Adaptive Collective Responses to Local Stimuli in
Anonymous Dynamic Networks
Shunhao Oh 26

School of Computer Science, Georgia Institute of Technology

Dana Randall & @®

School of Computer Science, Georgia Institute of Technology

Andréa W. Richa 20

School of Computing and Augmented Intelligence, Arizona State University

—— Abstract

We develop a framework for self-induced phase changes in programmable matter in which a collection
of agents with limited computational and communication capabilities can collectively perform
appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents
are represented by vertices in a dynamic graph G whose edge set changes over time, and stimuli are
placed adversarially on the vertices of G where each agent is only capable of recognizing a co-located
stimulus. Agents communicate via token passing along edges to alert other agents to transition to
an AWARE state when stimuli are present and an UNAWARE state when the stimuli disappear. We
present an Adaptive Stimuli Algorithm that can handle arbitrary adversarial stimulus dynamics,
while an adversary (or the agents themselves) reconfigure the connections (edges) of G over time in
a controlled way. This algorithm can be used to solve the foraging problem on reconfigurable graphs
where, in addition to food sources (stimuli) being discovered, removed, or shifted arbitrarily, we
would like the agents to consistently self-organize, using only local interactions, such that if the food
remains in a position long enough, the agents transition to a gather phase in which many collectively
form a single large component with small perimeter around the food. Alternatively, if no food source
has existed recently, the agents should undergo a self-induced collective phase change and switch to
a search phase in which they distribute themselves randomly throughout the graph to search for
food. Unlike previous approaches to foraging, this process is indefinitely repeatable, withstanding
competing broadcast waves of state transition that may interfere with each other. Like a physical
phase change, such as the ferromagnetic models underlying the gather and search algorithms used for
foraging, microscopic changes in the environment trigger these macroscopic, system-wide transitions
as agents share information and respond locally to get the desired collective response.

2012 ACM Subject Classification Theory of computation-Self-organization; Theory of computation-
Random walks and Markov chains

Keywords and phrases Dynamic networks, adaptive stimuli, foraging, self-organizing particle systems,
programmable matter

Funding Shunhao Oh: Supported by the National Science Foundation (NSF) award CCF-2106687
and by U.S. Army Research Office (ARO) award MURI W911NF-19-1-0233.

Dana Randall: Supported by the National Science Foundation (NSF) award CCF-2106687 and by
U.S. Army Research Office (ARO) award MURI W911NF-19-1-0233.

Andréa W. Richa: Supported in part by the National Science Foundation (NSF) award CCF-2106917
and by U.S. Army Research Office (ARO) award MURI W911NF-19-1-0233.

mailto:ohoh@gatech.edu
https://orcid.org/0009-0002-1328-0040
mailto:randall@cc.gatech.edu
https://orcid.org/0000-0002-1152-2627
mailto:aricha@asu.edu
https://orcid.org/0000-0003-3592-3756

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

1 Introduction

Self-organizing collective behavior of interacting agents is a fundamental, nearly ubiquitous
phenomenon across fields, reliably producing rich and complex coordination. In nature,
examples at the micro- and nano-scales include coordinating cells, including our own immune
system or self-repairing tissue (e.g., [1]), and bacterial colonies (e.g., [31, 37]); at the
macro-scale it can represent flocks of birds [9], shoals of fish aggregating to intimidate
predators [33], fire ants forming rafts to survive floods [35], and human societal dynamics
such as segregation [40]. Common characteristic of these disparate systems is that they are
all self-actuated and respond to simple, local environmental stimuli to collectively change
the ensemble’s behavior.

In 1991, Toffoli and Margolus coined programmable matter to realize a physical computing
medium composed of simple, homogeneous entities that can dynamically alter its physical
properties in a programmable fashion, controlled either by user input or its own autonomous
sensing of its environment [42]. There are formidable challenges to realizing such collective
tasks and many researchers in distributed computing and swarm and modular robotics have
investigated how such small, simply programmed entities can coordinate to solve complex
tasks and exhibit useful emergent collective behavior (e.g., [38]). A more ambitious goal,
suggested by self-organizing collective systems in nature, is to design programmable matter
systems of self-actuated individuals that autonomously respond to continuous, local changes
in their environment.

The Dynamic Stimuli Problem: As a distributed framework for a large number of agents
collectively self-organizing in response to changing stimuli, we consider the dynamic stimuli
problem. These agents have limited computational capabilities and each only communicates
with a small set of immediate neighbors. We represent these n agents via an edge-dynamic
graph G on n vertices, where each vertex of G represents an agent and an edge represents a
pair of agents that can perceive and interact with each other while the edge is present in G.
At arbitrary points in time, stimuli dynamically appear and disappear at the vertices of G,
possibly adversarially — these can represent a threat, such as an unexpected predator, or an
opportunity, such as new food or energy resources.

The agents each independently transition through states that are updated according to
their current knowledge of the world that dictate what actions they should perform. An
agent present at the same vertex as a stimulus acts as a witness and alerts other agents via
the edges of G. If any agent continues to witness some stimulus over an extended period of
time, we want all agents to eventually be alerted, switching to the AWARE state; on the other
hand, once witnesses stop sensing a stimulus for long enough, all agents should return to
the UNAWARE state. Such collective state changes may repeat indefinitely as stimuli appear
and disappear over time. Converging to these two global states enables agents to carry
out differing behaviors in the presence or absence of stimuli, as observed by the respective
witnesses. As a notable and challenging example, in the foraging problem, “food” may appear
or disappear at arbitrary locations in space over time and we would like the collective to
gather around food (also known as dynamic free aggregation) or disperse in search of new
sources, depending on whether or not an active food source has been identified (see, e.g.,
Section 3.2.1 of [5] and [30]). Cannon et al. [7] showed how computationally limited agents
can coordinate their movements to gather or disperse on the triangular lattice; however there
the desired goal, aggregation or dispersion, is fixed in advance and the algorithm cannot
easily be adapted to move between these according to changing needs.

In our framework, we assume that, at any point in time, stimuli is located in at most

S. Oh, D. Randall and A. W. Richa

Smax vertices of G, where sy ax is a constant. Agents are anonymous and each acts as a finite
automaton with constant-size memory, constant degree, and no access to global information
other than sy.x and a constant upper bound A on the maximum degree. Individual agents
are activated according to their own Poisson clocks and perform instantaneous actions upon
activation, a standard way to allow sites to update independently (since the probability
that two Poisson clocks tick at the exact same instant in time is negligible). For simplicity,
we assume the Poisson clocks have the same rate: This model is equivalent to a random
sequential scheduler that chooses an agent uniformly at random to be activated at discrete
iterations ¢ € {1,2,3,...} (A brief discussion on non-uniform Poisson clock rates and other
generalizations appears in Section 7).

In addition to the stimuli dynamics, we assume that the connections (edges) of the
dynamic graph G are reconfigured over time in a controlled way that still allows the agents
to successfully manage the waves of state changes. In a nutshell, we say that a dynamic
graph G is reconfigurable if it maintains recurring local connectivity of the AWARE agents as
its edge set changes—i.e., if the 1-hop aware neighborhood of each AWARE agent induces a
connected subgraph at any point in time in G (see Definition 11). The edge dynamics may
be fully in the control of an abstract adversary (with access to limited information on the
agents’ states), or may be controlled by the agents themselves, depending on the context
(e.g., in the foraging problem presented in Section 5, the agents control the edge dynamics).
While the constraints on edge dynamics may seem restrictive, we note that they are naturally
satisfied by our proposed algorithm for solving the general foraging problem in Section 5; in
the future, it would be interesting to find other application scenarios where reconfigurable
graphs naturally arise.

We denote the configuration of the system at iteration ¢ by the pair o, = (G, 6;), where
Gy = (V, E,) is a snapshot of the underlying (undirected) dynamic graph G at iteration t,
with set of nodes (agents) V and set of edges E;, and where 6;(u) gives the state of the
agent u at iteration ¢, for each u € V. When activated at iteration ¢, an agent perceives
its own state and the states of its current neighbors in G, performs a bounded amount
of computation, and can change its own and its neighbors states, including any “tokens’
they may have (i.e., constant size messages exchanged between agents).! At each iteration
te{1,2,3,...}, we denote by S; C V the set of stimuli, where |S;| < $max. The sets S; can
change arbitrarily (i.e., by an adaptive adversary) over time. We will formally define what it
means for a dynamic graph G given by the sequence (Gg, G1,...) to be reconfigurable (with
respect to (fg, 01, ...)) in Section 4.

M

Overview of Results: Our contributions are two-fold. First, we present an efficient
algorithm for the dynamic stimuli problem for the class of reconfigurable dynamic graphs.
Whenever an agent encounters a new stimulus, the entire collective efficiently transforms to
the AWARE state, so the agents can implement an appropriate collective response. After a
stimulus vanishes, they all return to the UNAWARE state, recovering their “neutral” collective
behavior.

We show that the system will always converge to the appropriate state (i.e., AWARE or
UNAWARE) once the stimuli stabilize for a sufficient period of time. Specifically, if there
are no stimuli in the system for a sufficient period of time, then all agents in the Adaptive
Stimuli Algorithm will have reached and remain in the UNAWARE state in O(n?) expected

1 Since we assume a sequential scheduler, such an action can be justified; in the presence of a stronger
adversarial scheduler, e.g., the asynchronous scheduler, one would need a more detailed message passing
mechanism to ensure the transfer of tokens between agents, and resulting changes in their states.

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

time (Theorem 15). Likewise, if the set of stimuli remains unchanged for a sufficient period
of time, all agents will have reached and remain in the AWARE state in expected time that is
a polynomial in n and the “recurring rate” of G, which captures how frequently disconnected
vertices come back in contact with each other (Theorem 16). In particular, if G is static or if
G is connected, for all ¢, the expected convergence time until all agents transition to the
AWARE state is O(n*) (Theorem 4) and O(n%logn) (Corollary 17), respectively. Moreover,
the system can recover if the stimulus set changes before the system fully converges to the
AWARE or UNAWARE states.

While the arguments would have been simpler for sequences of connected graphs generated
by, say, an oblivious adversary, the extension to the broader class of reconfigurable graphs
includes graphs possibly given by non-oblivious adversaries that may occasionally disconnect.
This generalization provides more flexibility for agents in the AWARE and UNAWARE states
to implement more complex behaviors, as was needed in the application of the Adaptive
Stimuli Algorithm to foraging, which we describe next.

Our second main contribution is the first efficient algorithm for the foraging problem,
where food dynamically appears and disappears over time at arbitrary sites on a finite
V/N x /N region of the triangular lattice, where n < N. Agents want to gather around any
discovered food source (also known as dynamic free aggregation) or disperse in search of food.
The algorithm of Cannon et al. [7, 30] uses insights from the high and low temperature phases
of the ferromagnetic Ising model from statistical physics [4] to provably achieve either desired
collective response: There is a preset global parameter A related to inverse temperature,
and the algorithm provably achieves aggregation when A is sufficiently high and dispersion
when A is sufficiently low. We show here that by applying the Adaptive Stimuli Algorithm,
the phase change (or bifurcation) for aggregation and dispersion can be self-modulated based
on local environmental cues that are communicated through the collective to induce desirable
system-wide behaviors in polynomial time in n and N, as stated in Theorems 24 and 25.

In the context of foraging, collectively transitioning between AWARE and UNAWARE states
enables agents to correctly self-requlate system-wide adjustments in their bias parameters
when one or more agents notice the presence or depletion of food to induce the appropri-
ate global coordination to provably transition the collective between macro-modes when
required. We believe other collective behaviors exhibiting emergent bifurcations, including
separation/integration [6] and alignment/nonalignment [27], can be similarly self-modulated.

The distinction between polynomial and super-polynomial running times is significant
here because our algorithms necessarily make use of competing broadcast waves to propagate
commands to change states. A naive implementation of such a broadcast system may put us
in situations where neither type of wave gets to complete its propagation cycle. This may
continue for an unknown amount of time, so the agents may fail to reach an agreement on
their state. Our carefully engineered token passing mechanism ensures that when a stimulus
has been removed, the rate at which the agents “reset” to the UNAWARE state outpaces the
rate at which the cluster of AWARE agents may continue to grow, ensuring that the newer
broadcast wave always supersedes previous ones and completes in expected polynomial time.
Moreover, while a stimulus is present, there is a continuous probabilistic generation of tokens
that move according to a dpyq.-random walk among AWARE agents until they find a new
agent to become AWARE, thus ensuring the successful convergence to the AWARE state in
expected polynomial time.

Of independent interest is the extension of the arguments in [7] to the setting where there
exists a single immobile agent, namely the one that finds the food source. The compression
algorithm of [7] specifies a restricted set of local movements on the triangular lattice that

S. Oh, D. Randall and A. W. Richa

guarantees that the configuration remains simply connected. While preserving connectivity
is a straightforward consequence of the choice of moves, the proof that all simply connected
configurations are reachable by these moves (i.e., the irreducibility of the Markov chain)
becomes significantly more challenging. This proof, given in Section 6, builds on ideas
from [7] and is similarly long and technical.

Related work: Dynamic networks have been of growing interest recently and have
spawned several model variants (see, e.g., the surveys in [8] and [29]). There is also a vast
literature on broadcasting, or information dissemination, in both static and dynamic networks
(e.g., [28, 25, 10, 20, 19]), where one would like to disseminate k messages to all nodes of a
graph G, usually with unique token ids and k < n, polylog memory at the nodes (which may
also have unique ids), and possibly nodes’ knowledge of k£ and/or n. Note that any of these
assumptions violates our agents’ memory or computational capabilities. Moreover, since our
collective state-changing process runs indefinitely, any naive adaptations of these algorithms
would need that k& — oo to ensure that with any sequence of broadcast waves, the latest
always wins.

Broadcast algorithms that do not explicitly keep any information on k (i.e., the number
of tokens, or of corresponding broadcast waves) or n would be more amenable to our agents.
Amnesiac flooding is one such broadcast algorithm that works on a network of anonymous
nodes without keeping any state or other information as the broadcast progresses. In [26],
Hussak and Trehan show that amnesiac flooding will always terminate in a static network
under synchronous message passing, but may fail on a dynamic network or in non-synchronous
executions.

