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AbstractÐLarge-scale scientific simulations produce unprece-
dented amounts of data using high-performance computing
systems, leading to severe problems in data storage, I/O, and
communication. To address the data movement challenge, error-
controlled lossy compression has been proposed to significantly
reduce the data size while retaining the data quality. Recently,
interpolation-based compressors, including MGARD, SZ3, QoZ,
and HPEZ, have stood out due to their efficiency in obtaining
relatively high compression ratios with decent compression and
decompression throughput. Nevertheless, these methods focus on
data decorrelation in the compression pipeline yet overlook the
correlation of the quantization indices generated after decorrela-
tion. In this paper, we develop a generic framework that can use
the correlation of quantization indices to significantly improve
the compression ratios for state-of-the-art interpolation-based
error-bounded lossy compressors. Our contributions are three-
fold: (1) We carefully characterized the quantization index array
produced by the interpolation-based compressors and identified
the unused correlation; (2) We designed a generic quantization
index prediction method to exploit such correlation, which leads
to improved compression ratio with only minor degradation in
throughput; (3) We integrate our method into 4 state-of-the-
art interpolation-based compressors and evaluate them using 5
real-world datasets. Experimental results demonstrate that the
proposed method improves the compression ratios of the base
compressors by up to 95% while keeping the same quality.
It also leads to 16% improvement in end-to-end data transfer
performance under a parallel setting.

Index TermsÐHigh-performance computing, scientific data,
lossy compression, error control

I. INTRODUCTION

Today’s high-performance computing (HPC) systems are

producing unprecedented amounts of data. High-resolution cli-

mate simulations, for example, can generate tens of terabytes

of data every 16 seconds [1]. This poses grand challenges

to data movement tasks as the improvement of network and

I/O systems has fallen far behind the data generation speed,

thus hindering downstream data analytics crucial for advancing

scientific discoveries.

To mitigate this problem, error-controlled lossy compres-

sion [2]±[16] has been proposed and extensively studied in the

last decade. These compressors ensure the distortion between
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the original and decompressed data is less than a user-specified

error bound, which addresses the limitations of low compres-

sion ratios in lossless compressors and unbounded errors in

traditional lossy compressors. As such, they are widely used

in multiple scientific use cases, including data storage and

I/O [17], data transfer [18], and data streaming [19].

Recently, interpolation methods have been applied in error-

controlled lossy compressors for better compression perfor-

mance and quality due to their high efficiency in decorrelating

scientific data. For instance, MGARD [14], [15] leverages

multilinear interpolation functions to approximate the data

with finite element methods, and then applies a L2 projection

to obtain a hierarchical representation. This further enables the

preservation of certain families of quantities-of-interest (QoIs)

via a rigorous theory [16]. Similarly, linear and cubic spline

interpolations have been directly used in the data prediction

stage of SZ3 [6] and QoZ [8], which significantly improves the

compression ratios when the requested error bound is relatively

low. HPEZ [9] is recently proposed to investigate a versatile

interpolation-based predictor to explore multi-dimensional in-

terpolation and auto-tuning strategies. This further improves

the compression ratios at the cost of some unavoidable per-

formance degradation.

