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Abstract—Cerebras system has demonstrated immense poten-
tial across various scientific domains. However, modern scien-
tific simulations frequently generate vast volumes of data in
a short time, leading to bottlenecks in runtime performance
and memory footprint. While an ultra-fast error-bounded lossy
compressor can mitigate such limitations with high compression
ratios and guaranteed data quality, deploying it into Cerebras
dataflow architecture poses significant difficulties. Specifically,
Cerebras faces memory challenges, such as the absence of shared
memory and limited local memory, alongside computational
challenges, including specialized parallelism and sensitivity to
imbalanced workloads. In this work, we propose CERESZ-
II, an error-bounded lossy compressor that computes within
Cerebras system. CERESZ-II addresses these challenges with a
carefully optimized four-stage compression workflow, consisting
of Pre-quantization, Lightweight Prediction, Fixed-size Huffman
Encoding, and Spatial-aware Offset Computation, ensuring both
memory efficiency and computational balance. Evaluation of
several real-world scientific datasets shows that CERESZ-II
achieves over 800 GB/s throughput, delivering high compression
ratios and reliable reconstructed data quality.

Keywords—Error-bounded Lossy Compression, AI Processor,
Dataflow Architecture, Wafer-Scale Engine, Parallel Computing

I. INTRODUCTION

Cerebras [1], powered by its Wafer-Scale Engine (WSE), is
an emerging Al system that shows immense potential across
various high-performance computing (HPC) domains [2]-[4].
For instance, researchers from three national laboratories have
demonstrated strong scaling of molecular dynamics (MD)
simulations on the WSE [3]. They achieved a 179-fold im-
provement in timesteps per second compared to Frontier, the
world’s leading GPU-based supercomputer [5], along with
substantial gains in timesteps per unit of energy.

Meanwhile, modern large-scale HPC simulations frequently
encounter challenges related to high datastream intensity and
excessive memory footprints [6]-[8]. For example, the particle
detectors at the Large Hadron Collider (LHC) at the Europe
Center for Nuclear Research (CERN) must process 1 PB data
in one second [9]. Another case is Reverse Time Migration
(RTM), an advanced seismic imaging technique, producing
up to 2,800 TB of data in memory within only a single
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timestamp on 10x10x8 KM? subterranean structure [10].
In those scenarios, in order to benefit from Cerebras-based
HPC simulation, a fast and high-ratio lossy compressor with
Cerebras WSE will be crucial for efficiently reducing data size
while maintaining ultra-fast processing speeds and promising
data quality.

However, designing a lossy compressor that achieves ultra-
high throughput, promising compression ratios, and effective
error control for data quality is challenging. The idiosyncratic
memory patterns and unique parallelism of Cerebras WSE
add further complexity to the compression algorithm design,
where, unfortunately, none of the existing works sufficiently
address those. For example, Shah et al. [11] implemented an
Al-chip-based compressor using PyTorch [12] to compress
training data, achieving moderate throughput due to the re-
liance on high-level code rather than low-level kernel imple-
mentations. In contrast, CereSZ [13], an error-bounded lossy
compressor designed for WSE, leverages low-level features'.
Yet, it suffers from computational imbalance across processing
elements (PEs)? due to uneven workloads across data blocks.
Furthermore, it neglects the unique parallelism of WSE and
employs dataflow-unfriendly computations, limiting both its
throughput and compression efficiency.

In this work, we propose CERESZ-II, an error-bounded
lossy compressor designed for the Cerebras WSE, to achieve
computational balance and memory efficiency, ensuring full
compatibility with the Cerebras system. CERESZ-II employs
a block-wise design to ensure parallel processing across
PEs while accounting for the dataflow architecture of the
WSE. Specifically, we introduce Fixed-size Huffman Encod-
ing method to reduce local memory usage within each PE
while maintaining computational balance across different PEs.
Through a comprehensive characterization study on several
representative HPC datasets, we build a generic fixed-size
Huffman codebook. This codebook is generated through a
fully offline process, making it only a one-time cost. Moreover,
we propose Spatial-aware Offset Computation, an on-WSE
parallel prefix-sum method designed to efficiently concatenate

I'This is achieved by using Cerebras Software Language (CSL), a C-style
language for modeling dataflow. We will explain it in Section VII-A2.

2PE is an independent processor with its own local memory. PE is also the
minimal unit in WSE dataflow. We will explain in Section II-B.



compressed data blocks. The main contributions of this work
are summarized as below:

o We identify several key challenges in deploying a lossy
compressor onto Cerebras WSE, including the absence
of shared memory, limited local memory, specialized
parallelism, and sensitivity to imbalanced computation.

« We propose CERESZ-II to address the above challenges
within Cerebras WSE, including four major steps: Pre-
Quantization, Lightweight Prediction, Fixed-size Huffman
Encoding, and Spatial-aware Offset Computation.

e We conduct comprehensive evaluations across seven
representative real-world scientific datasets. On aver-
age, CERESZ-II achieves 846.20 GB/s for compression
and 846.59 GB/s for decompression, even consider-
ing the overhead of offset computation. This represents
an 85.02% and 45.63% improvement in compression
and decompression throughput, respectively, compared to
CereSZ, the state-of-the-art Cerebras lossy compressor.
Furthermore, CERESZ-II consistently achieved higher
compression ratios than CereSZ in all cases, while main-
taining superior reconstructed data quality.

II. BACKGROUND

We provide background information on error-bounded lossy
compression and the Cerebras CS-2 system in this section.

A. Error-bounded Lossy Compression

Error-bounded lossy compression is a data reduction tech-
nique that confines introduced errors within a user-defined
threshold [14]. It can offer a significantly higher compres-
sion ratio compared with lossless compression methods while
still preserving promising reconstructed data quality [6], [7],
[15]. Given a user-defined error-bound eb and original data
D = {d;,da,...,dy}, where N denotes the length and each
d; denotes the i-th floating point number, the process of error-
bounded lossy compression can be formulated as below: In
compression, D is compressed into a byte stream B. The
compression ratio can be computed as sizep/sizep. In
decompression, B is reconstructed into D' = {d},d,, ..., dy },
guaranteeing |d; — d}| < eb for each i € {1,..., N}.