Many studies in self-actuated systems take inspiration from emergent behavior in social
insects, but either lack rigorous mathematical foundations explaining the generality and
limitations as sizes scale (see, e.g., [24, 23, 11, 44]), often approaching the thermodynamic
limits of computing [43] and power [12], or rely on long-range signaling, such as microphones
or line-of-sight sensors [41, 21, 22, 36]. Some recent work on stochastic approaches modeled
after systems from particle physics has been made rigorous, but only when a single, static
goal is desired [7, 6, 30, 2, 39, 27].

2 The Adaptive Stimuli Algorithm

The Adaptive Stimuli Algorithm is designed to efficiently respond to dynamic local stimuli
that indefinitely appear and disappear at the vertices of G. Recall the goal of this algorithm
is to allow the collective to converge to the AWARE state whenever a stimulus is witnessed
for long enough and to the UNAWARE state if no stimulus has been detected recently. The
algorithm converges in expected polynomial time in both scenarios under a reconfigurable
dynamic setting, as we show in Sections 3-4, even as the process repeats indefinitely.

All agents know two constant parameters of the system: A > 1, an upper bound on the
maximum degree of the graph, and spa.x > 1, an upper bound on the size of the stimulus
sets S at all times ¢ (which is needed to determine the constant probability p < 1/smax that
agents use to change states or generate certain tokens). Our algorithm defines a carefully
balanced token passing mechanism, where a token is a constant-size piece of information:
Upon activation, an AWARE witness u continuously generates alert tokens one at a time,
with probability p, which will each move through a random walk over AWARE agents until
they come in contact with a neighboring UNAWARE agent v: The token is then consumed and
v changes its state to AWARE. On the other hand, if a witness notices that its co-located
stimulus has disappeared, it will initiate an all-clear token broadcast wave which will proceed

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

1., 2. - 3. .-
Z./{\“ L{'\‘"| Z/l'\".\
Pl ‘oo ~7 ~7
u u Awy u Aga,wy u
4 5. 6
A b A e Ara \
0 ‘o 0 ‘. { }\.' 4 -~ 5 o~
(W} u Agawy {w} u /-\ -
N "/u .
7 ‘. -7 ‘e —
u u u\';
-’
Ao Agcy u
{w} Ap

(a) The leftmost agent senses a stimulus and sets its (b) An agent with a set witness flag that no longer
witness flag. It then gradually converts all agents to senses a stimulus broadcasts a wave of all-clear to-
the AWARE state through the distribution of alert kens to all agents, converting them to the UNAWARE
tokens. Each alert token follows a random walk state.

over AWARE agents.

Figure 1 Step-by-step illustrations of possible sequences of agent activations in the presence and
absence of stimuli respectively. The agent being activated is denoted by “x,” stimuli (if present)
are denoted by a green squares, AWARE (A) and UNAWARE (U/) agents are denoted by solid and
dashed circles respectively, and alert and all-clear tokens are denoted by red and purple inner circles
respectively. State subscripts correspond to the flags as described in Section 2.

through agents in the AWARE state, switching those to UNAWARE. Figures la and 1b illustrate
these two scenarios (where flags and agent labels will be defined later in this section).

The differences between these two carefully crafted token passing mechanisms ensure
that whenever waves of alert tokens and all-clear tokens compete to convert agents to the
AWARE and UNAWARE states respectively, the UNAWARE broadcast wave will always outpace
any residual AWARE waves in the system (in terms of the expected rates at which these
waves spread). In the case where there has been no stimulus for long enough, this allows the
collective to converge to the desired UNAWARE state. In the case where the stimulus set is
non-empty and remains stable for long enough, this allows the collective to shed all traces of
all-clear tokens as any cluster of AWARE agents containing them will quickly dissipate (and
UNAWARE agents never generate tokens), so that eventually only AWARE waves remain and
allow the collective to converge to the desired AWARE state.

We utilize the following agent flags in the Adaptive Stimuli Algorithm:

Alert token flag (A): this flag is set if the agent has an alert token.

All-clear token flag (C): this flag is set if the agent has an all-clear token.

Witness flag (W): this flag is set if the agent witnesses a stimulus.

There are two states an agent can be in: The UNAWARE state U, and the AWARE state A.
We further refine the AWARE state by adding subscripts that denote which flags are currently
set at the agent, i.e., an AWARE agent will be in exactly one of Ag, Agay, Agwy, Aga,wy, or
Aycy states. Note that the all-clear token flag is only set when the other two are not, giving
us these six distinct states in total.

Algorithm 1 formalizes the actions executed by each agent u when activated, which
depend on u’s current state, including its set N 4(u) of aware neighbors, and whether it
senses a stimulus. Figures la and 1b illustrate the execution of our algorithm at a high level,
upon a stimulus appearing or disappearing in G, respectively, showing how tokens “move”

S. Oh, D. Randall and A. W. Richa

through the graph and affect the agents’ states. We describe the behavior of an activated
agent u for each of the possible cases below:

Non-matching witness flag: This is a special case that occurs if u is currently a witness
to some stimuli but its witness flag has not been set yet, or if u has its witness flag set
but no longer witnesses stimuli. This case takes priority over all the other possible cases,
since u cannot take any action before its witness flag is up to date with its situation. If
u witnesses a stimulus but does not have the witness flag set, then with probability p,
switch u to state Agyy. On the other hand, if u does not witness stimuli but has the
witness flag set, switch u to UNAWARE (by setting u.state = U) and broadcast an all-clear
token to all of u’s AWARE neighbors (this token overrides any alert tokens the neighbors
may have).

Unaware state (U): If u has an AWARE neighbor v with an alert token (i.e., v.state €
{Agay, Aga,wy}), then u consumes the alert token from v (by setting v’s alert token flag
to FALSE) and switches to the state Ayp.

Aware state with alert token (A4}, A;a,wy): Pick a random neighbor of u such
that each neighbor is picked with probability %, with a probability 1 — dGT(“) of staying
at u (this executes a dyq,-random walk [16]). If an AWARE neighbor v is picked and v
does not hold an alert nor an all-clear token (that is, v.state € {Ap, Agwy}), move the
alert token to v by toggling the alert token flags on both u and v.

Aware state with witness flag only: (Agyy): With probability p, u generates a new
alert token and sets its corresponding flag, switching to state Aga wy.

Aware state with all-clear token (Agcy): Switch u to the UNAWARE state U and
broadcast the all-clear token to all of its AWARE state neighbors.

The use of a dyq.-random walk instead of regular random walk (Line 18 of Algorithm 1)
normalizes the probabilities of transitioning along an edge by the maximum degree of the
nodes (or a constant upper bound on that), so that these transition probabilities cannot
change during the evolution of the graph. A d,,q,-random walk has polynomial hitting time
on any connected dynamic network (while a regular random walk might not) [3].

3 Static graph topologies

In this section, we prove the correctness of Algorithm 1 for static connected graph topologies
(Theorems 3 and 4), where the edge set never changes and the dynamics are only due to
the placement of stimuli. In Section 4, we show that the same proofs apply with little
modification to the reconfigurable case as well.

We will first define the state invariant, which will always hold given that we start from an
initial configuration that satisfies the invariant, as we show in Lemma 2. Since the invariant
is trivially satisfied for our initial configuration with all agents are in the UNAWARE state,
the state invariant will hold throughout the execution of Algorithm 1. In the remainder of
this paper, a component will refer to a connected component of the subgraph induced in
G by the set of AWARE agents. The state invariant requires every component (of AWARE
agents) to contain an agent that either holds a all-clear token or has its witness flag set. This
guarantees that each AWARE agent either remains connected to a witness agent in G or will
eventually be converted to the UNAWARE state.

» Definition 1 (State Invariant). We say a component satisfies the state invariant if it contains
at least one agent in the states Apwy, Aga,wy or Agqcy. A configuration satisfies the state
invariant if every component (if any) of the configuration satisfies the state invariant.

8

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

Algorithm 1 Adaptive Stimuli Algorithm.

1: procedure THE ADAPTIVE-STIMULI-ALGORITHM (u)
2 Let p < (1/Smax), p € (0,1)
3 u.isWitness < TRUE if u witnesses a stimulus, else u.isWitness < FALSE
4 if w.isWitness and u.state & { Agwy, Aga,wy} then
5: With probability p, u.state <— Agwy > u becomes AWARE witness with prob. p
6 else if —~u.isWitness and u.state € {Aqwy, Aga,wy} then > stimulus no longer at u
7 for each v € N4(u) do > N4(u) = current AWARE neighbors of u
8 v.state < Aqcy > all-clear token broadcast to AWARE neighbors of u
9 u.state < U
10: else
11: switch u.state do
12: case U:
13: if Jv € Na(u),v.state = As € {Aga}, Aga,wy} then > v has alert token
14: v.state < Ag\ (4} > v consumes alert token
15: u.state < Ay > u becomes aware
16: case Agay or Apawy:
17: x < random value in [0, 1]
18: if x <dg(u)/A then > dpaz-random walk
19: v < random neighbor of u
20: if v.state = Ags € {Agp, Aqw)} then > AWARE state, no alert token
21: Let u.state = As; u.state < Ag\ 14} > u sends alert token to v
22: v.state <~ Agiugay > v receives alert token
23: case Agy):
24: With probability p, u.state < Aga wy > generate alert token with prob. p
25: case A(cy:
26: for each v € N4(u) do
27: v.state < Aycy > u broadcasts all-clear token to all aware neighbors
28: u.state < U

» Lemma 2. If the current configuration satisfies the state invariant, then all subsequent
configurations reachable by Algorithm 1 also satisfy the state invariant.

Proof. We will prove by induction, starting from a configuration where the state invariant
currently holds. Let u be the next agent to be activated. If u witnesses a stimulus but
u.state € {Aqwy, Aga,wy}, switching u to state Agyy does not affect the state invariant.
(Note that u can only enter state Ag4 wy from Agyy.) Conversely, if 4 does not witness
stimuli, but w.state € {Agwy, Ara,wy} switching u to state U can potentially split the
component it is in into multiple components. However, as all neighbors of u will also be set
to state A;cy), each of these new components will contain an agent in state Afcy.
Otherwise, if u.state = U, it only switches to the AWARE state if it neighbors another
AWARE agent. As the component u joins must contain an agent in states Ay, Aga,wy or
Aycy, the new configuration will continue to satisfy the state invariant. If u.state = Ay¢y,
similar to the case where u does not witness stimuli but u.state € { Ay, Aga,wy)}, activating
u may split the component it is in. As before, all neighbors of u will be set to state Acy, so
each of these newly created components satisfy the state invariant. The remaining possible
cases only toggle the alert token flag, which does not affect the state invariant. <

S. Oh, D. Randall and A. W. Richa

This allows us to state our main results in the static graph setting. We let T' € N represent
the time when the stimuli becomes stable for long enough to converge (where 7" is unknown
to the agents). Without loss of generality, for the sake of our proofs, we will assume that the
stimuli set S; = St, for all t > T, although we just need the stimuli set to stay stable for
long enough (i.e., for O(n?) and O(n?*) expected time, respectively) for the two theorems
below that show efficient convergence.

» Theorem 3. Starting from any configuration satisfying the state invariant over a static
connected graph topology G, if |St| = 0, then all agents will reach and remain in the UNAWARE
state in O(n?) expected iterations, after time T.

» Theorem 4. Starting from any configuration satisfying the state invariant over a static
connected graph topology G, if |Str| > 0, then all agents will reach and stay in the AWARE
state in O(n) expected iterations, after time T.

For the rest of this section, we will be establishing the definitions and lemmas used to
prove Theorems 3 and 4. The proofs of these theorems rely on carefully eliminating residual
AWARE agents from previous broadcasts. These agents, which we call residuals (Definition 5),
have yet to receive an all-clear token and thus will take some time before they can return to
the UNAWARE state.

Figure 2 A configuration with two residual components. Green squares denote stimuli. The
component on the left is residual because it contains an agent in state Ay} that does not observe
a stimulus; the component on the right is residual as it contains an agent in state Acy.

» Definition 5 (Residuals). A residual component is a component that satisfies at least one
of the following two criteria:

1. It contains an agent in state A;cy.

2. It contains an agent in state Apwy or Aga,wy that does not witness a stimulus.

We call agents belonging to residual components residuals.

When starting from an arbitrary configuration satisfying the state invariant, it is likely
that there will be a large number of residual components. As these components may not be
connected to any stimulus, so we would want to clear them out by returning their agents to
the UNAWARE state. Keeping residual components around can also be problematic as the
presence of residuals may cause even more residuals to form. Furthermore, later on when we
allow the graph to reconfigure itself, residuals may obstruct UNAWARE state agents from
coming into contact with non-residual components (which we want to grow), which may
prevent alert tokens from reaching them. Our main tool to show that all residuals eventually
vanish is a potential function that decreases faster than it increases.

» Definition 6 (Potential). For a configuration o, we define its potential ®(c) as
Do) =D y(o) + (I)_A{A}(O')

where ® 4(0) and P 4 ,, (o) represent total the number of AWARE agents and the number of
AWARE agents with an alert token respectively.

10

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

We use the following lemma to guarantee, in Lemma 8, that the expected number of steps
before all residuals are removed is polynomial.

» Lemma 7. Assume n > 2, and let 0 < n < 1. Consider two random sequences of

probabilities (pi)iens, and (qi)iens,, with the properties that % <pp<land0<q <1,

and py + ¢ < 1. Now consider a sequence (Xi)ien,, where

< Xy —1 with probability p;
X1 4 =X, +1 with probability q;
= X; with probability 1 — py — q4.

Then E [min{t > 0 | X; = 0}] < %X;;

Proof. For each k € N>(, we define a random sequence (Y;(k))teNZO such that Yo(k) =k and
=Y,¥) —1 with probability

YL =v™ +1 with probability

= Yt(k) otherwise.

3 3=

For each such k, let S := E [min{t >0] Y;(k) =0}|. Let T,glj_)l = 0 and for i € {k,k —

1,...,1}, let Ti(k) =min{t > 0 | Yt(k) <i}— Ti(f)l denote the number of time steps after Tz(ﬁ
before the first time step ¢ where Yt(k) < i. We observe that each Ti(k) is identically distributed,
with ET™ = ET(") = 8. Also, we observe that Sy = E[>2F_ 7], s0 S = k - S, for all k.