TABLE I
STATE-OF-THE-ART INTERPOLATION-BASED COMPRESSORS

Compressor
Compression

Speed
Compression

Ratios
Resolution
reduction

GPU
support

QoI
support

Quality
oriented

MGARD Low Low ✓ ✓ ✓ ✗

SZ3 High Medium ✗ ✗ ✓ ✗

QoZ High Medium ✗ ✓ ✗ ✓

HPEZ Medium High ✗ ✗ ✗ ✓

While all these compressors use interpolation in their com-

pression algorithms, they have unique characteristics that can

benefit different scientific use cases. Table I characterizes the

four compressors in terms of compression speed, compression

ratio, resolution reduction, GPU support, QoI support, and

quality orientation. For instance, only MGARD provides res-

olution reduction despite its relatively low compression speed

and ratios, which is very useful when the degree of freedom

in the data needs to be reduced to accelerate downstream

analysis [20]. Meanwhile, both MGARD and QoZ have GPU



support [21], [22] to accommodate use cases requiring high

throughput, which is often the case for data streaming tasks

in scientific instruments [23]. MGARD and SZ3 also support

the preservation of several symbolistic QoIs that are essential

in some application domains [16], [24]. Finally, QoZ and

HPEZ feature dynamic quality orientation with an auto-tuning

module, which provides the best compression ratios under

varying quality metrics. In addition to the generic compres-

sors, several customized compressors for specific applications

were also developed with the interpolation-based compression

framework [25].

With the wide usage of interpolations in scientific data com-

pressors, designing new methods to improve their efficiency is

important but non-trivial. The challenges are three-fold. First,

existing approaches have exhausted multiple directions for op-

timizations, including interpolation functions [6], auto-tuning

procedures [8], and interpolation orders [9]. This leaves little

room for further improvement. Second, different compressors

may have varied interpolation functions and compression

mechanisms, which leads to diverse characteristics that are

hard to unify using a single routine. Third, while high com-

pression ratios are preferred in scientific lossy compressors,

achieving that with major degradation in throughput is unde-

sired. Having a balanced trade-off between the compression

ratio and compression speed is usually not an easy task.

In the four compressors mentioned above, the original data

is first decorrelated by different interpolation-based methods,

and then quantized to an array of integers, also known as quan-

tization index array. These integers are further compressed by

variable-length and lossless encoding methods such as Huff-

man encoding [26] and ZSTD [27]. As a significant component

of the compressed data, the compressibility of the quantization

index array has a direct impact on the compression ratio but

has not yet been well studied.

In this paper, we found that the quantization indices pro-

duced by interpolation-based methods could be highly corre-

lated in certain regions, which can be exploited to improve

the efficiency of interpolation-based compressors. As such,

we carefully characterize the quantization index array from

the leading interpolation-based compressors and identify the

clustering regions with high correlation. We further propose a

generic method to exploit such correlation using an adaptive

quantization index prediction (QP) algorithm. This can sig-

nificantly improve compression ratios while keeping the same

quality of the decompressed data with only minor throughput

degradation. Our contributions are summarized as follows.

• We comprehensively characterize the clustering phe-

nomenon of quantization indices based on four leading

interpolation-based compressors. Such phenomena will

cause a high entropy in local regions and, thus, subopti-

mal overall compression ratios.

• We propose a lightweight prediction method to reduce

the entropy of the quantization index array based on our

characterization. We also explore the best-fit configura-

tion of the prediction method to achieve high efficiency.

• We integrate the proposed method into the four leading

interpolation-based compressors and evaluate them using

seven real-world scientific datasets. Experimental results

demonstrate that our method leads to up to 95% im-

provement over the base compressors in the compression

ratios under the same quality. A parallel data transfer

experiment using SZ3 shows that our method can improve

the end-to-end data transfer performance to 1.16×.

The rest of this paper is organized as follows. Section II

reviews the literature on lossy scientific data compressors. Sec-

tion III provides an overview of the proposed method. Section

IV describes the characterization of quantization indices after

applying interpolation-based method. Section V details our

quantization index prediction strategies and the corresponding

parameter exploration. Section VI presents and analyzes the

experimental results. Section VII concludes the paper with a

vision for future works.

II. RELATED WORKS

Data compression is regarded as a promising way to ad-

dress the big data challenge in scientific applications due

to its efficiency in reducing the data size. Generic lossless

compressors, such as ZSTD [27], GZIP [28], and Blosc [29],

are able to recover the exact data, but they usually suffer

from limited compression ratios for floating-point scientific

data (less than 2 in many cases [30]). While traditional lossy

compression methods, such as JPEG [31] and JPEG2000 [32],

can provide tunable compression ratios to accommodate dif-

ferent use cases, they do not enforce error bounds that are

usually required to ensure the correctness of scientific analysis.