Existing exploration of error-bounded lossy compressor
designs can be roughly categorized into two directions: CPU-
based compressors [16]-[19] and compressors on heteroge-
neous processors, including GPU [20]-[23] and emerging Al
processors [11], [13]. While CPU-based designs can focus on
various aspects, including data quality [24], [25], compression
ratio [26], [27], or throughput [28], compressors on heteroge-
neous processors, driven by the massive parallelism of these
architectures, primarily aim to achieve ultra-fast throughput
while maintaining an acceptable compression ratio [13]. With
intrinsic error control and this satisfied compression ratio, the
quality of the reconstructed data can be reliably ensured. Note
that the throughput, routinely measured by GB/s for ultra-
fast compressors [13], [20], [21], [29], [30], is defined as the
volume of data that can be processed during a certain period.

B. Wafer-Scale Engine (WSE) in Cerebras CS-2 System

Cerebras CS-2 is a powerful system for accelerating ma-
chine learning training [31] and scientific simulations [2], [3],
[32]. Its exceptional performance is driven by the Wafer-Scale
Engine (WSE), which consists of a 2D grid of 757x996 pro-
cessing elements (PEs). Figure 1 illustrates the architecture
of the WSE and the PEs. Each internal PE is connected to
its neighboring PEs in four directions, with communication
facilitated by a Fabric Router. Each PE is also equipped
with a local processor and 48 KB of SRAM, linked to its
Fabric Router. Operating at 850 MHz, a PE can transmit a
32-bit message, or wavelet, per clock cycle through its own
router link to adjacent PEs, while reading up to 128 bits from
memory and writing up to 64 bits in the same cycle. This
design enables rapid data processing, intensive parallelism, and
efficient exchange of information across the entire WSE.
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Fig. 1. An overview of Cerebras CS-2 WSE and connection between PEs.
Note that adjacent PEs are communicated by their Fabric Routers.

Cerebras WSE also features a dataflow control charac-
teristic. In this architecture, tasks are dynamically selected
based on the program running on the WSE. Once tasks are
bound to their corresponding colors, their execution sequence
is determined by the arrival order of the wavelets of the
colors. Note that “color” here can be understood as a unique
routable identifier of a specific task. This allows a flexible,
asynchronous execution model, where tasks can be activated
either at compile time or triggered by other tasks. For deploy-
ing a program, such as an error-bounded lossy compressor,
on Cerebras CS-2, it is crucial to adapt its algorithm with
dataflow designs and achieve compatibility with WSE system.

III. KEY CHALLENGES

Our goal is to propose an error-bounded lossy compressor
for the Cerebras CS-2 system. However, as discussed in
Section 1II, designing such a compression algorithm is non-
trivial, requiring (1) aligning with the WSE dataflow archi-
tecture and (2) achieving ultra-high throughput as well as
promising compression ratios. In this section, we outline two
key challenges to achieve this goal, which also motivates the
compression algorithm design in the subsequent sections.

A. Memory Constraints

Absence of Shared Memory: In NVIDIA GPUs, memory
is managed in a hierarchical manner, where a group of threads
has the same shared memory and all threads share the same



global memory [33]. In comparison, in Cerebras CS-2 system,
there are no such shared memory units across different PEs.
This configuration indicates that PEs cannot directly access a
unified memory pool, thereby complicating tasks that rely on
global coordination, such as device-wide prefix-sum [34]-[36]
in block-wise lossy compressors [21], [22], which determines
the location of each compressed block in the final compressed
array. This limitation requires a novel design for performing
synchronization across different PEs.

Limited Local Memory: Recall that, in Cerebras CS-2
system, each PE possesses 48 KB of local memory. While
this local memory is sufficient for lightweight compression
algorithms (e.g. fixed-length encoding [22], [37]) that oper-
ate at block granularity, it presents challenges for encoding
methods that require substantially more memory. One notable
case is Huffman encoding [38]. Although Huffman encoding
is highly effective at reducing data size, it requires much more
memory to store its codebook. For example, given a dataset
containing 100,000 unique integers (32 bits for storing one
integer in computer systems), with an average Huffman code
length of 10 bits, the required memory for storing the Huffman
codebook can be calculated by 100, 000 x 324100, 000 x 10 =
4,200,000 ~ 513 KB. With no shared memory units available,
this generated codebook must be stored in the local memory
of each PE. Unfortunately, such memory requirement far
exceeds the capacity of an individual WSE PE. Therefore, it
is essential to propose a new design to fit existing encoding
schemes within the available memory, more importantly, with
minimized degradation of compression performance.

(C-1): In Cerebras CS-2 system, the absence of shared
memory across PEs and limited local memory in each
PE complicate existing compression algorithm designs,
such as global coordination and Huffman encoding.

B. Unique Computation Patterns

Specialized Parallelism: While both GPUs and Cerebras
CS-2 system utilize parallel processing to enhance runtime
performance, the nature of their parallelism is quite different.
In a WSE PE, the processor has more capable control units
than an individual GPU thread. Coupled with its petabyte-level
memory throughput [1], a PE can perform frequent memory
accesses and handle tasks that involve both control-flow and
data-intensive operations more effectively than a GPU thread,
which is primarily optimized for arithmetic operations. For
example, the most recent GPU lossy compressor cuSZp [22]
transposes the target bit matrix before storing it in global mem-
ory. While this step introduces extra bit-shifting operations,
it simplifies control-flow logic and increases throughput on
GPUs. However, due to the strong control-flow capabilities
within PE, this step is unnecessary in WSE. Using a field
from CESM-ATM [39], a standard climate dataset, as an ex-
ample, omitting transposition increases throughput by 80.45%
compared to using transposition on Cerebras CS-2 system.

Sensitive to Imbalanced Computation: Cerebras WSE is
highly sensitive to computational balance. Specifically, for any
computation task on WSE, the results can only be retrieved
after all PEs have completed their processing. This limits
the throughput of existing parallel compression designs. For
instance, a recent Cerebras-oriented compressor, CereSZ [13]
adopts fixed-length encoding as its core compression algo-
rithm. During this process, each data block preserves the same
number of bits for all its integers, with the bit count determined
by the maximum absolute value in the block. However, data
patterns in HPC datasets can vary significantly [6]. Some
blocks may contain large absolute values requiring more inten-
sive computations, while others may consist entirely of zeros,
necessitating minimal processing. This variance leads to an
imbalance, where the overall system throughput is constrained
by the PE that finishes last. Considering balance is critical in
designing compression algorithms for the Cerebras WSE.

(C-2): The ability to handle complex control-flow but
sensitivity to imbalanced computation make existing
designs inefficient on WSE, yet offers new opportu-
nities for a possible ultra-fast compression solution.

