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Abstract—Large-scale scientific simulations produce unprece-
dented amounts of data using high-performance computing
systems, leading to severe problems in data storage, I/O, and
communication. To address the data movement challenge, error-
controlled lossy compression has been proposed to significantly
reduce the data size while retaining the data quality. Recently,
interpolation-based compressors, including MGARD, SZ3, QoZ,
and HPEZ, have stood out due to their efficiency in obtaining
relatively high compression ratios with decent compression and
decompression throughput. Nevertheless, these methods focus on
data decorrelation in the compression pipeline yet overlook the
correlation of the quantization indices generated after decorrela-
tion. In this paper, we develop a generic framework that can use
the correlation of quantization indices to significantly improve
the compression ratios for state-of-the-art interpolation-based
error-bounded lossy compressors. OQur contributions are three-
fold: (1) We carefully characterized the quantization index array
produced by the interpolation-based compressors and identified
the unused correlation; (2) We designed a generic quantization
index prediction method to exploit such correlation, which leads
to improved compression ratio with only minor degradation in
throughput; (3) We integrate our method into 4 state-of-the-
art interpolation-based compressors and evaluate them using 5
real-world datasets. Experimental results demonstrate that the
proposed method improves the compression ratios of the base
compressors by up to 95% while Kkeeping the same quality.
It also leads to 16% improvement in end-to-end data transfer
performance under a parallel setting.

Index Terms—High-performance computing, scientific data,
lossy compression, error control

I. INTRODUCTION

Today’s high-performance computing (HPC) systems are
producing unprecedented amounts of data. High-resolution cli-
mate simulations, for example, can generate tens of terabytes
of data every 16 seconds [1]. This poses grand challenges
to data movement tasks as the improvement of network and
I/O systems has fallen far behind the data generation speed,
thus hindering downstream data analytics crucial for advancing
scientific discoveries.

To mitigate this problem, error-controlled lossy compres-
sion [2]-[16] has been proposed and extensively studied in the
last decade. These compressors ensure the distortion between
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the original and decompressed data is less than a user-specified
error bound, which addresses the limitations of low compres-
sion ratios in lossless compressors and unbounded errors in
traditional lossy compressors. As such, they are widely used
in multiple scientific use cases, including data storage and
I/O [17], data transfer [18], and data streaming [19].

Recently, interpolation methods have been applied in error-
controlled lossy compressors for better compression perfor-
mance and quality due to their high efficiency in decorrelating
scientific data. For instance, MGARD [14], [15] leverages
multilinear interpolation functions to approximate the data
with finite element methods, and then applies a L? projection
to obtain a hierarchical representation. This further enables the
preservation of certain families of quantities-of-interest (Qols)
via a rigorous theory [16]. Similarly, linear and cubic spline
interpolations have been directly used in the data prediction
stage of SZ3 [6] and QoZ [8], which significantly improves the
compression ratios when the requested error bound is relatively
low. HPEZ [9] is recently proposed to investigate a versatile
interpolation-based predictor to explore multi-dimensional in-
terpolation and auto-tuning strategies. This further improves
the compression ratios at the cost of some unavoidable per-
formance degradation.

TABLE I
STATE-OF-THE-ART INTERPOLATION-BASED COMPRESSORS

C Compression | Compression | Resolution GPU Qol Quality

ompressor Speed Ratios reduction support | support | oriented
MGARD Low Low v v/ v X
SZ3 High Medium X X v X
QoZ High Medium X v/ X v/
HPEZ Medium High X X X v

While all these compressors use interpolation in their com-
pression algorithms, they have unique characteristics that can
benefit different scientific use cases. Table I characterizes the
four compressors in terms of compression speed, compression
ratio, resolution reduction, GPU support, Qol support, and
quality orientation. For instance, only MGARD provides res-
olution reduction despite its relatively low compression speed
and ratios, which is very useful when the degree of freedom
in the data needs to be reduced to accelerate downstream
analysis [20]. Meanwhile, both MGARD and QoZ have GPU



support [21], [22] to accommodate use cases requiring high
throughput, which is often the case for data streaming tasks
in scientific instruments [23]. MGARD and SZ3 also support
the preservation of several symbolistic Qols that are essential
in some application domains [16], [24]. Finally, QoZ and
HPEZ feature dynamic quality orientation with an auto-tuning
module, which provides the best compression ratios under
varying quality metrics. In addition to the generic compres-
sors, several customized compressors for specific applications
were also developed with the interpolation-based compression
framework [25].

With the wide usage of interpolations in scientific data com-
pressors, designing new methods to improve their efficiency is
important but non-trivial. The challenges are three-fold. First,
existing approaches have exhausted multiple directions for op-
timizations, including interpolation functions [6], auto-tuning
procedures [8], and interpolation orders [9]. This leaves little
room for further improvement. Second, different compressors
may have varied interpolation functions and compression
mechanisms, which leads to diverse characteristics that are
hard to unify using a single routine. Third, while high com-
pression ratios are preferred in scientific lossy compressors,
achieving that with major degradation in throughput is unde-
sired. Having a balanced trade-off between the compression
ratio and compression speed is usually not an easy task.

In the four compressors mentioned above, the original data
is first decorrelated by different interpolation-based methods,
and then quantized to an array of integers, also known as quan-
tization index array. These integers are further compressed by
variable-length and lossless encoding methods such as Huff-
man encoding [26] and ZSTD [27]. As a significant component
of the compressed data, the compressibility of the quantization
index array has a direct impact on the compression ratio but
has not yet been well studied.