Error-controlled lossy compressors [2]±[16] are proposed as an

alternative way to mitigate this problem. These compressors

can provide significant compression ratios while enforcing an

error bound specified by the users.

Error-controlled lossy compressors usually comprise three

major steps: decorrelation, quantization, and encoding. They

can be categorized into prediction-based model [2]±[9] and

transform-based model [10]±[13] in general, depending the

major decorrelation methods adopted. The SZ compressor

family [3]±[6] is a set of representative prediction-based

compressors. In the SZ compression pipeline, the data is

first decorrelated using one or multiple pre-set prediction

algorithms, and then quantized into an array of integers (a.k.a.,

quantization indices) based on the user-specified error bound.

After that, the quantization indices are fed to a Huffman

encoder [26] and ZSTD [27] for lossless compression. With

several years of development, the prediction algorithms in

SZ have evolved from one-dimensional curve fitting [3] to

Lorenzo prediction [4], regression [5], and spline interpola-

tion [6]. Transform-based compressors leverage specific trans-

forms for data decorrelation, and then perform quantization

and encoding in the transformed domains. ZFP [10] is a

typical transform-based compressor that divides data into non-

overlapped data blocks for independent compression. In each

block, it converts data into fixed-point representations and

applies a near-orthogonal transform for data decorrelation. The





characterization of the quantization index array to identify

specific regions of interest with high correlation (Section IV).

We then explore effective prediction methods and configura-

tions to exploit such correlation to reduce the entropy of the

quantization index array (Section V). The identified prediction

method is used to transform the original quantization array

Q into a lower-entropy representation Q′ in the quantization

stage, and then intercept the original pipeline to compress Q′

instead of Q during the lossless encoding stage. This will

generally lead to better compression ratios under the same

distortion as will be validated in our evaluation (Section VI).

IV. QUANTIZATION INDEX CHARACTERIZATION

In this section, we carefully characterize the quantization

indices of interpolation-based scientific lossy compressors and

find out that they have significant clustering effect with mul-

tiple highly-correlated data regions. This motivates and lays

the foundation of the quantization index prediction methods

that will be introduced in the next section. In the following,

we use SZ3 as an example to introduce how interpolations are

used in scientific data compressors for decorrelation, followed

by our characterization results.

A. SZ3 Recap

We first introduce the multilevel interpolation procedure in

SZ3, followed by the quantization operation that produces

the quantization indices. These concepts are closely related

to our motivation and design of quantization index prediction

methods and are essential for a better understanding of the

proposed design.

Multilevel interpolation and strides: SZ3 decomposes the

data into different levels with different strides and performs

the interpolation level by level in a top-down order, and the

stride is defined as the distance between two adjacent data

points in a level. SZ3 starts data decorrelation from the highest

level l with stride 2l−1 until the lowest level with stride 1 is

reached. As long as the number of data points is sufficient,

SZ3 performs intra-level interpolation to predict data at the

current level, as detailed below.

Intra-level interpolation: We demonstrate how SZ3 per-

forms linear interpolation inside a level on a 3 × 3 × 3 cube

using an example illustrated Figure 2. The same procedure

applies to cubic interpolation, which requires a larger number

of data points inside the level.

Processed data points from the higher level(s).

First interpolation direction.

Second interpolation direction. 

Third interpolation direction. 

Processed data points after the first iter. interpolation.

Unknown data points to be interpolated.

Processed data points after the second iter. Interpolation.

Processed  data points after the third iter. Interpolation.

x

z
y

Fig. 2. Illustration of the intra-level linear interpolation in SZ3 on 3D data.

