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Abstract.  The generalized sliding-tile puzzle (GSTP), allowing many
square tiles on a board to move in parallel while enforcing natural geo-
metric collision constraints on the movement of neighboring tiles, provide
a high-fidelity mathematical model for many high-utility existing and
future multi-robot applications, e.g., at mobile robot-based warehouses
or autonomous garages. Motivated by practical relevance, this work ex-
amines a further generalization of GSTP called the colored generalized
sliding-tile puzzle (CGSP), where tiles can now assume varying degrees
of distinguishability, a common occurrence in the aforementioned appli-
cations. Our study establishes the computational complexity of CGSP
and its key sub-problems under a broad spectrum of possible conditions
and characterizes solution makespan lower and upper bounds that differ
by at most a logarithmic factor. These results are further extended to
higher-dimensional versions of the puzzle game.

Keywords: Multi-Robot Path Planning - Sliding-Tile Puzzles

1 Introduction

Sliding-tile puzzles, such as the 15-puzzle [27/16] and Klotski [26] (see., e.g.,
Fig. , ask a player to sequentially move interlocked tiles on a board via one
or more escorts, or swap spaces, to reach some desired goal configurations. Such
problems, modeling a wide array of important real-world challenges/applications
including at autonomous mobile robot-based warehouses [29/I8] and in garage
automation [33IT], have inspired and/or served as the base model in many com-
plexity and algorithmic studies, e.g., [2820/T7IT4I8], especially drawing attention
from the combinatorial search community [2J32TIT5IT9].

Inspired by these previous studies, the vast application potential, and ob-
serving the possibility to simultaneously move multiple tiles even when there is
a single escort in many real-world settings, we recently examined the generalized
sliding-tile puzzle (GSTP) [9]. In a GSTP instance, on an my x mg board lie
n < myims labeled square tiles. Using the leftover mi;mso — n escorts as swap
spaces, tiles must be rearranged into a goal configuration. It is established that
minimizing the required makespan for GSTP is NP-hard and that the funda-
mental optimality lower bounds match the polynomial-time algorithmic upper
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Fig. 1. [left] Start and goal configurations of a 15-puzzle instance. In the generalized
sliding-tile puzzle, modeled after the 15-puzzle, there can be 14 escorts and multiple
tiles may move synchronously, e.g., tile 3 and 9 may move to the right in a single step
in the left configuration. [right] In a Klotski puzzle (bearing many other names such as
Huarong Road) |26], tiles are rearranged via sliding to allow the large square red title
to “escape” from the green opening. Whereas the goal configuration in the 15-puzzle is
a single fixed one, the goal configuration in the Klotski only specifies the location of
the largest tile and leaves the other tiles’ final configuration unspecified.

bounds. A key difference between GSTP and most well-studied multi-robot path
planning (MRPP) problems [T7U31I32/30/M4] or the largely equivalent multi-agent
path-finding (MAPF) problems [23U2T124/T519)] is that GSTP enforces the cor-
ner following constraint (CFC). The CFC forbids two neighboring tiles located at
coordinates (z,y) and (x+1,y) from executing the synchronous move where the
first tile moves to (z,y 4 1) while the second tile moves to (x,y) simultaneously.
The CFC is a common physical constraint in practical warehouse and garage
automation applications, e.g., two bordering rectangular robots must abide by
the CFC to avoid collision.

In this work, we investigate a natural generalization of GSTP where tiles do
not necessarily have unique labels. Instead, tiles can take some k& > 2 colors where
all tiles of the same color are indistinguishable/interchangeable, so swapping two
tiles of the same color does not create a new tile configuration. We call this
problem the colored generalized sliding-tile puzzle (CGSP). Our effort in this
paper is mainly devoted to two key sub-problems of CGSP. In the first, the
number of colors is fixed at k = 2, yielding the binary generalized sliding-tile
puzzle (BGSP). In the second, among a total of n > k tiles, tiles 1 to k — 1 each
have unique colors 1 to k — 1, respectively, while tiles k to n have the same color
k. We denote this CGSP variant as the partially-colored generalized sliding-tile
puzzle (PGSP).

As a summary of our main contributions, we make a rich classification of
the complexity and makespan bounds of optimally solving BGSP, PGSP, and
CGSP, covering all possible numbers of escorts with further generalizations to
higher dimensions. On the side of the computational complexity, we show that
it is NP-hard to compute makespan optimal solutions for BGSP and PGSP
(and therefore, CGSP) even when there is a single escort. The hardness result
generalizes to an arbitrary number of escorts and to higher-dimensional grid
settings. In contrast, the hardness results for GSTP are only established for a
large number of escorts [9]. On the side of achievable makespan optimality, the
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lower /upper bounds for BGSP and PGSP are similar for different numbers of
escorts and problem parameters. The bounds for BGSP, differing up to at most
a logarithmic factor, are summarized in Tab. |1} where there are ©(m") tiles of
one color, say black, with 0 < r < d (d is the grid dimension), and p > 1 denotes
the number of escorts. w.h.p. means with high probability.

Note: our makespan lower bound only applies to the case in which the goal
configuration has the tiles sorted e.g. in row-major ordering, which is the im-
portant case for many applications, such as in the efficient design of automated
garages. Our upper bound applies to all initial /goal configurations by using the
sorted ordering as an intermediate goal from the initial/goal configurations, so
we will restrict our attention to the sorted case below.

Table 1. Makespan lower and upper bounds for BGSP. This is the same as for PGSP
and CGSP where the black tiles correspond to all tiles but the largest group of colored
tiles.

Black Tiles ‘ Lower bound (w.h.p.) ‘ Upper bound
mlﬂ[%] m" mlﬂ[%] m” logm
0O<r<d |2({m+——+ O | mlogm + +
p p p p
r=20 2(m) o(m)
r=d 2(m /p) O(m?/p)

Our study of these further GSTP generalizations is motivated by their rel-
evance to many high-utility applications in existing and next-generation au-
tonomous systems. As one example, in autonomous warehouses where many
mobile robots ferry goods around [29], robots that do not carry anything are
anonymous (i.e., having the same color) and robots carrying packages are each
unique, mirroring the settings in PGSP. As another, in a future autonomous
garage [I1] at an airport where cars are parked and moved around by mobile
robots going under them, during off hours, we may want to sort vehicles based
on the date they are expected to be picked up to minimize the time needed to
retrieve these vehicles during peak activity time, leading to a situation where
BGSP and CGSP can serve as accurate abstract models.

2 Preliminaries

2.1 Colored Generalized Sliding-Tile Puzzles

In the generalized sliding-tile puzzle (GSTP) [9], n < myms tiles, uniquely la-
beled 1,...,n, lie on a rectangular m; x mg grid G = (V, E). A configuration
of the tiles is an injective mapping from {1,...,n} — V = {(vs,v,)} where
1 <vy <mg and 1 < vy < my. Tiles must be reconfigured from a random con-
figuration S = {s1,..., S, } to some ordered goal configuration G = {g1,...,gn},
e.g., a row-major ordering of the tiles, subject to certain constraints. Specifically,
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let the path of tile i, 1 < i < n, be p; : Ny = V. Then GSTP seeks a feasible
path set P = {p1,...,pn} such that the following constraints are met for all
1<4i,j <n,iz#jand for all time steps ¢t > O:

Continuous uniform motion: p;(t + 1) = p;(¢) or (p;(t + 1),pi(t)) € E,
Completion: p;(0) = s; and p;(T") = g; for some T > 0,

No meet collision: p;(t) # p;(¢),

No head-on collision: (p;(t) =p;(t+ 1) Ap;(t+ 1) = p;(t)) = false, and
Corner-following constraint: let e;(t) = p;(t + 1) — p;(t) be the movement
direction vector. If p;(t + 1) = p;(t), then e;(t) L e;(t).

In the colored generalized sliding-tile puzzle or CGSP, tiles take on one of
k > 2 colors. We call k = 2 case the binary generalized sliding-tile puzzle or
BGSP. For the goal configuration of CGSP, we do not fix it but require the
tiles be arranged such that each color is a contiguous block in some layered
manner, e.g., if there are 15 tiles on a 4 x 4 board, 4 white and 11 black, then
the goal could have white tiles occupy the first row and the black tiles located
at the lower three rows, with the escort occupying the lower right spot. Or the
white tiles could occupy the leftmost column. We call the case where there are
unique tiles for each of the colors 1,...,k —1 and n — k + 1 tiles with color &
the partially-colored generalized sliding-tile puzzle or PGSP.