In this paper, we found that the quantization indices pro-
duced by interpolation-based methods could be highly corre-
lated in certain regions, which can be exploited to improve
the efficiency of interpolation-based compressors. As such,
we carefully characterize the quantization index array from
the leading interpolation-based compressors and identify the
clustering regions with high correlation. We further propose a
generic method to exploit such correlation using an adaptive
quantization index prediction (QP) algorithm. This can sig-
nificantly improve compression ratios while keeping the same
quality of the decompressed data with only minor throughput
degradation. Our contributions are summarized as follows.

o We comprehensively characterize the clustering phe-
nomenon of quantization indices based on four leading
interpolation-based compressors. Such phenomena will
cause a high entropy in local regions and, thus, subopti-
mal overall compression ratios.

« We propose a lightweight prediction method to reduce
the entropy of the quantization index array based on our
characterization. We also explore the best-fit configura-
tion of the prediction method to achieve high efficiency.

« We integrate the proposed method into the four leading
interpolation-based compressors and evaluate them using
seven real-world scientific datasets. Experimental results
demonstrate that our method leads to up to 95% im-
provement over the base compressors in the compression
ratios under the same quality. A parallel data transfer
experiment using SZ3 shows that our method can improve
the end-to-end data transfer performance to 1.16x.

The rest of this paper is organized as follows. Section II
reviews the literature on lossy scientific data compressors. Sec-
tion III provides an overview of the proposed method. Section
IV describes the characterization of quantization indices after
applying interpolation-based method. Section V details our
quantization index prediction strategies and the corresponding
parameter exploration. Section VI presents and analyzes the
experimental results. Section VII concludes the paper with a
vision for future works.

II. RELATED WORKS

Data compression is regarded as a promising way to ad-
dress the big data challenge in scientific applications due
to its efficiency in reducing the data size. Generic lossless
compressors, such as ZSTD [27], GZIP [28], and Blosc [29],
are able to recover the exact data, but they usually suffer
from limited compression ratios for floating-point scientific
data (less than 2 in many cases [30]). While traditional lossy
compression methods, such as JPEG [31] and JPEG2000 [32],
can provide tunable compression ratios to accommodate dif-
ferent use cases, they do not enforce error bounds that are
usually required to ensure the correctness of scientific analysis.
Error-controlled lossy compressors [2]—-[16] are proposed as an
alternative way to mitigate this problem. These compressors
can provide significant compression ratios while enforcing an
error bound specified by the users.

Error-controlled lossy compressors usually comprise three
major steps: decorrelation, quantization, and encoding. They
can be categorized into prediction-based model [2]-[9] and
transform-based model [10]-[13] in general, depending the
major decorrelation methods adopted. The SZ compressor
family [3]-[6] is a set of representative prediction-based
compressors. In the SZ compression pipeline, the data is
first decorrelated using one or multiple pre-set prediction
algorithms, and then quantized into an array of integers (a.k.a.,
quantization indices) based on the user-specified error bound.
After that, the quantization indices are fed to a Huffman
encoder [26] and ZSTD [27] for lossless compression. With
several years of development, the prediction algorithms in
SZ have evolved from one-dimensional curve fitting [3] to
Lorenzo prediction [4], regression [5], and spline interpola-
tion [6]. Transform-based compressors leverage specific trans-
forms for data decorrelation, and then perform quantization
and encoding in the transformed domains. ZFP [10] is a
typical transform-based compressor that divides data into non-
overlapped data blocks for independent compression. In each
block, it converts data into fixed-point representations and
applies a near-orthogonal transform for data decorrelation. The



transformed data are quantized and encoded using an embed-
ded encoding algorithm to achieve size reduction. Other no-
table transformed-based compressors include TTHRESH [11],
SPERR [12], and FAZ [13]. While these compressors deliver
high compression ratios, they usually suffer from relatively
low compression/decompression throughput due to the intro-
duction of complex operations such as singular value decom-
position and wavelet transform.

MGARD [14]-[16] is a lossy compressor that lies in the
middle of prediction-based and transform-based compressors.
It relies on multilinear interpolation along with a L? projection
for data decorrelation, and applies quantization in a level-wise
fashion. Similar to SZ, the quantized integers, or quantization
indices, are compressed using lossless methods.

To accommodate various scientific use cases [23], multiple
variations of error-controlled compressors have also been
proposed and developed. For instance, MGARD supports the
preservation of certain families of Qols, such as adaptive dec-
imation and linear quantities, through a rigorous development
of theory [16]. SZ3 has been equipped with similar function-
ality via the derivation and application of point-wise error
bounds [24]. Later, QoZ [8] has been proposed to enhance SZ3
with a highly-parameterized multi-level interpolation-based
data predictor and an adaptive auto-tuner, leading to optimized
compression ratios according to user-specified quality metrics
during online compression. Note that both MGARD and QoZ
have their respective GPU supports [21], [22] to achieve
high throughput. Recently, HPEZ [9] has demonstrated further
improvement by incorporating multi-dimensional interpolation
and tailored optimizations such as block-wise interpolation
tuning and dynamic dimension freezing. While it generally
leads to the best compression ratios under the same quality
constraints, the complex design in the interpolation strategy
and the highly serial nature of the tuning process make it hard
to parallelize on GPU architectures.

In this paper, we focus on improving the compression ratios
of interpolation-based compressors by investigating and opti-
mizing the quantization indices after applying interpolation for
decorrelation. Our method provides much higher compression
ratios without affecting the compression quality. The proposed
techniques will benefit a broad range of interpolation-based
compressors, including but not limited to MGARD, SZ3, QoZ,
and HPEZ, and can be simply applied to their respective
variations for Qol preservation and GPU parallelization.