We can thus compute S; by conditioning on the first step:

51:%(1)+%(52+1)+ (11;;77> (Sl+1):1+%251+ (11;”> S,
This implies S = " and thus E {min{t >0| Yt(k) _ 0}} =5, = 111771"

We can then couple (Xi)ien,, and (Yt(XO))teNZO in a way such that Yt(Jer(’) = Yt(XO) +1
whenever X117 > X;, and Y;(JFXIO) = Y;fXO) —1 whenever X; 1 < X;. We thus have YfXO) > X,
always, and so E [min{t > 0| X; =0}] <E {min{t >0 Yt(XO) _ O}} < (]fi(;)- P

We show in Lemma 8 that after a polynomial number of steps in expectation, we will
reach a configuration with no residual components, where p is as defined in Algorithm 1.

» Lemma 8. We start from a configuration satisfying the state invariant over a static
connected graph G and assume that there are no more than Sy, stimuli at any point of
time. Then the expected number of steps before we reach a configuration with no residual
components is at most 2n?/(1 — PSmaz)-

Proof. We apply Lemma 7 to the sequence of potentials (®(o¢))ien., where oy is the
configuration after iteration ¢. As long as there exists a residual comp(;nemt7 there will be
at least one agent that will switch to the UNAWARE state upon activation. This gives a
probability of at least 1/n in any iteration of decreasing the current potential by at least 1.2

2 Note that in Algorithm 1, u can switch from state Aja,wy toU, decreasing @ by 2.

S. Oh, D. Randall and A. W. Richa

There are only two ways for the potential to increase. The first is when a new alert
token is generated by a witness, and the second is when an UNAWARE witness switches to an
AWARE state. The activation of a witness thus increases the current potential by exactly 1,
with probability p. As there are at most syax Witnesses observing stimuli, this happens with
probability at most psmax/n < 1/n. Note that the consumption of an alert token to add

a new AWARE state agent to a residual component does not change the current potential.

Neither does switching agents to the all-clear token state affect the potential.

By Lemma 7, as ®(0g) < 2n, within 2n2?/(1 — psmax) steps in expectation, we will either
reach a configuration o with ®(0) = 0, or a configuration with no residual components,
whichever comes first. Note that if ®(o) = 0, then o cannot have any residual components,
completing the proof. <

We now show that as long as no agent is removed from the stimulus set, after all residual
components are eliminated, no new ones will be generated:

» Lemma 9. We start from a configuration satisfying the state invariant over a static
connected graph G, and assume that no agent will be removed from the stimulus set from the
current point on. If there are currently no residuals, then a residual cannot be generated.

Proof. With no residual components in the current iteration, there will be no agents in state
Aycy, and all agents in state Ay or Agy wy will be witnessing stimuli. This means that
no agent on activation will switch another agent to state Afcy. All agents in states Agyy or
Aga,wy will continue to witness stimuli by assumption of the lemma, and agents will only
switch to states Ayy or Aga wy if they are witnessing stimuli. Thus no component will be
residual in the next iteration. |

In the case where |Sr| = 0, as long as the state invariant holds, having no residuals and
no stimuli means that all agents must be in the UNAWARE state. Combining Lemmas 8
and 9 thus gives us Theorem 3. Furthermore, if |Sy| > 0, Lemmas 8 and 9 also show that
eventually all residuals will be eliminated. No AWARE state agent can switch back to the
UNAWARE state following this, as that would require either an all-clear token to be generated
(creating a residual) or a stimulus to vanish. This allows us to apply Lemma 10 repeatedly
(for each UNAWARE agent) to show Theorem 4.

» Lemma 10. We start from a configuration satisfying the state invariant over a static
connected graph G, and assume that there are no residual agents, the stimulus set is nonempty
and no agent will be removed from the stimulus set from the current point on. Then the
expected number of iterations before the next agent switches from the UNAWARE to the AWARE
state is at most O(n?).

Proof. In the case where not every agent observing a stimulus is AWARE, there must be an
UNAWARE agent observing stimuli, which on activation switches to the AWARE state with a
constant probability p. This will happen in expected time O(n/p) = O(n). Thus for the rest
of the proof, we may assume every agent witnessing stimuli is already in the AWARE state
with the witness flag set. Similarly, we may assume that at least one alert token has been
generated as it would take at most O(n) steps from a configuration without alert tokens.
We then bound the amount of time it takes for an alert token to reach an AWARE agent
that is adjacent to an UNAWARE agent (which must exist as G is connected) To do this, we
trace the movement of any one of the alert tokens as it gets passed around by the AWARE
agents. When an agent carrying an alert token is activated, it picks a random neighbor to
transfer the token to. Even though the algorithm does not pass the alert token in the event

11

12

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

that the neighbor already holds an alert token, we may treat it as though the alert tokens
have swapped positions for our analysis. The alert token follows a d,,q-random walk, which
has an expected hitting time of O(n?) movements of the alert token.

Thus, the expected number of iterations before some UNAWARE agent neighbors an agent
with an alert token is O(n?). As there is a probability of at least 1/2 of the UNAWARE agent
being activated before the alert token moves away again, this gives us an expected time
bound of O(n?) before a new AWARE agent is added. <

4 Reconfigurable topologies

We show that the same results hold if we allow some degree of reconfigurability of the edge
set and relax the requirement that the graph must be connected. This gives us enough
flexibility to implement a wider range of behaviors, like free aggregation or compression and
dispersion in Section 5. When needed, we may refer to this as the reconfigurable dynamic
stimuli problem, in order to clearly differentiate from the dynamic stimuli problem on static
graphs that we considered in Section 3.

Instead of a static graph G, we now allow the edge set of a dynamic graph G to be locally
modified over time. These reconfigurations can be initiated by the agents themselves or
controlled by an adversary, and they can be randomized or deterministic, but we require
some restrictions on what reconfigurations are allowed, and what information an algorithm
carrying out these reconfigurations may have access to. This will result in a restricted class
of dynamic graphs, but one that will be general enough to be applied to the problem of
foraging that we describe in Section 5.

G: G

Figure 3 Two locally connected reconfigurations of the vertices u1 (from G to G) and us (from H
to H') respectively, where only the AWARE neighbors of the reconfigured vertex are shown. Vertices
with dashed outlines are newly introduced AWARE neighbors.

The basic primitive for (local) reconfiguration of our graph by an agent u is to replace
the edges incident to vertex u with new edges. We call this a reconfiguration of vertex u and
define local connectivity to formalize which reconfigurations are allowed.

» Definition 11 (Locally Connected Reconfigurations). For a configuration (G,), let G’ be
the resulting graph from the reconfiguration of some vertex uw € V', and where N 4(u) denotes
the AWARE neighbors of u in G. We say that this reconfiguration (G',0) is locally connected
if u has at least one neighbor in G’ that is AWARE and if for every pair of vertices vy, vo in
N4 (u), there is also a path from vy to ve in the induced subgraph G'[N4(u) U {u}].

Examples of locally connected reconfigurations are given in Figure 3.

In the reconfigurable dynamic stimuli problem, we want to be able to define reconfiguration
behaviors for agents in the AWARE (without all-clear token) and UNAWARE states. To define
what reconfigurations of an agent u are valid, we group our set of agent states into three
subsets which we refer to as behavior groups. The three behavior groups are U = {Uy,

S. Oh, D. Randall and A. W. Richa

M= {Ap, Agay} and 7= {Agwy, Ara,wy, Agey), which we call the unaware, mobile and
immobile behavior groups We say that a locally connected reconfiguration of an agent u is
valid if it is not allowed to reconfigure in the immobile behavior group, and if u is in the

mobile behavior group, the reconfiguration of u must be locally connected (Definition 11).

We show the following lemma, recalling that the state invariant appears in Definition 1:

» Lemma 12. Let G = (V, E) be a graph and let G' = (V, E') be the graph resulting from
a valid locally connnected reconfiguration of a vertex uw € V. If a state assignment 6 of the
agents V satisfies the state invariant on G, 0 also satisfies the state invariant on G'.

Proof. As locally connected reconfigurations of unaware agents do not affect the invariant
and immobile agents cannot be reconfigured, it suffices to show that locally connected
reconfigurations of mobile agents maintain the state invariant.

To show that the state invariant holds in G’, we show that any mobile agent has a path
to an immobile agent in G’. Consider any such mobile agent v # u. As the state invariant is

satisfied in G, there exists a path in G over AWARE vertices from v to an immobile agent w.

If this path does not contain the agent u, v has a path to w in G’. On the other hand, if this
path contains the agent u, consider the vertices u; and us before and after u respectively
in this path. By local connectivity, there must still be a path from wu; to us in the induced
subgraph G'[N.4(u) U {u}], and so a path exists from v to w also in G’. It remains to check
that u also has a path to an immobile agent in G’. Once again by local connectivity, u must
have an AWARE neighbor in G’, which must have a path to an immobile agent in G’. |

In the reconfigurable version of the dynamic stimuli problem, instead of a static graph G,
we consider a dynamic graph G where the snapshot G; of G at each iteration ¢ is generated
by what we call a (valid) reconfiguration adversary X. The reconfiguration adversary may
store any amount of information known from previous iterations, which we will represent
by the sequence (X, X1,...). Then on each iteration ¢, it draws a new graph G; and value
X; from the distribution X' (X;_1, 9At_1), where the vectors 0, : V — {u, M, 7} denote the
behavior groups of each agent at the end of each iteration t. Also, as an additional condition,
the distribution X' (X;_1, @_1) can only assign non-zero probabilities to graphs that can be
obtained through some sequence of valid locally connected reconfigurations of the vertices of
Gi_1. We are now ready to formally define reconfigurable graphs:

» Definition 13 (Reconfigurable Graph). A dynamic graph G is called a reconfigurable
(dynamic) graph if its evolution with time is given as a sequence of graphs (Go,G,...)
generated by a valid reconfiguration adversary X .

We note that the reconfiguration adversary can be deterministic or randomized (it can
even be in control of the agents themselves), and is specifically defined to act based on

the behavior group vectors 0, :V — {LA{ , M\, f} and not the full state vector of the agents.

We explicitly do not give the reconfiguration adversary access to full state information, as
convergence time bounds require that the reconfiguration adversary of the graph be oblivious
to the movements of alert tokens. As a special case, our results hold for any sequence of
graphs (Go, G1,Ga,...) pre-determined by an oblivious adversary. An example of a valid
reconfiguration adversary that takes full advantage of the generality of our definition can be
seen in the Adaptive a-Compression Algorithm, an algorithm that we will later introduce to
solve the problem of foraging.

In the static version of the problem, the graph is required to be connected to ensure that
agents will always be able to communicate with each other. Without this requirement, we
can imagine simple examples of graphs or graph sequences where no algorithm will work. In

13

14

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

particular, if a set of agents that contains a stimulus never forms an edge to an agent outside
of the set, there would be no way to transmit information about the existence of the stimulus
to the nodes outside the set. However, as the foraging problem will require disconnections to
some extent, we relax this requirement that each graph G is connected, and instead quantify
how frequently UNAWARE state agents come into contact with AWARE state agents.

We say an UNAWARE agent is active if it is adjacent to an AWARE agent. One way to
quantify how frequently agents become active is to divide the iterations into “batches” of
bounded expected duration, with at least some amount of active agents in each batch. The
random variables (Dy, Do, D3 ...) denote the durations (in iterations) of these batches, and
the random variables (Cy, Cs, Cs, . ..) denote the number of active agents in the respective
batches. Definition 14 formalizes this notion.

» Definition 14 (Recurring Sequences). Let X' be a fized valid reconfiguration adversary. We

say that this X is (Up, Uc)-recurring (for Up > 1 and Ux € (0,1)) if for each possible starting

iteration t and fized behavior group 9 with at least one unaware and one immobile agent, we

have the following property: There exists sequences of random variables (D1, D2, D3 ...) and

(Cy,C5,C5...) where for each k € {1,2,3,...},

1. Cy denotes the sum of the numbers of active agents under the behavior group 9 over all
iterations between iterations t + Zf;ll D; and t + (Zle DZ-) -1

2. E[Dy | D1,Ds,...Di_1,C1,Cs...Cx_1] < Up.

3. E [(1 S Dl,Dg,...Dk_l,Cl,Cg...Ck_l} < Ue.

We can then define a (valid) reconfigurable graph (or sequence) as one that is generated by
a valid reconfiguration adversary X and is (Up, Uc)-recurring for some Up > 1,Uc € (0,1).
This allows us to state our main results for reconfigurable graphs as Theorems 15 and 16.
The theorems we have shown for the static version of the problem (Theorems 3 and 4) are
special cases of these two theorems.

» Theorem 15. Starting from any configuration satisfying the state invariant over a recon-
figurable graph G, if |St| =0, then all agents will reach and remain in the UNAWARE state
in O(n?) expected iterations, after time T.

» Theorem 16. Starting from any configuration satisfying the state invariant over a recon-
figurable graph G, if |Sr| > 0 and the reconfiguration adversary is (Up,Uc)-recurring, then

all agents will reach and stay in the AWARE state in O (n6 logn + ﬁUUDC) expected iterations,

after time T .

In particular, if every graph G, is connected, then the reconfiguration adversary is
(1, (1 = 1))-recurring by setting Dy, = Ci, =1 (as constant random variables) for all k, and
we have the following corollary:

» Corollary 17. Starting from any configuration satisfying the state invariant over a recon-
figurable graph G, if |St| > 0 and every G is connected, then all agents will reach and stay
in the AWARE state in O(n%logn) expected iterations, after time T.

Obviously, if G is a static connected graph, it falls as a special case of the corollary; a tighter
analysis allowed us to prove the O(n*) expected convergence bound in Theorem 4.

The following two lemmas, which are analogous to Lemmas 8 and 9 but for reconfigurable
graphs, are sufficient to show Theorem 15 (the case for |Sy| = 0). The proof of Lemma 18 is
identical to the proof of Lemma 8, so we only show Lemma 19.

