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facilitate the saturated networks, in the past, researchers pro-

posed different bandwidth-optimized collective algorithms

to decrease the overall collective communication volume [3,

37, 39]. However, these algorithms have already approached

their limits in enhancing the collective performance and

have limited space for further optimization. With the recent

development of GPU-based ultra-fast error-bounded lossy

compression [24, 25, 46], it is now possible to utilize error-

bounded lossy compression to significantly reduce message

sizes and accelerate collective communications while pre-

serving high data quality.

1.2 Limitations of Existing Works and Goal

Recently, researchers have proposed several compression-

accelerated collective communication libraries that achieve

sound speedups over the previous approaches without com-

pression support while maintaining high data accuracy as

shown in Table 1. However, the existing state-of-the-art

communication libraries all demonstrate certain limitations.

The HPE Cray-MPI [17] is a GPU-aware MPI that reaches

high performance in Cray Systems (two out of three US ex-

ascale supercomputers communicate with Cray MPI [41]).

Although its collectives are GPU-aware, they still rely on

intermediate CPU buffers, which leads to suboptimal perfor-

mance [42]. NCCL [12] is another high-performance collec-

tive communications library on systems with NVIDIA GPUs.

It is GPU-centric but lacks compression support, which signif-

icantly limits its collective performance. The state-of-the-art

C-Coll [21, 22] and gZCCL [19] utilize error-bounded lossy

compression to accelerate collective communications on

CPU and GPU clusters, respectively. However, they are sub-

jected to time-consuming Decompression-Operation-Comp-

ression (DOC) workflow, in which each process has to de-

compress the compressed data before applying operations

and then recompress the operated data.

Collective Commu.
Libraries

GPU-centric
Design?

Compression
Support?

Accuracy
Control?

Co-designed
Compression?

Homomorphic
Capability?

Cray-MPI ✗ ✗ — ✗ ✗

NCCL ✓ ✗ — ✗ ✗

C-Coll ✗ ✓ ✓ ✗ ✗

gZCCL ✓ ✓ ✓ ✗ ✗

ghZCCL (our work) ✓ ✓ ✓ ✓ ✓

Table 1: Key designs of state-of-the-art collective communi-

cations libraries. The Homomorphic Capability means that

GPUs can directly operate on compressed data.

An ideal GPU-aware, compression-accelerated collective

communications library should meet the following criteria:

• GPU-centric design that avoids host-device data transfers

and CPU computation overheads.

• Compression support with accuracy control to achieve

performance improvements with high data quality.

• Co-designed compression to maximize both throughput

and compression ratio.

• Direct GPU operations on compressed data during inten-

sive communications, eliminating the need for expensive

DOC workflows.

To propose such an ideal solution, several new challenges

must be addressed:

• Homomorphic compression: How can GPUs compute with

compressed data during communication, removing the

need for costly DOC workflows? Currently, no existing

GPU compressors offer this functionality.

• Performance vs. quality: How can we ensure that a GPU

homomorphic workflow delivers high compression per-

formance without sacrificing quality?

• Co-design with collective communications: How can we

co-design this new compression workflow with collective

communications to achieve the best overall performance

for GPU-centric communication?

1.3 Our solution: ghZCCL

To address the aforementioned limitations of existing works

and new challenges, we propose ghZCCL, which is a GPU-
aware homomorphic compression-accelerated collective
communications library that allows GPUs to directly com-

pute and communicate with compressed data. To the best

of our knowledge, ghZCCL is the first-ever GPU-aware ho-

momorphic compression-communication co-design. To be

specific, there are three key designs in ghZCCL: 1 Novel

workflow: Pioneering GPU homomorphic compression pipeline.

This ultra-fast lossless homomorphic compression pipeline

diminishes the needs for complete decompression and re-

compression while maintaining the same data quality com-

pared with the original DOC workflow, allowing ghZCCL’s

homomorphic compressorÐghZ achieves extreme compres-

sion throughput. 2 Throughput optimization: Fused light-

weight compression kernel. It conducts partial decompres-

sion, operation, and partial recompression with a single

kernel, significantly decreases the kernel launching over-

heads and increases memory access efficiency. 3 Commu-

nication co-design: GPU-centric homomorphic compression-

communication co-design. This GPU-centric co-design sup-

ports different collective computation operations and soundly

improves the collective communication efficiency on modern

GPU clusters. We evaluate ghZCCL with various application

datasets across up-to 512 NVIDIA A100 GPUs and present

some key findings below:

• ghZ achieves 531.91ś942.44 GB/s averaged DOC-handling

throughput on NVIDIAA100 GPU that is 3.47ś3.89× faster

than the current fastest lossy compressorÐcuSZp2.
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undergo a Fused Global Synchronization ( 1 ), which re-

trieves offsets of the two groups of compressed data blocks

with a fused device-level parallel prefix-sum. Then, based

on the two sets of indexes obtained, ghZ decode the two

compressed byte arrays using a Fused Lossless Decoding
& Computation ( 2 ) that transforms and combines the byte

arrays into a single operated integer array. Then, the GPU

threads synchronize with each other in a Resynchroniza-
tion ( 3 ) to obtain the new compressed bytes offsets. Finally,

the integer array is encoded into a compressed byte array

through a Lossless Encoding ( 4 ).

Design Takeaway 2: The GPU homomorphic compres-

sion workflow of ghZ surpasses the DOC workflow of

cuSZp2. By cutting kernel launches from four to one and

processing stages from ten to four, it significantly boosts

DOC-handling latency and throughput.

4.2 ghZCCL Co-design Overview

As shown in Figure 4, we present a high-level overview of

our compression-communication co-design. To fully exploit

the unique benefits of GPU homomorphic compression in

collective communications, we propose a GPU-centric homo-

morphic compression-accelerated collective communication

framework specifically designed for computation-intensive

collective operations. First, we develop Co-designed Al-
gorithms ( 5 ) to improve performance and GPU utiliza-

tion across diverse input data sizes and GPU counts for

GPU-aware homomorphic compression-accelerated collec-

tive communications. These algorithms outperform the

gZCCL’s collective algorithms that rely on the traditional

DOC workflow. Next, we further enhance the efficiency

of these algorithms with a co-designed In-place ghZ ( 6 ),

which effectively minimizes GPU memory usage and data

copying overhead. Additional key optimizations includeAda-
ptive Vectorized Memory Access ( 7 ), which allow both

ghZ and cuSZp2 to adaptively access GPU main memory in

a vectorized manner during intensive collective communica-

tions, andMulti-streamCompression ( 8 ), which overlaps

compression kernels to significantly reduce runtime.

5 GHZCCL: KEY DESIGNS

In this section, we present the eight key designs of ghZCCL.

For clarity, the step numbers (e.g., 1 ) in the text continue to

refer to Figures 3 and 4.

5.1 ghZ: Design Details

We now explore the design of ghZ in detail. The components

1 ś 4 correspond to those labeled 1 ś 4 in Figure 3.
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Figure 4: High-level overview of ghZCCL.

5.1.1 Fused Global Synchronization 1 . To directly operate

on compressed data inputs, the first step is to retrieve the

offsets for each compressed data block through a fused syn-

chronization strategy, enabling further processing. To better

introduce this synchronization approach, we first explain

the high-level compression workflow. The original data is di-

vided into small blocks (e.g., 32 floating-point data points per

block), with each thread compressing a single block per itera-

tion. To ensure memory coalescing, threads within the same

warp process neighboring blocks. This cycle repeats 32 times,

resulting in each warp compressing a total of 32 × 32 = 1024

blocks. Since compressed data blocks may have varying sizes,

the exact locations of each block within the compressed data

cannot be predetermined. Consequently, threads must syn-

chronize to communicate and calculate offset information.

In our ghZ, we employ a Fused Global Synchronization to

determine the specific locations of compressed blocks, elimi-

nating the need for independent synchronizations for each

input, as required in the DOC workflow. First, each GPU

thread calculates the total compressed data offsets for two

sets of 32 data blocks using fixed-rate information, which

specifies the number of bits used to encode each data point

within a block. After determining the thread-level offsets, an

inclusive warp-level prefix sum is applied to calculate the two

total compressed data sizes for a warp of the compressed

byte arrays. This step is optimized using __shfl_up_sync,

enabling efficient in-warp communication. Subsequently,

the last thread of each warp writes the total compressed

data sizes to temporary global memory buffers. An exclusive

global-level prefix sum is then performed to compute the

global compressed data offsets for each warp in the byte ar-

rays. This process utilizes the decoupled look-back technique

described in [13, 24]. By employing Fused Global Synchro-

nization, we significantly reduce synchronization latency

compared to the DOCworkflow, enhancing overall efficiency.