IV. CERESZ-II: OVERVIEW OF COMPRESSION
ALGORITHM

In this work, we propose CERESZ-II, an error-bounded
lossy compressor specifically designed for Cerebras CS-2
system, targeting ultra-fast throughput and high compression

ratios.
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Fig. 2. A high-level overview of the compression algorithm in CERESZ-II.

A high-level overview of CERESZ-II compression algo-
rithm is explained in Figure 2. Given an HPC dataset,
CERESZ-II processes the input array in a 1D fashion, dividing
it into data blocks of equal size (i.e., consecutive floating-point
numbers). Within each data block, CERESZ-II compresses the
data via four major steps.

(@) Pre-Quantization: This step converts each floating-point
number into a 32-bit integer within the proposed error bound,
facilitating later lossless compression steps. Assuming the
original data block is {dy,ds,...,dr}, where d; is the i-th
floating-point number and L denotes the block length, if error
bound is eb, @ will convert this block into a set of integers
{n1,na,...,nr} by n; = round(d;/2eb). This lossy operation
ensures that the reconstructed data d; = n; X 2eb can satisty
|di — d;| < eb.

(®) Lightweight Lorenzo Prediction: Similar to delta com-
pression [40], this step captures data smoothness — a com-
mon feature in HPC datasets — by recording the difference
between consecutive quantized integers. An example is shown



in Figure 3. For the integer 99, instead of storing its actual
value, we record the difference between it and its predecessor
as 99 — 101 = —2. It helps improve the efficiency of later
compression stages.

(®) Fixed-size Huffman Encoding: Unlike traditional Huff-
man encoding [38], this step applies lossless compression us-
ing a pre-defined Huffman codebook, which is generated based
on a thorough characterization study on several HPC datasets.
This approach allows the algorithm to run efficiently on each
WSE PE, despite the limited local memory, without sacrificing
compression ratio effectiveness. Note that the codebook is built
fully offline, making it only a one-time cost.

(@) Spatial-aware Offset Computation: Following @, each
data block is compressed to varying lengths. Merging all
compressed blocks into a single, unified byte stream (i.e.
output of CERESZ-II) can be formulated as a parallel prefix-
sum problem [34]-[36]. This step is designed to efficiently
perform this operation on the WSE, where there is no shared
memory, while considering the unique dataflow architecture
of the Cerebras CS-2 system. Since ©® and @ are key con-
tributions of this work, they will be explained in details in
Section V and VI, respectively.
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Fig. 3. Illustrating the Lightweight Lorenzo Prediction in compression phase
(a) and its reversed computation in decompression phase (b).

CERESZ-II effectively addresses the challenges of deploy-
ing a fast lossy compressor on the Cerebras WSE. In @, the
prebuilt fixed-size codebook is optimized for the limited local
memory of each PE. In @, global coordination is achieved
through spatial PE-level computations, avoiding shared mem-
ory usage while considering throughput and dataflow computa-
tion patterns. These designs overcome the memory constraints
in WSE (i.e. (C-I) in Section II). From the computation
perspective, CERESZ-II leverages block-wise operations to
exploit the parallelism of the WSE. Additionally, the Huffman-
related computations, though requiring more complex control-
flow operations, are well within the processing capabilities
of each PE. Moreover, CERESZ-II balances the computation
overhead between data blocks containing irregular large quan-
tized integers and those consisting entirely of zeros — we will
explain more details in Section V. These features ensure the
computation compatibility with WSE (i.e. (C-2) in Section II).

V. FIXED-SIZE HUFFMAN ENCODING (©)

As discussed in Section III, in Cerebras WSE, existing
lossless encoding methods either exceed local memory limits
(Huffman encoding) or cause imbalanced computation issues
(fixed-length encoding). To address these challenges, we pro-
pose the Fixed-size Huffman Encoding method. The key idea
is to heuristically create a static Huffman codebook with

a fixed tree size, ensuring it fits within local memory and
balanced computation. Building this codebook is an offline
process, making it a one-time cost. To explain this method in
detail, we will introduce the principles of Huffman encoding,
define key concepts (e.g. Huffman tree and codebook), explain
how we select the Huffman tree size, and outline the process
of building the codebook using a characterization study.

A. Principle of Huffman Encoding

Huffman encoding [38], [41] is a lossless compression algo-
rithm that assigns shorter codes to more frequent characters,
optimizing compression ratio based on frequency. Figure 4
shows an example of Huffman encoding for integers after the
Lightweight Lorenzo Prediction. Given an input array, there
are mainly four steps to encode it using Huffman encoding:
Stepl: Identify unique values in the array and compute their
frequencies. Step2: Build the Huffman tree using the Min
Heap algorithm, which repeatedly merges the two smallest
frequencies into a single node until one root remains. Step3:
Assign ‘0’ for left branches and ‘1’ for right branches to
generate unique Huffman codes, forming the codebook. Step4:
Encode the input array using the codebook. Since directly
using Huffman encoding on Cerebras WSE can easily exceed
local memory limits, we aim to build a generic codebook that
captures HPC dataset features, fully offline. To achieve this,
we select a fixed size and propose a method for generating the
codebook — this is also the approach detailed in this section.
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Fig. 4. An example of Huffman encoding.

B. Huffman Tree Size Selection

To fit within the local memory of each PE, a straightforward
approach is to construct a fixed Huffman tree by encoding
only the most frequent unique values. For integers that exceed
the codebook size, we simply retain their original bit patterns
without compression. Figure 5 shows an example of how
we encode a data block using a fixed-size codebook. For
each integer in the block, if it is found in the codebook,
it is considered predictable, represented by a leading ‘I’
bit followed by its corresponding Huffman code from the
codebook. If the integer is not in the codebook, it is deemed
unpredictable and marked with a leading ‘0’ bit, followed by
its original 32-bit representation. All encoded bits are then
concatenated into 32-bit signed integers, with the first element
reserved to indicate the total number of bits used in the block.
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Fig. 5. An example of fixed-size Huffman encoding.

We examine datasets in different fields from various HPC
domains to determine the optimal Huffman tree size. For each
field, Huffman trees are constructed and evaluated at sizes
from 50 to 4,000, and we analyze their impact on the compres-
sion ratio. The impact on runtime throughput and data quality
is not considered, as the throughput remains consistent in our
implementation. Since Huffman encoding is lossless, it does
not affect data quality. The experiments involve AEROD_v_1_
1800_3600.dat field of CESM-ATM [39], Pf48.bin.f32 field
of Hurricane [42], vx.f32 field of the HACC [43], and field
einspline_115_69_69_288.f32 of QMCPack [44] with relative
error bound (REL) 1E-43. The results are shown in Figure 6.
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Fig. 6. Compression ratios with Huffman trees of varying sizes: 50, 1000,
2000, 3000, 4000, and 5000.

