tends to deliver a lower
maximum error than allowed by the error bound. All tested
GPU compressors (and ZFP) are both slower and compress
less than PFPLCUDA.

Since the three versions of PFPL are compatible and pro-
duce bit-for-bit identical output, their compression ratios are
identical. For all tested compressors, the compression ratio
decreases with a tighter error bound, as one would expect.
However, for the compressors that deliver particularly high
compression ratios for an error bound of 1E-1, the drop
in compression ratio is more pronounced than for the other
compressors. For example, at the largest error bound, PFPL
produces a compression ratio of 68 whereas SZ3g.i, yields a
ratio of 863, a factor of almost 13. At the smallest error bound,
the difference is only a factor of 3 with SZ3g.iy yielding a
compression ratio of 38 versus PFPL’s ratio of 14. The reason
SZ3 delivers higher compression ratios than PFPL is that SZ3
employs a more sophisticated data decorrelation method and
lossless encoder at a cost of significantly lower throughput.

Decompression: Figures 7a and 7b show scatter plots of
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Fig. 6: Compression results for the ABS error-bound type, including Pareto fronts for the 4 error bounds

® ZFPseriai ® SZ3serial ]
SZ3omp @MGARD-Xcupa |5
o SPERRomp cuSZpcupa ;
E PFPLseris ®  PFPLomp |
~ ® PFPLcupa El
£ 1
2 ° ]
é A E|
2 1
£ = -
3 ® ?
© £ ‘n a
8 . e |
100
10° 10t 102 103

Decompression Throughput (GB/s)

(a) System 1 geo-mean compression ratio
and decompression throughput on single-
precision data with 4 ABS error bounds

106: T Ty
F ® ZFPserial @ SZ3serial 1
10° | SZ3omp @ MGARD-Xcupa |
o E cuSZpcupa PFPLserial
= r ® PFPLovp ®  PFPLcupa
& E E
= F
] [
3 E
A
g L A ( ®
O 102§ = a A
e o’ = "
0§ e E
Bl vvvvnd i v vind e end
107! 10° 10 102 103

Decompression Throughput (GB/s)

(b) System 1 geo-mean compression ratio
and decompression throughput on double-
precision data with 4 ABS error bounds

108 ] A S A
® ZFPserial @ SZ3serial
10° £ SZ3omp @MGARD-Xcupa |5
o F SPERRomp cuSZpcupa ]
Z 104k PFPLgcriat ®  PFPLomp
ﬁ: E ® PFPLcypa
=]
‘7 L} E|
s A
=5
g 102 & 4
S E @ ’ E
A S :
101’:”””\\ TR T Y N W
10° 10t 102 108

Decompression Throughput (GB/s)

(c) System 2 geo-mean compression ratio
and decompression throughput on single-
precision data with 4 ABS error bounds

Fig. 7: Decompression results for the ABS error-bound type, including Pareto fronts for the 4 error bounds

the compression ratio vs. the decompression throughput for
the ABS error bounds on System 1 for the single- and double-
precision inputs, respectively. The compression ratios are the
same as in Figures 6a and 6b. Only the throughputs differ.
At a decompression throughput of between 327 GB/s and
344 GB/s, PFPLcypa is still the fastest on the single-precision
data, but cuSZpcupa is faster on the two coarsest error bounds
on the double-precision data. This is because cuSZpcupa
decompresses much faster than it compresses due to its
lightweight fixed-length decoding step. In contrast, our three
PFPL versions compress faster than they decompress due to
prefix-sum computations in the decoder. MGARD-X com-
presses noticeably faster than it decompresses, especially on
double-precision values, where it is the slowest decompressor
even though it runs on the GPU. Otherwise, the decompression
performance trends are similar to the compression trends.
System 2: Figures 6¢c and 7c show the single-precision
results for System 2. The compression ratios between the
two systems are, of course, the same, but the throughputs
differ because System 2 has a more powerful CPU and a less
powerful GPU. Otherwise, the trends between the systems are
very similar, including for the double-precision results and the

other error-bound types. Hence, we only show results from
System 1 in the following subsections.

Takeaway 1. In environments where not only compression
ratio but also throughput is important, PFPL provides the
currently best solution. Despite having features that other
compressors do not, in particular full CPU/GPU compati-
bility, PFPLowyp is faster than the CPU-only compressors
and PFPLcypa is generally faster and compresses more
than the GPU-only compressors. MGARD-X, the only other
compressor that is CPU/GPU compatible, is 37 times slower
at compression and 63 times slower at decompression and
compresses between 6 and 13 times less than PFPL.