S. Oh, D. Randall and A. W. Richa

» Lemma 18. We start from a configuration satisfying the state invariant over a reconfigurable
graph G and assume that there are no more than Smaz stimuli at any point of time. Then the
expected number of steps before we reach a configuration with no residual components is at
most 2n% /(1 — p - Simaz)-

» Lemma 19. We start from a configuration satisfying the state invariant over a reconfigurable
graph G, and assume that no agent will be removed from the stimulus set from the current
point on. If there are currently no residuals, then a residual cannot be generated.

Proof. From the proof of Lemma 9, we know that state changes of agents do not generate a
new residual. Valid reconfigurations of agents also cannot generate a new residual, as from
Lemma 12, the state invariant always holds, so all components will always have an agent
in state A¢cy, Agwy or Aga,wy. Reconfigurations cannot change the fact that there will
be no agent of state Aoy, and that all agents in states Ay or Aga)y will be witnessing
stimuli. <

The key result we will show is Lemma 20, a loose polynomial-time upper bound for the
amount of time before the next agent switches to the AWARE state. This gives a polynomial
time bound for all agents switching to the AWARE state when |Sy| > 0, implying Theorem 16.

» Lemma 20. We start from a configuration satisfying the state invariant over a (Up,Uc)-
recurring reconfigurable graph G, and assume that there are no residuals, the stimulus set is
nonempty, and no agent will be removed from the stimulus set from the current point on.
Then the expected number of iterations before the next agent switches from the UNAWARE to
the AWARE state is at most O (n®logn + Up/(1 — Uc)).

Proof. As proved in Lemma 10, any UNAWARE agent witnessing stimuli will become aware
in expected O (n/p) time, so for the rest of the proof, we may assume that every agent
witnessing stimuli is already in the AWARE state with the witness flag set. From then on
however, our proof strategy differs from Lemma 10 to account for the reconfigurability of G.
We show a loose time bound for reconfigurable graphs in two parts: first we bound the time
it takes for all agents to hold an alert token, followed by a bound on the time it takes for an
UNAWARE agent to be activated while adjacent to an AWARE agent holding an alert token.

We first bound the amount of time it takes for all AWARE state agents to hold alert
tokens. As an agent can only hold one alert token at a time, a new alert token can only

be generated when the agent witnessing a stimulus does not currently hold an alert token.

Assume that there is at least one AWARE state agent that does not hold an alert token, and
mark this agent. We bound how long it takes in expectation for the mark to land on an
agent witnessing the stimulus, as a new alert token can then be generated following that
with constant probability. Suppose that u is the marked agent and that the next agent v
to be activated is a neighbor of u. If v has an alert token and v randomly chooses u as its
outgoing neighbor (as per the algorithm), then v transfers its alert token to u and receives
the mark from u. Otherwise, for the sake of our analysis, we still have v pick an outgoing
neighbor at random and receive the mark if the chosen neighbor is u.

The mark moving in this manner is equivalent to following a d,,q;-random walk over the
subgraphs induced by the AWARE agents on each iteration. It is known that the expected
hitting time of the d,,q;-random walk on a connected evolving graph controlled by an
oblivious adversary is O(n3logn) [3, 16]. This polynomial time bound is notable as there are
connected evolving graphs where the simple random walk admits exponential hitting times
in the worst case [3]. In our model, this corresponds to O(n?logn) iterations in expectation
to generate a new alert token, which gives an upper bound of O(n’logn) iterations in

15

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

expectation before all agents carry alert tokens. This is clearly a loose bound, which has not
been optimized for clarity of explanation. Two complications however arise when applying
this result: the requirement that the adversary controlling the dynamic graph be oblivious
and the requirement that the dynamic graph remain connected.

We first address the requirement for the adversary to be oblivious. Unlike the proof of
Lemma 10, the mark now moves over the sequence of induced subgraphs Gr.,, ., +1, GTurare+25 - - -
where Tiiar¢ denotes the last iteration an UNAWARE state agent switched to the AWARE state.
On each iteration ¢ > Tytart, G4 is drawn from a distribution X'(Xg, ét) = X (X, gTstm),
as @t = é\TSmt for all t > Tyare (note that as long as no new UNAWARE agent switches to
the AWARE state, as there are no residuals and the set of stimuli St is no longer changing,
the behavior group vectors §T5tm,
conditioned on everything that has happened on iterations up to and including Ti¢art, the
random sequence describing the movements of the mark is independent of the random

é\TmrtH’ ey é\t will not have changed since Tytart). Thus

sequence describing the reconfiguration behavior of the graph.

We next address the connectivity requirement of the dynamic graph. Denote by A the set of
AWARE state agents given by §Tm”. The sequence of induced subgraphs G¢[A],t > Tytart + 1,
to which we would like to apply the result of [3, 16], in general may not be connected.
This problem has a relatively straightforward solution: as the state invariant (Definition 1)
holds, each connected component of G¢[A] must contain at least one immobile agent (each of
which witnesses a stimulus as there are no residuals). Adding an edge between every pair of
immobile agents in G;[A] for each ¢ gives a sequence of connected graphs H;. This allows us
to see the movements of the mark as a d,,.,-random walk over the sequence of connected
graphs Hy.

Now that all AWARE agents have alert tokens, all that remains is to activate an UNAWARE
agent neighboring an AWARE agent (otherwise known as an active agent) and convert it to
an AWARE agent, consuming the alert token held by said neighbor. Denote by T, the first
iteration where every AWARE agent carries an alert token. As the reconfiguration adversary
is (Up, Uc)-recurring, the iterations following Tt may be divided into intervals with lengths
denoted by the random variables Dy, Ds, D3, ..., where the total numbers of active agents
within the respective intervals are denoted by the random variables C7,Cs,Cs,

A new AWARE agent is added when an active UNAWARE agent is activated. The probability
of adding a new AWARE agent on a given iteration with k active agents is thus %, as each of
the n agents are activated with equal probability. Thus, if we denote the number of active
agents on an iteration starting from T, by the random sequence K;, Ko, K3, ..., we get the
following expression for the number of iterations starting from T}, before a new AWARE
agent is added, which we denote by X:

E[X|K,, Ko, Ks,...| = ZPr (X > z|K,, Ky, Ks,...)
x=0

B () () ()
B () 0D)"

S. Oh, D. Randall and A. W. Richa

where we define y := (1 — 1) € (0,1). Thus,

E[X|K1, Ks, K3, ..]
D1+Dy po

< 1+yK1 -|-yK1+K2+._.+yZiD:11Ki +ycl+KD1+1_~_..._~_ycl+2i:D1+l .

D; terms D5 terms
< 1+ (Dl _ 1) +yCl +yC1(D2 _ 1) +ycl+02 +yC1+C'2(D3 _ 1) +yCl+CQ+C3 NI
= Dy + Dy -y + D3 -yt 4

Via the law of total expectation, we have

E[X]

IN

e i—1
ZE[Diijzl]
1=1

= ZE |:y23;1 Cj]E[D”C&, Cg, ey Oi_l]:l
i=1

IA
(]
S
&=

|:ij1 Cj E[yCi—l |C’17 Csy, ..., 012]:|

T 1-Ues’

< .. .<> Up(Uo)™

Combining the two phases, we have an expected time bound of O <n5 logn + 1350) before
a new AWARE agent is added. <

5 Foraging via self-induced phase changes

Recall that in the foraging problem, we have “ants” (agents) that may initially be searching

for “food” (stimuli, which can be any resource in the environment, like an energy source).

Once a food source is found, the ants that have learned about the food source start informing
other ants, allowing them to switch their behaviors from the search mode to the gather mode,
leading them to start gathering around the food to consume it. Once the source is depleted,
the ants closer to the depleted source start a broadcast wave, gradually informing other ants
that they should restart the search phase again by individually switching their states. The
foraging problem is very general and has several fundamental application domains, including
search-and-rescue operations in swarms of nano- or micro-robots; health applications (e.g., a
collective of nano-sensors that could search for, identify, and gather around a foreign body to
isolate or consume it, then resume searching, etc.); and finding and consuming/deactivating
hazards in a nuclear reactor or a minefield.

Our model for foraging is based on the geometric amoebot model for programmable matter,
first introduced in [17] (see also [15]). We have n anonymous agents occupying distinct sites
on a N x v/N region of the triangular lattice with periodic boundary conditions, where
n < N. These agents have constant-size memory, and have no global orientation or any
other global information beyond a common chirality. Agents are activated with individual
Poisson clocks (with uniform rates), which is equivalent to assuming a random sequential
scheduler. Upon activation, an agent may move to an adjacent unoccupied lattice site and
change its state and that of its neighbors, operating under similar constraints to the dynamic

17

18

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

stimuli problem.? An agent may only communicate with agents occupying adjacent sites of
the lattice. Food sources may be placed on any site of the lattice, removed, or shifted around
at arbitrary times, possibly adversarially, and an agent can only observe the presence of the
food source while occupying the lattice site containing it.

At any point of time, there are two main states an agent can be in, which, at the macro-
level, are to induce the collective to enter the search or gather modes respectively. When
in search mode, agents move around in a process akin to a simple exclusion process, where
they perform a random walk while avoiding two agents occupying the same site. Agents
enter the gather mode when food is found and this information is propagated in the system,
consequently resulting in the system compressing around the food (Figure 4).

o O o
fc;(éd O Of(@do O

@) O0L0

O o OTO

Figure 4 In the diagram on the left, a food source is placed on a lattice site. The diagram
on the right illustrates a desired configuration, where all agents have gathered in a low perimeter
configuration around the food source. If the food source is later removed, the agents should once
again disperse, returning to a configuration like the figure on the left.

In the nonadaptive setting, Cannon et al. [7] designed a rigorous compression/expansion
algorithm for agents in the amoebot model that remain simply connected throughout
execution, where a single parameter A determines a system-wide phase: A small A\, namely
A < 2.17, provably corresponds to the search mode, which is desirable to search for food,
while large \, namely A > 2 + /2, corresponds to the gather mode, desirable when food has
been discovered. Likewise, Li et al. [30] show a very similar bifurcation based on a bias
parameter A in the setting when the agents are allowed to disconnect and disperse throughout
the lattice. Our goal here is to perform a system-wide adjustment in the bias parameters
when one or more agents notice the presence or depletion of food to induce the appropriate
global coordination to provably transition the collective between macro-modes when required.
Informally, one can imagine individual agents adjusting their A parameter to be high when
they are fed, encouraging compression around the food, and making A\ small when they are
hungry, promoting the search for more food. A configuration is called a-compressed if the
perimeter (measured by the length of the closed walk around its boundary edges) is at most
@ Prin(n), for some constant « > 1, where pyin(n) denotes the minimum possible perimeter
of a connected system with n agents, which is the desired outcome of the gather mode.

5.1 Adaptive a-compression

We present the first rigorous local distributed algorithm for the foraging problem: The
Adaptive a-Compression algorithm is based on the stochastic compression algorithm of [7],
addressing a geometric application of the dynamic stimuli problem, where the AWARE state
represents the “gather” mode, and the UNAWARE state represents the “search” mode. An
agent witnesses a stimuli if it occupies the same lattice site as the food (stimulus) source.

3 Assuming that amoebots can write directly to their neighbors’ memories is common in the literature
under the sequential scheduler, e.g., see [13, 18]; it would be interesting to port the model and algorithms
in this paper to the message-passing canonical amoebot model [15] (see Section 7).

S. Oh, D. Randall and A. W. Richa

Algorithm 2 Adaptive a-Compression

1: procedure ADAPTIVE- ALPHA-COMPRESSION (u)

2: ¢ < Random number in [0, 1]

3 u.isWitness < TRUE if u observes the food source, else u.isWitness < FALSE

4 if ¢ < % then > With probability %, make a state update
5: ADAPTIVE-STIMULI-ALGORITHM (1)

6 else > With probability %, make a move
7 if w.isWitness or u.state € {Aqwy, Aga,wy, Afcy} then > immobile agent
8 Do nothing

9: else if u.state € {Ap, Agay} then > mobile agent
10: EXECUTE-GATHER(u)
11: else if u.state = U then > unaware agent
12: EXECUTE-SEARCH(u)

1: procedure EXECUTE-GATHER (u)

2 d < Random direction in {0, 1,2, 3,4,5}

3 { < Current position of u

4 ¢’ + Neighboring lattice site of u in direction d

5: if Moving u from £ to ¢ is a valid compression move (Definition 21) then

6 p < Random number in [0, 1]

7 d(u) < number of neighboring agents of u if u were at position ¢

8 d'(u) + number of neighboring agents of u if u were at position ¢’

9 if p < A4(W—d(w) ghen
10: Move u to position ¢’ > Movements reconfigure the adjacency graph

1: procedure EXECUTE-SEARCH (u)

2 d < Random direction in {0, 1,2, 3,4,5}

3: ¢’ < Neighboring lattice site of u in direction d

4 if Moving ¢’ is an unoccupied lattice site then

5 Move u to position ¢/ > Movements reconfigure the adjacency graph

The underlying dynamic graph used by the Adaptive Stimuli Algorithm is given by the
adjacency graph of the agents, where two agents share an edge on the graph if they occupy
adjacent sites of the lattice. As agents move around to implement behaviors like gathering
and searching, their neighbor sets will change. The movement of agents thus reconfigures
and oftentimes even disconnects our graph.

In this algorithm, agents in the unaware (search) behavior group execute movements
akin to a simple exclusion process (EXECUTE-SEARCH) while agents in the mobile (gather)
behavior group execute moves of the compression algorithm (EXECUTE-GATHER) in [7].2 We
focus on the compression algorithm run by the AWARE agents. In a simple exclusion process,
a selected agent picks a direction at random, and moves in that direction if and only if the
immediate neighboring site in that direction is unoccupied. In the compression algorithm [7]
on the other hand, a selected AWARE agent first picks a direction at random to move in, and
if this move is a valid compression move (according to Definition 21), the agent moves to
the chosen position with the probability given in Definition 22. With a (far-from-trivial)

4 Following the description of these procedures in [7], we describe the movements of particles (agents)
in a combined expansion and contraction; those can be decoupled into two separate activations of the
agent, since the amoebot model allows at most one expansion or contraction per activation.