To complete the intra-level interpolation on 3D data, SZ3

needs to perform interpolation for 3 iterations, each along a

different dimension. It starts with only 8 available data points

(colored in blue) that have already been processed in the

previous levels and aims to interpolate all the other data in

the 3× 3× 3 cube. The first interpolation is performed along

the z direction, which produces prediction results on the 4

intermediate data (colored in red). These prediction results

are then used to quantize the corresponding data and update

them to decompressed values for future prediction. After that,

the second interpolation is applied along the y direction to

predict and then update the 6 intermediate data (colored in

green). Finally, the third interpolation along the x direction

produces the results for the remaining 9 data points (colored in

magenta). If we look at the data updated by each interpolation

direction separately, their strides are 2 × 2 (red data points),

1 × 2 (green data points), and 1 × 1 (magenta data points),

respectively, assuming the base stride in the level is 1.

Quantization: Quantization is a key step in most error-

controlled data compressors, which alters the data for better

compressibility while enforcing error control. SZ3 adopts the

following quantization function to quantize the difference

between the original value d and its predicted value p:

q = round(d−p

2ϵ
), where ϵ is the user-specified error bound

and q is the resulting integer (a.k.a., quantization index). The

decompressed data d′ can be intermediately interpreted as

d′ = p + 2qϵ after q is known, and it is easy to prove the

enforcement of error bound as |d − d′| ≤ ϵ. Quantization is

performed for each data point, so the final quantization index

array will be of the same size as that of the original data. As

such, its compressibility will significantly impact the overall

compression ratio.

B. Visualization and characterization of quantization indices

We visualize the quantization indices of the four leading

interpolation-based compressors using the Pressure2000 field

from the SegSalt dataset (with dimensionality 1008× 1008×
352; see Table III for details) as an example to understand

the correlation in quantization indices. We align the PSNR of

all the candidate compressors to 75, and the detailed statistics

are listed in Table II. We use SZ3 as an example to describe

how we select the visualization regions, and similar procedures

apply to the other interpolation-based compressors. Under the

specified setting, SZ3 performs interpolation first along the z

direction, followed by y and x directions. To investigate the

correlations that are perpendicular to the prediction direction,

we visualize the slices along xy, xz, and yz planes, respec-

tively, as shown in Figure 3. We select slice 211 along the

xy plane, slice 221 along the xz plane, and slice 51 along

the yz plane for demonstration purposes. This selection is

without loss of generality since the selected slides have only

medium entropy, as shown in Figure 4, which indicates that

higher correlations are expected to occur in the other slices.

We use stride to indicate the distance between two adjacent

data points shown in the plot, and the zoomed-in regions are

set to [450:550, 50:150], [400:600, 50:150], and [320:420,





(a) Original quantization index  array (b) After quantization index prediction 

MGARD SZ3 HPEZQoZMGARD SZ3 HPEZQoZ

Fig. 5. Quantization index visualization of interpolation-based compressors on SegSalt Pressure2000 for the three regions with (a) original interpolation-based
compressors and (b) the modified ones with quantization index prediction. Regions 1 and 2 are plotted with stride 1× 2 and 2× 2, respectively, and regional
entropy is attached above each subfigure. The visualization value range is set to [-4, 4] for better comparison.

Algorithm 1 SZ3+QP: SZ3 COMPRESSION WITH INTE-

GRATED QUANTIZATION INDEX PREDICTION

Input: input data d of size n, error bound eb, interpolation predictor p,
linear-scaling quantizer q, entropy encoder enc, lossless encoder l
Output: compressed data cc

1: init(Q, n) /*allocate memory for quantization index array*/
2: init(Q′, n) /*allocate memory for updated quantization index array*/
3: for i = 1→ n do
4: p← predictor.predict(d, i) /*perform prediction*/
5: Q[i], d′[i]← quantizer.quantize(d[i], p, eb) /*perform quantiza-

tion to obtain quantization index and decompressed data*/
6: d[i] ← d′[i] /*overwrite original data with decompressed data for

future prediction*/
7: Q’[i] ← Q[i] - quant_pred(Q[1:i-1]) /*record the difference be-

tween original and predicted quantization index*/
8: end for
9: c← allocate_memory()

10: p.save(c) /*save predictor*/
11: q.save(c) /*save data quantizer*/
12: enc.encode(Q’, c) /*perform entropy encoding*/
13: enc.save(c) /*save encoder*/
14: cc← l.compress(c) /*perform lossless compression*/
15: return cc

the same procedure applies to all the other interpolation-

based compressors, including MGARD, QoZ, and HPEZ. The

key modifications are highlighted in blue. In particular, we

initialize an array to store the transformed quantization indices

Q′ (line 2). Then, we iterate each data point to perform the

prediction and quantization as SZ3 does, but add an additional

step to predict the current quantization index Q[i] using the

currently processed data and record its difference (line 7).