C. REL Error Bounds

Compression: Figures 8 and 9 show scatter plots of the
compression ratio versus the compression throughput for the
REL error bounds on System 1 for the single- and double-
precision inputs, respectively. We used all inputs to produce
the results shown in these charts. Note that SZ2 has large error-
bound violations on CESM for all tested error bounds and
ZFP does not conform to the error bound due to its different



bounding technique. Only PFPL, SZ2, and ZFP are shown as
they are the only tested compressors that support REL.
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Fig. 9: System 1 geometric-mean compression ratio and com-
pression throughput on double-precision data with REL error
bounds, including Pareto fronts for the 4 error bounds

SZ2 yields higher compression ratios than PFPL. It is,
however, unclear how much of that is due to the error-
bound violations by SZ2. ZFP delivers lower compression
ratios than the other compressors mainly due to its truncation-
based REL implementation. Like with ABS, the advantage of
SZ2 over PFPL shrinks as the error bound gets smaller. SZ2
outcompresses PFPL by a factor of 1.7 at an error bound of
1E-1 but only by a factor of 1.4 at an error bound of 1E-4.
This is because, when the error bound is large, the bin values
tend to be relatively smooth and easy to compress. Hence,
compressors like SZ2 can get very high compression ratios
from their sophisticated yet expensive designs.

PFPLcypa delivers the highest throughput, followed by the
two CPU versions of PFPL, all of which outperform serial
SZ2 in terms of throughput due to our lightweight design and
performance optimization (see Section III-D and III-E). At the
highest error bound, ZFP reaches the compression throughput
of PFPLg,i, . At all tested error bounds, PFPLcypa compresses
the single-precision inputs on the order of 3000 times faster
than SZ2 and the double-precision inputs roughly 500 times
faster. On the CPU, PFPLoyp compresses 41.4 times faster on
average than serial SZ2.

Decompression: Figures 10 and 11 show scatter plots of
the compression ratio versus the decompression throughput
for the REL error bounds on System 1 for the single- and
double-precision inputs, respectively.
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Fig. 10: System 1 geo-mean compression ratio and decom-
pression throughput on single-precision data with REL error
bounds, including Pareto fronts for the 4 error bounds
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Decompression exhibits the same trends as compression.
The three versions of PFPL outperform SZ2 and ZFP in
terms of throughput. PFPLcypa is hundreds to thousands of
times faster than SZ2. Interestingly, the CPU-based codes
decompress faster than they compress whereas PFPLcypa
compresses faster than it decompresses. The reason is that
our first lossless stage requires a prefix sum for parallelizing
the decoder on the GPU but not the encoder, making decom-
pression slower.

Takeaway 2. PFPL greatly outperforms SZ2 in throughput
and guarantees the error bound. SZ2 yields a higher com-
pression ratio but violates the error bound on some inputs.
ZFP has similar compression throughput to PFPLgei, but
significantly lower compression ratios. Additionally, PFPL
supports parallel CPU and GPU execution, a unique feature
for the REL error-bound type, whereas SZ2 and ZFP are
only available as serial CPU code.

D. NOA Error Bounds

Compression: Figures 12 and 13 show scatter plots of the
compression ratio versus the compression throughput for the
NOA error bounds on System 1 for the single- and double-
precision inputs, respectively. These results again exclude the
EXAALT and HACC inputs as they are not 3D and, therefore,
unsupported by FZ-GPU. ZFP and SPERR do not support
NOA error bounds and are not shown. FZ-GPU does not
support double-precision data and crashes for the 1E-3 and 1E-
4 bounds on some of the single-precision inputs. It has minor
error bound violations for the other two bounds. MGARD-
X and cuSZp have major error-bound violations on all tested
double-precision inputs.
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Fig. 12: System 1 geometric-mean compression ratio and
compression throughput on single-precision data with NOA
error bounds, including Pareto fronts for the 4 error bounds

Both versions of SZ3 yield high compression ratios com-
pared to the other compressors. As noted in the ABS section,
the more parallelism-friendly algorithm used in SZ3omp iS
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Fig. 13: System 1 geometric-mean compression ratio and
compression throughput on double-precision data with NOA
error bounds, including Pareto fronts for the 4 error bounds

less effective than SZ3geria1. SZ30omp is the second-fastest CPU
code behind PFPLgyp, which is 4.4 times faster on average.
The next best compressor for both data types is PFPL. On the
single-precision inputs, PFPLcypa is the fastest for all tested
error bounds. On the double-precision inputs, cuSZp is faster
but yields a lower compression ratio and violates the error
bound. At the tightest error bound, cuSZp yields a compression
ratio of 13 compared to PFPL’s compression ratio of 50.

