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than 100 qubits [17]. Moreover, quantum simulation faces

significant time overhead, including communication and

computation overheads[31], highlighting the need for com-

pressors with higher compression ratios and throughput. An-

other example is the benefit of lossy compression in Large

Language Model (LLM) training. While quantization acceler-

ation has been developed to reduce communication overhead

and improve training performance, it faces limitations in the

number of quantization bits. Recent work has utilized 4-bit

quantization [25]. Further reducing the number of bits in

quantization is highly challenging, making lossy compres-

sion a promising alternative [16]. However, quantization still

holds an advantage in terms of low time overhead. To outper-

form quantization methods, lossy compression must achieve

both high throughput and high compression ratios. These

practical challenges continue to drive researchers to push

the boundaries of lossy compression techniques.

1.2 Limitations of Existing Approaches

GPU-based lossy compression has developed rapidly over

the past decade. These compressors generally achieve sig-

nificantly higher compression throughput than CPU-based

compressors, making them the preferred choice for HPC

simulations [21, 55]. However, GPU-based lossy compres-

sors face various challenges. For instance, while cuSZ [50],

cuSZx [54], cuSZ-i [40], and MGARD-GPU [36] achieve im-

pressive GPU kernel throughput, they rely on a CPU-GPU

hybrid design. This approach requires the CPU to participate

in tasks such as global synchronization or building a Huff-

man tree, which limits their end-to-end throughput. More-

over, cuSZ-i leverages GPU interpolation and Bitcomp from

NVIDIA’s nvcomp [42] library to improve compression ra-

tios. However, its multi-kernel design limits kernel through-

put. Pure GPU designs, such as cuZFP [39], FZ-GPU [57],

cuSZp [22], and cuSZp2 [21], avoid these issues but suffer

from other limitations, including low throughput or low com-

pression ratios, which hinder their ability to provide signifi-

cant overall speedups for practical applications. For example,

while cuZFP achieves a high compression throughput, its

fixed-rate error control scheme restricts the maximum at-

tainable compression ratio. cuSZp2 employs a single-kernel

design to significantly increase throughput, but the linear

recurrence in its 1D Lorenzo prediction causes a reduction

in compression ratio.

1.3 Our Solution: Aatrox

In this work, we proposeAatrox, a single-kernel GPU-based

lossy compressor that supports user-customized error con-

trol schemes. It further advances the state-of-the-art in GPU-

based lossy compression by improving both compression

ratio and throughput. We introduce three key optimizations

to achieve high compression ratios and high throughput: 1

Hierarchical Data Blocking, 2 Large-Block Delta Encoding,

and 3 Dual-Level Delta Decoding.

The main contributions of our work are summarized as

follows.

• A novel hierarchical data blocking strategy with three

levels (thread, iteration, and warp layer) that solves

the extra memory overhead caused by small or large

block sizes.

• Large-block delta encoding, which leverages circular

shift and tail rotation to solve the inefficient commu-

nication problem in the delta encoding process.

• A dual-level delta decoding design that addresses the

linear recurrence in delta encoding using a dual-level

prefix-sum and leverages tail element accumulation to

reduce warp divergence, thereby increasing through-

put.

• Evaluation on nine real-world scientific datasets demon-

strates that Aatrox achieves a compression and de-

compression throughput of 388.3 GB/s and 718.0 GB/s

on average across the datasets, which is approximately

1.2× faster compared to the best baseline. It also achieves

the highest compression ratio among the baselines.

Aatrox will be maintained on GitHub.1

2 Understanding Limitations and
Challenges in Existing GPU Lossy
Compression Designs

In this section, we introduce the background of GPU-based

lossy compression and the limitations of state-of-the-art

(SOTA) works.

2.1 GPU Lossy Compression

The development of GPU-based compression techniques of-

fers significantly higher compression throughput (exceeding

200 GB/s in state-of-the-art implementations [21]) compared

to CPU-based methods, which achieve only 300 MB/s ∼ 1

GB/s in state-of-the-art works [37]. Consequently, an in-

creasing number of lossy compression schemes are being

adapted to align with GPU implementations. To leverage the

massive parallelism of GPU computing resources, modern

GPU-based lossy compressors commonly adopt a data block-

ing strategy. This approach removes the linear recurrence

in the input data stream, enabling each data block to be pro-

cessed independently. However, this data blocking strategy

has certain disadvantages, such as disrupting the data pat-

terns in the original stream, which may lead to a reduction

in the compression ratio. A straightforward solution is to

1Repository: https://github.com/szcompressor/cuSZp
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quantization codes for the first iteration layer. Subsequently,

we employ a warp broadcast operation to broadcast the last

element of the iteration layer to accumTail. This updated

value is then utilized to recover the quantization codes for

the next iteration layer, and the process continues iteratively.