Let Tp be the smallest T > 0 such that the completion constraint is met for
a given path set P. Naturally, it is desirable to compute P with minimum 7p.
We define the decision version of makespan-optimal CGSP/BGSP/PGSP as:

MOCGSP/MOBGSP/MOPGSP
INSTANCE: A CGSP/BGSP/PGSP instance and a positive integer K.
QUESTION: Is there a feasible path set P with Tp < K7

Remark 1. As a GSTP variant, CGSP allows many tiles to move simultaneously
in a time step. Visually (see, e.g., Fig. , this translates to the simultaneous
“teleportation” of the escorts along non-intersecting straight lines. Such telepor-
tation forms the basic moves in CGSP. As this is frequently used throughout
the paper, it is beneficial to keep it in mind when reading the paper.

Fig. 2. Illustration of escort teleportation in a BGSP instance. The arrows show the
teleportation intents, which are executed in a single step by moving tiles synchronously
in opposite directions.
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Remark 2. Due to limited space, this paper mainly focuses on the case of m =
my = meg; the presented results have straightforward generalizations to my # mo,
e.g., via adding padding one dimension. In our experience, the case of m = m; =
ms can often be the one yielding the worst bounds [10].

Remark 3. Most of the results for 2D grids readily generalize to high-dimensional
grids, e.g., a d dimensional m x ... xm grid. When applicable, the generalization
will be briefly discussed. With a slight abuse of notation, we refer to the high-
dimensional problems using the same names as the 2D setting with prefixes, e.g.,
d-dimensional CGSP and MOCGSP. In higher dimensions, cubes, instead of
tiles, are being slid.

2.2 The Sand Castle Game

In developing the hardness for single-escort MOCGSP, we make use of the
sand castle game (SCG) to help with the explanation. In SCG, we are given an
m1 Xmsy grid with an initial and final configuration consisting of sand (black tiles)
and holes (white tiles). In transforming the first configuration to the second, the
only allowed move in SCG is the repeated execution of collapse turns or simply
turns. In a turn, we pick an open tile, which is a tile (black or white) that has a
white tile as the rightmost element in the same row, and collapse it (sand filling
holes) by shifting all the tiles to the right including the open tile by one tile to
the right. Then all the tiles directly above the chosen open tile are moved down
by a tile. The above sequence of operations is referred to as collapsing a (open)
tile. The game ends when we reach the final configuration (a win) or when there
are no more open tiles (a loss).

3 Hardness of MOCGSP/MOBGSP/MOPGSP

The hardness of makespan-optimal GSTP [9] implies the hardness of MOCGSP
in the special case k = n, though with a varying number of escorts. Adapting
the proof can also lead to a hardness proof of MOPGSP for the more general
problem. However, these results require a large number of escorts and do not ex-
tend to MOBGSP. Here, we establish the fine-grained hardness of MOBGSP,
MOPGSP, and MOCGSP, even in the most constrained setting with a sin-
gle escort. Extensions further allow nearly arbitrary composition ratios for the
colored tiles, any number of escorts, and high-dimensional settings.

3.1 Constructing Single-Escort MOBGSP from 3SAT

Given a 3SAT [I3] instance with variables x1, ...,z y and clauses C1, ..., Cyr, we
will construct a corresponding single-escort MOBGSP instance. The instance
will embed an SCG with “passageways” on the top and right for the escort to
simulate a turn (collapsing an open tile) of SCG every four moves abiding by
the CFC. We define the following variables:

(=M+2N+2, h=2N{+4N+2, q=(4N(h+1)+15].
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Roughly speaking, ¢ will be the length of our variable gadget, h will be the
distance needed for a clause tile to fall into the satisfaction position, and d will
be the length of the reward to enforce clause satisfaction. Let r = 4N(h + 1) +
h+q+16 and ¢ = g+ M + 2N + 2 be the number of rows and columns of the
SCG. Let m = r + 2rc+ 1 and construct an m x m grid B for our single-escort
MOBGSP instance (see Fig.[3)). The bottom left (r+ 2rc) x ¢ subgrid is denoted
as G and within it denote H as the bottom r x ¢ subgrid in which the SCG
will be played. The tiles outside H are needed to enforce the rules. Above G
is a row of black tiles with a tail of length w, the number of white tiles in the
SCG instance/moves needed to win (to become precise later) to ensure that the
goal configuration is also the sorted configuration. An escort is placed in the top
right corner, with white tiles placed everywhere else.

Reward columns Clause columns Variable columns State columns Single

| | | L Tail | escort
| | | |

Upper
boundary
layer

Clause

I layer
[ 1]

T Clause
padding
1 layer

Variables
layer

T Control
|~ layer

[~ Vacuum
—_ layer

T Gravity
layer

|
Sand
Castle
Game

region

| Endgame
| switch
—
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Fig. 3. Illustration of the MOBGSP instance constructed from a 3SAT instance, show-
ing the initial configuration. G corresponds to the smallest rectangular region enclosing
all the black tiles aside from the top row. H, the SCG board, is highlighted in orange.
Not drawn to scale.
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We assign black and white tiles to the grid G to describe the initial config-
uration of the MOBGSP instance. G has, from top down, the upper boundary
layer, clause layer, clause padding layer, variables layer, control layer, vacuum
layer, gravity layer, and endgame switch layer. The upper boundary layer and
the clause padding layer are entirely black tiles. Padding layers consisting of a
single row of black tiles are added between each pair of consecutive layers neither
of which are all black tiles to prevent interference. We label the two rightmost
columns as the state columns, the next 2NN as the variable columns, the next M
as the clause columns, and the last d as the reward columns.

The upper boundary layer consists of a block of 2rc x ¢ black tiles. Its role is
to prevent white tiles from bubbling up from the covered ¢ columns as the single
escort moves to enforce the rules of the SCG.

The clause layer consists of h+ 1 rows. The state columns have white tiles at
the bottom (row) while the variable columns have a row of white tiles one row
above. The clause columns have a row of white tiles at the top and the reward
columns have a row of white tiles at the bottom. All other tiles are black. The
variable columns enforce a boolean choice of the variables, and the white tiles
in the clause columns will simulate clause satisfaction by moving to the bottom
row to allow for the leftmost ¢ reward tiles to be shifted out.

The clause padding layer consists of g rows of black tiles.

The variables layer consists of 2N (h + 1) rows, h + 1 for each literal z; and
—x;; we call these individual blocks of rows literal gadgets. For each literal gadget,
the state columns have white tiles at the bottom. For the variable columns for
a literal x;, from the left, the first 2(: — 1) columns have white tiles along the
second row, and the last 2(n — ) columns have white tiles along the first row. In
addition, the (2i — 1)th column has a white tile on the second lowest row while
the (2¢)th column has a white tile on the bottom row; —z; differs in that columns
2i — 1 and 27 are swapped. In the clause columns, the bottom row is filled with
white tiles, and for every clause C; in which the literal participates, assign white
tiles to the entire jth column from the left; we call these clause ropes. All other
tiles are black. The variable columns are designed to ensure that only one of x;
or —x; is true, i.e. it has a line of white tiles that can reach the clause columns;
these allow for the white tile corresponding to the clauses in which the literal
participates to fall onto the same level as the leftmost d reward tiles in the clause
layer to simulate clause satisfaction.

The control layer consists of 2 rows. The state columns have white tiles on
the bottom, while the variable columns are filled with white tiles. All other tiles
are black. This layer allows for the boolean choice of the variables.

The vacuum layer consists of 2 rows. In the state columns, the right column
has a white tile on the bottom row whereas the left column has a white tile on
the row above. The variable and clause columns contain a row of white tiles at
the bottom, and all other tiles are black. This layer will be used in conjunction
with the gravity layer below to shift out all white tiles assuming that all the
clauses are satisfied in the boolean formula.
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The gravity layer consists of 2N (h + 1) 4+ 6 rows. As in the vacuum layer,
the state columns have the right column containing a single white tile on the
bottom row and the left column with a white tile on the row above. The variable
and clause columns are filled with white tiles, and all other tiles are black. This
layer will help bring down all white tiles below the clause layer to be collapsed
by the vacuum layer.

The endgame switch layer consists of a single row with two white tiles on
the two rightmost columns with all other tiles black. This will ensure that all
clauses are satisfied before the white tiles below the clause layer are shifted out.

The above description, clearly computable in polynomial time, completely
describes G, since accounting for all layers and padding, we have described 2rc+
h+14+g¢+2Nh+1)]+1+2]+1+2]+1+2N(h+1)+6]+1+[1] =
2re+4N(h+ 1) + h 4+ g + 16 = 2rc + r rows, which completes the description
of the initial configuration. The final configuration of the MOBGSP instance is
the sorted configuration with the black tiles on the left (columns of G and H)
and white tiles on the right, with the escort in the top right corner.