19

20

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

modification of the analysis in [7] to account for the stationary witness agent, we show that
in the case of a single food source, the “gather” movements allow the agents to form a low
perimeter cluster around the food. We present the following definitions, adapted from [7] to
the set of AWARE agents running the compression algorithm:

» Definition 21 (Valid Compression Moves [7]). Denote by N4(¢) and N4(¢') the sets of
AWARE neighbors of £ and ¢’ respectively and No(UL') := NA(L)UNA(L)\{¢,¢'}. Consider
the following two properties:

Property 1: [INo(€) N NA(¢")| > 1 and every agent in Na(£U ') is connected to an agent in
NA(6) N NA(L) through Na(LUl').

Property 2: INA4(€) " N4(¢')| = 0, £ and ¢ each have at least one neighbor, all agents in
NA(E)\{l'} are connected by paths within the set, and all agents in N4(¢')\{£} are connected
by paths within the set.

We say the move from € to €' is a valid compression move if it satisfies both properties,
and N(£) contains fewer than five aware state agents.

» Definition 22 (Transition probabilities [7]). Fiz A > 2+ /2, as sufficient for a-compression.
An agent u transitions through a valid movement with Metropolis-Hastings [34] acceptance
probability min{l,)\e("')’e(")}, where o and o’ are the configurations before and after the
movement, and e(-) represents the number of edges between AWARE state agents in the
configuration.

Note that even though e(+) is a global property, the difference e(c’) — e(o) can be computed
locally (within two hops in the lattice, or through expansions in the amoebot model [14, 15]),
as it is just the change in the number of AWARE neighbors of u before and after its movement.

The condition for valid compression moves is notable as it keeps a component of aware
agents containing the agent witnessing the stimulus simply connected (connected and hole-
free), which is crucial to the proof in [7] that a low perimeter configuration, in our case
around the food source, will be obtained in the long term. We also show that these valid
compression moves are locally connected (as per Definition 11), a sufficient condition for the
reconfigurable dynamic stimuli problem to apply.

5.2 Correctness

We now prove the various claims underlying the foraging algorithm. We first require that
the Markov chain representing the compression moves (EXECUTE-GATHER) is connected.
The proof builds upon the ergodicity argument in [7], but the addition of a single stationary
agent, the witness, in our context makes it significantly more complex. The Markov Chain
is trivially aperiodic, since there is a nonzero probability that an agent may not move (in
EXECUTEGATHER) when activated; Lemma 23 shows that it is also irreducible. Since the
irreducibility proof may be of independent interest and is rather involved, we present it as a
stand-alone proof in Section 6.

» Lemma 23 (Irreducibility). Consider connected configurations of agents on a triangular
lattice with a single agent v that cannot move. There exists a sequence of valid compression
moves that transforms any connected configuration of agents into any simply connected
configuration of the same agents while keeping v stationary.

We may now state our main results, which verify the correctness of Adaptive a-Compression.

S. Oh, D. Randall and A. W. Richa

» Theorem 24. If no food source has been identified for sufficiently long, then within an
expected O(n?) steps, all agents will reach and remain in the UNAWARE state and will converge
to the uniform distribution of nonoverlapping lattice positions.

» Theorem 25. If at least one food source exists and remains in place for long enough,
then within O(n®logn + N?n?) steps in expectation, all agents will reach and remain in
the AWARE state, and each component of AWARE agents will contain a food source. In
addition, if there is only one food source, the agents will converge to a configuration with
a single a-compressed component around the food, for any constant o > 1, with all but an
exponentially small probability, if the lattice region size N is sufficiently large.

The Adaptive a-Compression Algorithm fits the requirements of the reconfigurable
dynamic stimuli model. In particular, the information X; available to the reconfiguration
adversary corresponds to the configuration of the lattice, and the graph G, represents
the adjacency of agents on the lattice at that time ¢. To show that a sequence of valid
AWARE agent movements in the Adaptive a-Compression Algorithm, which determine the
configurations of G1,Ga, ... can be modeled via a valid reconfiguration adversary X', we need
to show that the reconfigurations resulting from the EXECUTE-GATHER procedure must be
locally connected.

» Lemma 26. The movement behavior of Adaptive a-Compression is locally connected.

Proof. We only need to show that the EXECUTE-GATHER procedure maintains local connec-
tivity (Definition 11). This is true as when reconfiguring an AWARE agent u with AWARE
neighbor set N4(u), we only allow valid compression moves (Definition 21) to be made. In
the case of Property 1, all agents in N 4(u) will still have paths to u in G’ (the resulting
graph of the reconfiguration) through N4(u) N N’y (u) where N'y(u) is the AWARE neighbor
set of u in G’. In the case of Property 2, all agents in N 4(u) will still have paths to each
other within G'[N 4(u)], despite no longer having local paths to u. The agent u will have at
least one AWARE state neighbor after the move as this is a requirement of Property 2. <«

As this is an instance of the reconfigurable dynamic stimuli problem, Theorem 24 follows
immediately from Theorem 15. To show Theorem 25, however, we need to show polynomial
recurring rates by arguing that the UNAWARE agents following a simple exclusion process
regularly come into contact with the clusters of AWARE state agents around the food sources.

» Lemma 27. The movement behavior defined in the Adaptive a-Compression Algorithm is
(Up,Uc)-recurring with Up = 2N?n + 5+1andUc = %

Proof. As required by Definition 14, We start from an arbitrary system configuration and
assume an arbitrary initial behavior group vector 0 that will remain fixed for this analysis.
This behavior group vector will also be assumed to contain at least one UNAWARE and at
least one immobile agent. In adaptive a-compression, as an agent’s movement depends only
on the current configuration of the lattice and @\, for convenience of notation and without
loss of generality, we assume that we are on the starting iteration 0.

In each iteration, the Adaptive a-Compression Algorithm randomly chooses between
executing a step of the dynamic stimuli problem and executing a movement on the lattice,
where there may be any number of movements between steps of the dynamic stimuli problem.
Throughout this proof, to distinguish between these two possibilities, a dynamic stimuli step
will be used to refer to an execution of the dynamic stimuli algorithm, while a movement
step will be used to refer to to an execution of the movement algorithm.

21

22

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

To show that the reconfiguration adversary is recurring, the random sequences (D1, Do, .. .)
and (C1,Cs,...) as required by Definition 14 need to be defined—these random sequences
partition the iterations into “batches,” where the i*® batch would take D; dynamic stimuli
steps and would see C; active agents (an active agent is an UNAWARE agent that neighbors
an AWARE agent) over its duration. Suppose that batch ¢ — 1 ended on the Tt dynamic
stimuli step (if i = 1, then T = 0) which occurs on iteration t{. To define when the next
batch ends, we consider two important iterations of the algorithm in batch i:

ti: The first iteration after dynamic stimuli step 7" where an agent movement puts an

UNAWARE agent u next to an AWARE agent v.

th: The first iteration after ¢! where u or v are selected again in a movement step (even

if no action ends up being taken in the movement step).

The batch ¢ thus refers to the dynamic stimuli steps starting from 7'+ 1 and ending on the
first dynamic stimuli step 7" following # (the following batch i + 1 then starts on dynamic
stimuli step T + 1).

To upper bound the expected number of movement steps required to reach ¢, we note
that the movements of the agents in the UNAWARE state follow a simple exclusion process.
For the sake of the analysis, we treat situations where a movement of an UNAWARE agent
is rejected due to an obstruction by another UNAWARE agent as a “swap” of the positions
of the two agents. We can then analyze the hitting time of a simple exclusion process as
that of an independent simple random walk over the lattice region. If AWARE agents did not
exist, as our triangular lattice region (with periodic boundary conditions) is a regular graph,
a simple worst-case upper bound for how long it takes in expectation before an UNAWARE
agent reaches the location of an immobile agent is 2N? movements of the agent [32], which
translates to 2N2n movement steps in expectation. The UNAWARE agent must come into
contact with an AWARE agent (which can be mobile or immobile) before this happens, so
2N?2n is an upper bound for the expected number of movement steps between ¢ and ¢i.

We next give an upper bound for the expected number of movement steps between ¢ and
t5. The probability of selecting u or v in a movement step is exactly %, so the expected value
of a geometric distribution gives us an upper bound of § + 1 movement steps in expectation.
As the number of movement steps is equal to the number of dynamic stimuli steps in batch ¢
in expectation, and this applies from any starting configuration, this gives us a uniform upper
bound E[D;| Dy, Da,...D;_1,C1,Cy...Ci_1] < 2N?n + 5 + 1 for all batches i € {1,2,...}.

To lower bound C;, we observe that there will be at least one active agent neighboring
an AWARE agent, on any dynamic stimuli step occurring between iterations ¢} and t}, since
neither u nor v will be selected in a movement step before ti. Thus the number of dynamic
stimuli steps between ¢} and t4 lower bounds C;, the sum of the numbers of active agents over
the dynamic stimuli steps of batch i. For any two agents v’ and ¢’, let Y+ ,» be a random
variable denoting the number of dynamic stimuli steps that would pass before the algorithm
selects u’ or v’ in a movement step. As there are X ~ Geom(%) movement steps in between
any two dynamic stimuli steps and the probability of the algorithm selecting u’ or v’ on any
movement step is %, the random variable Y, ,» is geometrically distributed with a success
probability py , , where:

oo
DYy = Z Pr(X = j) - Pr(algorithm selects u’ or v’ within j movement steps)

S (0 S 2)

Jj=0

S. Oh, D. Randall and A. W. Richa

We can thus say that C; (conditioned on past Dy, Cj) stochastically dominates Y, ,, and
because (1 — 1)® is a decreasing function of x, we have:

n

[(1-3)

Yuw
D1,D27...Di1,01,02...6’1»1} < E{(l_Z) }

I
N
N
—
|
S|
~——
<
S
&
e
gun
b
&
<
N—
<

We are now ready to present the proof of Theorem 25:

Proof of Theorem 25. We first show that if at least one food source exists and remains in
place for long enough, then within O(n®logn + N?n?) steps in expectation, all agents will
reach and remain in the AWARE state, and each component of AWARE agents will contain a
food source. We start from the first iteration beyond which no additional changes in the
positions (or existence) of the food sources occur. We first show that if there is at least
one food source, it will be found. As long as no food source has been found, there will be

no witnesses to stimuli, so every agent will return to the UNAWARE state by Theorem 15.

Agents in the UNAWARE state move randomly following a simple exclusion process. Using
the hitting time of a simple random walk on a regular graph (the triangular lattice region,
with periodic boundary conditions) of N sites, we have a simple upper bound of O(N?n)
iterations in expectation before some agent finds a food source and becomes a witness.
From then on, there will be at least one stimulus, and the stimulus set can only be
augmented, not reduced, as the other agents potentially find additional food sources, and
since the agents witnessing food sources are no longer allowed to move. As by Lemma 27
agent movement behaviors are (Up, Ug)-recurring with with 1?50 = O(N?n), we can apply
Theorem 16, which yields a polynomial bound of O(n%logn + N?n?) on the expected number

of iterations until all agents have switched to the AWARE state with no residuals. Additionally,
due to the state invariant, once there are no residuals, every component of AWARE agents
will contain at least one stimulus (food source). This gives us the first part of Theorem 25.

The second half of Theorem 25 states that a low perimeter (a-compressed) configuration
is always achievable in the case of a single food source. As the Markov chain representing
the compression moves is irreducible (Lemma 23), the results of [7] guarantee that for any
a > 1, there exists a sufficiently large constant A such that at stationarity, the perimeter of
the cluster is at most « times its minimum possible perimeter with high probability. |

5.3 Multiple food sources and simulations

We now consider the more general case where there can be multiple food sources. If more
than one food sources exist and remain stable for sufficiently long, our algorithm will correctly
switch all the agents to the AWARE state as needed, with each agent in a component containing
at least one food source, per Theorem 25. However, we cannot guarantee that the set of
agents will converge to a-compressed configurations due to certain pathological cases where
the immobile food sources can become obstacles constricting some of the clusters, preventing
the a-compression algorithm from reaching compressed states. This seems to only be an
issue when food sources are sufficiently close and we believe that when the food sources are
reasonably separated, the ensemble will form one or more a-compressed components. The
irreducibility proof in the presence of a single immobile agent (presented in Section 6) is an

23

24

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

Pg
D

Ps
B

1|'|I=IIL"’
j
1II!'.I

(b) One food source removed, two new added. A cluster disperses and agents rejoin other clusters.

remaining food sources.

(d) All food sources removed, agents disperse and converge to a uniform distribution over the lattice.

Figure 5 Simulation of Adaptive a-Compression with multiple food sources. The images are in
chronological order. UNAWARE agents are yellow, AWARE agents are red (darker red if they hold an
alert token), agents with the all-clear token are purple, and food sources are green.

S. Oh, D. Randall and A. W. Richa

extension of the proof of irreducibility of the Markov chain for compression without immobile
agents given in [7]; we believe it would possible to further extend the proof to include cases
with multiple food sources under specific conditions.

In Figure 5, we demonstrate a simulation of the Adaptive a-Compression algorithm with
multiple food sources and 5625 agents, in a 150 x 150 region of the triangular lattice with
periodic boundary conditions. At initialization (iteration 0), all agents are in the UNAWARE
state and are placed uniformly at random. Multiple food sources (stimuli) are then manually
placed and moved around to illustrate the gather and search phases. This simulation is
shown as a sequence of 12 images in chronological order.

In addition, we ran experiments on a v/N x v/N grid with a single food source for different

values of N (between 100 and 22500) and various particle densities (between 0.1 and 1).

These experiments suggest a running time of between O(N?) and O(N?) activations in
expectation for all agents to switch to the AWARE state from a configuration where all agents
are initially UNAWARE, and between O(N) and O(N?) activations in expectation for all
agents to return to the UNAWARE state when a food source is removed from a configuration
where all agents are initially AWARE. This is significantly faster than our loose polynomial
upper bounds for the algorithm.

6 Ergodicity of the Markov chain for compression

We now conclude by presenting the proof of Lemma 23, showing that the Markov chain for
compression is irreducible (and thus ergodic, since it is trivially aperiodic, with self-loops) in

the presence of an immobile agent on the food source, as Algorithm 2 relies on this result.