5.1.2 Fused Lossless Decoding & Computation 2 . In ghZ,

we introduce a Fused Lossless Decoding & Computation

approach to partially decode compressed byte arrays and

perform calculations directly on integer data. In contrast, the
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traditional DOC workflow requires fully decompressing the

compressed data into floating-point arrays and launching an

additional GPU kernel to process the two floating-point data

inputs, as illustrated in 3. For each data block, the GPU thread

first performs warp-level communication to determine the

compressed byte offsets of the two compressed data blocks.

This is achieved using the previously obtained fixed-rate

information and the __shfl_up_sync primitive. If both fixed

rates are zero, the two blocks are skipped to save processing

time. If at least one block has a non-zero fixed rate, ghZ

retrieves the sign flags (e.g., 32 sign bits per block) for the

two compressed data blocks in a vectorized manner.

Next, for each compressed block, ghZ’s bit-shuffle-based

fixed-length decoder partially decompresses the correspond-

ing compressed bytes into two 32-element integer arrays.

It then directly computes using the integer arrays to gener-

ate a new sign-bit array, an operated integer array, and an

updated fixed rate, all within a single loop optimized with

loop unrolling. The fixed-rate information is subsequently

stored in the operated compressed data, and __shfl_sync is

employed to update the compressed data offsets across differ-

ent iterations of data blocks. This Fused Lossless Decoding &

Computation method delivers significantly higher through-

put compared to the DOC workflow, which always requires

fully decompressing the two compressed data arrays and

operating on floating-point data.

5.1.3 Resynchronization and Lossless Encoding 3 & 4 . Af-

ter obtaining the operated integer array, ghZ performs a

Resynchronization step to determine the compressed byte

offsets of the newly compressed operated data blocks and

applies a lossless encoding to encode the integer blocks into

compressed bytes. This process is significantly more light-

weight compared to the full recompression required by the

traditional DOC workflow, as shown in Figure 3. The Resyn-

chronization process involves a warp-level synchronization

followed by a global-level synchronization, akin to the Fused

Global Synchronization in ghZ. During the Lossless Encod-

ing phase, the previously obtained fixed-rate information

for each block is utilized to store only the fixed number of

bits required for each element in the block (e.g., 4 bits per

element). This approach significantly reduces storage space

compared to storing the full 32 bits for each element.

Design Takeaway 3: The lightweight design of ghZ op-

timizes memory access and reduces computational costs,

significantly outperforming the traditional DOC work-

flow in compression efficiency.

5.2 ghZCCL: Co-design Details

In this section, we delve into the co-design details of ghZCCL,

with components 5 ś 8 corresponding to those in Figure 4.

5.2.1 GPU-aware homomorphic compression-accelerated col-

lective algorithms 5 . To effectively leverage homomorphic

compression in GPU-aware collective communications, the

foundational step is to co-design the collective communica-

tion algorithms. The state-of-the-art GPU-aware compres-

sion-accelerated collective framework, gZCCL [19], was spe-

cifically designed for the DOC workflow and is not compati-

ble with homomorphic compression. To address this limita-

tion, we propose different co-designed algorithms (e.g., ring-

based and recursive_doubling-based Allreduce) to optimize

collective performance across varying data sizes and GPU

counts. In this subsection, we use the recursive_doubling-

based Allreduce as an exemplar, and the same methodology

can be easily applied to other algorithms.

While the ring-based Allreduce is widely employed for pro-

cessing large messages in leading collective communication

libraries such asMPICH [30] and NCCL [12], it can encounter

GPU underutilization when the GPU count is large. This in-

efficiency arises because each GPU processes only 𝐷/𝑁 data

per compression task, where 𝐷 is the input data size and

𝑁 is the number of GPUs [19]. To address this scalability

challenge, we propose the GPU Homomorphic Compression-

Accelerated Recursive_Doubling-Based Allreduce Algorithm.