The final piece of information needed to obtain a MOBGSP instance is the
upper bound K: if w is the number of white tiles in G, then let K = 4w. This is
because the escort will simulate a turn of the SCG in four jumps.

3.2 Properties of the Constructed MOBGSP Instance

With the SCG and MOBGSP instance constructed, consider any solution sat-
isfying the MOBGSP instance (the solution is a witness of the MOBGSP being
satisfiable; with a slight abuse of notation, we simply refer to this as a solution
to the MOBGSP instance). We note that the thick upper boundary layer full of
black tiles forces white tiles to go around it during the reconfiguration. Because
there is a single escort with a restrictive makespan, white tiles must be cycled
around in the counterclockwise direction one at a time to be pushed out of the
Sand Castle. Equivalently, the escort will be “rotated” in a clockwise direction,
with each rotation along the corners of a rectangle on the m x m board. This
forces the solutions to MOBGSP to simulate turns of the SCG. We have (see
the Appendix for a complete proof):

Lemma 1. A solution to the constructed MOBGSP instance corresponds to a
winning set of turns of the embedded SCG instance.

The key utility of the SCG is that it nicely abstracts the allowed moves in
satisfying the MOBGSP to these tile collapsing turns, transforming the reduc-
tion to showing the correspondence between satisfying assignments for 3SAT
and wins for SCG. In fact, our results will show that the SCG is NP-hard as a
decision problem and of independent interest.

In the forward direction, we prove:

Lemma 2. A satisfying set of variable assignments to the 3SAT instance in-
duces a solution to the reduced MOBGSP instance.
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The complete proof is given in the Appendix. As a sketch, from a satisfying
3SAT assignment, for each variable z;, using SCG terminology, we can work on
layers above the vacuum layer to collapse some white tiles in the control layer,
the variables layer, and the clause layer, so that all white tiles in the clause layer
will align into a single row. After collapsing all white tiles in the clause layer,
cleanup can be performed to shift out all the rest to yield a win for the SCG
and therefore, a solution to the MOBGSP.

In the reverse direction, we have:

Lemma 3. A solution to the constructed MOBGSP instance induces a satis-
fying set of variable assignments to the 3SAT instance.

Again, the complete proof is given in the Appendix. As a sketch, this direction
is more involved with the gist being that by construction, a solution must collapse
all the white tiles in the clause layer via. the accessible variable and control layers
below before switching to the endgame mode to cleanup the rest of the white
tiles.

3.3 Concluding Hardness

The polynomial-time construction of the MOBGSP instance from a 3SAT in-
stance, combined with Lemma [} Lemma [3] immediately implies that MOBGSP
is NP-hard. Note that a feasible solution to the BGSP instance in the MOBGSP
has a makespan of O(m3). To see this, if we do not need to simulate the SCG, we
can use the escort to “bubble up” each white tile in G through all the layers. In
a bubbling-up operation, the escort is teleported above the target white tile and
swapped with the white tile (pulling it up), then moved around the same white
tile to be above the white tile again and repeat. Bubbling up each white tile
takes O(m) steps and there are at most m? white tiles. Alternatively, we could
just use the algorithm for GSTP. Therefore, MOBGSP is in the complexity
class NP and we have:

Theorem 1. Single-escort MOBGSP is NP-complete.

Since MOCGSP contains MOBGSP instances with the GSTP algorithm
still applicable, we get

Corollary 1. Single-escort MOCGSP is NP-complete.

The construction can also be used to show that MOPGSP with arbitrary goal
configurations is NP-complete rather than the sorted goal configuration variant,
since we do leverage the permutability of the black tiles in the top row.

Corollary 2. Single-escort MOPGSP with arbitrary goal configurations is NP-
complete. The problem when restricting to goal configurations of corners of the
grid (as rectangles) still remains NP-complete.
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Proof. Again, MOPGSP is in NP since we can apply the GSTP algorithm.
We use nearly the same reduction as for MOBGSP, but modify it slightly. By
replacing the top row with the tail with white tiles and by setting the goal
configuration to be the one in which all the black tiles move downwards in their
respective column, one can verify that the hardness for MOBGSP with arbitrary
goal configurations is still NP-hard, and it can be easily adapted to a MOPGSP
instance by labeling the black tiles, leaving the white tiles as the unlabeled tiles,
with the goal instance having all the labeled tiles in the initial instance “falling
down” following their initial orders.

To show the hardness when moving labeled tiles to a corner, one can add
white tiles above the strip of white tiles in the reward columns so that all the
columns of the SCG instance have the same number of white tiles, adjusting the
dimensions of the instance slightly without affecting the SCG simulation. Then
the goal configuration will be a rectangle of labeled tiles in the bottom left corner.
Furthermore, by simply padding with extra labeled and unlabeled tiles, one
can further restrict the dimensions of the corner to have dimensions with fixed
powers of m, even nearly sorted corner configurations, e.g. (m — m¢) x (1/2)m
for 0 < € < 1 a constant.

O

In single-escort CGSP, let the fraction of tiles for a color i € {1,...,k} among
all tiles be f;, > <, < fi = 1. For example, in a BGSP, it can be that black tiles
and white tiles each have f; ~ 0.5. We can even take the f; to have fixed powers of
m. We can extend our proof strategy to show that for a fixed color k, single-escort
MOCGSP remains NP-complete with the distribution of {f1, ..., fi} arbitrarily
close to any fixed distribution. Essentially, we can first pick two proper colors i, j
as black and white, and construct a MOBGSP instance from a 3SAT instance
done in Sec. Then, we can expand the MOBGSP instance on the top and the
right and assign the added tiles proper colors (possibly more black and white tiles
as well) to approximate the desired colored tile ratios. The goal configurations
of these added tiles are the same as their initial configurations. For example, we
may expand the m x m grid to an m” x m” grid for arbitrary but fixed ~; the
construction time and instance checking time remain polynomial with respect
to the original 3SAT instance size. We note that minor cautions are needed to
maintain the SCG mechanics. We have shown:

Theorem 2. Single-escort MOCGSP remains NP-complete if tiles of color i €
{1,...,k}, k > 2 occupy an approximately f; fraction of the puzzle game board.

By adding additional independent escort jobs, hardness results hold for an
arbitrary number p of escorts, as long as p is polynomial in the size of the
problem.

Theorem 3. For p > 2 and polynomial in problem size, p-escort MOBGSP
and thus p-escort MOCGSP remain NP-complete.

Proof. Construct an instance as in Fig. @] placing an SCG instance rotated 90
degrees counterclockwise in the bottom right corner of the grid. Fill the area left
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of it with black tiles except with some small constructed independent escort jobs,
making all other tiles white except for the escorts in the top left corner. Using the
same variables as in the MOBGSP reduction, the SCG instance now occupies a
¢ X r subgrid, with independent escort jobs placed at a distance of 8w from each
other and the SCG to ensure that they remain independent from one another,
with 2wp black tiles needed to be absorbed into the black tiles and 2w(p — 1)
white tiles needed to be moved out from it, altogether occupying 8w(4dwp — 2w)
columns. Additionally, add p extra columns for the starting positions of the
escorts, aligned on the main diagonal from the top left corner to ensure that they
do not conflict with one another. Thus, there will be p + 1 rows of white tiles
along the top. The final configuration will be the sorted configuration with the
black tiles on the bottom and escorts placed above some subset of the protruding
black tiles, with the same total makespan K = 4w.

Now we analyze based on the number of escort “corners,” which are the
positions at which the escorts stop throughout the movement. In this instance,
each of the escort jobs, as well as moving a white tile out of the SCG instance,
will have some corresponding escort jump in the same column that either moves
the white tile out or the black tile in, using two escort corners. Furthermore, all
of these corners among the escort jobs and between those and the ones for the
SCG instance will be disjoint, since they are placed at a distance of 8w from each
other. Since the total number of escort corners is p(4w), 4wp — 2w are already
used on the independent escort jobs, leaving 2w left for the SCG instance, each
shifting out a white tile requiring two corners. Thus, the SCG instance permits
w escort moves, each of which results in the escort jumping to the left below a
protruding black tile, effectively simulating a turn of the SCG instance. Thus, a
successful tile routing will simulate the SCG instance, and a solution to the SCG
instance readily results in a successful tile routing by setting p — 1 of the escorts
to fulfill the independent escort jobs and the other escort to simulate the SCG
instance and resolve its share of w protruding black tiles. Minor modifications
may be needed to ensure that movement goes as planned, e.g. if p is sufficiently
large, then we would need to widen the sea of black tiles on the bottom so that
escort jumps can be made to not conflict with one another. ad

Escorts Start Independent Escort Jobs ) SCG

Fig. 4. lllustration of handling multi-escort MOBGSP instances by adding additional
independent escort jobs. Only the lower part of the overall grid is shown, with the
upper part truncated. Not drawn to scale.