This proof may also be of independent interest, with applications to other problems or
domains. The proof of irreducibility without an immobile agent given in Cannon et al. [7]
was already fairly involved and the addition of the immobile agent requires a more careful
and subtle analysis.

The main strategy in the proof is to treat the immobile agent on the food source as the
“center” of the configuration, and consider the lines extending from the center in each of the

six possible directions. These lines, which we call “spines”, divide the lattice into six regions.

The sequence of moves described in [7] is then modified to operate within one of these regions,
with limited side effects on the two regions counterclockwise from this region. We call this
sequence of moves a “comb”, and show that there is a sequence of comb operations that can
be applied to the configuration, repeatedly going round the six regions in counterclockwise
order, until the resulting configuration is a single long line. We then observe that any valid
compression move transforming a hole-free configuration to a hole-free configuration is also
valid in the reverse direction, giving us the statement of the lemma.

We will treat the immobile agent on the food source as the “center” of the configuration.

From the center, as seen in Figure 6, there are six directions one can move in a straight line
on the triangular lattice: up, down, up-left, down-left, up-right, down-right. We call these
six straight lines of agents extending from the immobile agent spines. We refer to agents on
the spines as spine agents, and agents not on spines as non-spine agents. We similarly use
the names spine and non-spine locations to refer to sites on the triangular lattices.

On each spine, out of its spine agents that have adjacent non-spine agents, we call the
furthest out such agent from the immobile agent the anchor agent of the spine (these are
highlighted in red in Figure 6). The distance of a spine location from the center refers to
its shortest-path distance (which would be along the spine) to the immobile agent on the
triangular lattice. For each integer » > 1, the hexagon of radius r refers to the regular

25

26

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

hexagon with corners defined by the six spine locations of distance r from the center. The
distance of a non-spine location from the center would then be the radius of the smallest
such hexagon it is contained within. An important concept that we will use in the proof is
the length of a spine, defined to be the distance of its anchor agent to the center. If it has no
anchor agent, the length of the spine is 0.

Figure 6 Illustration of the spines extending from the immobile agent f. The six spines S, ..., Si+s
have lengths 4,8, 5,5, 8,5 respectively. These spines have respective anchor agents p;, ..., piys (in
red). As an illustration of the coordinate system, these six anchor agents are at coordinates (4,0),
(8,8), (0,5), (—=5,0), (—8,—8) and (0, —5) respectively.

As shown in Figure 6, we notate the six spines using one of the spines as a reference spine.
If the reference spine is denoted S;, where ¢ is an integer modulo 6, then S;y1,S;42,...,Si+5
denote the subsequent spines in a counterclockwise order from S;.

The proof centers around a specific transformation we call a “comb” operation. This
comb operation is applied from one spine (which we refer to as the source spine) to an
adjacent spine (which we refer to as the target spine), and has the effect of “pushing” the
agents between the two spines towards the target spine.

Our system exhibits reflection symmetry and 6-fold rotational symmetry, so this comb
operation can be defined in 6 x 2 = 12 different ways. However, for simplicity of discussion, we
will only define the comb operation in one orientation, specifically on the left side, downwards.
This is a comb from the spine going in the up-left direction to the spine going into the
down-left direction. We rotate or reflect the configuration freely, depending on which pair of
adjacent spines we want to comb between.

S. Oh, D. Randall and A. W. Richa

6.1 The comb operation

We define our two-dimensional coordinate system (lane, depth) relative to the source spine,
assumed to be going in the up-left direction. A position (¢, 0) for £ > 0 refers to the position
on the source spine ¢ steps away from the immobile agent. If ¢ < 0, this refers to the position
—/ steps in the direction of the spine directly opposite the source spine. A position (¢, d)
refers to the location d steps downwards from position (¢,0). Thus, d denotes the (signed)
distance of the position from the source spine.

A
2,577
77

PAAAAA
ALY

g
7
z
2
7
7
v
7

AN
Al

(a) Illustration of a spine comb (Definition 40), (b) After combing (¢, d), position (¢, d) is combed
which in this case is a comb over the sequence (Definition 29). The shaded region is the residual
(Definition 34) denoted by crosses in the Figure. region of (¢,d) (Definition 28)

Figure 7 The comb operation is applied in to the five points marked with crosses in Figure 7a
from left to right in sequence, starting from (z1,y1). Figure 7b illustrates the end result.

Before we define the comb operation, the following definitions tells us what can and
cannot be combed.

» Definition 28 (Residual Region). Consider a position (¢,d) and the diagonal half-line
extending down-left from (£,d), including (¢,d) itself. The residual region of this position
refers to the set of all positions on or below this half-line (Figure 7b).

» Definition 29 (Combed). For ¢ > 0 and d > 0, we say a position (¢,d) is combed

(Figure 7b) if:

1. All sites directly above a topmost agent of the residual region of (¢,d) are empty.

2. All agents in the residual region of (£,d) form straight lines stretching down and left.

3. Consider the column of sites directly to the right of the residual region of (£,d). Fach
of the abovementioned lines of agents stretches down and left from an agent from this
column with no agent directly below.

» Definition 30 (Combable). For ¢ > 0 and d > 0, we say a position (¢,d) is combable if:
1. The position (€ 4+ 1,d + 1), which is one step diagonally down-left from (¢,d), is combed.
2. The site directly above (¢, d) is empty.

27

28

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

P2
Pp3

Ne«

(a) Shift p1,p2 down-right.(b) Shift p1,p2 down-right. (c) Shift p2,ps up-left. (d) p is non-shiftable.

Figure 8 Figures 8a, 8b and 8c illustrate different cases for the “shift” operation. In all of these
images, sites p1 and ps are shiftable agents, while p3 is not.

With this, we can define the comb procedure. Aside from operating only below a given
depth, this comb procedure is identical to the process used the proof of irreducibility in [7].
As this operation is covered in detail in said paper, we will be brief with its explanation here.

The comb operation: The comb procedure (applied to a combable position (¢,d)) has
two phases, line formation and line merging. After the line formation phase, the first two
conditions for (¢, d) to be combed will be satisfied by the configuration (Figure 9a). The line
merging phase gives us the third condition (Figure 9b).

Line formation Let L denote the set of agents on lane £ on or below (¢, d). The agents in
L can be grouped into connected components within L. The line formation phase operates
from top to bottom on L, removing the topmost agent of each component with size greater
than 1 at each turn, until every component on L has size 1. We maintain the invariant that
(0 +1,d+ 1) is combed after each turn, while reducing the number of agents in L by 1.

We call a site “shiftable” if there is an agent on the site and it has exactly two neighboring
agents, one directly below and one directly up-right of it. In a turn, there are two possible
cases. Denote by p the topmost agent of the topmost component with size greater than 1.

If p is shiftable, we apply what we call a “shift”, which moves a set of agents on a line
either down-right or up-right, so that p either becomes unoccupied or non-shiftable. To apply
a shift, we consider the sequence of sites p = p1,pa, ..., where each site p;11 is exactly two
steps down-right of site p;. Let k be the largest integer such that all of the sites p1,p2, ..., Dk
are shiftable. Figures 8a, 8b and 8c illustrate examples where k = 2. Consider the first
non-shiftable site pyy1 in the sequence, and the sites directly above and directly down-left of
Pk+1, which we will call pgﬂ and ka+L1 respectively. If px11 is unoccupied or either of pgﬂ
or pP +L1 are occupied, then moving py, one step down-right is a valid move (Figures 8a, 8b).
We can thus go backwards through the sequence from pj to p;, moving each agent one step
down-right, ending with shifting p = p; one step down-right, so that the site p originally
was occupying now becomes unoccupied. On the other hand, if px11 is occupied but p,ng
and pply aren’t, as py41 is non-shiftable, the remaining three neighbors (down, down-right
and up-right) must form a single component, meaning moving pg+1 one step up-left is a
valid move (Figure 8c). We can then subsequently move each agent from pgy1 to ps one step
up-left, culminating in p = p; becoming non-shiftable, leading in to the second case which
we will describe next. Note that after a shift, the invariant that (¢ 4+ 1,d 4 1) is combed still
holds.

If p is not shiftable, by the invariant we maintain, the sites above, up-left and down-left
of p must be unoccupied, while the site directly below p is occupied. Thus, if the site up-right
of p is occupied, so must the site down-right of p. As (¢ +1,d+ 1) is combed, the component

S. Oh, D. Randall and A. W. Richa

on L p belongs to will have no agent down-left of it, except for potentially one line of agents
extending from the bottommost agent of the component. The agent at p can thus be moved
down-left, down along the component on L p belongs to, then down-left to reach the end
of the beforementioned line if it exists, and down once more to join the end of this line
(Figure 8d). In all, this reduces the number of agents in L by 1, while maintaining the
invariant that (¢ 4+ 1,d + 1) is combed.

Thus, after the line formation phase, every component in L will have exactly 1 agent,
while (¢4 1,d+ 1) remains combed. As the site above (¢, d) is empty, the first two conditions
for (¢,d) being combed are satisfied. The line merging phase will give us the third condition.
Figures 9a and 9b illustrate configurations before and after the line merging phase.

Line merging Let C denote the column of sites directly to the right of (¢,d). The lines
extending down and left in the residual region of (¢, d) may extend from agents in C' that
are not the bottommost agents of their respective components. To fix this, the line merging
phase processs these lines from the lowest to the highest. To move a line downwards by one
step, the agents of the line are shifted down one by one, starting from the rightmost agent of
the line and ending with the agent on the end of the line. These moves are always possible
as long as there is no line directly below the current line. If there is a line directly below, we
merge the current line into the line below by moving the agents one at the time to the end
of the line below with a straightforward sequence of moves, starting with the leftmost agent
of the current line.

(a) After line formation, before line merging. (b) After line merging.

Figure 9 The results after the line formation and line merging phases when the comb procedure
is applied to a combable position (¢,d).

The description of the comb procedure above gives us the following Lemma:

» Lemma 31. After executing a comb operation on a combable position (¢,d), the position
(¢, d) will be combed (Definition 29).

The following Lemma states that combs only affect sites below it.

» Lemma 32 (Unaffected Region Above). Consider the two half-lines extending down-left and
down-right from a combable position (£,d) as in Figure 10. A comb operation on (¢,d) will
not affect (will not move any agent into or out of) any site above these lines, not including the
lines themselves. In addition, if the site (¢ —1,d) (one step directly down-right) is occupied,
no site on the half-line going down-right from (£ — 1,d), including (¢ — 1,d) itself, will be
affected either.

Proof. In the comb procedure, aside from the “shift” moves, all of the moves occur only
within the residual region of (¢,d). The shift moves only go down-right or up-left, and if

29

30

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

Y A

NNNNYANNNANY

N
ARAN NN AN

NMANNAXN
NRANANAN

v

Figure 10 Illustration of the unaffected region above the position to be combed (¢,d) from
Lemma 32, and an unenterable region R, q4,) from Lemma 38 corresponding to some position
(€2,d2) strictly to the right of (¢,d). Both of these regions include the boundaries drawn in the
Figure.

the shift originates from some position p, the shift does not move any agent up-left from p.
Hence, the shifts also do not affect any site above the two half-lines described in the Lemma.

We observe that the only part of the procedure that can affect agents on the half-line
going down-right from (¢ — 1,d) is a potential shift move on an agent on position (¢, d).
However, if (¢ — 1, d) is occupied, (¢, d) will not be shiftable, and so this shift move will not
occur. <

To apply a sequence of comb operations to “push” agents down towards the target spine,
we only need to find a (not necessarily straight) “line” of vacant positions. The following
definition and lemma makes this more formal.

» Lemma 33 (Combable Sequence). Let ((x1,y1), (X2,92),- .., (Zk, yk)) be a sequence where

each item in the sequence represents a (lane, depth) pair. We call this a combable sequence

if:

1. 1 vertically coincides with the leftmost agent of the configuration.

2. xip1=x;— 1 foralli e {1,2,...,k — 1} and z > 0.

3. y; >0 foralli e {1,2,...,k}.

4. yir1 € {yi,yi — 1} foralli e {2,... k}.

5. The locations (x;,y; — 1) are all vacant.

6. For each i € {1,2,...,k}, if y; = 0, then the position (x; — 1,0) must be occupied by an
agent.

An example of such a sequence is illustrated in Figure 7a.

» Definition 34 (Combing a Sequence). If a sequence ((x1,y1), (z2,Y2),-.., (Tk,yx)) is
combable, combing it refers to combing each pair (x;,y;) in succession. The following lemma
justifies that this is always possible.

» Lemma 35 (Combability of Each Step in a Sequence). When combing a combable sequence
((x1,91), (x2,92), -, (K, yx)) as described in Definition 34, when (x;,y;) is the next position
to be combed, (x;,y;) will be combable.

Proof. We first note that for any ¢, by the definition of a combable sequence, the location
directly above (x;,y;) must be empty, and if y; = 0, then (x; — 1, 0) is occupied. These two
conditions continue to be true even as combs 1,...,7— 1 are executed, as by Lemma 32, none

S. Oh, D. Randall and A. W. Richa

of these prior combs will affect (x;,y; — 1) or (z; — 1, ;). This covers two of the conditions
necessary for (z;,y;) to be combable.

When i = 1, (z1,y1) is clearly combable as there are no agents to the left of 1, and the
site directly above (z1,y1) is empty. For ¢ > 2, as (2,_1,y;—1) was combed in the previous
step, (z;—1,y;—1) is combed (Lemma 31). There are two cases for y;. If y; = y;—1 — 1,
then (z; + 1,4; + 1) = (xi—1,yi—1) is combed. On the other hand, if y; = y;—1, then
(z; + 1,y;) = (x5-1,¥i—1) is combed. As (z;,y; — 1) is unoccupied, every location starting
from (x; + 1,y;) extending down-left must also be unoccupied, which implies (z; + 1,y; + 1)
is combed. This gives us our final condition, so (x;,y;) is combable. <

In addition to the two properties of the comb operation given as Lemmas 31 and 32, we
state and show a few more properties of the comb operation that we will use later in the
proof.

» Lemma 36 (Combing and Spine Lengths). After executing a comb on some position (¢,d)
where d < £, the length of the spine going down-left will be at most ¢ — 1.

