Scientific Table Data Extraction with Uncertainty Quantification

Kehinde Ajayi
kajay001@odu.edu
Old Dominion University
Norfolk, Virginia, USA

Abstract

Complex scientific tables present unique challenges for informa-
tion extraction due to their multi-level headers, merged cells, and
domain-specific notations. Existing Table Structure Recognition
(TSR) frameworks, often fall short when applied to these complex
structures. How to perform UQ effectively and efficiently for ta-
ble data extraction is a research question. To address these gaps,
we propose an integrated pipeline that leverages artificial intelli-
gence (AI) methods for mining complex scientific tables. Our ap-
proach combines TSR, Optical Character Recognition (OCR), and
Large Language Models (LLMs) with uncertainty quantification
techniques. We introduce the GenTSR benchmark for evaluating
TSR methods across scientific domains and a modified Test-Time
Augmentation (TTA-m) approach for uncertainty quantification.
Additionally, we propose a novel benchmark for LLM-based ta-
ble question-answering tasks using complex scientific tables. This
comprehensive framework aims to enhance the accuracy and relia-
bility of information extraction from scientific tables, facilitating
more effective data analysis and interpretation in various research
domains.
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1 Introduction

Scientific tables are essential for representing experimental data,
results, and key findings in academic and technical documents. Ex-
tracting structured data from these tables has been a central problem
in document analysis and information retrieval for decades. Table
Structure Recognition (TSR), which involves identifying the rows,
columns, and cells of tables from images or digital documents, is a
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critical task in this domain. However, despite significant advance-
ments, TSR methods still face challenges in handling complex table
structures found in scientific documents. Moreover, existing meth-
ods rarely offer measurements of uncertainty in their predictions,
limiting the data verification in downstream tasks such as data
analysis, modeling, and decision-making [15].

Early approaches to TSR used rule-based or heuristic methods
to extract table structures, which were often tailored to specific
types of documents [3]. These methods lacked generalizability and
failed on complex tables as appeared in scholarly papers. In recent
years, deep learning-based approaches have become the state of
the art. Models such as CascadeTabNet [12] and SPLERGE [17] use
convolutional neural networks (CNNs) and transformers to detect
tables and extract their structures from document images. While
these models achieve high accuracy in detecting rows, columns, and
cells, they do not quantify uncertainties, which is critical for data
validation. This limitation is particularly significant in scientific
documents, where precision is paramount.

Uncertainty quantification (UQ) methods have gained traction
in various machine learning domains, including computer vision
and natural language processing (NLP) [9]. In the context of TSR,
UQ can provide confidence scores for extracted table structures,
allowing users to assess the reliability of the extracted information.
To address this problem, We introduced UQ in TSR, using Test-Time
Augmentation (TTA) to estimate uncertainties in TSR outputs [2].
However, the existing study was limited to specific TSR models and
datasets, leaving room for further exploration of more general UQ
methods, such as Conformal Prediction [14].

OCR methods like PaddleOCR [5] and General of Theory (GOT)
[18], have advanced the extraction of text from table images. Pad-
dleOCR focuses on detecting bounding boxes and extracting text
data, while GOT can extract table content in LaTeX format, making
it particularly suitable for scientific tables. However, integrating
OCR outputs with TSR models remains a challenge, particularly in
handling complex table layouts in scientific documents [13]. Addi-
tionally, LLMs, such as GPT-4, have shown promise in interpreting
table data and answering questions about it, but their application
in table QA tasks is still in its infancy [10].

My PhD thesis aims to bridge these gaps by integrating advanced
TSR, OCR, and LLM methods with UQ techniques to provide a
comprehensive solution for extracting and understanding table
data from scientific documents. We propose the use of Conformal
Prediction to quantify uncertainties in both table structure and
content extraction tasks, as well as a new benchmark for evaluating
LLM-based table question answering (QA) tasks using complex
scientific tables. In addition, we propose a framework that leverages
multi-agent LLMs to improve table data extraction.
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2 Research Questions

The research questions (RQs) for this study are as follows:

e RQ 1: Reproducibility and replicability are critical for ensur-
ing reliable TSR models. What is the status of reproducibility
and replicability of existing TSR models?

e RQ 2: Quantifying the uncertainties in table structures can
increase the reliability of TSR methods. How can we develop
a pipeline to accurately quantify the uncertainties of TSR
models?

e ROQ 3: Quantifying the uncertainties in both table structures
and table cell contents can improve the efficiency of data
verification so human validators can focus on only errors
in extracted data. How can we develop a pipeline that Inte-
grates TSR, OCR, and UQ to improve image-based table data
extraction accuracy and confidence?

e RQ 4: What is the performance of state-of-the-art commer-
cial and open-weight LLMs on complex table question an-
swering?