12 M. Gozon and J. Yu

Corollary 3. For p > 2 and polynomial in problem size, p-escort MOPGSP
with arbitrary goal configurations is NP-complete. Again, the problem when re-
stricting to goal configurations of corners of the grid (as rectangles) still remains
NP-complete.

Proof. Again, to deal with the issue of the labeled tiles being different, reflect
the SCG instance to face the right, pad it with extra black tiles, and introduce
a column of white tiles on the right. Since we intend the escort simulating the
SCG instance to use that side route instead, we only need 2w(p — 1) of the
protruding black tiles instead. To ensure that the escort movements left of the
SCG don’t interfere with one another, we can pair the independent escort jobs
from the middle and connect the pairs via nonintersecting grid-aligned paths,
from which we can then label the black tiles from their starting configuration and
goal configuration such that they move once if they are on a path and remain
stationary if not. Then the starting and goal configurations in the SCG area
following the “falling down,” though now to the left, procedure, with the escorts
ending up above the protruding black tiles as well as the top right corner.
Again, we have at most 4w escort corners reserved for the SCG instance, and
pulling out a white tile comes with two escort corners + two more to move an
escort above the boundary between the black and white tiles, so again we will
have a faithful simulation of the SCG instance. A solution to the SCG instance
will readily have a corresponding solution to the MOPGSP instance. The one
can make minor modifications again to obtain the corner goal configuration
requirement as needed.
O

The hardness results can be extended to high-dimensional grids by simply
simulating the problem in one of the 2D slices, padding the additional dimensions
with black tiles:

Theorem 4. Forp > 1 and polynomial in the problem size, p-escort MOBGSP
and p-escort MOCGSP remain NP-complete on d-dimensional grids for fized in-
teger dimensions d > 2. The NP-completeness also holds for p-escort MOPGSP
with arbitrary (or corner) goal configurations.

4 Makespan Bounds

We proceed to provide makespan lower and upper bounds, as stated in Tab.
that differ by at most a logarithmic factor for each of BGSP, PGSP, and CGSP,
starting with the single escort case in two dimensions where m = m; = mo.
We also extend and solve the higher dimensional versions. Since the primary
difficulty is the underlying BGSP problem in each formulation, we center on
this case. All upper bounds provided here come with a low polynomial time
algorithm that computes plans corresponding to these upper bounds. In other
words, if desired, fast algorithms can be readily implemented to compute tile
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movement plans with the stated upper bounds. With that said, we do not further
discuss the issue of computation time in this work.

For PGSP/CGSP, the lower bounds of BGSP directly apply since PGSP/CGSP
must use at least as many moves. The same upper bounds also hold but the
reason is slightly more subtle: the bounds are obtained by running the BGSP
algorithm and then utilizing the GSTP algorithm [9] on the subgrid with dis-
tinguishable (resp. non-majority colored) tiles, utilizing each of the additional
escorts to maximal capacity as in [9] but extended to higher dimensions through
the higher dimensional Rubik Table [25]. One can also obtain more precise con-
stants as in GSTP [9]. We do not expand on these here given the limited space
and the limited importance.

We note that the cases of r =0 and r =d

are fairly straightforward to analyze: for BGSP/PGSP/CGSP, when r = 0,
we have a constant number of black (non-majority colored) tiles to move, so
we can transport each individually (e.g., through bubbling them around) to
obtain a constant factor approximation algorithm. The case of r = d has a lower
bound coming from the sum of Manhattan distances that can be constant factor
matched by solving the whole as a generalized GSTP instance [9].

With the case of r = 0 and r = d cleared, in what follows, we only work with
the 0 < r < d setting.

4.1 Polynomial Time Upper Bounds

For the upper bounds, we first outline the overall structure of the algorithm in
the single escort case in two dimensions, but note that our approach is designed
with the multi-escort setting in mind. As in the study of GSTP, it is more
useful to view the routing problem through the teleportation or jumps made by
the escort, in which the goal is to batch as much of the necessary movement as
possible. To do this across the grid and to make our algorithm parallelizable, we
utilize a divide-and-conquer approach.

For the main case d = 2, assume that m = m; = msy, which is the case
most important to dense robotics applications. For simplicity, assume that m is
a power of two. The algorithm then works in log, m iterations, where we initially
consider the grid through each of the 1 x 1 cells. Then in the ith iteration of the
algorithm, we increase the granularity of the grid of 2¢=! x 2~! squares to be
a grid of 2 x 2¢ squares, combining the four respective 2¢=! x 2¢~! subsquares
for each 2¢ x 2% square, where we layer the black tiles from the bottom of the
respective square rightwards and then upwards. Note that the goal configuration
can be arbitrary since we can run the algorithm again backwards to the sorted
configuration.

The escort must travel along a continuous trajectory. Due to this, we need
to add additional unit margins of white tiles to each of the squares to facilitate
movement to ensure that our configuration is not ruined when the escort is moved
across the grid. However, this introduces problems for the early iterations of the
algorithm, where certain 2¢ x 2¢ squares may have more black tiles than their
inner (2¢ — 2) x (2! — 2) square. Thus, we additionally need to pre-process the
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instance by spreading out the black tiles across the grid, starting at a higher
level of granularity with 8 x 8 squares instead.

Given the background, the underlying intuition of our overall approach is as
follows: by infusing enough regularity within our grid, we can utilize the escort to
batch the movement across the grid, even among sparse instances. Consider the
process of merging four squares, and for simplicity, suppose we merge sequentially
along the rows and then the columns. Then when merging two squares of size
{ x £ along the rows, the row underneath the bottom of the two squares is the
same for pairs across the grid, so we can use it as a “highway” to transport black
tiles from one square to another, only using a small number of time steps to
move black tiles onto the highway and back out (which can be batched column-
wise using the column alignment of the squares). Similarly, when merging two
rectangles of size ¢1 x £ along the columns, the column left of the two rectangles
functions as the highway, where we need to additionally reorient the black tiles
of a given square to be placed on the highway simultaneously using row moves
before being moved downwards in parallel with column moves.

The analysis then boils down to assigning the cost of some time steps to
certain black tiles to have a low average cost, along with the base cost of running
a divide and conquer algorithm. For the case in which m; x my = ©(m) x ©(m)
for some integer m, we must additionally handle border cases without much
effort. By the way the algorithm is set up, adding more escorts allows us to
efficiently utilize each of the escorts and divide the work accordingly, whereas
the case with higher dimensions is handled with a similar divide and conquer
approach, instead now merging along each of the d dimensions as needed. This
gives us algorithms that nearly match the high probability lower bounds provided
in the next subsection.

Theorem 5 (Single-Escort BGSP Algorithm). A single-escort BGSP in-
stance of size my X mg = O(m) X O(m) with B = O(m") black tiles for 0 < r < 2
can be solved in O(mlogm + m”logm) time.

The complete proof can be found in the Appendix. The multiple escort case
is largely similar. With multiple escorts, the difference is that parallelism can be
readily introduced into the divide-and-conquer approach.

Theorem 6 (Multi-Escort BGSP Algorithm). A BGSP instance of size
m1 X mg = O(m) x O(m) with B = ©(m") black tiles for 0 < r < 2 with p
escorts can be solved in O(mlogm +m” logm/p) time steps.

The complete proof can be found in the Appendix. These algorithms can be
generalized to the case of arbitrary dimensions.

Theorem 7 (Higher Dimensional BGSP Algorithm). A d dimensional
BGSP instance of size my X -+ X mg = O(m) X -+ x O(m) with B = O(m")
black tiles for 0 < r < d with p escorts can be solved in O(m log m—i—ml”[%]/p-i-
m” logm/p) time steps.

Again, see the Appendix for the complete proof.
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4.2 Fundamental Makespan Lower Bounds

For lower bounds, we directly work with a d-dimensional grid m x ... x m. The
lower bound for BGSP (Tab.|l) is Q(m—}—er[%]/p—l—mr/p) for p > 1 escorts.
It has three parts, each of which may dominate depending on r and p. The first
and last terms are easy to tally. For a random instance with @(m"),r € (0,d)
black tiles, with high probability, a black tile must take at least £2(m) time steps
to “swap out” a white tile, regardless of the number of available escorts. This
gives the first £2(m) term.