III. OVERVIEW

In this section, we first introduce the quality assessment
metrics used in the paper, followed by an overview of the
proposed techniques on quantization index prediction.

A. Quality assessment

We use compression ratios (CR) under specific error bounds
to assess compression quality under the same distortion in
absolute error, and the higher compression ratios indicate
better quality. We also use rate-distortion graphs to assess
the compression quality under the same distortion in mean
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Fig. 1. Design overview of quantization index prediction

squared error, which is widely used in the community [6],
[9], [10]. The rate-distortion shows the relationship between
the data quality metric Peak Signal-to-Noise ratio (PSNR) and
the compression metric bit-rate. PSNR is computed using the
following formula:

max(d) — min(d) .

PSNR(d,d") =201o
( ) &10 MSE(d,d)

where d is the original data, d’ is the decompressed data, and
MSE(d,d") is the mean squared error between d and d’. Bit-
rate denotes the average number of bits needed to represent a
single data point in the compressed file. It can be computed
by 32/64 over compression ratio for single-/double-precision
floating-point data. As such, a lower bit-rate under the same
PSNR indicates better compression quality.

We also use Shannon entropy [33] to assess the compress-
ibility of the quantization index array. In particular, given the
integer array () of quantization index, the Shannon entropy is
defined as H(Q) = — Y _ p; log p;, where {p;} is the frequency
array (i.e., each entry in the array is computed by the number
of occurrences for a symbol in ) divided by the total size
of @). Generally speaking, lower entropy in the quantization
indices indicates better compressibility, which usually leads to
a better compression ratio after lossless encoding.

B. System design

We present the overview of the proposed quantization
index prediction workflow for interpolation-based scientific
compressors in Figure 1. The top box in the figure depicts
the general interpolation-based compression pipeline, which
comprises interpolation-based decorrelation, quantization, and
lossless encoding. The quantization index array, or quanti-
zation indices, are produced by quantizing the coefficients
from the interpolation-based decorrelation, and they will be
losslessly compressed with entropy encoders and lossless
compressors in the next stage.

The box below illustrates the proposed work on quantization
index prediction (QP). In particular, we perform an offline



characterization of the quantization index array to identify
specific regions of interest with high correlation (Section IV).
We then explore effective prediction methods and configura-
tions to exploit such correlation to reduce the entropy of the
quantization index array (Section V). The identified prediction
method is used to transform the original quantization array
Q into a lower-entropy representation @’ in the quantization
stage, and then intercept the original pipeline to compress @’
instead of () during the lossless encoding stage. This will
generally lead to better compression ratios under the same
distortion as will be validated in our evaluation (Section VI).

IV. QUANTIZATION INDEX CHARACTERIZATION

In this section, we carefully characterize the quantization
indices of interpolation-based scientific lossy compressors and
find out that they have significant clustering effect with mul-
tiple highly-correlated data regions. This motivates and lays
the foundation of the quantization index prediction methods
that will be introduced in the next section. In the following,
we use SZ3 as an example to introduce how interpolations are
used in scientific data compressors for decorrelation, followed
by our characterization results.

A. SZ3 Recap

We first introduce the multilevel interpolation procedure in
SZ3, followed by the quantization operation that produces
the quantization indices. These concepts are closely related
to our motivation and design of quantization index prediction
methods and are essential for a better understanding of the
proposed design.

Multilevel interpolation and strides: SZ3 decomposes the
data into different levels with different strides and performs
the interpolation level by level in a top-down order, and the
stride is defined as the distance between two adjacent data
points in a level. SZ3 starts data decorrelation from the highest
level [ with stride 2/~ until the lowest level with stride 1 is
reached. As long as the number of data points is sufficient,
SZ3 performs intra-level interpolation to predict data at the
current level, as detailed below.

Intra-level interpolation: We demonstrate how SZ3 per-
forms linear interpolation inside a level on a 3 X 3 x 3 cube
using an example illustrated Figure 2. The same procedure
applies to cubic interpolation, which requires a larger number
of data points inside the level.
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Fig. 2. Illustration of the intra-level linear interpolation in SZ3 on 3D data.

To complete the intra-level interpolation on 3D data, SZ3
needs to perform interpolation for 3 iterations, each along a
different dimension. It starts with only 8 available data points
(colored in blue) that have already been processed in the
previous levels and aims to interpolate all the other data in
the 3 x 3 x 3 cube. The first interpolation is performed along
the z direction, which produces prediction results on the 4
intermediate data (colored in red). These prediction results
are then used to quantize the corresponding data and update
them to decompressed values for future prediction. After that,
the second interpolation is applied along the y direction to
predict and then update the 6 intermediate data (colored in
green). Finally, the third interpolation along the z direction
produces the results for the remaining 9 data points (colored in
magenta). If we look at the data updated by each interpolation
direction separately, their strides are 2 x 2 (red data points),
1 x 2 (green data points), and 1 x 1 (magenta data points),
respectively, assuming the base stride in the level is 1.

Quantization: Quantization is a key step in most error-
controlled data compressors, which alters the data for better
compressibility while enforcing error control. SZ3 adopts the
following quantization function to quantize the difference
between the original value d and its predicted value p:
q= round(dQ;f), where € is the user-specified error bound
and ¢ is the resulting integer (a.k.a., quantization index). The
decompressed data d’ can be intermediately interpreted as
d" = p + 2qe after ¢ is known, and it is easy to prove the
enforcement of error bound as |d — d’| < e. Quantization is
performed for each data point, so the final quantization index
array will be of the same size as that of the original data. As
such, its compressibility will significantly impact the overall
compression ratio.