We can observe that increasing the Huffman tree size from
50 to 1000 significantly boosts the compression ratio across
all datasets. Enlarging the tree size from 1000 to 2000 notably
enhances the compression ratio for the CESM-ATM and
Hurricane datasets, while only yielding a marginal increase for
the other two datasets. With a Huffman tree size greater than
2000, the compression ratio shows negligible further increases
for all the datasets. Similar observations can be obtained
in other fields of the datasets as well. Additionally, in our
implementation, we use two arrays to store the Huffman code
lengths and the codes themselves as signed integers. Storing
the codebook requires only 2000 x 2 x 4/1024 = 15.625 KB,
which is manageable within the local memory of one PE (i.e.
48 KB). Therefore, we choose a Huffman tree size of 2000.

3The definition of REL error bound will be explained in Section VII-A4

C. Static Huffman Codebook Generation

Although we know the Huffman tree size, building a code-
book requires examining value frequencies, an online process
that significantly reduces runtime performance. This raises a
natural question for us: can we pre-build a codebook that
is generally suitable for all HPC datasets without sacrificing
compression ratio, and make this step an offline process? To
answer this, we first characterize the data patterns of several
representative HPC datasets. Figure 7 presents the distribution
of quantized integers (after Lorenzo Prediction) and their
MLE lines for two datasets QMCPack [44] and HACC [43].
The error bounds are set at REL 1E-2 and REL 1E-3. The
distribution is restricted to the value range of [—20,20], as
the frequencies for values outside this range are significantly
lower and can be neglected. As seen, these distributions closely
resemble a Gaussian distribution [45], centered around a mean
of zero, and the MLE line demonstrates a robust fit to the
theoretical distribution. Increasing the error bound from REL
1E-3 to 1E-2 results in a sharper curve, further condensing
values near the center.
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Fig. 7. Distribution of integer values after Lorenzo Prediction on ein-
spline_115_69_69_288.32 field of QMCPack and vx.f32 field of HACC.
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Based on the observation, we propose a proportional method
to characterize the distribution of values across multiple
datasets. Suppose we have NN datasets, for each dataset D;,
we aggregate the Lorenzo data across all fields and generate
the distribution P;. We utilize REL 1E-4 because it results in
the sharpest distribution compared with REL 1E-2 and 1E-3,
capturing richer information. Then we calculate the average
of the distributions by using the following formula:

N
p=y 4 1)
i=1

We also construct the static Huffman codebook based on this
updated distribution. Given the distribution’s resemblance to
a Gaussian distribution centered at zero, we select a sym-
metric value range for constructing the Huffman codebook.
Consequently, our algorithm encodes values from -1000 to
999, utilizing a Huffman tree size of 2000.



In CERESZ-II, we select three HPC datasets, including
CESM-ATM [39], Hurricane [42], and QMCPack [44] to build
the static codebook and evaluate its generalization capability
using four fields from other four datasets. The details of these
datasets will be explained in Section VII-A3. We measure
compression ratios by comparing our static method with the
traditional Huffman encoding (named Dynamic), which is the
optimal codebook by examining the frequency inside each
field while considering the fixed size of 2000. The results are
presented in Table I. We can see that the compression ratio of
our prebuilt codebook is very close to the optimal one (e.g.
29.84 and 29.94 in NYX), demonstrating the effectiveness of
our approach in maintaining compression ratio efficiency. Our
conclusion remains the same when randomly selecting three
of the seven datasets.

Dataset  NYX [46] RTM [47] SCALE [48] HACC [43]

(Field) (b.y._dens.) (p._1000) (PRES) (vx)

Static 29.84 25.47 9.09 322

Dynamic  29.94 25.59 9.77 3.80
TABLE I

Compression ratios between our prebuilt (i.e. Static) and the optimal (i.e.
Dynamic) codebooks in four fields from four HPC datasets.

One major challenge in deploying a compression algorithm
on Cerebras WSE is the need for computation balance (i.e. (C-
1) in Section II). Imbalanced computation is also the primary
limitation of an existing Cerebras compressor [13], which
uses fixed-length encoding. To evaluate computation balance,
we compare the execution cycles of our proposed Fixed-size
Huffman Encoding with those of fixed-length encoding, using
the AEROD_v_1_1800_3600.dat field from CESM-ATM [39]
as an example. Similar results are observed in other datasets.
With 6,480,000 floating points in this field (i.e., ~20K data
blocks of length 32 for each), we utilized a 405x 500 PE mesh,
where each PE processes one data block. The results, shown
in Figure 8, depict a heatmap where darker colors indicate a
higher number of execution cycles per PE, and the X/Y axes
represent PE indices. Although both encoding methods exhibit
close total cycles, the right side (fixed-length encoding) shows
a significant imbalance — forcing the entire WSE to wait for
the slowest PE to complete. In contrast, our method, which
assigns bit representations from a prebuilt codebook, ensures a
more balanced computation across PEs. This demonstrates that
our proposed Fixed-size Huffman Encoding is better suited for
Cerebras WSE. More details are provided in Section VII.

VI. SPATIAL-AWARE OFFSET COMPUTATION (@)
A. Motivation

In @ of Figure 2, CERESZ-II compression concatenates
the compressed data from multiple blocks into a single array,
which can be formulated as a parallel prefix-sum problem. An
example illustrating this is provided in Figure 9. In parallel
compression, each data block is compressed simultaneously.
However, due to varying data patterns, the compressibility
of each block differs under a given algorithm, resulting in
different compressed data lengths. To concatenate these blocks
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Fig. 8. Heat map of computation overhead (measured by cycle) between our
Fixed-size Huffman Encoding (a) and fixed-length encoding (b). The X and
Y axes denote the PE index, and the darker color indicates a greater cycle.

in parallel, their locations in the final compressed byte array
(defined as Offset in this section) need to be calculated. As
seen, the starting and ending locations of the j-th block can
be calculated as Zf;& num; and Y_7_ num;, respectively.