Similarly, with high probability, the total Manhattan distance that must be
traveled by m” black tiles in a random BGSP instance is 2(m” -m). To get this,
suppose black tiles must relocate to the bottom of the grid (i.e., m"/m? < 1/4,
otherwise, flip the colors), we lower bound the sum of Manhattan distances by
the distance of a black tile to the bottom fourth of the grid. If there are B
black tiles, let X; be the distance to the bottom of the grid, which is 0 if it
is in the bottom fourth and expected to be 3m/8 if it is in the upper three-
fourths of the grid. Then the sum of Manhattan distances is lower bounded by
X = X; + -+ + X, which has E[X] = 3mB/8 and Var(X) = BVar(X;) +
B(B—1)Cov(X;,X,) < BVar(X;), as the X; and X are negatively correlated.
We can compute Var(X;) < E[X?] = (124224 --+(3m/4)?)/m = O(m?). Then
Chebyshev’s inequality gives that Pr[|X —E[X]| > E[X]/2] < 4 Var[X]/E[X]? <
O(1/B?) = O(1/m?"), i.e. the sum of Manhattan distances is 2(mB) = 2(m -
m") as required. In each time step, this distance can be decreased by at most
pm, yielding the last lower bound term of 2(m”/p).

We are left to show the third part of the lower bound, Q(mlﬂ[g] /p), which
is less straightforward and also more interesting. Consider the relaxation where
the p escorts are replaced with white tiles, except now, to simulate the escort
movement, we are allowed to pick any generalized column and move the black
tiles in whichever direction we want, even permitting them to move to the same
square, performing this operation once for each escort in sequence. Instead of
trying to sort the grid, we seek to collapse (here, “collapse” bears a meaning
different from the collapsing operations in SCG) all the black tiles into a single
square. Note that this is a valid relaxation of BGSP up to an additive factor of
O(B/p), since we can indeed simulate the escort movement through the allowed
operations, then subsequently collapsing all the B black tiles trivially in O(B)
steps, divided by the number of escorts p. Thus, the grid collapse game can be
solved in at most the minimum amount of time to solve the BGSP instance plus
O(B/p) steps (even though it’s most likely the case that the grid collapse game
can be solved faster), from which demonstrating the Q(m”r[%]/p) gives the
lower bound for BGSP as m1*T5=1] > m” when 0 < r < d — 1, which is the

case we care about (when r > d — 1, the sum of Manhattan distances in the last
term of the lower bound provides a higher bound).

The hardness of the BGSP instance arises from the underlying lattice-like
structure of black tiles that must be collapsed into a single black tile. We use
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this bottlenecking difficulty apparent in the upper bound divide and conquer
solution as our approach. We have (see Appendix for the proof):

Theorem 8. A random d-dimensional m X --- X m BGSP inster%ce with B =
O(m") black tiles and p escorts for 0 < r < d — 1 takes 2(m* "=t /p) steps.

5 Conclusion and Discussions

In this work, we have investigated the colored generalized sliding-tile puzzle
(CGSP) and its prominent variants, BGSP and PGSP. BGSP, PGSP, and
CGSP formulations model after and capture key features of many high-impact,
large-scale robotics and automation-related applications. We prove that finding
makespan optimal solutions for BGSP, PGSP, and CGSP is NP-complete, even
when there is a single escort. The hardness results are shown to hold when there
is an arbitrary number of escorts, for arbitrary color compositions, and in higher-
dimensional settings. We then analyze the makespan bounds for BGSP, PGSP,
and CGSP, establishing lower (fundamental limits) and upper (polynomial time
algorithmic) bounds that differ by at most a logarithmic factor.

Many open questions remain. Within the context of the current study, on
the hardness side, we leave open the question of how to show that GSTP itself
is NP-hard when there is a single escort (note that if we do not allow parallel
moves, then this is shown in [20]). The single escort setting should also extend
to the setting with a constant number of escorts.

On the bounds side, the makespan lower and upper bounds can differ by up
to a logarithmic factor. We hypothesize that the lower bound can be further
tightened as it is known that randomness assumptions can often introduce an
additional logarithmic factor [5]. A more careful analysis leveraging additional
tools may eliminate the logarithmic bound gap.

Going beyond the current study, we didn’t labor to pin down a concrete num-
ber for the constant factor, which we believe is unlikely to be practical. With that
said, however, it remains interesting to push the envelope on fast algorithms that
compute (near-)makespan-optimal solutions for GSTP and CGSP variants, for
which there are some existing efforts [612]. We believe it would be of particular
interest and practical relevance, to explore the impact of the number of escorts
on practically achievable makespan upper bounds. The bounds from the current
work help guide such efforts.

In our algorithmic study, the initial configuration is assumed to be random
and the goal configuration have the colors ordered. The formulation is motivated
by the sorting requirement of many practical applications. It is also interesting to
consider arbitrary goal configurations and demonstrate tighter lower bounds as
well as develop more specific algorithms beyond our sorting one. As the setting
mimics those studied in [22], it is likely to have drastically different complexity
and makespan bounds.

Also of interest is examining tiles of different sizes such as those in Klotski,
which appears more complex and likely requires new tools to be developed.
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Appendix

Proof (Proof of Lemma , We show that the escort’s movement corresponds to
simulating moves in the SCG: after every four moves of the underlying BGSP,
the board configuration will be transformed to another one corresponding to
performing an allowed move in SCG, and the target configuration will be reached
exactly when the SCG ends in a win.

Consider any BGSP solution satisfying the MOBGSP instance. Any initial
white tile in H can never pass through the upper boundary layer at any point of
the tile routing. This is because the escort alternates between rows and columns
when it jumps (otherwise it would be wasting a move), so at most 2w column
jumps can be performed. Each jump can either move the white tile upwards
a tile or the upper boundary of G downward a tile (mutually exclusive due to
opposing directions of movement). Because 2w < 2rc¢ (the upper boundary layer
is 2rc thick), it is impossible to pop a white tile initially in H above the upper
boundary layer. Thus, white tiles initially in G must leave G through the right
side.

Now define ¢}, to be the line separating the upper boundary layer of G from
the clause layer, and let ¢, be the right boundary of G; the escort must move
in cycles of four jumps going clockwise around the induced quadrants formed
by ¢;, and ¢,. This is because to shift out one of the original white tiles in G,
the escort must jump from the right side of £, to the left, and this can occur at
most every 2 escort row jumps since jumps alternate between rows and columns
and a row jump must transport the escort back to the right of ¢,. Thus, every
row jump in a solution must cross ¢, as w white tiles must be shifted out with
the available 2w row jumps, and since the escort must end in the upper right
corner, right of £,. In addition, the jump directly after shifting out a white tile
must have the escort jumping from below ¢, to above it, since if it didn’t, the
next row jump would leave H below the line and increase the number of white
tiles back to what it was before, making the solution invalid.

After every four moves in the MOBGSP, a turn in the SCG in H will be
simulated. The escort is only ever allowed to jump to H through a row containing
a white tile at the rightmost column of H, since if it didn’t, then in 4w moves,
it would be impossible to shift out w white tiles. Then after entering H through
a white tile, the escort must jump to above H, simulating the ensuing fall of the
tiles above. Furthermore, it must go the top row: in order for the rightmost black
tile in the tail to move left of /,,, the escort necessarily cycles between four stages
(right, right different row, left different row, left) for all w time steps. All in all,
a SCG turn will be simulated, and this is all the moves allowed. In addition,
the endgame conditions are nearly the same: a solution induces a winning set of
turns on the SCG via the corner between the (4 — 2)th and (4¢ — 1)th escort
jump. On the other hand, a winning set of turns ¢q,...,%, to the SCG can
be transformed into an MOBGSP solution by having the escort be in the top
right corner of B after every four jumps and at the tile specified by t; after the
(47 — 2)th jump; this is indeed a solution since the final configuration of G is
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obtained by removing the white tiles and letting the black tiles fall to fill the
void. a

Proof (Proof of Lemma . By Sec. it is enough to specify the open white
tiles (connected to the right boundary through a contiguous row of white tiles)
chosen in the SCG in H. Let the 3SAT instance consist of variables z1,..., 2y
and clauses Cf,...,Cy. We will solve the SCG in three stages: the clause sat-
isfaction stage, the reward stage, and the cleanup stage.

In the clause satisfaction stage, iterate from ¢ =1,..., N. If z; is true, then
collapse the white tile in the bottom row of the (2i — 1)th column (from the left)
of the variables column in the control layer, and if it is false, do it on the (2i)th
column; then the corresponding literal gadget in the variable layer will have a
consecutive row of white tiles through the variables column that can access the
clause columns. Then for each clause C; in which the literal participates, and
in which no other previous literal in the algorithm also participates and is true,
collapse the bottom white tile corresponding to column Cj; h times. At the end
of the iteration, collapse the other white tile corresponding to variable z; in the
control layer before moving to the next iteration.