Combining these two optimization designs, we demon-

strate the whole asymmetric delta decoding process in Algo-

rithm 2. For the two-level prefix-sum, thread prefix-sum is

in Line 6-8, the warp prefix-sum is from Line 9-14. And the

accumulated tail element is demonstrated in Line 19.

Algorithm 2: Delta Decoding

Input: Delta code 𝐷 , 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒

Output: Quantization code𝑄 .

1 Initialize 𝑡𝑎𝑖𝑙𝐸𝑙𝑒, 𝑎𝑐𝑐𝑢𝑚𝑇𝑎𝑖𝑙, 𝑡𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟 = 0;

2 Initialize 𝑙𝑎𝑛𝑒𝐼𝑑 as the index of thread in warp;

3 Initialize 𝑤𝑎𝑟𝑝𝐼𝑑 as the index of warp(thread block) in grid;

4 for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐼𝑑 in range(32) do

5 𝑡𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟 = 0;

6 for 𝑖 in range(32) do

7 𝑡𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟+ = 𝐷 [𝑖 ]; // Thread prefix-sum.

8 𝑄 [𝑖 ] = 𝑡𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟 ;

9 𝑡𝑎𝑖𝑙𝐸𝑙𝑒 = 𝑄 [31]; // Warp prefix-sum.

10 for 𝑖 in 1,2,4,8,16 do

11 𝑡𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟 = __shfl_up_sync(𝑡𝑎𝑖𝑙𝐸𝑙𝑒, 𝑖 ) ;

12 if 𝑙𝑎𝑛𝑒𝐼𝑑 >= 𝑖 then

13 𝑡𝑎𝑖𝑙𝐸𝑙𝑒+ = 𝑡𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟 ;

14 𝑡𝑎𝑖𝑙𝐸𝑙𝑒− = 𝑄 [31]; // Exclusive prefix-sum.

15 if 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐼𝑑 == 0 then

16 𝑎𝑐𝑐𝑢𝑚𝑇𝑎𝑖𝑙 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒 [𝑤𝑎𝑟𝑝𝐼𝑑 ]; // Read init.

17 for 𝑖 in range(32) do

18 𝑄 [𝑖 ]+ = 𝑡𝑎𝑖𝑙𝐸𝑙𝑒 + 𝑎𝑐𝑐𝑢𝑚𝑇𝑎𝑖𝑙 ;

19 𝑎𝑐𝑐𝑢𝑚𝑇𝑎𝑖𝑙 =__shfl_sync(𝑄 [31], 31) ; // Tail ele. accum.

5 Evaluation

In this section, we evaluate Aatrox against four SOTA GPU-

based lossy compressors across various metrics, including

compression ratio and throughput, using nine real-world

scientific datasets. Our results demonstrate that Aatrox

outperforms the baselines in each individual metric and,

overall, delivers significant end-to-end acceleration when

applied to real-world applications.

5.1 Experimental Setup

Platforms. We evaluate our approach on two platforms:

1 One node from an HPC cluster equipped with two 64-

core AMD EPYC 7742 CPUs operating at 2.25GHz and four

NVIDIA Ampere A100 GPUs (108 SMs, 40GB), running Cen-

tOS 7.4 and CUDA 11.4.120. 2 An in-house workstation

equipped with one 28-core Intel Xeon Gold 6238R CPUs

operating at 2.20GHz and two NVIDIA GTX A4000 GPUs

(40 SMs, 16GB), running Ubuntu 20.04.5 and CUDA 11.7.99.

While we use a single GPU for evaluation, multi-GPU pro-

cessing is considered embarrassingly parallel with respect to

single-GPU processing. This is because we partition data in

a coarse-grained manner to fit into a single GPU, with each

data chunk being independent of the others. Due to this lack

of data dependency, multi-GPU comparisons would involve

only varying numbers of data chunks.