Note that the restriction on using currently processed data is

required because this is only available information during de-

compression. While this step can be moved outside of the loop,

we keep it there to perform the prediction in a level-wise fash-

ion to make it consistent with the workflow of interpolation-

based compressors. This incurs less performance overhead by

reusing the cache to access the original quantization indices

while delivering better efficiency by preventing cross-level

prediction because different levels may have different error

bounds [6], [20]. Finally, we use the entropy encoder to encode

the updated quantization index array Q′ instead of the original

quantization index array Q (line 12) after storing the metadata

for the predictor and quantizer, and pass the result to the

lossless encoder for further size reduction.

C. Prediction method and configuration exploration

While many candidate prediction methods exist, we propose

to leverage Lorenzo predictor [34], which is both compu-

tationally lightweight and proven to be effective for data

decorrelation [4]. It is also easily parallelizable for lossless

prediction with CPU multi-threading or GPUs, as has been

demonstrated in [35]. Lorenzo aims to predict a data point

using its neighboring points, and the key idea is to assume data

points in a local neighborhood follow a specific multivariate

function as shown in Figure 6. This function can be solved

using the neighboring points that have already been processed

and applied to the current data points to obtain the prediction.

The analytical expression of prediction is surprisingly simple,

since it only involves additions and subtractions of the neigh-

boring data as noted in the figure. In the following, we explore

three settings for the Lorenzo prediction on the quantization

indices to identify the best-fit configuration. While we use

the Pressure2000 field in SegSalt and the Velocityx field in

Miranda (see Table III for details) as two representative data

fields and SZ3 to demonstrate the design process of our

quantization index prediction method, similar behaviors are

observed in the all the other data fields that we test.

1) Prediction dimension: We first explore the efficacy of

using 1D, 2D, and 3D Lorenzo predictors to predict the





Algorithm 2 Best-fit quant_pred subroutine

1: Input: Quantization index array Q, current index i, 2D strides s1, s2,
unpredictable quantization label u, and current interpolation level l.

2: Ootput: quantization index compensation factor c
3: if l ≤ 2 then
4: if Q′[i− s1] ̸= u ∧Q[i− s2] ̸= u ∧Q[i− s1 − s2] ̸= u then
5: if (Q[i−s1] > 0∧Q[i−s2] > 0)∨(Q[i−s1] < 0∧Q[i−s2] < 0)

then
6: c = Q[i− s1] +Q[i− s2]−Q[i− s1 − s1]
7: return c

8: end if
9: end if

10: end if
11: return 0

and 2, which contain over 98% of the data points in total.

Modest improvements or even degradation are noticed by

including levels from 3 and above while introducing additional

computational overhead. As such, we only perform quantiza-

tion index prediction in level 1 and level 2 in our methods.

Best-fit configuration: Putting things together, we describe

our final quantization index prediction algorithm in Algo-

rithm 2. The inputs include the original quantization index

array, the current data index, the strides in the prediction plane,

the tag for unpredictable data, and the current interpolation

level. When the current interpolation level is either 1 or 2 (line

3), we check if the unpredictable data appear in the neighbor-

hood (line 4). If none of the 3 neighbors are unpredictable,

we proceed to check the signs of the left and top neighbors

(line 5). When the two neighbors’ quantization indices have

the same signs as Case III describes, we perform 2D Lorenzo

prediction to compute and return a compensation (line 6),

which will be applied to Q to obtain Q′. After integrating

the QP algorithm and with this quant_pred subroutine to

the four base compressors, the clustering phenomena can be

significantly mitigated as shown in Figure 5(b).