In Figure 5, we compare the high-level design of ghZCCL

with gZCCL in the recursive_doubling-based Allreduce algo-

rithm for four GPUs. In gZCCL, each GPU first compresses

its original data and sends the compressed data to the target

GPU. Upon receiving the data, the target GPU decompresses

it to reconstruct the original data, then launches a reduction

kernel to operate on the two original data inputs. After ob-

taining the reduced result, the data is recompressed into a

compressed format using another compression kernel. This

DOC workflow repeats log𝑁 − 1 times, where 𝑁 is the num-

ber of GPUs. In the final round, the last received data is

decompressed and combined with the previously reduced

output. This round does not involve recompression since it

produces the final reduced output. If the compression cost

of the original data is 𝐶𝑃𝑅, the decompression cost is 𝐷𝑃𝑅,

and the operation cost is 𝑂𝑃𝑅, the total computational cost

in gZCCL’s recursive_doubling-based Allreduce algorithm

is: 𝑇𝐴𝑅
𝑔𝑍𝐶𝐶𝐿

= log𝑁 × (𝐷𝑃𝑅 +𝑂𝑃𝑅 +𝐶𝑃𝑅).

In contrast, our ghZCCL co-design, built around our GPU

homomorphic compressorÐghZÐeliminates the costly DOC

workflow used by gZCCL. In ghZCCL, each GPU first con-

currently compresses its original data, then exchanges the

compressed data with other GPUs. Following the communi-

cation step, each GPU directly operates on the compressed

data using our GPU homomorphic compressor, bypassing

the need to decompress it. The resulting newly operated

compressed data is then transmitted among GPUs. This com-

munication and homomorphic compression process repeats
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for log𝑁 − 1 rounds. After the intensive communications,

during the final round, the last received compressed data is

directly computed with the previously reduced compressed

output using the GPU homomorphic compressor. Finally,

the reduced compressed data is decompressed to retrieve

the original reduced output, completing the algorithm. The

total cost of this algorithm is: 𝑇𝐴𝑅
𝐺𝐻𝐶𝐿

= 𝐶𝑃𝑅 + (log𝑁 − 1) ×

𝐻𝑃𝑅 +𝐻𝑃𝑅 +𝐷𝑃𝑅 = 𝐶𝑃𝑅 + log𝑁 ×𝐻𝑃𝑅 +𝐷𝑃𝑅, where𝐻𝑃𝑅

represents the homomorphic processing cost. The cost dif-

ference between gZCCL and ghZCCL is: 𝑇𝐴𝑅
𝑔𝑍𝐶𝐶𝐿

−𝑇
𝐴𝑅
𝐺𝐻𝐶𝐿

=

log𝑁 (𝐷𝑃𝑅 + 𝑂𝑃𝑅 + 𝐶𝑃𝑅 − 𝐻𝑃𝑅) − 𝐶𝑃𝑅 − 𝐷𝑃𝑅. Since the

traditional DOC cost (𝐷𝑃𝑅 + 𝑂𝑃𝑅 + 𝐶𝑃𝑅) is significantly

higher than 𝐻𝑃𝑅, we conclude that ghZCCL achieves much

higher collective performance than gZCCL.
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Figure 5: Compare the high-level design of ghZCCL with

gZCCL in the recursive_doubling-based Allreduce algorithm.

This example uses four GPUs/processes.

5.2.2 In-place ghZ and Adaptive Vectorized Memory Access

6 & 7 . In this section, we detail the designs of the In-

place ghZ and Adaptive Vectorized Memory Access, both

specifically co-designed to meet the needs of GPU-aware

collective communications. Initially, the ghZ processes two

compressed byte arrays as inputs and directly operates on

them to produce an operated compressed byte array, which

is stored in an additional GPU buffer. While this design al-

ready outperforms the DOC workflow, it leads to suboptimal

performance and memory management in collective com-

munication scenarios, particularly on GPUs where memory

resources are constrained. In ghZCCL, after a GPU receives

compressed data from another GPU, the data is stored in

a temporary GPU buffer called tmp_buf. This buffer, along

with another input buffer outputBytes (which stores the

previously reduced compressed data), is fed into the GPU

homomorphic compression kernel. With the original ghZ, an

additional GPU buffer would be required to store the newly

operated compressed output. Subsequently, the data would

need to be copied back to outputBytes for either local storage

or further communication. This process increases both the

memory footprint and runtime. To address this inefficiency,

we co-designed an in-place ghZ, capable of directly writing

the homomorphically compressed data into one of the input

GPU buffers during the compression process. This approach

reduces memory usage and improves runtime efficiency, en-

hancing performance for GPU-aware collectives.