Table 1: Real-world datasets used in the evaluation.

field size dataset size

datasets dimensions #fields

Climate simulation 673.9 MB 20.71 GB

CESM-ATM [8] 3600×1800×26 33 in total

Cosmology: particle simulation 4.3 GB 23.99 GB

HACC [19] 1,073,726,487 6 in total

petroleum exploration 1.4 GB 3.99 GB

RTM [5, 23] 1008×1008×352 3 in total

Climate simulation 564.5 MB 6.31 GB

SCALE [38] 1200×1200×98 12 in total

Quantum Monte Carlo 630.7 MB 1.17 GB

QMCPack [46] 69×69×33120 2 in total

cosmology simulation 536.9 MB 3 GB

NYX [43] 512×512×512 6 in total

numerical simulation 6.7 GB 6.23 GB

JetIn [18] 1408×1080×1100 1 in total

Rayleigh-Taylor instability 4.3 GB 4.00 GB

Miranda [9] 1024×1024×1024 1 in total

octet truss 6.9 GB 6.42 GB

SynTruss [29] 1200×1200×1200 1 in total

Datasets. Our evaluation and comparative analysis are

conducted on nine distinct datasets derived from real-world

compression tasks. These datasets encompass a wide range

of domains, showcasing the adaptability and versatility of

our system. The datasets are sourced from the Scientific Data

Reduction Benchmarks (SDRBench) [59] and the Open Sci-

entific Visualization Datasets (Open-SciVis) [28]. Detailed

descriptions and characteristics of these datasets are system-

atically presented in Table 1.

Baselines. We compare Aatrox with four state-of-the-

art GPU-based lossy compressors: FZ-GPU [57], cuSZp [22],

cuSZp2 [21], and cuZFP [39]. We evaluate performance using

three typical relative error bounds (relative to the value range

of the data field): 1e−2, 1e−3, and 1e−4. Note that cuZFP does

not support the error-bound mode; it only supports the fixed-

rate mode.

5.2 Evaluation Metrics

Our evaluation metrics include 1 compression ratio, 2 com-

pression throughput, and 3 data quality, which are detailed

as follows.

Compression Ratio. The compression ratio is one of the

most commonly used metrics in compression research. It is

defined as the ratio of the original data size to the compressed

data size. A higher compression ratio indicates more efficient

information aggregation relative to the original data.

Compression Throughput. Compression throughput

refers to the amount of data a compressor can process within
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lossy compressor. Zhang et al. [57] proposed a pure-GPU im-

plementation named FZ-GPU and introduced a novel lossless

encoding method that achieves significant overall speedup.

Huang et al. [21, 22] innovatively designed a single-kernel

compression approach named cuSZp and further improved

it to cuSZp2 with an optimized prefix-sum and a novel out-

lier fixed-length encoding method, significantly increasing

throughput. Aatrox advances compressor efficiency by en-

hancing both the compression ratio and throughput com-

pared to SOTA methods. Lossy compressors have also been

adapted for diverse use cases on various platforms, such as

Cerebras [47, 48] and Data Processing Units (DPUs) [33].

8 Conclusion and Future Work

In this paper, we develop a single-kernel error-bounded

lossy compressor for scientific data on GPUs. Specifically, we

propose Aatrox, a high-throughput and high-compression-

ratio compressor that utilizes hierarchical data blocking and

large-block delta encoding/decoding. We evaluate our pro-

posed Aatrox on nine representative scientific datasets,

demonstrating its high compression throughput and ratio.

It achieves an average throughput of 388.3 GB/s for com-

pression and 718.0 GB/s for decompression on an NVIDIA

A100 GPU. Compared to state-of-the-art compressors such

as cuSZp2, cuSZp, cuZFP, and FZ-GPU, Aatrox achieves

approximately 1.2× speedup while delivering the highest

compression ratios. In the future, we plan to adapt Aatrox

to other GPU platforms by leveraging code translation tools

such as HIPFY [3] for AMD GPUs and SYCLomatic [24] for

Intel GPUs. The impact of parameters (e.g., layer size) on the

compression ratio and throughput in Aatrox varies across

datasets. We also plan to explore fine-grained parameter

tuning in future work.
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