B. Visualization and characterization of quantization indices

We visualize the quantization indices of the four leading
interpolation-based compressors using the Pressure2000 field
from the SegSalt dataset (with dimensionality 1008 x 1008 x
352; see Table III for details) as an example to understand
the correlation in quantization indices. We align the PSNR of
all the candidate compressors to 75, and the detailed statistics
are listed in Table II. We use SZ3 as an example to describe
how we select the visualization regions, and similar procedures
apply to the other interpolation-based compressors. Under the
specified setting, SZ3 performs interpolation first along the z
direction, followed by y and z directions. To investigate the
correlations that are perpendicular to the prediction direction,
we visualize the slices along zy, xz, and yz planes, respec-
tively, as shown in Figure 3. We select slice 211 along the
zy plane, slice 221 along the zz plane, and slice 51 along
the yz plane for demonstration purposes. This selection is
without loss of generality since the selected slides have only
medium entropy, as shown in Figure 4, which indicates that
higher correlations are expected to occur in the other slices.
We use stride to indicate the distance between two adjacent
data points shown in the plot, and the zoomed-in regions are
set to [450:550, 50:150], [400:600, 50:150], and [320:420,
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Fig. 4. Entropy of quantization indices by slice in three planes with SegSalt
Pressure2000 data and SZ3. The stride in the X-axis is set to 2 to focus on
the quantization indices produced by the last level of interpolation.

500:600], respectively, to locate critical regions with relatively
high regional entropy. We referred to them as Region 0, Region
1, and Region 2 in the rest of the text.

TABLE 11
COMPRESSION STATISTICS ON SEGSALT PRESSURE2000
MGARD | SZ3 QoZ HPEZ
Max Relative Error | 0.0013 0.0006 | 0.00094 | 0.0011
PSNR 75.60 75.02 75.20 75.14
CR (original) 46.52 119.69 162.59 277.70
CR with QP* 54.73 144.29 179.55 286.64

* This indicates the compression ratios after applying the proposed
quantization index prediction methods to be detailed in Section V.

According to Figure 3, the clustering effect of quantization
indices can be easily observed in all three regions. Interest-
ingly, the different regions exhibit clustering with different
strides. This is mainly caused by the order of interpolation:
when the interpolation is performed along z direction, only
1/8 data is processed with a stride of 2 x 2 (analogous to
the red data points in Figure 2); then 1/4 data is handled
at the stride of 1 x 2 (analogous to the green data points in
Figure 2) for interpolation along the y direction, and 1/2 data
is interpolated with stride 1 x 1 (analogous to the magenta
data points in Figure 2) along the x direction.

We then visualize the quantization index array in the three
regions with the respective strides for the four interpolated-

based compressors in Figure 5(a). According to this figure,
MGARD and SZ3 exhibit the most severe clustering effect,
especially in Region 0 and Region 1. QoZ is slightly better
than these two probably because of its auto-tuning procedure,
but it still has a large region of correlated quantization indices.
HPEZ has the least correlation in the quantization index
because of two reasons. On the one hand, it introduces a multi-
dimensional interpolation scheme to leverage the correlation
that is orthogonal to the interpolation direction; on the other
hand, it adaptively selects the interpolation direction for each
32 x 32 block independently. In particular, the highlighted
block in Region 0 is the only block in HPEZ that first interpo-
lates along the z direction, which leads to the clustering effect;
the other blocks are interpolated by the order z — y — z and
thus need a stride of 2 x 2 to observe the clustering effect.
Such observations motivate us to explore a generic method to
exploit the correlation in quantization indices to achieve higher
compression ratios with interpolation-based compressors.

V. QUANTIZATION INDEX PREDICTION

In this section, we formulate the research problem for
exploiting the correlation in quantization indices as a data
prediction problem and design a generic algorithm to solve
that. We then propose to use the Lorenzo predictor to perform
the task and explore a suitable configuration to achieve high
efficiency. Since this approach will not introduce any change
in the decompressed data, it is expected to produce higher
compression ratios without sacrificing compression quality in
state-of-the-art interpolation-based scientific data compressors.

A. Formulation

Given the multi-dimensional quantization index array @
from an interpolation-based compressor, our research problem
can be mathematically formulated as follows:

min(H(f(Q)) 5. Q) =@,

where f is a reversible transform and H is the Shannon
entropy. Let Q' = f(Q) denote the quantization indices
after applying the function f, our goal is to minimize the
entropy H(Q') as much as possible. This formulation is
generic and can be easily plugged in as a postprocessing
stage for quantization indices in existing interpolation-based
compressors after f is identified.

We propose to use reversible prediction methods in
prediction-based compressors [2]-[4] as candidates of f, be-
cause they have proven to be effective in data decorrelation.
As such, the original problem reduces to a quantization index
prediction (QP) problem.

B. Algorithm and implementation

We describe our lightweight QP algorithm in Algorithm 1
for any subroutine quant_pred that can predict the cur-
rent quantization index using prior processed ones, which
incurs minimal modification to the base compressor. While
we present the algorithm using SZ3 as the base compressor,
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Fig. 5. Quantization index visualization of interpolation-based compressors on SegSalt Pressure2000 for the three regions with (a) original interpolation-based
compressors and (b) the modified ones with quantization index prediction. Regions 1 and 2 are plotted with stride 1 X 2 and 2 X 2, respectively, and regional
entropy is attached above each subfigure. The visualization value range is set to [-4, 4] for better comparison.