As a result of the stage, the clause layer has the white tiles in the variable
columns fall by one and the white tiles in the clause columns fall by h. Thus, the
white tiles in the clause layer will be in a single row. Then in the reward stage,
simply collapse the white tiles in the clause layer from left to right.

In the cleanup stage, the white tiles in the two rightmost columns of the
variables and control layer are collapsed first. Afterward, the white tile in the
left state column in the endgame switch layer is collapsed, which will connect
the white tiles in each of the vacuum and gravity layers. Then, in the clause and
variable columuns, iterate from the left column to the right and do the following:
first, collapse the white tile in the vacuum layer. Then while the gravity layer
still has white tiles, collapse them, and collapse any white tiles that fall into
the bottom row of the vacuum layer as a result of pulling the white tiles down
through the gravity layer. Note that this will collapse all the white tiles except
those in the state column of the vacuum, gravity, and endgame switch layer
since the gravity layer has 2N (h + 1) 4+ 6 white tiles in the clause and variables
columns. This means that, since all remaining white tiles are in the variable layer
or below, the distance of any white tile in the clause and variable columns to the
bottom row of the vacuum layer is at most 2N(h+ 1)]+ 1+ 2] +1+[2] -1 =
2N(h+1)+45 < 2N(h+ 1)+ 6 resulting in it getting pulled down by the gravity
layer and shifted to the right by the vacuum layer. At last, collapse the two
rightmost white tiles in the vacuum layer and then the gravity layer, collapsing
the final white tile in the endgame switch layer.

The whole procedure shifts out all white tiles as a winning strategy to the
SCG in H, inducing a solution to MOBGSP. O

Proof (Proof of Lemma . Assuming a solution to MOBGSP and therefore
a winning set of turns for SCG, at any point of SCG, the white tiles in the
clause layer can never fall to be adjacent to white tiles in the variables layer
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and below, because the number of white tiles in the variables layer and below is
upper bounded by the [AN(h + 1) + 15] x [M + 2N + 2] bottom right subgrid
of G in which they are inside, which has ¢ tiles. The padding layer between the
clauses and variables layer requires a white tile above fall > ¢ + 1 tiles, which
cannot happen. Thus, the tiles in the clause layer must be shifted out via a white
tile originally in the clauses layer.

To clear out the clauses layer, all white tiles in it must be on the same row,
and collapsing must happen from the leftmost column to the right. Suppose
on the contrary that one of these conditions is not met, and consider the first
instance. Then before the collapse, all white tiles were on different columns, and
so afterward, the column of the chosen open tile ¢, and to the right will have
fewer white tiles than the number of columns, meaning that some column ¢, has
no white tiles. Denote ¢, as the number of white tiles to the right of c., and note
that there is a white tile to the left of it since there was one left of ¢.. However,
no white tile to the left of ¢, can be cleared out because, after ¢, operations
using the tiles to the right, any white tile to the left can only travel ¢, columns
to the right, preventing any of them from being shifted out since they cannot
reach the right boundary of H or fall to a layer below, forming a contradiction
to the solution to the SCG.

Since all white tiles in the clause layer must belong to the same row to be
shifted out, the row in which they must align is simply the bottommost row in
the clauses layer. At most ¢ columns can be pulled down from the white tiles
in the variables layer and below, but there are more than ¢ white tiles in the
clauses layer.

To collapse white tiles in the vacuum and gravity layers, a white tile from
the endgame switch layer below must bring down the white tile in the left state
column since otherwise, the white tiles on those layers could not be shifted out
due to the same argument as for the clauses layer. Then, if the white tile in the
endgame switch layer were to be used to bring down the left state column in a
solution to MOBGSP, all of the white tiles in the clauses layer, except possibly
one on the right boundary, must have been shifted out first. This means that
the variables and control layer and possibly the endgame switch layer must have
been used to bring down the white tiles in the clauses layer to the same row first
for the clauses layer to be cleared out; however, no white tile from the endgame
layer can be used since one is reserved for bringing down the second rightmost
column, and bringing down any other column would misalign the bottom row of
the gravity layer, making it impossible to clear out that layer.

Now in any solution to the SCG, it can activate at most one of x; or —x; for
1 =1,...,n. By this, we mean that only one of the literal gadgets in the variables
layer can have all its white tiles in the variables columns aligned with the white
tiles in the state and clause columns. This is because for this to happen, some
subset of the variable columns must be each pulled down by one (via the control
layer) as specified by which white tiles are raised in the corresponding variable
gadget, and the subsets corresponding to z; and —x; are not contained in each
other. In addition, a variable column cannot be pulled down more than one tile
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until the white tile in that column in the clause layer gets shifted to the right,
which can only happen when the clause tiles have fallen to the bottom row in
the clause layer. Thus, a solution cannot also ‘cheat’ (before bringing down the
clause tiles) by lowering an entire literal gadget to any row below since that
would require one variable column to shift down by at least two.

Now note that a clause tile can only fall into the satisfaction position via
the clause rope of an activated variable gadget. If not, then if a solution tried to
pull it down using activated literal gadgets, it could pull it down by at most £
rows using the white tiles on the bottom row. If it tried using deactivated literal
gadgets, it could pull it down by at most 2n 4+ 2 < ¢ white tiles due to the black
tile in the way. Thus, including the possibility of using the white tiles in the
control layer, a clause tile can fall strictly less than 2N¢ + 4N 4 2 = h in this
manner, so it can never fall into the satisfaction position. Note that a clause
rope could then never fall to a literal gadget below since the clause tile would
need to have fallen into satisfaction position first, so there is no way to ‘cheat’
bringing down the clause tile.

Thus, in a SCG win, a literal must be activated and have the corresponding
clause rope pull down the clause tile by at least a row. Then each column C; has
an activated literal x; or —x; with a clause rope pulling it down, i.e. it belongs
to that clause. Thus, the set of activated literals induces a boolean variable
assignment to x1,...,xy that satisfies each of the clauses Cq,...,C)y. In the
case that neither z; nor —x; is set activated, arbitrarily setting the variable x;
to true does not change the satisfaction of the boolean formula. Thus, a solution
to the MOBGSP induces a solution to the SCG and thus the 3SAT. ad

Proof (Proof of Theorem @ Assume for now that m is a power of two; the
general case is discussed at the end of this proof. In the first stage, we seek to
spread out the black tiles to have a small enough density in the entire grid. We
utilize the following algorithm:

1. Consider the black tiles from the top row to the 4th to the bottom row, from
left to right, and suppose we are on tile b. If b has two white tiles underneath
it, move on to the next.

2. If not, then use the escort to absorb the black tile(s) underneath into the
row of black tiles without affecting the status of “completed” tiles. If the row
of b is full of black tiles, move on to the next row of black tiles.

Note that this takes O(B) steps as there are B black tiles each one can only be
absorbed into the line above once. Then once this process is done, each partially
completed row will have two white rows below it, and so at most 1/3 of the rows
can be partially completed. Since r < 2, for large enough n, B/m? < 1/9, and
so at most 1/10 of the rows can be fully black. Thus, at least 5/9 of the rows
is white, and so rerunning the algorithm in O(B) steps along the columns and
instead only considering a single tile underneath the current black tile ensures
that only partial columns are constructed. Thus, the number of black tiles in
each square will have a density of at most 1/2.
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Fig. 5. Illustration of the algorithm on an 8 x 8 instance, starting with 4 x 4 squares.
From a starting configuration (1), the tiles are moved into the inner squares to reach
(2) as in the 2nd stage. Then the squares are merged in matching pairs in the horizontal
direction from (2)—(5) as in the 3rd stage, where blue tiles in the even column group
are brought down to get (3), followed by highway rectangular shifts to move them
underneath the matching square as in (4) to be subsequently absorbed as in (5). The
same procedure is applied in the vertical direction from (5)—(8) to get a nearly sorted
configuration, which is then brought down to the bottom row as in the 4th stage.

In the second stage, we move all the black tiles to the bottom of their re-
spective 8 x 8 square left adjusted, manually bringing down each black tile in-
dividually in doing so to get a constant cost for each black tile, so this step can
be completed also in O(B) steps. To make sure that the escort doesn’t modify
the density of black tiles much, one can snake the escort around the grid of
8 x 8 squares from the top row to the bottom, moving to the square below after
traversing all the squares in a given row.