We also propose the Adaptive Vectorized Memory Access

to enable the vectorized memory access capability for com-

pression tasks (including both normal compression and ho-

momorphic compression) during collective communications

to better exploit the GPU global memory bandwidth. In the

collective communication scenario, it is common to divide

input data into smaller data chunks for data communications.

For example, the ring-based Reduce_scatter divides the in-

put data of size 𝐷 into 𝑁 chunks, where 𝑁 is the number

of processes/GPUs. Then, each chunk will be compressed

and communicated during the intensive communications.

However, this can possibly result in the misaligned memory

access issue if using vectorized memory access during the

compression tasks because the start index for each chunk in

the GPU receive buffer may not be a multiple of 4. Figure 6

illustrates the workflow of Adaptive Vectorized Memory Ac-

cess during the normal compression process. Prior to the

compression task, the data undergoes a three-step prepro-

cessing procedure to prepare it for efficient handling from

GPU global memory: (1) The starting address and length of

the data chunk designated for compression and communica-

tion are analyzed to determine its suitability for vectorized

processing. (2) If the data chunk is not vectorizable, the re-

mainders at the starting and ending locations of the chunk

are identified and retrieved to facilitate scalar operations. (3)

If the data chunk is vectorizable, this step is bypassed, and

the data is directly accessed and processed in a vectorized

manner before proceeding to cuSZp compression. During

the homomorphic compression process, these three steps

are executed in the same sequence before the Fused Lossless

Decoding & Computation phase and after the Lossless En-

coding phase. Figure 7 presents a running example of a data

Checking 
Memory 
Access

Remainder 
Processing

Vectorized 
Processing

Normal 
Compression

Vectorizable

Non-Vectorizable

Figure 6: The Adaptive Vectorized Memory Access workflow

in normal compression.
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cuSZp2: The fastest GPU error-bounded lossy compressor [24]

ghZ: The proposed first-ever GPU homomorphic compressor

Cray MPI: The state-of-the-art MPI library used in 2 of 3

Exascale supercomputers in the world [17, 41]

NCCL: The fastest collective communications library for

NVIDIA GPUs [12]

gZCCL: The state-of-the-art compression-accelerated collective

communications library for GPUs [19]

ghZCCL: The proposed first-ever GPU-aware homomorphic

compression-accelerated collective communications library

Table 3: Information of evaluated compression and collective

communication solutions. We highlight our solutions and

baselines with blue and red colors, respectively.

6.2 Evaluating GPU Homomorphic
CompressorśghZ

In this section, we conduct a comprehensive evaluation of our

ghZ, focusing on DOC-handling throughput, compression

ratio, and compression quality.

6.2.1 DOC-handling throughput of ghZ. In Figure 8, we eval-

uate the DOC-handling throughput of ghZ compared to the

DOC workflow using the fastest error-bounded lossy com-

pressor, cuSZp2. Across all application datasets, ghZ consis-

tently outperforms cuSZp2, regardless of the relative error

bounds. On average, ghZ achieves DOC-handling through-

puts ranging from 531.91 to 942.44 GB/s, while cuSZp2 achie-

ves compression throughputs between 153.32 and 252.24

GB/s, making it 3.47ś3.89× slower than ghZ.

Notably, ghZ demonstrates its highest throughput with

the JetIn application dataset, reaching 1323.40 GB/s with a

1E-1 error bound and 1056.89 GB/s with a 1E-4 error bound.

These values far exceed the 302.45 GB/s and 294.52 GB/s

achieved by cuSZp2, corresponding to speedups of 4.38×

and 3.59×, respectively. This superior performance can be

attributed to the high sparsity of the JetIn, which consists

of many zero data blocks (i.e., blocks containing only zero

values). In ghZ, these zero blocks are skipped by directly

setting the lossless decoded integer values to zero, avoiding

unnecessary retrievals from the compressed data inputs. This

adaptive homomorphic compression strategy further boosts

the speed of ghZ.