Decompression: Figures 14 and 15 show scatter plots of
the compression ratio versus the decompression throughput
for the NOA error bounds on System 1 for the single- and
double-precision inputs, respectively.

106

% T T TTTT] T T T TTTT] T T T TTTT] T T T T 1717 E

g ®  S73serial SZ3omp ]

105 E .MGARD—XCUDA FZ-GPUCUDA E

o - cuSZpcupa PFPLserial |
43 104 = [ J PFPLOI\/IP o PFPLCUDA .
o~ £ E
g 5 [ i
7 10°F A ) *
g | z
g 102 = A A
O e || LI
F | E

[ ) i
100?\\\\\\\ Lol Lol N

100 10* 102 103

Decompression Throughput (GB/s)

Fig. 14: System 1 geo-mean compression ratio and decom-
pression throughput on single-precision data with NOA error
bounds, including Pareto fronts for the 4 error bounds

The general trend for decompression is similar to the
compression results. The only major difference is that cuSZp
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Fig. 15: System 1 geo-mean compression ratio and decom-
pression throughput on double-precision data with NOA error
bounds, including Pareto fronts for the 4 error bounds

now outperforms PFPL in decompression speed on one of the
error bounds for the single-precision data. The reverse is true
for the double-precision inputs, where cuSZp is fastest on
three out of the four tested bounds. PFPLoyp delivers high
decompression throughputs on the CPU. On average, it is 5
times faster than the next fastest CPU code and 2.7 times faster
than the slowest GPU code.

Takeaway 3. For the NOA error-bound type, if both
throughput and compression ratio are important, PFPL is
the preferred solution. SZ3 is the best choice if only
the compression ratio matters. PFPL is much faster and
compresses more than MGARD-X, the only other tested
compressor that is CPU/GPU compatible.

E. Quality of Reconstructed Data

Figure 16 shows the relationship between the peak-signal-
to-noise ratio (PSNR) and the compression ratio at different
error bounds for all tested compressors and error-bound types.
The inputs used for producing each PSNR chart match those
of the respective result sections above. Higher PSNR values
are better as they indicate higher reconstruction quality. A user
may want to select the compressor that has the best PSNR.

PFPL yields a PSNR-to-compression-ratio relationship that
falls in-between the CPU-only compressors and the GPU-
compatible compressors, that is, PFPL delivers the best results
among the GPU codes. In absolute terms, its PSNR is similar
to that of the best CPU compressors, but at a lower com-
pression ratio. These results demonstrate that the quantization
method we use in PFPL delivers comparable data quality to
the CPU-only compressors.

F. Other GPU Generations and CUDA Profiling

In addition to the aforementioned RTX 4090 and A100
GPUs, we also evaluated PFPL on a TITAN Xp, an RTX 2070

Super, and an RTX 3080 Ti. This experiment shows that the
performance correlates primarily with the amount of compute
provided by the GPU. For example, the RTX 2070 Super has a
maximum number of threads per block of only 1024, which is
fewer than any of the other GPUs. The corresponding decrease
in the number of resident thread blocks, and thus available
compute, causes the 2070 Super to perform similarly to the
3-year-older TITAN Xp. The RTX 4090 has more SMs and a
higher clock speed than the A100, but the A100 has greater
memory bandwidth. As shown in Section V-B, PFPL is faster
on the RTX 4090 than on the A100 on both single- and
double-precision inputs. The A100 also has more FP64 units
than the RTX 4090. Yet, we do not see a large difference in
performance because PFPL, and the other tested compressors,
only execute a few floating-point operations in the quantizer.
The rest of the quantizer and all other stages exclusively use
integer operations.

Our profiling results back up the above findings and show
that PFPL is not main-memory bound. After all, it reads the
input from main memory only once, performs most of the
work while the data resides in shared memory, then writes
the output to main memory once. On the A100, we only
utilize 15% of the available DRAM throughput while using
the majority of the available compute power. The results for
the RTX 4090 are similar, but the DRAM utilization is a little
higher due to the lower available throughput.

VI. RELATED WORK

This section describes the seven state-of-the-art lossy
floating-point compressors [10] with which we compare PFPL.

