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AbstractÐCerebras system has demonstrated immense poten-
tial across various scientific domains. However, modern scien-
tific simulations frequently generate vast volumes of data in
a short time, leading to bottlenecks in runtime performance
and memory footprint. While an ultra-fast error-bounded lossy
compressor can mitigate such limitations with high compression
ratios and guaranteed data quality, deploying it into Cerebras
dataflow architecture poses significant difficulties. Specifically,
Cerebras faces memory challenges, such as the absence of shared
memory and limited local memory, alongside computational
challenges, including specialized parallelism and sensitivity to
imbalanced workloads. In this work, we propose CERESZ-
II, an error-bounded lossy compressor that computes within
Cerebras system. CERESZ-II addresses these challenges with a
carefully optimized four-stage compression workflow, consisting
of Pre-quantization, Lightweight Prediction, Fixed-size Huffman
Encoding, and Spatial-aware Offset Computation, ensuring both
memory efficiency and computational balance. Evaluation of
several real-world scientific datasets shows that CERESZ-II
achieves over 800 GB/s throughput, delivering high compression
ratios and reliable reconstructed data quality.

KeywordsÐError-bounded Lossy Compression, AI Processor,
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I. INTRODUCTION

Cerebras [1], powered by its Wafer-Scale Engine (WSE), is

an emerging AI system that shows immense potential across

various high-performance computing (HPC) domains [2]±[4].

For instance, researchers from three national laboratories have

demonstrated strong scaling of molecular dynamics (MD)

simulations on the WSE [3]. They achieved a 179-fold im-

provement in timesteps per second compared to Frontier, the

world’s leading GPU-based supercomputer [5], along with

substantial gains in timesteps per unit of energy.

Meanwhile, modern large-scale HPC simulations frequently

encounter challenges related to high datastream intensity and

excessive memory footprints [6]±[8]. For example, the particle

detectors at the Large Hadron Collider (LHC) at the Europe

Center for Nuclear Research (CERN) must process 1 PB data

in one second [9]. Another case is Reverse Time Migration

(RTM), an advanced seismic imaging technique, producing

up to 2,800 TB of data in memory within only a single
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timestamp on 10×10×8 KM3 subterranean structure [10].

In those scenarios, in order to benefit from Cerebras-based

HPC simulation, a fast and high-ratio lossy compressor with

Cerebras WSE will be crucial for efficiently reducing data size

while maintaining ultra-fast processing speeds and promising

data quality.

However, designing a lossy compressor that achieves ultra-

high throughput, promising compression ratios, and effective

error control for data quality is challenging. The idiosyncratic

memory patterns and unique parallelism of Cerebras WSE

add further complexity to the compression algorithm design,

where, unfortunately, none of the existing works sufficiently

address those. For example, Shah et al. [11] implemented an

AI-chip-based compressor using PyTorch [12] to compress

training data, achieving moderate throughput due to the re-

liance on high-level code rather than low-level kernel imple-

mentations. In contrast, CereSZ [13], an error-bounded lossy

compressor designed for WSE, leverages low-level features1.

Yet, it suffers from computational imbalance across processing

elements (PEs)2 due to uneven workloads across data blocks.

Furthermore, it neglects the unique parallelism of WSE and

employs dataflow-unfriendly computations, limiting both its

throughput and compression efficiency.

In this work, we propose CERESZ-II, an error-bounded

lossy compressor designed for the Cerebras WSE, to achieve

computational balance and memory efficiency, ensuring full

compatibility with the Cerebras system. CERESZ-II employs

a block-wise design to ensure parallel processing across

PEs while accounting for the dataflow architecture of the

WSE. Specifically, we introduce Fixed-size Huffman Encod-

ing method to reduce local memory usage within each PE

while maintaining computational balance across different PEs.