Additionally, we observe that both ghZ and cuSZp2 expe-

rience lower compression throughputs as the error bound

decreases. This is because smaller error boundsmake the data

harder to compress, increasing computational and memory

access costs, which in turn reduces performance. However,

even with a 1E-4 error bound, ghZ maintains a significantly

higher throughput than cuSZp2 with a 1E-1 error bound

when processing the same application dataset. For example,

when processing the NYX application dataset, ghZ achieves

a throughput of 382.64 GB/s with a 1E-4 error bound, while

cuSZp2 reaches only 238.10 GB/s with a far less restrictive

1E-1 error bound. This highlights that our ghZ can effectively

tackle considerably more challenging compression scenarios

while achieving higher compression performance compared

to cuSZp2, even when cuSZp2 operates under much simpler

compression conditions. This advantage greatly expands the

potential use cases of ghZ in DOC and similar workflows.

6.2.2 Compression ratio and quality of ghZ. In Table 4, we

evaluate the compression ratio and quality of ghZ across a

range of application datasets. Since ghZ operates losslessly,

any compression accuracy loss stems solely from the already

lossyly compressed data inputs. Consequently, the compres-

sion ratio and quality of ghZ are identical to those of the

traditional DOC workflow with cuSZp2, as confirmed by our

comprehensive experiments. Thus, we only report values of

ghZ in Table 4. This demonstrates that ghZ maintains the

same compression ratio and quality as the traditional DOC

workflow while significantly outperforming it in compres-

sion performance, as shown in 6.2.1.

The evaluation results reveal that ghZ exhibits varying

compression ratios across different application datasets and

relative error bounds. For a 1E-1 error bound, the average

compression ratio ranges from 35.28 to 127.94 across datasets.

For a more restrictive 1E-4 relative error bound, the average

compression ratio ranges from 3.81 to 77.44. This trend indi-

cates that smaller error bounds result in lower compression

ratios because more data features must be preserved, making

the data harder to compress.

Regarding compression quality, ghZ achieves excellent

results across all application datasets. For example, in the

JetIn dataset, the Peak Signal-to-Noise Ratio (PSNR) ranges

from 66.58 to 101.61 for error bounds between 1E-1 and 1E-4,

indicating high-quality compression. Additionally, smaller

error bounds lead to higher compression quality because

more data features are preserved. These findings confirm that

ghZ delivers high compression throughput and impressive

compression ratios without sacrificing data accuracy.

Evaluation Takeaway 1: On average, cuSZp2 achieves

153.32ś252.24 GB/s, while ghZ reaches 531.91ś942.44

GB/s, delivering a 3.47ś3.89× speedup without compro-

mising compression ratio or accuracy, due to its lossless

homomorphic compression design.

6.3 Comparing ghZCCL with SOTA
Collective Communications Libraries

After demonstrating the high compression performance of

ghZCCL’s ghZ,we now evaluate the performance of ghZCCL-

accelerated collective communications on 64 NVIDIA A100
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Figure 8: DOC handling throughput of ghZ when comparing with cuSZp2.

REL Sim. Set. 1 Sim. Set. 2 CESM-ATM NYX JetIn SynTruss HCCI

Compression Ratio (Original Data Size / Compressed Data Size)

1E-1
avg: 115.32 avg: 103.94 avg: 77.74 avg: 93.14 avg: 127.94 avg: 35.28 avg: 90.78

(95.90∼127.98) (92.18∼119.28) (5.12∼122.81) (32.61∼127.99) (127.94∼127.94) (35.28∼35.28) (90.78∼90.78)

1E-2
avg: 100.02 avg: 51.84 avg: 26.10 avg: 64.18 avg: 125.49 avg: 10.08 avg: 47.04

(58.18∼127.98) (21.63∼95.45) (3.46∼59.09) (7.46∼127.72) (125.49∼125.49) (10.08∼10.08) (47.04∼47.04)

1E-3
avg: 86.69 avg: 34.26 avg: 12.04 avg: 35.21 avg: 117.16 avg: 5.50 avg: 22.29

(33.72∼127.98) (8.75∼75.80) (2.55∼33.52) (4.39∼124.54) (117.16∼117.16) (5.50∼5.50) (22.29∼22.29)

1E-4
avg: 77.44 avg: 25.83 avg: 7.19 avg: 19.48 avg: 100.31 avg: 3.81 avg: 7.64

(22.53∼127.96) (5.25∼60.87) (1.98∼21.87) (3.03∼88.90) (100.31∼100.31) (3.81∼3.81) (7.64∼7.64)

Compression Quality (PSNR)

1E-1
avg: 52.51 avg: 41.09 avg: 33.00 avg: 46.60 avg: 66.58 avg: 31.96 avg: 39.38