VI. EVALUATION

We integrate the proposed QP algorithm into four leading

interpolation-based compressorsÐMGARD, SZ3, QoZ, and

HPEZÐand evaluate them with all these base compressors

and three state-of-the-art transform-based compressorsÐZFP,

TTHRESH, and SPERRÐusing 7 real-world datasets. This

section details the evaluation results.

A. Experiment setup

We use 5 datasets from multiple domains as the benchmark

datasets, as detailed in Table III. This includes Miranda from

large turbulence simulations (hydrodynamics) [36], Hurricane

from weather simulation [37], SegSalt from SEG/EAGE

Salt and Overthrust models (geology) [38], SCALE from

the SCALE-RM weather model (weather) [39], S3D from

combustion simulation(chemistry) [40], CESM-3D from the

CESM-ATM climate model (climate) [41], and RTM from a

reserve time migration application (seismic) [42]. Note that we

evaluate the first four datasets for generic comparisons and use

RTM only for the data transfer evaluation. All the experiments

are conducted on the Morgan Comput Cluster (MCC) [43], a

medium-scale cluster where each node is equipped with two

AMD EPYC 7763 64-core CPUs and 512GB DDR4 memory.

TABLE III
BENCHMARK DATASETS

Dataset #Field Dimension Size Type

Miranda 7 256× 384× 384 0.98GB Float

Hurricane 13 100× 500× 500 1.21GB Float

SegSalt 3 1008× 1008× 352 3.99GB Float

SCALE 12 98× 1200× 1200 6.31GB Float

S3D 11 500× 500× 500 10.24GB Double

CESM-3D 33 26× 1800× 3600 20.71GB Float

RTM 1 3600× 449× 449× 235 635.36GB Float

B. Rate-distortion comparison with the base compressors

We first present the improvement of the proposed QP

algorithm on the base compressors in terms of rate distortion.

The results on the four datasets are displayed in Figures 10±

13, respectively, with the maximum compression ratio increase

rate and the corresponding PSNR annotated in the place where

significant improvement is observed. Since QP increases the

compression ratios without changing the decompressed data

(which indicates the same PSNR), evaluation points in QP are

always left shifts of the corresponding evaluation points in the

base compressor in the rate-distortion graph.

According to these figures, improvement in compression

ratios has been seen in all the base compressors on most of

the datasets (except HPEZ on CESM and MGARD, SZ3, and

HPEZ on Hurricane). Interestingly, the base compressors with

the highest improvement vary with the dataset. Specifically,

the maximum improvement on the Miranda dataset comes

from SZ3, where a 45% increase in the compression ratio

(from 26.95 to 39.25) has been observed when the PSNR is

101.23. On the SegSalt dataset, QP exhibits the best effect

on QoZ with a 47% increase in the compression ratio (from

14.62 to 21.55) when the PSNR is 108.9. The improvements

over MGARD become the most significant on the SCALE and

CESM datasets, and the largest improvement appears on the

CESM dataset, where the compression ratio is increased by

95% (from 23.59 to 45.99) when the PSNR is 75.76. QP has

only minor improvement on HPEZ, which yields only 7%,

10%, 5%, and 0.31% in the four datasets. This is because QP

mainly exploits the correlation along the plane that is orthog-

onal to the interpolation direction, while HPEZ has already

taken advantage of this partially through its highly optimized

multidimensional interpolation techniques. Nevertheless, QP

still improves the quality of HPEZ and will not have any

negative impact on the compression ratios.

While the improvement of QP is highly dependent on the

datasets, one can observe a general trend from these figures: if

we observe high improvement of QP for a base compressor at

a specific evaluation point, it generally indicates that QP will

have decent improvement for this compressor on this dataset.

Similarly, if QP yields a minor benefit for an evaluation point,

it is highly likely that QP cannot have high improvement

for other evaluation points using this base compressor on

this dataset. The only exception happens on SZ3 for the
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