Algorithm 1 SZ3+QP: SZ3 COMPRESSION WITH INTE-
GRATED QUANTIZATION INDEX PREDICTION

Input: input data d of size n, error bound eb, interpolation predictor p,
linear-scaling quantizer g, entropy encoder enc, lossless encoder [
QOutput: compressed data cc

: init(Q, n) /*allocate memory for quantization index array*/

: init(Q’, n) /*allocate memory for updated quantization index array*/

for i =1— n do
p « predictor.predict(d, i) /*perform prediction*/
Q[i], d'[i] + quantizer.quantize(d[i], p, eb) /*perform quantiza-
tion to obtain quantization index and decompressed data*/
d[i] + d'[{] /*overwrite original data with decompressed data for
future prediction*/

7. Q’[i] « QIi] - quant_pred(Q[1:i-1]) /*record the difference be-

tween original and predicted quantization index*/

8: end for

9: ¢4 allocate_memory()

10: p.save(c) /*save predictor*/

11: g.save(c) /*save data quantizer*/

12: enc.encode(Q’, c) /*perform entropy encoding™*/

13: enc.save(c) /*save encoder*/

14: cc < l.compress(c) /*perform lossless compression®/

15: return cc

A e

a

the same procedure applies to all the other interpolation-
based compressors, including MGARD, QoZ, and HPEZ. The
key modifications are highlighted in blue. In particular, we
initialize an array to store the transformed quantization indices
Q' (line 2). Then, we iterate each data point to perform the
prediction and quantization as SZ3 does, but add an additional
step to predict the current quantization index Q[i] using the
currently processed data and record its difference (line 7).
Note that the restriction on using currently processed data is
required because this is only available information during de-
compression. While this step can be moved outside of the loop,
we keep it there to perform the prediction in a level-wise fash-
ion to make it consistent with the workflow of interpolation-

based compressors. This incurs less performance overhead by
reusing the cache to access the original quantization indices
while delivering better efficiency by preventing cross-level
prediction because different levels may have different error
bounds [6], [20]. Finally, we use the entropy encoder to encode
the updated quantization index array )’ instead of the original
quantization index array @ (line 12) after storing the metadata
for the predictor and quantizer, and pass the result to the
lossless encoder for further size reduction.

C. Prediction method and configuration exploration

While many candidate prediction methods exist, we propose
to leverage Lorenzo predictor [34], which is both compu-
tationally lightweight and proven to be effective for data
decorrelation [4]. It is also easily parallelizable for lossless
prediction with CPU multi-threading or GPUs, as has been
demonstrated in [35]. Lorenzo aims to predict a data point
using its neighboring points, and the key idea is to assume data
points in a local neighborhood follow a specific multivariate
function as shown in Figure 6. This function can be solved
using the neighboring points that have already been processed
and applied to the current data points to obtain the prediction.
The analytical expression of prediction is surprisingly simple,
since it only involves additions and subtractions of the neigh-
boring data as noted in the figure. In the following, we explore
three settings for the Lorenzo prediction on the quantization
indices to identify the best-fit configuration. While we use
the Pressure2000 field in SegSalt and the Velocityx field in
Miranda (see Table III for details) as two representative data
fields and SZ3 to demonstrate the design process of our
quantization index prediction method, similar behaviors are
observed in the all the other data fields that we test.

1) Prediction dimension: We first explore the efficacy of
using 1D, 2D, and 3D Lorenzo predictors to predict the
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quantization index, and the results of the compression ratio
change are presented in Figure 7. For 1D prediction, we
evaluate the prediction along three directions: 1D-Back for
interpolation direction, and 1D-Top and 1D-Left for axes in
the plane that is orthogonal to the interpolation direction.
It is observed that 2D prediction yields significantly better
compression quality when compared with the 3D one, although
it uses a lower-order approximation function. This is because
the points used to perform the 3D prediction are not contiguous
along the interpolation direction when we do it in a level-
wise fashion, which is also partially verified by the quality
degradation when 1D prediction along this direction (1D-
Back) is used. As such, we propose to use 2D Lorenzo for
the quantization index prediction.

SegSalt:Pressure2000
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Fig. 7. Compression ratio increase rate for different prediction dimensions.

2) Prediction condition: While it is feasible to perform the
quantization index prediction everywhere, it may not lead to
the best overall compression quality. A typical example is
the neighborhood of unpredictable data. Unpredictable data
in these interpolation-based compressors refer to data points
that fall out of the range of quantization, i.e., the obtained
quantization integer exceeds the maximal allowable range.
These data points are usually assigned to the same specific
quantization value (e.g., the minimal quantization value in
SZ3) and encoded separately. As such, the quantization indices
of unpredictable data may not be related to their original values
and thus could negatively impact the efficiency of quantization
index prediction.

We define four conditions for performing quantization index
prediction and evaluate how they impact the overall compres-
sion quality using the 2D Lorenzo predictor. In addition to
taking unpredictable data into consideration, we also include
additional constraints on the signs of the involved neigh-
bors, which indicates whether the clustering phenomena occur

around the current data point. The selected conditions are
listed below, and the results are shown in Figure 8.
o Case I: No restrictions (perform prediction everywhere).
o Case II: Skip when unpredictable data is used for predic-
tion.
e Case III: Case II holds, and the signs of left and top
neighbors are the same.
o Case IV: Case II holds, and the signs of the three involved
neighbors are the same.
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Fig. 8. Compression ratio increase rate of different condition cases.