(39.42∼91.91) 37.08∼46.46 (24.83∼41.64) (24.82∼79.90) (66.58∼66.58) (31.96∼31.96) (39.38∼39.38)

1E-2
avg: 69.36 avg: 54.00 avg: 48.49 avg: 57.77 avg: 73.93 avg: 46.57 avg: 54.62

(55.71∼110.55) 48.34∼61.46 (44.60∼54.24) (44.73∼86.75) (73.93∼73.93) (46.57∼46.57) (54.62∼54.62)

1E-3
avg: 87.16 avg: 72.15 avg: 67.30 avg: 71.65 avg: 87.13 avg: 65.92 avg: 67.98

(73.32∼125.46) (66.12∼80.39) (64.60∼73.17) (63.89∼92.98) (87.13∼87.13) (65.92∼65.92) (67.98∼67.98)

1E-4
avg: 106.27 avg: 91.86 avg: 86.75 avg: 87.52 avg: 101.61 avg: 85.92 avg: 84.45

(92.78∼142.67) (85.83∼100.15) (84.73∼92.31) (84.77∼98.25) (101.61∼101.61) (85.92∼85.92) (84.45∼84.45)

Table 4: Compression ratio and quality of ghZ: each cell is formatted as łavg: value (min∼max)ž.

GPUs. We compare our approach against three state-of-the-

art baselines: (1) the MPI collectives offered by Cray-MPI[17],

(2) the collective communications from NCCL [12], and (3)

the compression-accelerated collectives from gZCCL[19], as

summarized in Table 3.

28

109

188

1

Figure 9: Performance evaluation of ghZCCL-accelerated

Reduce against SOTA baselines in different data sizes.

6.3.1 Reduce. In Figure 9, we evaluate ghZCCL against mul-

tiple baselines using the Reduce operation, with speedups

measured relative to CrayMPI. The results show that ghZCCL

consistently outperforms all counterparts across all data sizes.

Compared to the second-best solution, gZCCL, ghZCCL

achieves a 1.34× speedup at 600MB. This improvement stems

from ghZCCL’s ability to significantly reduce DOC-related

overheads by co-designing GPU homomorphic compression

with collective communications. Furthermore, ghZCCL is

up to 3.85× and 188× faster than NCCL and Cray MPI, re-

spectively. The substantial performance gain over NCCL is

attributed to ghZCCL’s ability to reduce overall communi-

cation volume and mitigate network congestion through its

ultra-fast homomorphic compression. The improvement is

even more pronounced compared to Cray MPI, as its Reduce

operation is not fully GPU-centric, leading to significant

device-host data transfer and CPU computation overheads.
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6.3.2 Allreduce. Figure 10 presents a performance compar-

ison between ghZCCL and other state-of-the-art commu-

nication libraries using the Allreduce collective operation.

Similar to the observations in Section 6.3.1, ghZCCL con-

sistently outperforms all baselines, achieving up to 8.55×

performance improvement over Cray MPI. When compared

to NCCL, ghZCCL achieves a 3.21× speedup, primarily due to

its significantly improved communication efficiency enabled

by lightweight homomorphic compression, which reduces

the amount of data transmitted. In contrast, NCCL lacks

this capability and must communicate with uncompressed

data. Among all the solutions, gZCCL delivers the second-

best performance; however, it still underperforms ghZCCL

by up to 2.19×. This performance gap arises from gZCCL’s

substantial decompression and recompression overheads,

whereas ghZCCL directly operates on compressed data with-

out decompression. Additionally, we observe that Cray MPI

exhibits relatively better performance in Allreduce compared

to its performance in Reduce (Section 6.3.1). This is because

Cray MPI is specifically optimized to make Allreduce GPU-

centric, as it is the most widely used collective operation.

8.55

3.21X

Figure 10: Performance evaluation of ghZCCL-accelerated

Allreduce against SOTA baselines in different data sizes.