However, existing Cerebras-oriented lossy compressors,
such as CereSZ [13], neglect this problem by performing these
computations in CPU. While this approach is straightforward,
the inherent linear recurrences make this step extremely slow
and difficult to parallelize, becoming a major bottleneck in
runtime throughput. Additionally, the unique mesh-like paral-
lelism and the absence of shared memory in WSE introduce
new challenges for this process. These motivate us to propose
a new solution for computing offsets within CERESZ-II.
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Length: num0 Length: num1 Length: num2

Length: num3
S, \ [ N
I I I
0 1

2 3
0  Ynumi Ynumi Y numi Y numi
i=0 =0 =0 i=0

Block
Concatenation

Fig. 9. [Illustrating the compressed data block concatenation of a parallel
lossy compressor is a parallel prefix-sum problem.

B. Spatial-aware Offset Computation in Cerebras WSE

Spatial-aware Offset Computation* calculates the offset for
each compressed data block and stores it in the corresponding
PE. This proposed approach does not require shared memory
and leverages the parallelism of the WSE, ensuring high
throughput in the CERESZ-II compression workflow. Given an
HPC dataset processed by a mesh of W x H> PEs in Cerebras
WSE, this step can be performed within three stages after
data is compressed and ready to be concatenated. (1) Reduce-
Column/Row (Local): For each column/row, aggregate offsets
from all PEs and store this value in the first PE in column/row.
This is a local reduce operation and is processed in parallel.
(2) Scan-Row/Column (Glob. Sync.): After obtaining the local

4This step is based on two computation patterns. (1) Reduce aggregates
all offsets into one value. For example, an array {a1, a2, ...7aN} will be
reduced into Zf\;l a;. (2) Scan has the same meaning with prefix-sum. In
general, we focus on exclusive scan in compression tasks. Given an array
{a1,a2,...,an}, the output of it is {0, a1, ..., Zf\;_ll a;}.

SW and H indicates width and height of the used mesh of PEs.



11| 8] 3|| 11
14/ 4|| 2|| 2
9| 5|| 3|| 1

1831121
10412 /2|1|5
9|5(3|1(8]3

1 3|2

2ORDE
2
;

0208Be
@  @13©E)®
:
&
2

211 4% 7' 3 2 417
®Reduce-Column @ Scan-Row @® Scan-Column
(Local) (Glob. Sync.) (Local)
T T u TP SR
'
H number results of result of !
H of bits . global offset Reduce Scan-Row E

(a) Offest computation when width is greater than height (column-major).

@|i]0]e]2 NE @_[1]10]
8la]5][1 5(1 . NN
@323 304 = 01 1120
@) M[2[1]7 1|7 55 {
2[1[8]3 8|3 3 &7 n
1153 311
® Reduce-Row @ Scan-Column 87 88 93 96
(Local) (Glob. Sync.)
T T T T T T T T T T T T T 1
H number results of result of !
E of bits . global offset Reduce Scan-Column i

(b) Offest computation when height is greater than width (row-major).

Fig. 10. Illustrating the idea of spatial-aware offset computation, where each square with a number refers to a PE with total compressed block length on it.

reduced offsets, the first row/column then performs a scan op-
eration to obtain the offset across different columns and rows.
It is important to note that this global synchronization requires
no shared memory and only requires PE-level computations.
(3) Scan-Column/Row (Local): For each column/row, the last
step distributes the synchronized global offsets and performs
a local scan in parallel again. This ensures that all data blocks
in every PE are assigned their offset (i.e. location) in the
final compressed array. To maximize the runtime throughput,
CERESZ-II considers the spatial structure of the utilized mesh
of PE. If H > W, parallelizing across rows (i.e. treating
each row as a local computation) provides greater throughput
benefits, so CERESZ-II will adopt row-major parallelism and
perform global synchronization along columns. Conversely, if
W > H, this step will prioritize column-major parallelism
with global synchronization across rows.

We further illustrate this process with a running exam-
ple. The column-major computation is explained in detail
in Figure 10(a), while the row-major computation, shown in
Figure 10(b), follows a similar principle and hence will not
be discussed here. Each square with a number represents a
PE along with the total length of the compressed block stored
in it. First, each column performs reduction and stores the
value in the first PE. As seen, for the first column, {1, 10,9, 2}
is reduced into 22. After the reductions within each column
are finished, the first row of PEs performs a chained scan to
retrieve its global offset. Taking 52 as an example, computed
by 22 + 18 + 12, this represents the total length of the first
three columns and serves as the starting location for the fourth
column. Finally, each column distributes its aggregated value
and performs a parallel scan within the column again, allowing
each PE to determine its offset in the final compressed array.

To demonstrate the design of Spatial-aware Offset Com-
putation, we test a prefix-sum problem using different mesh
sizes of PEs, with results shown in Table II. A smaller number
indicates fewer cycles required on WSE, representing better
runtime performance. As seen, when W > H, column-major
is faster than row-major (e.g., a 150.78% speedup on a 100x 50
mesh). Vice versa, when W < H, row-major outperforms
column-major. Additionally, when W = H, column-major is
slightly faster due to better alignment with the WSE dataflow,
which flows from left to right. For this reason, we prioritize
column-major when the W = H in the utilized mesh. Note

that, in CERESZ-II, this step is automatically conducted and
wrapped within the compression pipeline, for better usage.

PE-Size 50x50  50x100  100x50  100x100  50x200  200x50

Column-major 384 731 384 736 1433 401

Row-major 482 485 963 965 480 1924
TABLE II

Clock cycles for different sizes of PEs using column-major (Figure 10(a))
and row-major (Figure 10(b)) Spatial-aware Offset Computation.

VII. EVALUATION

In this section, we introduce the experimental setups and
evaluate CERESZ-II on 7 real-world scientific datasets.

A. Experimental Setup

1) Platforms: For CERESZ-II and CereSZ, we measure
computation time on the Cerebras WSE, We evaluate our
algorithm on the Cerebras CS-2 system, of which hardware
specification can be found in Section II-B. The system has
a 757x996 PE mesh, with up to 750x994 PEs available for
computation, as the remaining PEs handle data routing on
and off WSE. The CS-2 system supports 24 colors (routable
identifiers) for passing wavelets between PEs, and we allocate
8 colors: 2 for data movement and 6 for offset computation.
Because the CS-2 has a fixed clock speed [1], we can use
hardware cycle counters on each PE to measure runtime, con-
verting counts to seconds by dividing by the clock frequency
to obtain runtime.

2) Implementation: There are two programming interfaces
for Cerebras [1]: PyTorch [11] and Cerebras Software Lan-
guage (CSL) [13] (i.e. a C-like language based on a dataflow
programming model). CSL allows for lower-level control of
the hardware, leading to higher runtime performance than the
PyTorch-based interface. As a result, we implement and test
CERESZ-II using the CSL (specifically SDK 0.9).