Through a comprehensive characterization study on several

representative HPC datasets, we build a generic fixed-size

Huffman codebook. This codebook is generated through a

fully offline process, making it only a one-time cost. Moreover,

we propose Spatial-aware Offset Computation, an on-WSE

parallel prefix-sum method designed to efficiently concatenate

1This is achieved by using Cerebras Software Language (CSL), a C-style
language for modeling dataflow. We will explain it in Section VII-A2.

2PE is an independent processor with its own local memory. PE is also the
minimal unit in WSE dataflow. We will explain in Section II-B.
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lookback to accelerate this process. However, we argue that

this design is not suitable for the WSE, as each PE can only

access data from its immediate neighbors, and the absence

of shared memory makes it inefficient for a PE to retrieve

data from its multi-hop predecessors. This demonstrates the

rationale of our proposed ➍ in CERESZ-II.

C. Portability of CERESZ-II across Other Architectures

Our compression algorithm is designed with broad architec-

tural compatibility, extending its application beyond Cerebras

CS-2 to other specialized hardware such as the Graphcore

IPU and NVIDIA’s DPU platforms. These architectures, like

the CS-2, feature a 2D core mesh and possess limited local

memory per core, and lack shared memory, which facilitates

efficient global offset computations. The robustness of our

CERESZ-II, which adopts a static approach not only simplifies

the implementation but also enhances performance consistency

across platforms, thereby increasing its utility and scalability in

heterogeneous computing environments. We regard extending

CERESZ-II to other architectures as our future work.

IX. RELATED WORK

We present related works from two perspectives: ultra-fast

parallel error-bounded lossy compression and applications for

Cerebras dataflow architecture.

A. Ultra-fast Error-bounded Lossy Compression

In the past decade, several error-bounded lossy compressors

have been proposed to target ultra-fast throughput [20]±[22],

[28], [30], [56], [59]±[61]. Gruyzmacher et al. [62] presented

a lightweight in-register GPU compressor for the GMRES

iterative solver, significantly reducing memory footprint by

compressing Krylov basis vectors. Zhang et al. [21] introduced

a pure-GPU compressor that features an innovative lossless

encoding, achieving high performance in both throughput and

compression ratio. Huang et al. [22] proposed the first single-

kernel, pure GPU compressor featuring lightweight fixed-

length encoding and bit-shuffling, which demonstrated a sig-

nificant throughput improvement over prior GPU compressors.

B. Applications on Cerebras Dataflow Architecture

Recently, Cerebras has emerged as a critical role in advanc-

ing applications within both machine learning [31], [63] and

scientific computing domains [3], [11], [13], [32]. Thangarasa

et al. [31] leveraged the Cerebras system to accelerate training

with unstructured weight sparsity for pre-trained biomedical

language models. Chiley et al. [63] utilized the unique ca-

pabilities of the Cerebras hardware to address memory and

scalability challenges in training large-scale neural networks,

achieving high efficiency in both training memory require-

ments and computational cost. Luczynski et al. [32] presented

the first systematic investigation of Reduce and AllReduce

on WSE, outperforming existing solutions. Song et al. [13]

proposed the first error-bounded lossy compressor CereSZ on

Cerebras.

X. CONCLUSION AND FUTURE WORKS

In this work, we propose CERESZ-II, a memory-efficient

and computational-balanced error-bounded lossy compression

pipeline on Cerebras Wafer-Scale Engine. Experiments on

seven real-world scientific datasets demonstrate that CERESZ-

II can achieve on average 846.20 GB/s and 846.59 GB/s

throughput for compression and decompression, which is

85.02% and 45.63% faster than state-of-the-art, respectively,

with also higher compression ratios and data quality.

In the future, we aim to conduct our research for CERESZ-

II in two directions. (1) Support for Other Platforms: We

aim to extend CERESZ-II to other heterogeneous AI train-

ing infrastructures, such as Graphcore IPU and NVIDIA’s

DPU. (2) Domain Application Accelerations: We will utilize

CERESZ-II to benefit domain applications, such as quantum

simulation [64]±[66] and deep learning training [67]±[69].
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