Proof. Let S denote the spine going down-left. The coordinates (¢, ¢) denotes the position on
the spine S vertically below (¢,d). If (¢,¢) is empty after the comb, then every site down-left
of (¢,¢) is also empty, so the spine S has length at most ¢ — 1. If (¢,£) is not empty after the
comb, (¢,d) being combed ensures that (¢,¢) and every agent on the spine S down-left of
(£,¢) are tail agents, so spine S has length at most £ — 1. <

» Lemma 37 (Preservation of the Rightmost extent). Let £ denote the lane (x-coordinate) of
the rightmost agent of a configuration. After a comb operation is applied, the lanes to the
right of ¢ (sites with lane less than £) will continue to be empty.

Proof. Consider a comb applied to some position (¢*,d). As we enforce that £* > 0 for a
comb, this position is necessarily to the left of the immobile agent, while the rightmost agent
of the configuration must be either on the same lane as the immobile agent or further right.
All moves aside from the “shift” moves in a comb procedure of a position (¢*,d) operate only
within the residual region of (¢*,d), and so will not affect any site on lane ¢ or further right.

In the shift moves, an agent is only moved rightward (down-right) if it is shiftable. A
shiftable agent must have an agent directly up-right of it, so a shift move cannot move an
agent rightward of 4. |

» Lemma 38 (Unenterable Region Below). Consider a position (¢,d) and the diagonal half-
lines extending down-left and down-right from (£,d). Consider the region Ry q containing
every location on or below these lines (Figure 10).

If the region Ry q is unoccupied, if a comb operation is applied on a lane strictly to the
left of lane €, Ry q will continue to be unoccupied after the comb.

Proof. For the shift movements in the line formation phase, an agent is only moved down-
right if it is shiftable, which means it must have an agent directly below it. Thus, R, 4 cannot
be entered from the left side (left of lane ¢) by this movement unless there is already an
agent in Ry 4. In addition, as the shift movements only move agents down-right or up-left, it
cannot move agents into Ry 4 from the right side (right of lane ¢). For the other movements
in the comb operation, we only need to consider possibly entry into R q from the left side,
as these movements occur only within the residual region of the comb, which is strictly to
the left of (¢,d).

31

32

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

In the line formation phase, only down-left and downward movements are used. Down-left
movements cannot enter R, 4, and downward movements only occur when there is an agent
directly down-right of the agent to be moved.

In the line merging phase, we simply need to consider the end state of the comb. The
end state consists of straight lines stretching down-left from the lane (column) ¢’ one lane
right of the lane to be combed. All of the agents in this lane are above Ry 4 after the line
formation phase, and as ¢/ < ¢, all lines stretching down-left from these agents will also be
above Ry 4. |

6.2 Using combs to show ergodicity

Our objective is to show that from any (connected) configuration, there exists a sequence of
valid moves to transform the configuration into a straight line with the immobile agent at
one end. As valid moves cannot introduce holes into a configuration, and all valid moves
between hole-free configurations are reversible, this would imply that one can transform any
connected configuration of agents into any hole-free configuration of agents using only valid
moves. We proceed by showing that we can always reduce the minimum spine length of any
configuration with a series of moves to reach a straight line of agents.

» Lemma 39. If the minimum spine length of a configuration is at least 1, there exists a
sequence of moves to reduce the minimum spine length of the configuration.

To reduce the minimum spine length of the configuration, we execute spine combs in a
specific order. Pick a spine of minimum length and denote it as Sy. We apply spine combs
in a counterclockwise order, from Sy to S7, followed by S7 to Sz, and so on. When applying
comb a comb operation from a source spine S; to a target spine S;11, as always, for ease of
analysis, we will treat S; and S;11 as the spines going in the up-left and down-left directions
from the immobile agent respectively.

» Definition 40 (Spine Comb). Let r denote the length of the source spine Sy. Let ry denote
the distance of the furthest out agent on the source spine from the immobile agent (hence the
agents of distances r +1,...,ry are the tail agents).

A spine comb applies a comb on the combable sequence ((x1,y1), (X2,Y2), .-, (Tk,Yr)),
where x1 vertically coincides with the leftmost agent of the configuration, x; = x1 — i+ 1 for
each i € {2,3,...,k}, xx =r+1, y; = 1 whenever x; > 1, and y; =0 when r +1 < x; <ry.
From the definition of tail agents one can easily verify that this (x;,y; — 1) is vacant for each
1€{1,2,...,k}. Figure 7 illustrates configurations before and after a spine comb is applied.

» Lemma 41. Consider a spine comb from a source spine of length r. After the spine
comb, the position (r + 1,1) will be combed. Also, the region between (and including) the
two half-lines extending up-left and down-left indefinitely from the position (r + 1,0) will be
empty.

Proof. The last comb operation is on position (r + 1,1) or (r + 1,0). If it is the former,
(r+1,1) will be combed (Lemma 31). If it is on the latter, as none of the comb operations
will affect the site (r,0) directly down-right of the last comb position, (r,0) will remain
occupied by an agent. As (r 4+ 1,0) is combed, there will be no agents on the diagonal
stretching down-left from (r + 1,0). Hence, (r + 1, 1) is also combed.

The region described in the lemma can be divided into “files”, diagonal lines going
down-left. Consider any site (x,y) in this region. If (x,y) is in the lowest file of the region
(on the diagonal extending down-left from (r 4+ 1,0)), as (r + 1,1) is combed, (z,y) must

S. Oh, D. Randall and A. W. Richa

|
|
|

o e — e — E o oo —
—:*—‘— e — 1 —:‘——'—""—
(a) Gap between spines. (b) Gap on target spine. (c) No gap. (d) No gap.

Figure 11 Tllustration of the line between the spines going up-left and down-left from the immobile

agent. Figures 11a and 11b have gaps in the line (Definition 42), while Figures 11c and 11d do not.

Observe that in the cases with no gap, the length of the target spine matches that of the source
spine.

be unoccupied. Otherwise, if (z,y 4 1) is in the same file as some position in the combable
sequence, let (z;,y;) be the last position in the sequence in the same file as (z,y + 1). After

(x4,y;) is combed, (z,y) must be empty. Subsequent combs will not affect (z,y) by Lemma 32.

If (z,y + 1) is not in the same file as any position in the combable sequence, (z,y) must be
empty as (x1,y1) is vertically aligned with the leftmost agent of the configuration. Similarly
. Hence, (z,y) will be empty
after the spine comb in all cases. <

~—

by Lemma 32, none of the combs will move an agent into (z,y

After a spine comb is applied, there are two possible cases, having a gap in the line
(defined next), and not having a gap in the line. If there is a gap in the line, we show that we
can directly reduce the minimum spine length of the configuration from here, giving us the
result of Lemma 39. Hence, we can proceed with the rest of the proof of Lemma 39 assuming
that there will never be a gap in the line.

» Definition 42 (Gap in the line). Let r be the length of the source spine S;. Consider the
vertical line segment of sites from the location of the anchor agent of S; down to the site on
the target spine S;11 of distance r from the center, including the two spine location endpoints.
If there is a site on this line segment that is unoccupied by agents, we say that there is a gap
in the line from the source spine to the target spine.

» Lemma 43 (Reducing minimum spine length using a gap). After a spine comb is applied
from a source spine of minimum length, if there is a gap in the line from the source spine to
the target spine, there exists a sequence of moves to reduce the minimum spine length of the
configuration.

Proof. Let r denote the length of the source spine S;. Suppose that there is an unoccupied
site (r,d) on this line segment. If the unoccupied site on the line segment is on the source
spine S; (which actually never happens), as every site on the spine of distance greater than r

will be unoccupied by Lemma 41, the new minimum spine length would be at most r — 1.

If the unoccupied site is on the target spine S;11, as (r + 1,1) is combed, every site of the
target spine of distance greater than this unoccupied site would also be unoccupied. Hence
the minimum spine length would also have decreased to at most r» — 1 in this case.

If the unoccupied site (r, d) lies strictly between the source spine and the target spine,
we apply one more comb on position (r,d + 1). Position (r,d 4+ 1) is combable as (r,d) is
empty, and (r + 1,1) being combed ensures that all sites on the half-line extending down-left

33

34

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

(a) Moving a corner outward. (b) Moving a side agent inward. (c) Moving a side agent outward.

Figure 12 Possible cases for reducing the minimum spine length from a hexagon with a tail.

from (r,d) are also empty, so (r +1,d + 1) is also combed. By Lemma 36, combing (r,d + 1)
results in the target spine having length at most r — 1. |

Thus, from now on we may assume that whenever a spine comb is executed from a source
spine of minimum length, there will be no gaps in the line between the source spine and the
target spine. In addition, we assume that the comb operations do not cause any other spine
(in particular the spine going downwards) to end up with a spine length below the current
minimum spine length, as in this case we have already achieved the result of Lemma 39. The
following Lemma shows that such a spine comb “pushes” all of the agents of distance greater
than the minimum spine length towards the target spine ore beyond.

» Lemma 44 (Resulting configuration assuming no gap exists). Suppose that a spine comb is
executed from a source spine S; (of minimal length r) to a target spine S;y1, and assume
that there are no gaps in the line between S; and S;+1. In the resulting configuration, there
will be no agent of distance greater than r strictly between the source spine and target spine,
or on the source spine itself. Furthermore, the lengths of both the source spine and target
spine will now be exactly r.

Proof. After the spine comb, position (r + 1,1) will be combed, and the region between the
down-left and up-left diagonals extending from (r 4+ 1,0) as described in Lemma 41 will be
empty. As there is no gap in the line from S; to S;11, the only lines extending left and down
in the residual region of (r + 1,1) will be on the target spine or below, giving us the first
part of this Lemma.

The length of the source spine is r as position (r,0) is occupied while no position on the
source spine beyond that is. For the length of the target spine, the position on the target
spine of distance r from the immobile agent is occupied and is not a tail agent, and by
Lemma 39, (r + 1, 1) being combed implies that the target spine has length at most . <

As a spine comb sets the length of the target spine S;;1 to be the same as that of the
source spine S;, which has minimum length, we can continue executing spine combs in a
counterclockwise fashion, from S; ;1 to S;12, followed by S;y2 to S;13, and so on. We show
that after seven of these spine combs which do not create gaps, we will reach a type of
configuration we will call a hexagon with a tail. Figure 12 illustrates examples of these
“hexagon with a tail” configurations, though one should note that it is not necessary for all
sites on the outer hexagon to be filled.

S. Oh, D. Randall and A. W. Richa

» Definition 45 (Hexagon with a Tail). We say a configuration forms a has the “hexagon
with a tail” arrangement of radius r if:

All spines have length exactly r;

There are tail agents on at most one of the spines;

Aside from these tail agents, there are no agents of distance greater than r from the

center.
If r =0, this “reqular hexagon” comprises of only the immobile agent. In other words, a
hexagon with a tail of radius r has all of the agents extending in a straight line from the
immobile agent.

» Lemma 46 (Reaching a Hexagon with a Tail). After seven spine combs in a counterclockwise
order starting from a spine of minimum length r, assuming that no gaps in the lines are
formed and that no spine ends up with length below r in the process, we will end up with a
hexagon with a tail arrangement of radius r.

Proof. We will denote the starting spine as Sy, and name the remaining spines S; to S5 in
counterclockwise order. The spine combs hence go from Sy to S, from S; to So and so on,
with the final (seventh) comb being from Sy to S;. Spine Sy is assumed to be a minimum
length spine, of length r.

By Lemma 32, a spine comb from spines S; to S;4+1 will only affect agents on spines 5;,
Sit1, Sit2, and the agents between spines S; and S; 11, between spines S; 41 and S92, and
between spines S;;2 and S;;3. Note that this does include the agents on spine S; 3. Hence,
the first four spine combs will not affect the result of the first spine comb from Sy to S;.

On the fifth spine comb from S4 to S5, as usual without loss of generality we take Sy
to be the spine going up-left and S5 to be the spine going down-left. Spine Sy will thus be
going downwards and spine 57 will be going down-right. Due to the effects of the first three
combs, there will be no agent further right than the anchor agent of spine S;. By Lemma 37,
while the fifth spine comb may move agents onto spine Sy or the region between spines Sy
and S7, none of these agents in the resulting configuration will be further right than the
anchor agent of spineSi.

On the sixth spine comb from S5 to Sy, taking S5 to be going up-left and Sy to be going
down-left, consider the position (—r — 1,0), which is one agent down-right of the anchor
agent of the down-right spine Sy. The region R_,_; o, as defined in Lemma 38, will be empty
after the fifth spine comb, due to what we have just shown to happen after the fifth spine
comb. By Lemma 38, this region will continue to be empty after the sixth spine comb.

On the seventh and final spine comb from Sy to Sp, take Sy to be going up-left and S; to
be going down-left. Consider the positions (r,0) and (r,r), which are on the source spine Sy
and target spine Sp respectively, of distance r from the center. As a result of the sixth spine
comb with Lemma 44, all agents of distance greater than r from the center must lie between
(inclusive) the two diagonal lines going up-left from the positions (r,0) and (r,r). Now, from
the position (r,r + 1) which lies directly below (r,r) and the position (—r — 1,0), which lies
on spine S3 of distance r 41 from the center, we consider the two regions R, 41 and R_,_1
as in Lemma 38. Both of these regions are initially empty, and so will remain empty after
the seventh comb. By Lemmas 32 and 44, the only place where agents of distance greater
than r can be are on the target spine S;.

As we had assumed that no spine will have ended up with length less than r in the
process, this means we have reached a hexagon with a tail arrangement of radius r. <

The following Lemma then concludes the proof that we can always reduce the minimum
spine length, provided that the current minimum spine length is at least 1.

35

36

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

» Lemma 47. From a hexagon with a tail arrangement of radius v > 1, there exists a
sequence of mowves to reduce the minimum spine length by 1.

Proof. Consider the set H of positions of distance exactly r from the center. This set of
positions is in the shape of a hexagon. If one of these sites is unfilled, without loss of
generality assume this site (r,d) is on the left side of the hexagon (it is not on a corner as all
spines have length r). The site (r,d + 1) is combable, which by Lemma 36 gives us a way to
reduce the length of the spine going down-left to at most r — 1.