An example of CSL code for Reduce-Row(Local) is shown
in Figure 11, where input_dsd and output_dsd representing
the offsets before and after reduction, and fabin and fabout
indicating data received and sent by each PE, respectively.
Each PE will run this CSL code: the right-most PEs simply
transfer offsets to adjacent left PEs, middle PEs compute a
prefix sum by adding offsets received from their right and
pass the results leftward, and the left-most PEs store the final
results in outputysd and forward to fabout for host access.



void

pe_id_width

width-1 => {
0 => {

fabout, input_dsd }»
output_dsd, input_dsd, fabin
fabout, output_dsd }s
else => { fabout, input_dsd, fabin); }

activate_global_scan

Fig. 11. CSL code demo for performing @ Reduce-Row (Local) in 10(b).

One key parameter here is the data block size. Like existing
work [13], we set the data block size as 32 in CERESZ-II,
balancing compression ratios and runtime throughput. Given
an HPC dataset, we distribute it evenly across the PEs before
compression. If the dataset is too small to use all PEs, we pad
it to a column-major mesh to optimize dataflow.

Datasets | Dims per Field | # Fields | Total Size
CESM-ATM [39] 1800x 3600 79 191 GB
HACC [43] 280,953,867 6 6.28 GB
RTM [47], [49] 1008 x 1008 x352 3 3.99 GB
Hurricane [42] 500%500% 100 13 1.21 GB
QMCPack [44] 33120x69 %69 2 1.17 GB
NYX [46] 512x512x512 6 3.00 GB
SCALE [48] 98x1200x 1200 13 6.31 GB
TABLE IIT

Real-world HPC datasets used in this work.

3) Datasets: We select 7 real-world scientific simulation
datasets (single-precision in IEEE-754 standard) from various
domains to evaluate CERESZ-II. The details of these datasets
can be found in Table III. Most of these datasets come from
SDRBench [50] and are widely utilized in recent HPC data
reduction works [13], [21]-[23], [51]-[54].

4) Experimental Methodology: For baseline compressors,
we select three state-of-the-art error-bounded lossy compres-
sors from different hardware architectures: SZ3 [55] for CPU,
cuSZp [22] for GPU, and CereSZ [13] for the Cerebras CS-2
system. For SZ and cuSZp, we evaluate them with an Intel
Xeon Gold 6226R CPU and an NVIDIA A100 (40 GB, 108
SMs) GPU, respectively. Following existing works [13], [21]-
[23], we evaluate CERESZ-II and the baselines using three
metrics: compression/decompression throughput, compression
ratio, and data quality. The first two metrics, defined in
Section II-A, are the main focus of CERESZ-II. As for the
error setting, we use the value-range-based relative (REL) error
bound [16]. Specifically, REL A (A € (0, 1)) denotes the differ-
ent between each original data point d; and its corresponding
reconstructed one d; should satisfy |d; — d;| < AVR, where
VR is the value range of this dataset calculated by dyax —dmin-

B. Compression and Decompression Throughput

In this section, we evaluate the throughput of CERESZ-
II and compare it with other baseline compressors. The
compression and decompression throughput is calculated by
dividing the raw data size by the measured compression and
decompression time (e.g. GB/s). For each dataset, we measure
throughput for all fields and report their averages. We use

three error settings including, REL 1E-2, REL 1E-3, and REL
1E-4. Such settings are inline with existing works in this
literature [13], [22].

Figure 12 reports compression throughput. On average,
CERESZ-II has 846.20 GB/s compression throughput, varying
from 657.41 GB/s on CESM-ATM dataset with REL 1E-4 to
902.49 GB/s on RTM dataset with REL 1E-2. In contrast,
the average compression throughput is only 457.35, 93.63,
and 0.18 GB/s for CereSZ, cuSZp, and SZ, respectively. As
for the state-of-the-art Cerebras-oriented compressor CereSZ,
CERESZ-II consistently outperforms it and achieves 85.02%
higher compression throughput. The increased throughput of
CERESZ-II is even more impressive because CERESZ-II
includes the offset computation for concatenation, which is not
performed in CereSZ. CERESZ-II achieves this by addressing
the imbalanced issues using our proposed improvements to
Fixed-size Huffman Encoding, making the algorithm more
suitable for WSE infrastructure.

Moreover, we find that the compression throughput of
CERESZ-II remains highly stable across different error
bounds within the same dataset. For example, in the NYX
dataset, the compression throughput under REL 1E-2, 1E-
3, and 1E-4 are 876.17, 863.46, and 852.54 GB/s. This can
be explained as follows. In Huffman encoding, numbers are
compressed by replacing them with their corresponding bit
representation from the prebuilt codebook. While we change
the error bound from REL 1E-4 to 1E-2, the number of
conducted codebook-lookup operations remains unchanged,
resulting in stable compression throughput in CERESZ-II.
As for GPU compressors, compared with cuSZp, it even
achieves up to ~20 times higher throughput on CESM-ATM
dataset under REL 1E-3 error bound. However, we agree that
comparing the throughput of CERESZ-II with compressors
from other platforms is not entirely fair. For instance, the
number of transistors differs significantly between the entire
Cerebras WSE and an NVIDIA A100 GPU. Nonetheless,
this comparison highlights the potential of CERESZ-II in
leveraging the unique architecture of Cerebras WSE for high-
throughput compression, showing its capacity to perform com-
petitively even across different hardware platforms.

Figure 13 reports decompression throughput. We can see
that, similar to the compression phase, CERESZ-II always
achieves higher throughput than baseline compressors and is
non-sensitive to error bounds in throughput. However, there
is one interesting observation. In HACC and RTM datasets
under REL 1E-2 error bound, CERESZ-II exhibits slightly
lower decompression throughput compared with CereSZ. The
reasons are twofold. (1) HACC (a smooth 1D array) and
RTM (high sparsity) cause a naturally balanced computation
due to their unique data patterns. Meanwhile, the number of
maximal fixed-length (i.e. number of bits to preserve) of these
two datasets under REL 1E-2 is small, making fixed-length
encoding occasionally suitable for WSE. (2) As said, CereSZ
does not compute the global offset for each compressed block.
Although this can sometimes bring higher throughput, this
defect will highly limit it from real-world scenarios if users
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Fig. 12. Compression throughput for CERESZ-II and baseline compressors.
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demand a single and unified byte array on the host.