According to the figure, Case III leads to the best over-
all compression. Case I suffers from slight degradation in
compression ratios when the error bound is relatively small
because the number of unpredictable starts to increase in those
cases. Also, Case I and Case II show negative impacts on the
compression ratio when the error bound is relatively large,
because they perform the prediction even when the number
of nonzero quantization indices is too small to provide useful
information. In contrast, Case IV is so conservative that it
seldom invokes the prediction procedure, which does not fully
take advantage of the correlation in the quantization indices.
Based on these findings, we use Case III in our algorithm.

3) Prediction levels: We also explore how to determine the
levels to perform the quantization index prediction. This is
inspired by the fact that high levels (1) possess only a small
portion of data that may not have a huge impact on the overall
compression ratios and (2) have large strides that may nega-
tively impact the quality of prediction. As such, performing
the prediction on the whole data may be inefficient in terms
of both compression ratio and computational efficiency.
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Fig. 9. Compression ratio increase rate of different start level settings.

We present the results with different starting levels in
Figure 9. Substantial improvements are observed for levels 1



Algorithm 2 Best-fit quant_pred subroutine

1: Input: Quantization index array @, current index %, 2D strides s1, s2,
unpredictable quantization label u, and current interpolation level I.
: Ootput: quantization index compensation factor ¢
. if [ < 2 then
if Q'[i —s1] Zu A Qi — s2] #uA Qi —s1 — s2] # u then
if (Qi—s1] > 0AQ[i—s2] > 0)V(Qi—s1] < 0AQ[i—s2] < 0)
then
c=Qli —s1] + Qi — s2] — Qi — s1 — s1]
return c
end if
end if
: end if
: return 0
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and 2, which contain over 98% of the data points in total.
Modest improvements or even degradation are noticed by
including levels from 3 and above while introducing additional
computational overhead. As such, we only perform quantiza-
tion index prediction in level 1 and level 2 in our methods.

Best-fit configuration: Putting things together, we describe
our final quantization index prediction algorithm in Algo-
rithm 2. The inputs include the original quantization index
array, the current data index, the strides in the prediction plane,
the tag for unpredictable data, and the current interpolation
level. When the current interpolation level is either 1 or 2 (line
3), we check if the unpredictable data appear in the neighbor-
hood (line 4). If none of the 3 neighbors are unpredictable,
we proceed to check the signs of the left and top neighbors
(line 5). When the two neighbors’ quantization indices have
the same signs as Case III describes, we perform 2D Lorenzo
prediction to compute and return a compensation (line 6),
which will be applied to @ to obtain Q’. After integrating
the QP algorithm and with this quant_pred subroutine to
the four base compressors, the clustering phenomena can be
significantly mitigated as shown in Figure 5(b).

VI. EVALUATION

We integrate the proposed QP algorithm into four leading
interpolation-based compressors—MGARD, SZ3, QoZ, and
HPEZ—and evaluate them with all these base compressors
and three state-of-the-art transform-based compressors—ZFP,
TTHRESH, and SPERR—using 7 real-world datasets. This
section details the evaluation results.

A. Experiment setup

We use 5 datasets from multiple domains as the benchmark
datasets, as detailed in Table III. This includes Miranda from
large turbulence simulations (hydrodynamics) [36], Hurricane
from weather simulation [37], SegSalt from SEG/EAGE
Salt and Overthrust models (geology) [38], SCALE from
the SCALE-RM weather model (weather) [39], S3D from
combustion simulation(chemistry) [40], CESM-3D from the
CESM-ATM climate model (climate) [41], and RTM from a
reserve time migration application (seismic) [42]. Note that we
evaluate the first four datasets for generic comparisons and use
RTM only for the data transfer evaluation. All the experiments
are conducted on the Morgan Comput Cluster (MCC) [43], a

medium-scale cluster where each node is equipped with two
AMD EPYC 7763 64-core CPUs and 512GB DDR4 memory.

TABLE III
BENCHMARK DATASETS
Dataset #Field Dimension Size Type
Miranda 7 256 X 384 x 384 0.98GB Float
Hurricane 13 100 x 500 x 500 1.21GB Float
SegSalt 3 1008 x 1008 x 352 3.99GB Float
SCALE 12 98 x 1200 x 1200 6.31GB Float
S3D 11 500 x 500 x 500 10.24GB Double
CESM-3D 33 26 x 1800 x 3600 20.71GB Float
RTM 1 3600 x 449 x 449 x 235 | 635.36GB Float

B. Rate-distortion comparison with the base compressors

We first present the improvement of the proposed QP
algorithm on the base compressors in terms of rate distortion.
The results on the four datasets are displayed in Figures 10—
13, respectively, with the maximum compression ratio increase
rate and the corresponding PSNR annotated in the place where
significant improvement is observed. Since QP increases the
compression ratios without changing the decompressed data
(which indicates the same PSNR), evaluation points in QP are
always left shifts of the corresponding evaluation points in the
base compressor in the rate-distortion graph.