If no such gap in H currently exists, we show that we can create such a gap. If r = 1,
pick any agent on the hexagon H aside from the one on the spine the tail is on. This agent
can be moved to a vacant spot between two spines, reducing the minimum spine length to 0.

Otherwise, as the configuration is assumed to be connected, there is a path of agents
from the center (immobile) agent to an agent on H. This implies that there is an agent of
v_o distance r — 2 from the center adjacent to an agent v_y of distance r — 1 from the center.
Note that if » = 2, v_o will be the immobile agent. If v_; is adjacent to a corner agent of the
hexagon H, assuming without loss of generality that this corner is on the spine going up-left,
we can move this corner agent one step down-left, and if there are any tail agents attached
to this corner agent, they can then subsequently be moved one-by-one one step down-left as
well (Figure 12a). This reduces the minimum spine length to at most r — 1.

If v_; is not adjacent to a corner agent of H, we note that v_; and v_o will share a
neighboring site u_1 of distance r — 1 from the center. The sites u_; and v_; share a neighbor
agent vy on H. If site u_; is unoccupied, agent vy can be moved into site u_1, creating a
gap in the hexagon H (Figure 12b). If u_ is occupied, vg can be moved in the opposite
direction of u_1, to a position u4; of distance r + 1 from the center, creating a gap in the
hexagon H (Figure 12¢).

In both of these cases, by reflection and rotational symmetry, without loss of generality,
this newly created gap vg is on the left wall of the hexagon H, and if the agent was moved
to u41, uqq is directly up-left of vg. The site directly below vy is thus combable, and by
Lemma 36, combing this reduces the minimum spine length to at most r — 1. <

Finally, we show that we can reach a straight line of agents, thus showing ergodicity of
the chain since the chain is reversible.

» Lemma 48. From any connected configuration of agents with one single immobile agent,
there exists a sequence of valid moves to transform this configuration into a straight line of
agents with the immobile agent at one end.

Proof. Applying Lemma 39 repeatedly allows us to arrive at a configuration with minimum
spine length 0. Applying Lemma 46 from here gives us a hexagon with a tail arrangement of
radius 0, which is a straight line of agents with the immobile agent at one end. <

We observe that the direction in which the final tail faces is irrelevant, as there is a simple
sequence of moves to change the direction of the tail, by moving the agents one by one to the
location of the new tail, starting from the agent at the very end of the initial tail. This thus
allows us to conclude Lemma 23, which also implies that the Markov chain is irreducible.

7 Conclusion

In this paper we show how a group of computationally limited agents can autonomously
respond to environmental cues in the form of appearing and disappearing stimuli to iteratively
perform the desired collective response. The self-induced collective phase changes are

S. Oh, D. Randall and A. W. Richa

performed through local communication and state changes that ensure the collective recovers
from multiple, possibly conflicting, signals, overcoming challenges that arise as the agents
move, constantly changing the underlying connectivity network through which agents can
communicate. We apply this framework to the foraging problem, whereby the appearance
of a stimulus indicates the presence of food, triggering the agents to gather and feed, and
the stimulus disappearing indicates the depletion of food, triggering a search phase where
the agents disperse in search of a new food source. Interestingly the gather and dispersion
phases can be implemented with essentially the same algorithm, with a single parameter
representing the affinity of agents to be close to other agents, which is known to undergo a
genuine phase change (in the physics sense) in both the connected and general settings [7, 30].

This framework should be useful in the context of other stochastic algorithms for pro-
grammable matter, such as separation, where heterogeneous agents reorganize into tight-knit
homogenous clusters or integrate with other types, depending on the value of a homophily
parameter, or alignment, in which agents are oriented and attempt to align with their
neighbors depending on an alignment parameter [6, 27]. In each of these cases the collectives
are known to undergo phase changes as long as the collectives are sufficiently compressed
so that the underlying network is highly connected. It would be interesting to extend our
algorithm to such two (or more) parameter systems, where one parameter controls the
network connectivity and the other controls the outcome of the task, such as the degree of
separation or alignment.

There are many generalizations of our model that would be interesting for further
investigation and that would bring us closer to more realistic models of programmable matter
and related areas. For example, in this work, the assumption that an agent can change its
state and the state of its neighbors during an (atomic) action is justified since we assume
a sequential scheduler (e.g., such an assumption also appears in [13, 18]). However, in the
presence of a stronger adversarial scheduler, e.g., the asynchronous scheduler [15], one would
need a more detailed message passing mechanism to ensure the successful transfer of tokens
between agents, and the resulting changes in their states.

The following generalizations of our model would also be of interest in the study of self-
induced collective phase changes. Throughout we assume uniform rates for the Poisson clocks
associated with agents, but we believe that our results can also accommodate non-uniform
constant rates with only minor modifications to the proofs. Last, we assume that agents are
all aware of upper bounds on the maximum degree A because this allows us to implement
our token passing mechanism in an equitable way in which we can upper and lower bound
the rates that messages will be spread throughout the evolving network. It is likely that this
assumption can be relaxed, although in most settings we had in mind this is a reasonable
assumption, arising from the planarity (or low dimensionality) of the models.

Our algorithm currently uses a system of alert tokens to intentionally slow down the rate
of growth of a cluster of AWARE particles relative to the rate the particles would switch
to the UNAWARE state, so that unaware broadcast waves would always be favored when
broadcast waves compete. A question of interest is whether the same can be done without
the use of alert tokens, using a simpler scheme of having one type of wave (in this case,
the aware wave) propagate a constant factor faster than the other type (unaware waves).
Experiments on grid graphs seem to indicate that this can be done, but the proofs are more
complex, and it is unclear what types of dynamic graphs such a scheme would be guaranteed
to work on (probably something more restrictive than reconfigurable graphs).

37

38

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

—— References

1

(&,

10

11

12

13

14

15

16

17

18

19

Simon Alberti. Organizing living matter: The role of phase transitions in cell biology and
disease. Biophysical journal, 14, 2018.

Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa.
A stochastic approach to shortcut bridging in programmable matter. In 23rd International
Con- ference on DNA Computing and Molecular Programming (DNA), pages 122-138, 2017.
Chen Avin, Michal Koucky, and Zvi Lotker. Cover time and mixing time of random walks on
dynamic graphs. Random Structures & Algorithms, 52(4):576-596, 2018.

Rodney J. Baxter. Ezxactly solved models in statistical mechanics. Academic Press, 1982.
Levent Bayindir. A review of swarm robotics tasks. Neurocomputing, 172:292-321, 2016.
Sarah Cannon, Joshua J. Daymude, Cem Gékmen, Dana Randall, and Andréa W. Richa. A
local stochastic algorithm for separation in heterogeneous self-organizing particle systems. In
Approzimation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM), pages 54:1-54:22, 2019.

Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa. A Markov chain
algorithm for compression in self-organizing particle systems. In Proceedings of the ACM
Symposium on Principles of Distributed Computing (PODC), pages 279-288, 2016.

Arnaud Casteigts. Finding structure in dynamic networks, 2018. arXiv:1807.07801.
Bernard Chazelle. The convergence of bird flocking. Journal of the ACM (JACM), 61(4),
2014.

Andrea Clementi, Riccardo Silvestri, and Luca Trevisan. Information spreading in dynamic
graphs. In Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), page 37-46, 2012.

Nikolaus Correll and Alcherio Martinoli. Modeling and designing self-organized aggregation in
a swarm of miniature robots. The International Journal of Robotics Research, 30(5):615-626,
2011.

Paolo Dario, Renzo Valleggi, Maria Chiara Carrozza, M. C. Montesi, and Michele Cocco.
Microactuators for microrobots: a critical survey. Journal of Micromechanics and Microengi-
neering, 2(3):141-157, 1992.

Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Christian Scheideler,
and Andréa W. Richa. Convex hull formation for programmable matter. In 21st International
Conference on Distributed Computing and Networking (ICDCN), pages 2:1-2:10. ACM, 2020.
Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The Canonical Amoebot
Model: Algorithms and Concurrency Control. In 35th International Symposium on Distributed
Computing (DISC), volume 209 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 20:1-20:19, 2021.

Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The canonical amoebot
model: Algorithms and concurrency control. Distributed Computing, 36(2):159-192, 2023.
Oksana Denysyuk and Luis Rodrigues. Random walks on evolving graphs with recurring
topologies. In Distributed Computing, pages 333-345, 2014.

Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: Amoebot - a new model for programmable matter.
In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 220222, 2014.

Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal shape formation for programmable matter. In Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 289-299,
2016.

Michael Dinitz, Jeremy T. Fineman, Seth Gilbert, and Calvin Newport. Smoothed analysis of
information spreading in dynamic networks. In Christian Scheideler, editor, 36th International
Symposium on Distributed Computing (DISC), volume 246 of LIPIcs, pages 18:1-18:22, 2022.

https://arxiv.org/abs/1807.07801

S. Oh, D. Randall and A. W. Richa

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Chinmoy Dutta, Gopal Pandurangan, Rajmohan Rajaraman, Zhifeng Sun, and Emanuele
Viola. On the complexity of information spreading in dynamic networks. In Proceedings of the
24th Symposium on Discrete Algorithms (SIAM), pages 717736, 2013.

Nazim Fates. Solving the decentralised gathering problem with a reaction—diffusion-chemotaxis
scheme. Swarm Intelligence, 4(2):91-115, 2010.

Nazim Fates and Nikolaos Vlassopoulos. A robust aggregation method for quasi-blind robots
in an active environment. In ICSI 2011, 2011.

Simon Garnier, Jacques Gautrais, Masoud Asadpour, Christian Jost, and Guy Theraulaz.
Self-organized aggregation triggers collective decision making in a group of cockroach-like
robots. Adaptive Behavior, 17(2):109-133, 20009.

Simon Garnier, Christian Jost, Raphaél Jeanson, Jacques Gautrais, Masoud Asadpour, Gilles
Caprari, and Guy Theraulaz. Aggregation behaviour as a source of collective decision in a
group of cockroach-like-robots. In Advances in Artificial Life (ECAL), pages 169-178, 2005.
Bernhard Haeupler and David Karger. Faster information dissemination in dynamic networks
via network coding. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), page 381-390, 2011.

Walter Hussak and Amitabh Trehan. On termination of a flooding process. In Proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC), page 153-155, 2019.

Hridesh Kedia, Shunhao Oh, and Dana Randall. A local stochastic algorithm for alignment
in self-organizing particle systems. In Approzimation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM), volume 245, pages 14:1—
14:20, 2022.

Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proceedings of the 42nd ACM Symposium on Theory of Computing, page 513-522,
2010.

Fabian Kuhn and Rotem Oshman. Dynamic networks: Models and algorithms. SIGACT
News, 42(1):82-96, 2011.

Shengkai Li, Bahnisikha Dutta, Sarah Cannon, Joshua J. Daymude, Ram Avinery, Enes Aydin,
Andréa W. Richa, Daniel I. Goldman, and Dana Randall. Programming active granular matter
with mechanically induced phase changes. Science Advances, 7, 2021.

Jintao Liu, Arthur Prindle, Jacqueline Humphries, Margal Gabalda-Sagarra, Munehiro Asally,
Dong-Yeon D. Lee, San Ly, Jordi Garcia-Ojalvo, and Giirol M. Siiel. Metabolic co-dependence
gives rise to collective oscillations within biofilms. Nature, 523(7562):550-554, 2015.

Lészlé Lovasz. Random walks on graphs. Combinatorics, P. Erdos is Fighty, 2(4):1-46, 1993.
Anne E. Magurran. The adaptive significance of schooling as an anti-predator defence in fish.
Annales Zoologici Fennici, 27(2):51-66, 1990.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and
Edward Teller. Equation of State Calculations by Fast Computing Machines. The Journal of
Chemical Physics, 21:1087-1092, 1953.

Nathan J. Mlot, Craig A. Tovey, and David L. Hu. Fire ants self-assemble into waterproof
rafts to survive floods. Proceedings of the National Academy of Sciences, 108(19):7669-7673,
2011.

Anil Ozdemir, Melvin Gauci, Salomé Bonnet, and Roderich Grof. Finding consensus without
computation. IEEE Robotics and Automation Letters, 3(3):1346-1353, 2018.

Arthur Prindle, Jintao Liu, Munehiro Asally, San Ly, Jordi Garcia-Ojalvo, and Giirol M. Siiel.
Ton channels enable electrical communication in bacterial communities. Nature, 527(7576):59—
63, 2015.

Erol Sahin. Swarm robotics: From sources of inspiration to domains of application. In Swarm
Robotics, pages 10-20, 2005.

William Savoie, Sarah Cannon, Joshua J. Daymude, Ross Warkentin, Shengkai Li, Andréa W.
Richa, Dana Randall, and Daniel I. Goldman. Phototactic supersmarticles. Artificial Life and
Robotics, 23(4):459-468, 2018.

40

Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

40

41

42

43

44

Thomas C. Schelling. Dynamic models of segregation. The Journal of Mathematical Sociology,
1(2):143-186, 1971.

Onur Soysal and Erol Sahin. Probabilistic aggregation strategies in swarm robotic systems. In
Proceedings of the IEEE Swarm Intelligence Symposium (SIS), pages 325-332, 2005.
Tommaso Toffoli and Norman Margolus. Programmable matter: Concepts and realization.
Physica D: Nonlinear Phenomena, 47(1):263-272, 1991.

David H. Wolpert. The stochastic thermodynamics of computation. Journal of Physics A:
Mathematical and Theoretical, 52(19):193001, 2019.

Hui Xie, Mengmeng Sun, Xinjian Fan, Zhihua Lin, Weinan Chen, Lei Wang, Lixin Dong, and
Qiang He. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion,
and manipulation. Science Robotics, 4(28):eaav8006, 2019.

	1 Introduction
	2 The Adaptive Stimuli Algorithm
	3 Static graph topologies
	4 Reconfigurable topologies
	5 Foraging via self-induced phase changes
	5.1 Adaptive -compression
	5.2 Correctness
	5.3 Multiple food sources and simulations

	6 Ergodicity of the Markov chain for compression
	6.1 The comb operation
	6.2 Using combs to show ergodicity

	7 Conclusion