In the third stage, we now implement our divide-and-conquer algorithm. Sup-
pose we are on step ¢ of the algorithm, going from ¢ = 4,... logm. In the first
part, we combine the rows as follows: for every other block column of 2¢—1 x 2¢~1
squares starting with the second, use the escort to drag down each column con-
taining a black tile once in O(min(m, B)) steps. Then, for each block row with at
least one black tile positioned on the highway, or the bottom row of each square,
use the escort to advance the highway by 2/~! steps to the left to be merged
with the corresponding square on the left in O(min(m/2¢, B)2!) steps. Then use
the escort to absorb the transported black tiles into the destination square in
O(B) steps, which takes care of most of the sparse merging pairs of squares.
For the dense ones that contain ¢ > 2°~! black tiles, move the remaining black
tiles to fill the inner (2¢=! —2) x (2 — 2) rectangle in the desired order (bottom
row, left-adjusted) in O(c) steps. One way this can be done is by connecting the
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two piles of black tiles and then filling the black tiles in the desired order. Thus,
across all the squares, this takes O(B) steps.

After merging along the rows, we merge the rectangles along the columns
using the same algorithm. However, we additionally want to take advantage of
the highway that batches black tiles across the grid, so we use the escort to
reorient the black tiles in every other block row, starting from the second, so
as to fill just the leftmost column if possible, taking O(B) steps. Then moving
the escort as before, instead across the rows to drag the black tiles onto the
highway and then columns to drag them downwards takes O(min(m/2?, B)2?)
steps while absorbing the transferred black tiles in O(B) steps takes care of the
sparse instances (i.e. ¢ < 2¢71) while dense instances can again be combined in
O(c) time by connecting the two piles in O(2~!) time and then building the
black pile in the desired order in O(c) time for an overall O(B) additional time
steps.

Thus in the fourth stage, after completing the divide and conquer stage, the
black tiles will be piled near the bottom of the grid except for a unit margin
of white tiles. Then, the escort can be used to drag the black tiles to fill the
bottom of the grid, left-adjusted, in O(min(m, B)) steps as needed. Combining
everything, it takes O(B) steps to complete the first, second, and fourth stages,
while the divide and conquer algorithm takes O(mlogm + Blogm) time steps.
Plugging in B = ©(m") gives the desired bound.

The case when m is not a power of two or when my,mg = ©(m) can be
handled similarly by accounting for border rectangles, but we can more simply
choose the largest power of two 2° below both m; and ms and run the algorithm
on each of a covering set of 2° x 2° squares, collecting the black tiles at the
bottom afterward to obtain the same time complexity. a

Proof (Proof of Theorem @) We sketch the proof strategy, which is similar to
the single escort case, except that we now need to move the escorts efficiently
to ensure the desired time complexity is achieved. First, the statement when
B/p < m requires a time complexity of O(mlogm), and so we can forget about
the additional escorts and instead show the statement when B/p > m as B/p =
m gives the O(mlogm) time complexity. Thus, assume that r > 1 and p < B/m.
We again can reduce to the case when my = mo = m is a power of two by running
the algorithm a few times to line up the black tiles along the bottom of the grid
(although not necessarily spread out as needed). In order to spread out the black
tiles to get the appropriate time complexity, we can utilize each of the p escorts
to handle a small portion of the black tiles without interfering with each other
(see figure), with each escort handling B/p > m tiles permitting each escort to
move their assigned black tiles in O(B/p+m) = O(B/p) time, subsumed by the
O(m"logm/p) term needed.

Now, we show that each of the steps of the single escort algorithm can be
effectively done in parallel. The first stage can be completed by dividing the grid
into several row blocks that have about ©(B/p) black tiles each, where each
escort is assigned one of the row blocks to separate into partial, white, and black
rows; the escorts can initially be moved to the right column before partitioning
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the rows due to the possible change of black tiles in each row block as escorts
move. Afterward, the escorts will be on separate rows so that they can move
to the appropriate column in the subsequent column block assignment, thus
completing the spreading stage in O(B/p) time.

The second stage is handled by assigning the escorts connected components
of 8 x 8 squares, each containing ©(B/p) black tiles, which they can all move to
in a single time step being on separate columns and without affecting the density
of the black tiles significantly. Thus, this stage can be completed in O(B/p) time.

The third stage is the most interesting: the default position of the escorts is
to be on the bottom row or left column, which they can fit on as p < B/m < m.
When pulling down columns to put black tiles onto highways, we assign each
escort O(min(m, B)/p) columns to handle, which can be done parallel after mov-
ing the escorts in O(m) time along the bottom row. Then move the escorts to the
left column in O(m) steps, assigning each escort to handle O(min(m/2%, B)/p) of
the highways to complete the transportation step in O(min(m/2%, B)2!/p) time
steps. Afterwards, assign each of the escorts connected components of 2 x 2°
squares, each with O(B/p) black tiles in them; the escorts can be moved along
the margins in O(m) steps to their destination blocks through Rubik Tables as
follows: since each of the rectangles has at most a 1/2 density of black tiles, the
top half of the rectangle (except for possibly a few rows) will contain no black
tiles, and so the subgrid consisting of all the ~ m/2 rows of white tiles along
with the ©(m/2%) column margins contains all the escorts and can be arbitrarily
reconfigured in O(m) steps by simulating the Rubik Table algorithm.

Then in their assigned connected component, the escorts can absorb the black
tiles, where sparse merging instances will be part of components with a single
escort since p > B/m, leading to the completion of those connected components
in O(B/p) time. For the dense rectangles with more than 1 escort, the connected
component will consist of simply the merging pair of rectangles. Then these can
be effectively merged in O(B/p) time by assigning each escort to handle O(B/p)
of the black tiles in much the same way that the black tiles are spread out along
the bottom row in our initial reduction to the square grid case. Afterward, escorts
can be transported back to the bottom row in O(m) steps via the underlying
Rubik table of white tiles before being moved to the left column to simulate
everything again. The only difference is that escorts must mediate between the
bottom row to be transported to and from their destination spot in the grid in
O(m) steps, ensuring a faithful simulation of the divide and conquer approach
in parallel.

The last stage can simply be done in O(min(m, B)) time as with a sin-
gle escort. Thus, the overall running time will be O(mlogm + Blogm/p), or
O(mlogm + m” logm/p). 0

Proof (Proof of Theorem . We again sketch a similar approach, highlighting
the differences. The divide and conquer algorithm more or less extends to the
case with higher dimensions by design. We highlight the main differences below.
Again, note that the statement reduces to the case in which B/p > m, i.e.
r > 1 and p < B/m, where we work on an m x --- x m grid for m a power
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of two, gaining a potential constant factor as a function of d (which is viewed
as a constant). This means that each escort is assigned at least m associated
black tiles, so all of them fit in a d — 1 dimensional hyperplane e.g. any single
border of the d dimensional grid, important to ensuring that additional escorts
add to the efficiency of parallelization of the algorithm. In our reduction, we
again need to spread out the black tiles along the bottom border of the grid.
By efficiently assigning each escort to move O(B/p) black tiles a distance of
potentially 2(m), we can again batch movement and complete the reduction in
O(B/p+ m) = O(B/p) time, subsumed by the O(m"logm/p) term again.

As in the previous algorithm, we will again need to utilize the higher dimen-
sional Rubik Tables to ensure that escorts can be moved quickly throughout the
grid to simulate all that a single escort could do efficiently. Specifically, we can
arbitrarily move the escorts in a given d dimensional grid, in O(n) steps (treating
d as a constant) assuming that all the occupied tiles are of the same color.

In the first stage of the algorithm, we first move the escorts to (1,—,...,—) in
O(m) steps. We now consider subgrids of the form (—, —, z3,-- -, 2,,) separately
for 1 < z3,...,z, < m, splitting each 2D grid into row blocks as before and
assigning each escort to handle O(B/p) black tiles. We then reconfigure the
escorts along the border in O(m) steps to reach their assigned 2D grid and move
to their row block, completing the spreading process in O(B/p) steps, moving
them back to the border in another O(m) steps.

For the second stage, we split up the grid into boxes of size 2% x ... x 2%,
choosing a rougher level of granularity to ensure that the inner box containing
the black tiles contains at least 9/10 of the volume of the whole box; this is
important in ensuring that most of the upper part of the inner box has white
tiles to allow for the escort reconfiguration process in the divide and conquer
algorithm. Note that s is a function of d, which is viewed as a constant. Then
escorts are reconfigured in the border in O(m) steps to jump to their assigned
connected component of boxes each containing O(B/p) black tiles in a single
step, preserving the density of black tiles throughout. Then the black tiles can
be sorted to the bottom of their inner box (filling in the first coordinate, then
the second, etc.), from which escorts can be rerouted along the subgrid of white
tiles through the higher dimensional Rubik Table algorithm into the top of the
grid (—,...,—,m) in O(m) steps.