According to these figures, improvement in compression
ratios has been seen in all the base compressors on most of
the datasets (except HPEZ on CESM and MGARD, SZ3, and
HPEZ on Hurricane). Interestingly, the base compressors with
the highest improvement vary with the dataset. Specifically,
the maximum improvement on the Miranda dataset comes
from SZ3, where a 45% increase in the compression ratio
(from 26.95 to 39.25) has been observed when the PSNR is
101.23. On the SegSalt dataset, QP exhibits the best effect
on QoZ with a 47% increase in the compression ratio (from
14.62 to 21.55) when the PSNR is 108.9. The improvements
over MGARD become the most significant on the SCALE and
CESM datasets, and the largest improvement appears on the
CESM dataset, where the compression ratio is increased by
95% (from 23.59 to 45.99) when the PSNR is 75.76. QP has
only minor improvement on HPEZ, which yields only 7%,
10%, 5%, and 0.31% in the four datasets. This is because QP
mainly exploits the correlation along the plane that is orthog-
onal to the interpolation direction, while HPEZ has already
taken advantage of this partially through its highly optimized
multidimensional interpolation techniques. Nevertheless, QP
still improves the quality of HPEZ and will not have any
negative impact on the compression ratios.

While the improvement of QP is highly dependent on the
datasets, one can observe a general trend from these figures: if
we observe high improvement of QP for a base compressor at
a specific evaluation point, it generally indicates that QP will
have decent improvement for this compressor on this dataset.
Similarly, if QP yields a minor benefit for an evaluation point,
it is highly likely that QP cannot have high improvement
for other evaluation points using this base compressor on
this dataset. The only exception happens on SZ3 for the
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Fig. 11. Rate-distortion results on SegSalt dataset.

SegSalt data, where one can see a 39% improvement in the
compression ratios when the PSNR is 95 but a modest gain
when it is higher than 100. This is because SZ3 switches to
the multidimensional Lorenzo predictor by its design, which
does not have the clustering phenomena in the quantization
index array.

C. Speed comparison with the base compressors

Since QP introduces an additional stage to predict the
quantization indices during compression and recover them
during decompression, it introduces additional overhead. In
this section, we present the speed comparison of the base com-
pressors and their QP-integrated versions to study the overhead
in both compression and decompression. We showcase 3 error
bounds, namely 1E-3, 1E-4, and 1E-5, on the four datasets
because of limited space, and the speed under other error
bounds shares similar trends.

We present the compression speed in Figure 16 and the
decompression speed in Figure 17. According to these figures,
one can see speed degradation on all the compressors after
integrating QP, which is as expected. The lowest overhead
is observed on MGARD, because the vanilla MGARD has
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Fig. 12. Rate-distortion results on SCALE dataset.
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Fig. 13. Rate-distortion results on CESM dataset.

relatively low compression and decompression speed and
dominates the running time. For the other base compressors,
different levels of speed degradations are seen on different
datasets with varying error bounds. For instance, QP incurs
around 20% compression overhead for SZ3 on all the evalu-
ated error bounds, and this number increases to around 24% on
SegSalt for 1E-3 and 1E-4. Note that QP has 0% compression
overhead for SZ3 on SegSalt with 1E-5, because SZ3 has
switched to Lorenzo under this error bound, where QP will
not be invoked. On SCALE, the compression overhead of QP
for SZ3 reduces from 17% to 5% because several fields (8
out of 12 when the error bound is 1E-5) have switched to the
Lorenzo predictor. The compression overhead of QP is much
more steady on QoZ because QoZ does not make the Lorenzo
switch. The overhead across all the datasets and all the error
bounds is between 14% to 19%.

Another worth noting point is that QP incurs a higher
overhead on decompression than compression. This is mainly
because decompression, especially at relatively high error
bounds, has a higher speed than compression, and the overhead
can vary with error bounds. For instance, the decompression
overhead of QP on QoZ decreases from 44% to 27% when the
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Fig. 15. Rate-distortion results on Hurricane dataset.

error bound decreases from 1E-3 to 1E-5, because the vanilla
QoZ has a much lower decompression speed at the error bound
1E-5 compared with that at the error bound 1E-3.

D. Comparison with state of the arts

We further compare QP-integrated interpolation-based com-
pressors with state-of-the-art error-controlled lossy compres-
sors in the community. In addition to MGARD, SZ3, QoZ,
and HPEZ, we also compare with ZFP [10], TTHRESH [11]
and SPERR [12] in terms of compression ratios and speed in
Table IV.

From the table, it is observed that HPEZ+QP and SPERR al-
ways lead the compression ratios, but SPERR is relatively slow
due to the wavelet transform it uses. While the improvement
of QP to HPEZ is modest, we see huge benefits in integrating
QP with MGARD, SZ3, and QoZ. Furthermore, integrating
QP with SZ3 and QoZ has turned them into very competitive
and even better compressors when compared with the state of
the arts. For instance, QoZ+QP achieves similar compression
ratios to HPEZ at the error bound 1E-5 on the SegSalt dataset
while delivering 35% improvement in compression speed;
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similarly, it has the same level of compression ratios as SPERR
at the error bound 1E-3 on the Miranda dataset while featuring
2.4x compression speed. This demonstrates the potential of
QP in complementing interpolation-based compressors.