3 Methodology
3.1 Preliminary Work

Data Collection To answer RQ 3, we annotated 200 table images
from PDFs in 5 scientific domains (Material Science, Biology, Com-
puter Science, Scientific Reports, and ICDAR 2013) using the VGG
Image Annotator (VIA) [6]. VIA is an open-source software for an-
notating images, videos, and audio. We drew rectangular bounding
boxes around text content in a table cell and provided properties
including “start-row”, “start-col”, “end-row”, and “end-col” as labels.
We used the Amazon Textract tool to obtain the cell contents and
included a “text” label to the properties above. To answer RQ 4, we
will build a new dataset comprising complex scientific tables and
LLMs-generated questions, extending traditional QA benchmarks
that rely on simpler Wikipedia tables [9]. This dataset will be used
to assess the reasoning and interpretative capabilities of models
such as GPT-3.5 [10].

Reproducibility and Replicability of TSR Methods To inves-
tigate the reproducibility and replicability of different TSR methods
across different datasets, we introduced a benchmark, GenTSR,
which consists of 386 table images obtained from research papers
in six scientific domains, including three STEM and three non-
STEM domains. We manually annotated GenTSR using the VIA
[6] following the same schema as the ICDAR 2019 dataset. Our
Reproducibility tests evaluate models on original datasets, while
replicability tests use alternate or GenTSR datasets, with F-scores
computed at five IoU thresholds from 0.5 to 0.9. [1]. Our repro-
ducibility experiment shows that 4 [7, 8, 19, 20] out of 6 executable
TSR methods were labeled reproducible, 1 paper [12] was labeled
partially-reproducible, and 1 paper was labeled not-reproducible
[17]. None of the 4 methods that allow inference on custom data
[7, 8, 12, 17] was replicable with respect to the GenTSR dataset,
under a threshold of 10% absolute F-score.

Uncertainty Quantification in TSR Methods To ensure that
the outputs of TSR methods are reliable, we proposed a novel
pipeline for UQ in TSR using a modified Test-Time Augmentation
(TTA) approach called TTA-m [2]. Our UQ pipeline consists of 4
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components: data augmentation, TSR model fine-tuning, TTA, and
confidence estimation via ensembles. We evaluated our pipeline
using the ICDAR 2019 modern dataset. To assess the effectiveness
of our UQ method, we introduced two heuristics: masking and
cell complexity quantification. Our results showed that the TTA-m
model outperformed baseline methods in terms of F1 scores for
cell detection. Additionally, we found that our method accurately
captured increased uncertainty when table image pixel intensity
was decreased and when cell complexity (measured by adjacency
degrees) increased.

3.2 Proposed Work

UQ on Table Data Extraction The existing SOTA models (e.g.,
TableNet [11]) for table understanding implement both table de-
tection (TD) and TSR on table images. However, none of these
methods incorporates table content extraction via OCR nor quan-
tify the uncertainties in the extracted data. To address this problem,
we propose a pipeline that performs UQ on table data extraction
obtained via:

(1) The integration of TSR with OCR. Specifically, we will
use the Table Transformer model [16] to obtain the row-
column information for the table cells and text contents
using PaddleOCR [5]. These two pieces of information will
be combined to provide row and column identification.

(2) The integration of OCR and LLM. We will use General
of Theory (GOT) [18], a transformer-based OCR model that
returns table cell text in LaTeX format. This LaTeX output
will be passed to an LLM, fine-tuned on LaTeX tabular data,
to provide both table cell locations and extracted text.

(3) Exploration of UQ Methods To quantify the uncertainties
in the above extraction results, we will explore and com-
pare several UQ methods such as the conformal prediction
method.

Multi-agent LLM for improved table data extraction We
propose a multi-agent LLMs that will leverage both image and text
modalities to improve the accuracy of table data extraction results.

LLM-based Table QA Benchmark: Current benchmarks for Ta-
ble QA tasks consist of tables from Wikipedia [4] and non-scientific
domains, which do not reflect the complexities found in real-world
tables. In addition, these datasets consist of questions and answers
manually created by human experts, which can be very expensive.
To overcome these problems, we propose a complex scientific table
QA benchmark consisting of tables from the ICDAR, Material Sci-
ence, Biology, Computer Science, and Scientific Reports domains.
We will use LLMs such as GPT-3.5, Llama 2 and 3, and Mistral-7B
to generate questions, supply answers, and provide explanations,
offering a comprehensive evaluation of their reasoning capabilities.
We will evaluate each LLM on questions created by other LLMs.

4 Conclusion

We will develop, a library that is capable of integrating UQ into sci-
entific table extraction and understanding tasks. By implementing
UQ in combination with TSR, OCR, and LLM methods including
multi-agent LLMs, we aim to provide more reliable extraction re-
sults, with uncertainty scores indicating confidence in the output.
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