6.4 Evaluating the Scalability of ghZCCL

To further evaluate the performance of ghZCCL, Figure 11 an-

alyzes its scalability on 512 NVIDIA A100 GPUs. The results

demonstrate that ghZCCLmaintains strong scalability across

varying GPU counts, significantly outperforming baseline

solutions. In Subfigure 11a, ghZCCL achieves up to 183×

speedup over Cray MPI and 5.81× over NCCL. Addition-

ally, it outperforms gZCCL by up to 1.34×, exhibiting better

scalability than the previously best compression-accelerated

communication solution. A similar trend is observed in Sub-

figure 11b, where ghZCCL surpasses gZCCL by 2.29× on

512 GPUs. Moreover, ghZCCL achieves even greater perfor-

mance improvements over Cray MPI and NCCL, with up to

5.96× and 4.88× speedups, respectively. This superior perfor-

mance is attributed to ghZCCL’s ability to directly operate on

and communicate with compressed data, effectively reduc-

ing communication overhead and optimizing compression

to improve overall runtime efficiency.

183

5.81X

(a) Reduce

4.88X 5.96

(b) Allreduce

Figure 11: Scalability evaluation of ghZCCL against SOTA

baselines in different GPU counts.

Evaluation Takeaway 2: Evaluated on up to 512 NVIDIA
A100 GPUs, ghZCCL significantly outperforms state-of-

the-art communication libraries, achieving speedups of

up to 2.29×, 5.81×, and 188× compared to gZCCL, NCCL,

and Cray MPI, respectively.

6.5 Image Stacking Performance and
Accuracy Analysis

In this section, we use the image stacking application to

evaluate both the performance and accuracy of the proposed

ghZCCL. Image stacking is widely used in various scientific

fields, including atmospheric science and geology, to gener-

ate high-resolution images by combining multiple individual

images. This process involves an Allreduce operation. As

highlighted by Gurhem in [15], researchers utilize MPI to

merge these individual images into final composite images.

Table 5 shows that ghZCCL significantly outperforms

both NCCL and gZCCL, achieving a 2.34× speedup over

NCCL, whereas gZCCL only reaches a 1.23× speedup. Since

Cray MPI consistently underperforms NCCL, we omit its

results to save space. To gain deeper insight into the perfor-

mance differences, we break down the runtime of gZCCL

and ghZCCL. The results reveal that gZCCL’s runtime is

primarily dominated by the compression and operation time
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Methods Speedups Compr.+Oper. Comm. Others

gZCCL 1.23 82.57% 14.80% 2.63%

ghZCCL 2.34 69.45% 28.41% 2.14%

NCCL 1 No breakdown because of complexity

Table 5: Performance analysis of image stacking. The

speedups are based on NCCL and the last three columns

represent performance breakdown.

(Compr.+Oper.), accounting for 82.57% of the total execu-

tion time. This substantial DOC overhead is successfully

mitigated in ghZCCL, reducing the proportion to 69.45%Ðor

36.37% relative to gZCCL’s total runtime. These improve-

ments stem from our ultra-fast homomorphic compression-

communication co-design, which enables GPUs to directly

communicate and compute with compressed data, signif-

icantly reducing the overhead associated with traditional

DOC workflows.

After demonstrating the high performance of ghZCCL, we

further evaluate its numerical accuracy (PSNR and NRMSE)

and visual quality. With an absolute error bound of 1E-4,

ghZCCL achieves an impressive PSNR of 73.60 and an excel-

lent NRMSE of 2.1E-4. Figure 12 presents a visual comparison

of stacking images using ghZCCL and the original uncom-

pressed NCCL method. The comparison reveals no visual

differences between the two images, confirming that ghZCCL

effectively preserves image quality. This combination of high

numerical accuracy and visual quality underscores the ef-

fectiveness of ghZCCL in delivering superior performance

while maintaining exceptionally high data quality.

(a) NCCL (lossless) (b) ghZCCL

Figure 12: Compare the visual quality of ghZCCLwith NCCL.

7 CONCLUSION AND FUTUREWORK

In this paper, we introduce ghZCCL, a novel GPU-aware

homomorphic compression-accelerated collective commu-

nications library that enables direct GPU computation and

communication on compressed data. Through evaluations

on up to 512 NVIDIA A100 GPUs and 7 application datasets,

ghZCCL significantly outperforms state-of-the-art compres-

sion and communication libraries: achieving speedups of up

to 3.89× over cuSZp2, 2.29× over gZCCL, 5.81× over NCCL,

and 188× over Cray MPI. Moving forward, we plan to ex-

tend ghZCCL to additional hardware platforms, including

AI accelerators (e.g., Groq LPU, SambaNova RDU) and FP-

GAs, further broadening its impact on both compression and

communication across diverse computing architectures.
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