There are four main versions of SZ. They all have an overar-
ching theme of using prediction in their compression pipeline.
SZ2 [23] uses Lorenzo prediction [18] and linear regression
followed by quantization. SZ3 [24, 26, 36] is an improvement
that generally produces better compression ratios with similar
throughput. Both SZ2 and SZ3 adopt entropy coding plus
lossless compression after the lossy stage (e.g., Huffman [17]
followed by GZIP [8] or ZSTD [7]). SZ2 and SZ3 are both
CPU-only compressors. cuSZ [33, 34] is a CUDA implemen-
tation that employs a different, more GPU-friendly algorithm.
It performs Lorenzo prediction and quantization followed by
multi-byte Huffman coding. FZ-GPU [35] is a specialized
version of cuSZ that fuses multiple kernels together for better
throughput. Compared to FZ-GPU, cuSZp [15] yields higher
compression ratios and higher decompression throughputs. It
splits the data into blocks and then quantizes and predicts
the values in all nonzero blocks, which are ultimately com-
pressed by a fixed-length encoder. The fixed-length encoding
is implemented using a bit-shuffle operation. Similar to the
SZ compressors, we also use quantization as a lossy step,
and our lossless stages also rearrange the data but utilizing
different transformations. Compared with the SZ compressors,
the key advantages of PFPL are (1) guaranteeing the error
bound for ABS, REL, and NOA, (2) a higher throughput due
to the complete kernel fusion, inlining of outliers, and other
optimizations, and (3) full CPU/GPU compatibility.
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Fig. 16: Compression ratio vs. PSNR results for the 3 error-bound types

ZFP [11, 27] is a widely used tranform-based compressor.
It is specifically designed for in-memory array compression
and supports on-the-fly random-access decompression. ZFP
splits the input into blocks, converts each value into an integer,
performs the aforementioned decorrelation, reorders the data,
and converts the values from twos-complement to negabinary
representation. Then, it groups the bits from most to least
significant. Finally, the shuffled bits are losslessly compressed.
Our approach only has a few commonalities with ZFP (e.g.,
converting to negabinary format).

MGARD [25] is the only other compressor that supports
compression and decompression across CPUs and GPUs. This
compressor uses multigrid hierarchical data refactoring to de-
compose the data and recompose it to a specified accuracy via
selective loading based on the hierarchy after decomposition.
Compared with MGARD, PFPL exhibits significantly higher
compression ratios and throughput on both CPUs and GPUs
but does not support progressive operation.

SPERR [21], a successor of SPECK [31], uses advanced
wavelet transforms that are applied recursively to the input.
SPERR detects outliers that do not meet the error bound and
stores correction factors for those values. The coded wavelet
coefficients and the outliers are compressed using ZSTD.
Like some of the other transformation-based compressors, our
approach does not have much in common with SPERR. We
do, however, keep track of outliers that cannot be correctly
handled within the error bound. Unlike SPERR, we leave these
outliers inline with the rest of the values.

VII. SUMMARY AND CONCLUSIONS

We developed the Portable Floating-Point Lossy (PFPL)
compressor to address three critical issues in existing lossy
compressors: violated error bounds, missing CPU/GPU sup-
port, and low compression ratio or throughput.

We evaluated 8 lossy compressors on 2 systems using 7
single- and 3 double-precision input sets from the SDRBench
suite, a total of 89 files. PFPL yields the highest CPU-parallel
compression and decompression throughput compared to the
codes from the literature. Furthermore, it outperforms all tested

GPU codes in compression ratio. Consequently, PFPL is on
the Pareto front in all sets of results, which is otherwise only
the case for SZ, a CPU-only compressor that is orders of
magnitude slower than PFPL on the GPU. PFPL achieves high
throughputs and compression ratios even though it supports
key features that the other lossy compressors lack.

o It is fully CPU/GPU compatible, which is otherwise only
the case for MGARD-X, but MGARD-X does not support
REL and does not guarantee the error bound.

« It supports the ABS, REL, and NOA error-bound types,
which is otherwise only the case for SZ2, but SZ2 does
not guarantee the error bound on REL.

e It guarantees the error bound for all supported error-
bound types, which is otherwise only the case for SZ3,
but SZ3 does not support REL.

o It combines a high throughput with a good compression
ratio whereas the other studied tools either compress well
or deliver a high throughput but not both.

Hence, PFPL is currently the only CPU/GPU compatible
lossy compressor that guarantees point-wise absolute, relative,
and normalized-absolute error bounds. We hope that PFPL
will enable more scientists to lossily compress their data
with confidence and promote the inclusion of error-bound
guarantees in other lossy compressors.
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