The third stage happens in the usual way, except that we now merge along
each of the d coordinates in order, where the highway for the first d — 1 coordi-
nates will lie in the margins below the inner boxes in the direction of the current
dimension; the highway for the last dimension can be chosen to be along the
first dimension. Then for a given dimension, we may need to modify the black
tiles slightly to ensure maximal use of the highway transportation, assigning con-
nected components with O(B/p) black tiles each, dispersing the escorts in O(m)
steps from (—,..., —,m), reorienting the black tiles in O(B/p) time, and send-
ing the escorts back to the top of the grid in O(m) time. Then, the escorts can
be moved along the borders from (—,...,—,m) to the desired border, assigning
each escort O(min(m?~1, B)/p) columns to drag down black tiles onto the high-
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way, which can be done simultaneously in O(min(m?~!, B)/p) time steps after
a reconfiguration in the border in O(m) steps. Afterward, they can be moved
along the borders in the direction of the highway and reconfigured in O(m) steps,
assigning each escort to handle O(min([m/2¢]9~1, B)/p) highways, which they
can complete in O(min([m/2/]9~1, B)2¢/p) time steps. They can then be moved
back to the border and to the top of the grid, reconfigured, and then dispersed
through the grid in O(m) steps to the assigned blocks containing O(B/p) black
tiles. Sparse instances are again completed in O(B/p) time steps, while dense
instances consist of a single pair of boxes to be joined with potentially several
escorts, all of which fit inside the top margin of the pair of boxes as we assumed
that B/p > m. Thus, dense blocks can be solved in O(B/p+2¢) or O(B/p) time
by effectively splitting up the black tiles, O(B/p) to be handled by each escort
such as in the algorithm to spread the black tiles along the bottom of the grid
in the initial reduction. Then escorts can be moved back to the bottom of the
grid again in O(m) steps, repeating this process for each dimension and level of
granularity until we are left with a single box.

Finally, we can complete the last stage by splitting up the escorts to handle
O(B/p) black tiles again, moving down the black tiles in O(B/p) time steps.
Thus, the overall instance takes O(mlogm + Blogm/p) time steps as well
as the additional O(}", min(m?~1, B)/p + min([m/2]4~1, B)2¢/p) time steps.
When r < d— 1, the first term becomes O(Blogm/p), whereas the second term
dominates when B ~ [m/2/]%!, which rearranges to 2° ~ m!~"/(?=1) giving
O(m1+r[%]/p). This gives the desired bound when r < d—1. For r > d—1, the
second term remains the same while the first term becomes O(m?~!logm/p),
which is subsumed by the O(B/p) = O(m" logm/p) time. Thus, we again obtain

the desired O(mlogm + m1+r[%1/p + m" logm/p) time complexity. O

Proof (Proof of Theorem . The underlying motivation is in the difficulty of
routing tiles at the critical level of granularity as in the analysis of the upper
bound, which is when 2! ~ m!'~"/(@=1). denote this quantity as ¢. Consider a
random placement of the black tiles under this level of granularity. One of the
2¢ sub-lattices ¢ obtained from the grid of ¢ x --- x £ boxes of wire length 2
(wire length 2¢ in the overarching grid) contains a maximal number of black
tiles with at least 1/2¢ of them. Then we can lower bound this instance by the
grid collapse game only on /¢, ignoring all of the other black tiles. Note that in
any solution, a black tile must touch one of the d — 1 dimensional hyperplanes
passing through any of the centers of the other ¢ x --- x £ boxes that aren’t a
part of ¢ (where we snap the destination position to this lattice and lose at most
an additive term of ¢ < ml+7'[g]), and so we can lower bound by the problem
of moving a black tile to touch at least one of these hyperplanes. Furthermore,
this is lower bounded by the problem in which boxes containing a black tile
must simply use a generalized column intersecting the region it occupies cut out
by the hyperplanes, at least ¢/2 times (the gap between the box and each of
the surrounding hyperplanes). Note that by randomness, we can assume that
there are B/2¢ black tiles randomly taken from ¢, and furthermore, black tiles
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are chosen with replacement (since to get without replacement, we simply reroll
more black tiles to get more black tiles and thus harder instances).

To summarize, the problem has reduced to the following: consider the (m/£) x

-x (m/l) = m"/@=1) x ..o mr/ (=1 grid, where we randomly sample B’ =
B/2% = ©(m") black tiles with replacement; let B’ = c-m" for a stable constant
c. Then we need to choose a sequence of columns so that each cell of this grid
(representing an £ x --- x £ box in ¢) touches at least £/2 of the columns. Then
due to the relative sparsity of the grid, we can use a balls and bins argument
to show that with high probability, columns contain relatively little black tiles,
requiring us to use a lot of column operations.

Consider the columns along one of the d dimensions, and let X, be the
number of columns in that direction that contain exactly p of the black tiles
(that may potentially occupy the same cell of the grid), so X, = Z;ﬁl Xpi for
X, indicating whether the ¢th column contains exactly p black tiles. Then

BN\ [ 1\° 1\5r (B 1 ,
—m" 1 =m" = _ r . — B/
E[X,] = m"E[X,)] =m (p) (mr) (1 m”) <m o B'cP™ /pl

and
Var[X,] = m" Var[X,,;] + m"(m" — 1) Cov(Xp;, Xp;) < m” Var[X,,]

where we have used that Cov(X,;, Xp;) is negatively correlated (knowing that a
column contains p black tiles means that there are much less black tiles spread
around the other columns); this can be manually checked since

E[Xpiij] - E[Xpi}Q <0
if and only if

) ) (o) ) Y )

which is true since

1 m’ —2 1
. < .
m'—1 m'—1" m"
Then since Var[X,;] < E[X,;], Chebyshev’s bound gives that
2

Pr(|X, — ELX, ]| > 1) < Var(X,)/#* < m"E[X,]/2 < B'e™ /[p#?],

and so setting ¢t = pcp\;;B ' gives

Pr(|X, — EIX,)| = & B'/\/pl) < 1/ (0B’ ™).

Thus, by union bounding over all 1 < p < m", with a probability of failure
of at most 72/6B’cP~! i.e. high probability, we have that X, < E[X,] +t <
2t < 2pcP~1B’/\/p!. By union bounding over the d dimensions, we can as-
sume that the total number of columns that have exactly p black tiles Y, is
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at most 2pdcP~ B’ /\/p!, which happens with a probability of failure of at most
dn?/(6B'cP~1) = o(1).

Now, the best possible solution would try to maximize the number of columns
that contain a lot of black tiles, possibly with difficulties due to overlap be-
tween the d dimensions. Nevertheless, we can lower bound by the case in which
X, = [2pc?P~'B’/\/p!| and there is no interference among the columns. Thus,
an optimal solution would then go through the list of columns in reverse order
of the number of black tiles, using each a maximal number of ¢/2 times (since
each black tile only needs to be hit £/2 times). Thus, we seek a maximal S such
that

> d(e/2)p|2pc? B /\/pl] > (¢/2)B”,
p=S

where B” is the number of distinct black tiles chosen; this is with high probability
at least f-B’ for a constant f as we select B’ random black tiles from m"#/(¢=1) >
B’ (i.e. using the standard balls and bins fact that throwing n balls into n bins
covers a positive fraction with high probability). Then we can relax the condition
on S to drop the floor function and instead seek S satisfying

(o] 2
P /
cP 1—2—.
PPN

The LHS eventually dies off faster than exponentially due to the 1/4/p! factor, so
the main issue is choosing an S such that ¢¥~1S/v/S! = 2(1/d), which requires
S = O(logd). Thus, such an S for bounding an optimal solution (since the sum
forces us to pick a column and use it ©(df) times) loses an additive factor of at

most O(dl), where df < m1+r[%], which doesn’t affect the target lower bound.
Then the total number of moves used will be

> de/2)[2pe" ' B [\/p]
p=S

which we seek to show is 2(¢/B’). Indeed, at most ©(log B’) of the terms on the
LHS will be nonzero, so it suffices to show that

o0

> d(t/2)2pe" B /\/p! — (d/2)O(log B') = 2(1B'),

p=S
reducing to simply

> depc?T'B'/\/p! = Q((B).
p=S

This reduces to showing that

> p/\Vph=0(1/4d),
p=S
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which is the case as S = O(logd) (satisfying nearly the same equation except
with p? instead of p and with a higher constant on the RHS) where the /p!
factor is the dominating term. Thus, we have an 2(¢B’) = 2(m!'~"/(d=Dmr) =

Q(m1+T[%]) high probability lower bound as desired. o
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