E. End-to-end data transfer

We further perform an end-to-end data transfer experiment
in a parallel setting using the RTM dataset, to demonstrate how
QP can improve the base compressors for data transfer tasks.
The whole dataset has the dimension of 3600 x 449 x 449 x
235 with a total size of 635.54 GB, and the data transfer is
performed between MCC at the University of Kentucky and
Anvil [44] at Purdue University via Globus [45]. A vanilla



TABLE IV
PERFORMANCE COMPARISON WITH THE STATE-OF-ART COMPRESSORS
(Sc: COMPRESSION SPEED, Sp: DECOMPRESSION SPEED, IN MB/S)

Miranda
1E-3 1E-5

Compressor CR PSNR Sc Sp CR PSNR Sc Sp

MGARD 53.65 7299 | 34.03 | 3434 | 11.12 | 109.9 | 33.22 | 33.15
MGARD+QP | 63.57 72.99 | 33.77 | 32.29 | 13.03 | 109.9 | 33.37 | 30.88
SZ3 168.0 71.05 | 167.3 | 377.3 | 20.11 1089 | 1529 | 2754
SZ3+QP 183.55 [ 71.05 | 1339 | 2742 | 29.03 | 1089 | 1244 | 223.0
QoZ 172.6 74.57 | 157.6 | 3624 | 2029 | 109.6 | 121.2 | 207.47
QoZ+QP 192.4 74.57 | 1329 | 2319 | 28.69 | 109.6 | 104.4 150.7
HPEZ 241.6 75.71 1233 | 4342 | 24.11 109.1 110.2 304.0
HPEZ + QP 245.1 75.71 110.2 | 3223 | 25.75 109.1 101.6 249.6
ZFP 25.62 95.64 | 426.0 | 907.5 | 9.67 1344 | 280.8 | 559.2
TTHRESH 137.6 68.62 | 30.15 | 109.3 | 24.74 | 110.0 | 2293 | 67.54
SPERR 200.2 79.69 55.34 121.6 | 32.74 114.8 43.25 90.11

SegSalt
1E-3 1E-5

Compressor CR PSNR Sc Sp CR PSNR Sc Sp

MGARD 49.45 72.68 | 3286 | 33.10 | 9.49 109.8 | 3250 [ 32.13
MGARD+QP | 57.15 72.68 [ 33.02 | 31.56 | 11.36 | 109.8 | 32.19 [ 29.56
SZ3 140.6 70.71 1919 | 551.2 | 18.04 | 106.5 | 1209 | 2164
SZ3+QP 159.61 | 70.71 1474 | 3235 | 18.04 | 106.5 121.1 2164
QoZ 143.4 73.71 198.9 | 626.1 | 14.62 108.9 | 1787 | 348.6
QoZ+QP 167.4 73.71 161.7 | 339.7 | 21.55 | 108.9 | 151.9 | 255.6
HPEZ 239.3 7535 | 121.7 | 444.1 | 2149 | 1079 | 112.6 | 300.6
HPEZ + QP 245.5 75.35 109.2 | 3184 | 23.71 107.9 104.7 252.1
ZFP 24.96 96.97 | 668.6 | 1032 9.73 132.8 | 462.8 | 648.5
TTHRESH 99.53 98.21 | 1149 | 99.25 | 11.77 | 139.6 9.74 48.28
SPERR 188.1 7847 | 69.72 | 1504 | 2633 | 113.7 [ 5149 100.0

transfer of the original data using Globus takes 23 minutes
and 29 seconds, which indicates a bandwidth of 461.75 MB/s.

The dataset is compressed in an embarrassingly parallel
fashion. In particular, we split the entire dataset into 3600
slices along the first dimension and distributed the slices to
different processors for independent compression. We report
the time for compression, writing compressed data to the file
systems, transferring the compressed data over Globus, reading
decompressed from the file system, and decompression on a
strong-scaling test with 225, 450, 900, and 1800 cores. The
evaluation results on SZ3 and SZ3+QP are shown in Figure 18,
and their respective compression ratios are 21.54 and 25.06.
Both methods have the same PSNR of 108.51 in this setting.

According to the figure, one can clearly see that QP sig-
nificantly reduces the data transfer time due to the reduced
data size. Overall, integrating QP with SZ3 leads to a 16%
performance gain in the end-to-end data transfer experiment,
and this benefit is expected to grow when the size of data
and the number of cores continue to increase. This may be
impacted by the data transmission bandwidth, though, because
higher bandwidth will lead to a shorter transmission time
and, thus, fewer benefits in improving compression ratios. For
instance, if the bandwidth of the transfer link doubles, the
expected performance gain will decrease to 11%. However,
considering that data movement time is usually the major
performance bottleneck in many scientific applications, the
proposed methods can have benefits for end-to-end data trans-
fer in a wide range of use cases.

VII. CONCLUSION AND FUTURE WORK

In this paper, we explore the correlation in the quantization
index array for interpolation-based compressors, which is com-
plementary to existing research on optimizing the interpolation
methods in the data decorrelation stage. In particular, we
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Fig. 18. End-to-end data transfer test results.

carefully characterize the quantization index array produced
by four leading interpolation-based compressors and identify
the clustering phenomena that can be utilized for potential
optimizations. We then propose a generic quantization in-
dex prediction (QP) algorithm that is compatible with most
interpolation-based compressors and explore the best-fit con-
figuration to achieve high compression efficiency. We further
integrate the QP algorithm into the four leading interpolation-
based compressors and evaluate them using 7 real-world
datasets. Experiments demonstrate that the QP algorithm can
improve the compression ratios of the base compressors by
up to 95%. Integrating it with SZ3 leads to up to 1.16x
performance in a data transfer task.

Admittedly, the current proposed design of QP has certain
limitations. For example, it is just oriented from interpolation-
based error quantization, so it has not been well adapted
to other archetypes of lossy compressors. Moreover, it ex-
hibits limited compression ratio improvement under large error
bound and low bit rate use cases. In the future, we will
endeavor to address those limitations. Our detailed work plan
includes 1) Proposing a more generalized design for com-
pressors besides interpolation-based ones; 2) Guaranteeing the
compression ratio improvement consistency in more diverse
use cases; 3) Further optimizing the implementation of QP,
reducing the computational overhead.
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