Throughput of CERESZ-II: Overall, CERESZ-II
shows an average throughput of 846.20 GB/s for com-
pression and 846.59 GB/s for decompression across
seven HPC datasets. Compared to CereSZ and cuSZp,
the state-of-the-art error-bounded lossy compressors for
Cerebras and GPU, CERESZ-II demonstrates 85.02%
and ~10x higher compression throughput, as well as
45.63% and ~7x higher decompression throughput.

C. Compression Ratio

We report compression ratios of CERESZ-II and other base-
line lossy compressors in Table IV. Same as Section VII-B,
we use REL 1E-2, 1E-3, and 1E-4 error bounds. For each
dataset, given a compressor and an error bound, we measure
compression ratios of all fields and report their minimal (min),
maximal (max), and average (avg) values. The higher average
compression ratios between CERESZ-II and CereSZ under
each specific setting are highlighted.

As seen, CERESZ-II achieves higher compression ratios
than CereSZ in all (21/21) settings. While the prebuilt code-
book is generated on CESM-ATM, Hurricane, and QMCPack,
the other four datasets also exhibit higher compression ra-
tios in CERESZ-II. This demonstrates our prebuilt Huffman
codebook is generic across various HPC domains. Compared
to cuSZp, CERESZ-II demonstrates better compressibility in
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Fig. 13. Decompression throughput for CERESZ-II and baseline compressors.

three datasets including CESM-ATM, HACC, and QMCPack.
For the other four datasets, cuSZp outperforms CERESZ-II
due to the high sparsity and slight non-smoothness in these
datasets, which makes cuSZp’s algorithm more efficient in
handling such data patterns. SZ is the leading compressor in
terms of compressibility (e.g. 2.3E+4 ratio for NYX under
REL 1E-2). Interestingly, we found that CERESZ-II even
achieves a higher compression ratio (6.15) than SZ (5.60) in
one field from SCALE. Upon examining the data patterns in
this field, we identified two key reasons for this result. (1)
The quantized integers after Lorenzo Prediction are highly
concentrated around the range [—5,5], making the prebuilt
Huffman codebook particularly efficient. (2) SZ applies linear-
scale quantization after prediction, meaning the predicted coef-
ficients need to be stored. Although the spline interpolation in
SZ is effective, such coefficients add extra information, unlike
CERESZ-II, which only compresses the quantized integers.

Compression Ratio of CERESZ-II: Even with higher
throughput, CERESZ-II exhibits higher compression
ratios in all cases (21/21) compared with CereSZ. The
prebuilt codebook is generic across various domains.

D. Data Quality

We evaluate the reconstructed data quality of CERESZ-
IT and CereSZ, two Cerebras-oriented lossy compressors, in
Figure 14. Some detailed settings (e.g. which field from which



| CESM-ATM \ HACC | Hurricane | NYX | QMCPack | RTM | SCALE
REL | min max avg | min max avg | min max avg | min max avg | min max avg | min max avg | min  max avg
1E-2 17.42 29.16 23.36 12.58 23.02 17.39 | 21.73 29.56 2590 | 2399 30.12 27.49 1395 2573 19.84 | 24.82 29.53 27.09 | 21.88 29.87 26.50
CereSZ-111E-3 7.62 2527 1529 | 5.69 1498 9.44 9.89 2754 18.80 11.72 30.10 21.27 | 645 1451 1048 12.03 27.84 19.28 13.01 28.79 20.20
1E-4 383 18.00 8.34 322 6.59 4.55 4.62 2401 1334 | 512 29.84 1426 | 3.68 6.74 5.21 6.01 2547 1418 | 6.15 2587 13.15
IE-2 | 267 21.60 873 466 9.18 6.82 521 2882 17.10 | 7.83 3198 2022 | 959 19.67 14.63 1052 31.99 2346 | 3.55 3041 1571
CereSZ 1E-3 213 16.10 649 318 491 4.05 341 2437 1257 | 454 3184 14.05 | 531 9.02 7.16 594 3198 17.73 | 2.58 26.87 11.29
1E-4 1.68 1342 511 238 320 2.83 253 1971 9.64 3.10 2974 9.61 348 497 423 379 3196 1287 | 2.04 21.18 8.15
1E-2 284 4375 1256 | 524 1008 7.63 594 88.88 3870 | 9.60 127.80 66.73 12.44 2221 17.33 13.97 12795 6697 | 3.87 10589 37.76
cuSZp 1E-3 225 2586 846 343 520 4.31 371 5688 2231 5.09 12555 38.44 | 6.08 10.08 8.08 6.90 127.80 4229 | 274 72.60 21.11
1E-4 1.75 1959 6.24 253 3.39 2.96 270 36.66 1436 | 335 9823 2214 | 379 556 4.68 4.17 12752 2743 2.14 4206 1233
1E-2 26.13 4.0E+4 22E+3| 16.58 931.76 217.94| 23.76 404.71 110.33| 1.3E+31.2E+5 23E+4| 17.10 727.13 372.11| 23.57 1.3E+5 44E+3| 23.49 45289 127.59
SZ 1E-3 9.30 2.9E+4 941.39| 6.11 3097 15.57 8.81 10549 35.67 84.55 1.8E+4 32E+3| 6.37 221.11 113.74| 927 23E+4 894.69| 10.59 123.59 34.65
1E-4 5.04 209E+4 82549 3.74 8.92 5.75 4.63 4846 18.72 14.38 2.6E+3 471.61| 3.88 66.09 3499 | 530 1.6E+4 54891 5.60 48.66 1587
TABLE IV

Compression ratio results between CERESZ-II and three baseline error-bounded CPU, GPU, or Cerebras compressors. The highlighted “avg” indicates
CERESZ-II has a higher compression ratio than CereSZ, the state-of-the-art error-bounded lossy compressor on Cerebras system [13].

oo
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dataset) are explained in the caption of Figure 14. In CERESZ-
I1, the only lossy step is Pre-Quantization (@), whereas the rest
are lossless operations. Such a design is also adopted in other
recent parallel compressors [13], [21], [22], [28], [56]. As a re-
sult, given the same error bound (e.g. REL 1E-3 in Figure 14),
those compressors will generate identical reconstructed data.
For example, in Figure 14(e) and 14(f), both CERESZ-II and
CereSZ exhibit SSIM [57] (0.9604) and PSNR [58] (64.77).
However, in this case, CERESZ-II achieves around a ~3Xx
compression ratio (14.68) of CereSZ (4.54). In other words, if
we align the compressed length, CERESZ-II can always result
in better data quality in CERESZ-II, since it can support a
more rigorous error control. This also demonstrates CERESZ-
IT outperforms CereSZ in terms of data quality.

Data Quality of CERESZ-II: CERESZ-II outper-
forms CereSZ in data quality due to stronger compress-
ibility in Fixed-size Huffman Encoding (©).

VIII. DISCUSSION

A. Pipeline Parallelism on WSE

There are two ways of structuring computations for ex-
ecution on Cerebras: (1) Single Instruction/Multiple Data
(SIMD) Execution: Each PE performs the same computation
for different data chunks. CERESZ-II follows this pattern. (2)
Pipelined Execution: Computation is sub-divided into steps

(e) CERESZ-II

(f) CereSZ (h) CERESZ-II (i) CereSZ

(g) Original
Fig. 14. Visualization data quality from original, CERESZ-II-reconstructed, and CereSZ-reconstructed datasets. All of them are under REL 1E-3 error bound.
(a), (b), and (c) are visualized by pressure_2000 field from RTM dataset, where compression ratios for CERESZ-II and CereSZ are 17.97 and 14.67. (d), (e),
and (f) are visualized by velocity_x field from NYX dataset, where compression ratios for CERESZ-II and CereSZ are 14.78 and 4.54. (g), (h), and (i) are
visualized by PRES field from SCALE dataset, where compression ratios for CERESZ-II and CereSZ are 18.04 and 3.36. Note that, under the same error
bound, CERESZ-II and CereSZ have the same reconstructed data quality.

which are executed on adjacent PEs in a pipeline design
leveraging the low latency of the routers connecting PEs. (1)
and (2) can be combined by repeating the same computational
pipeline across the WSE. CereSZ follows this mixed pattern by
dividing compression into multiple stages with similar cycle
counts, distributing each stage across three PEs. These PEs
are then treated as a group and processed using SIMD. While
pipelining is powerful enough to utilize the WSE architectures,
we do not utilize this in CERESZ-II because lossy and lossless
stages feature large load imbalance issues, reducing efficiency
in tasks such as offsets computation, which makes more PE
remain idle. Future work could explore having faster PEs
assist slower ones to improve pipeline parallelism. However, in
existing WSE architectures, this is complicated by the limited
communication patterns between different PEs. As a result, we
stick with only adopting SIMD in proposing and implementing
CERESZ-II in this work.

B. Offset Computation with Other Optimization

In CERESZ-II, we compute Offset for each compressed
block by @ in Figure 2. In principle, this follows a computation
pattern called Reduce then Scan [34], where “then” denotes
global synchronization and routinely becomes the performance
bottleneck due to its serial implementation. In CERESZ-II,
we can see that the scan in Step 2 of @ is only performed
within the first column/row of PEs in serial. When the scan
operation has not yet reached the later PEs, those PEs remain
idle. Merrill et al. [35] proposed a strategy called decoupled
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lookback to accelerate this process. However, we argue that
this design is not suitable for the WSE, as each PE can only
access data from its immediate neighbors, and the absence
of shared memory makes it inefficient for a PE to retrieve
data from its multi-hop predecessors. This demonstrates the
rationale of our proposed @ in CERESZ-II.

C. Portability of CERESZ-II across Other Architectures

Our compression algorithm is designed with broad architec-
tural compatibility, extending its application beyond Cerebras
CS-2 to other specialized hardware such as the Graphcore
IPU and NVIDIA’s DPU platforms. These architectures, like
the CS-2, feature a 2D core mesh and possess limited local
memory per core, and lack shared memory, which facilitates
efficient global offset computations. The robustness of our
CERESZ-II, which adopts a static approach not only simplifies
the implementation but also enhances performance consistency
across platforms, thereby increasing its utility and scalability in
heterogeneous computing environments. We regard extending
CERESZ-II to other architectures as our future work.

IX. RELATED WORK

We present related works from two perspectives: ultra-fast
parallel error-bounded lossy compression and applications for
Cerebras dataflow architecture.

A. Ultra-fast Error-bounded Lossy Compression

In the past decade, several error-bounded lossy compressors
have been proposed to target ultra-fast throughput [20]-[22],
[28], [30], [56], [59]-[61]. Gruyzmacher et al. [62] presented
a lightweight in-register GPU compressor for the GMRES
iterative solver, significantly reducing memory footprint by
compressing Krylov basis vectors. Zhang et al. [21] introduced
a pure-GPU compressor that features an innovative lossless
encoding, achieving high performance in both throughput and
compression ratio. Huang et al. [22] proposed the first single-
kernel, pure GPU compressor featuring lightweight fixed-
length encoding and bit-shuffling, which demonstrated a sig-
nificant throughput improvement over prior GPU compressors.

B. Applications on Cerebras Dataflow Architecture

Recently, Cerebras has emerged as a critical role in advanc-
ing applications within both machine learning [31], [63] and
scientific computing domains [3], [11], [13], [32]. Thangarasa
et al. [31] leveraged the Cerebras system to accelerate training
with unstructured weight sparsity for pre-trained biomedical
language models. Chiley et al. [63] utilized the unique ca-
pabilities of the Cerebras hardware to address memory and
scalability challenges in training large-scale neural networks,
achieving high efficiency in both training memory require-
ments and computational cost. Luczynski et al. [32] presented
the first systematic investigation of Reduce and AllReduce
on WSE, outperforming existing solutions. Song et al. [13]
proposed the first error-bounded lossy compressor CereSZ on
Cerebras.
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X. CONCLUSION AND FUTURE WORKS

In this work, we propose CERESZ-II, a memory-efficient
and computational-balanced error-bounded lossy compression
pipeline on Cerebras Wafer-Scale Engine. Experiments on
seven real-world scientific datasets demonstrate that CERESZ-
IT can achieve on average 846.20 GB/s and 846.59 GB/s
throughput for compression and decompression, which is
85.02% and 45.63% faster than state-of-the-art, respectively,
with also higher compression ratios and data quality.

In the future, we aim to conduct our research for CERESZ-
IT in two directions. (1) Support for Other Platforms: We
aim to extend CERESZ-II to other heterogeneous Al train-
ing infrastructures, such as Graphcore IPU and NVIDIA’s
DPU. (2) Domain Application Accelerations: We will utilize
CERESZ-II to benefit domain applications, such as quantum
simulation [64]-[66] and deep learning training [67]-[69].
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