
Improved Hardness-of-Approximation for Token Swapping

Sam Hiken∗

MIT
Nicole Wein†

University of Michigan

Abstract

We study the token swapping problem, in which we are given a graph with an initial as-
signment of one distinct token to each vertex, and a final desired assignment (again with one
token per vertex). The goal is to find the minimum length sequence of swaps of adjacent tokens
required to get from the initial to final assignment.

The token swapping problem is known to be NP-complete. It is also known to have a
polynomial-time 4-approximation algorithm. From the hardness-of-approximation side, it is
known to be NP-hard to approximate with ratio better than 1001/1000.

Our main result is an improvement of the approximation ratio of the lower bound: We show
that it is NP-hard to approximate with ratio better than 14/13.

We then turn our attention to the 0/1-weighted version, in which every token has a weight
of either 0 or 1, and the cost of a swap is the sum of the weights of the two participating tokens.
Unlike standard token swapping, no constant-factor approximation is known for this version,
and we provide an explanation. We prove that 0/1-weighted token swapping is NP-hard to
approximate with ratio better than (1− ε) ln(n) for any constant ϵ > 0.

Lastly, we prove two barrier results for the standard (unweighted) token swapping problem.
We show that one cannot beat the current best known approximation ratio of 4 using a large
class of algorithms which includes all known algorithms, nor can one beat it using a common
analysis framework.
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1 Introduction
In the token swapping problem [1, 8, 2, 25, 29, 30, 31, 34, 18, 9, 10, 16, 20, 17, 36, 21], we are given
an undirected n-vertex graph G = (V,E), n distinct tokens, and two one-to-one assignments
of tokens to vertices: a starting assignment, and a target assignment. A swap along an edge
(u, v) ∈ E switches the locations of the tokens on u and v. The token swapping problem asks
how many swaps are needed to arrive at the target configuration from the starting configuration.

The token swapping problem is a fundamental and well-studied problem, and one of the
central problems in the area of reconfiguration algorithms. It has also found relevance in a
number disparate areas including network engineering [2], robot motion planning [12, 28], and
game theory [14]. Token swapping (mainly its parallel variant [3, 6, 12, 17, 37]) also has an
extensively studied application to qubit routing (e.g. [5, 26, 19, 7, 11, 15, 24, 32]). Algorithms and
heuristics for the token swapping problem have also undergone experimental evaluation [23, 27].

The token swapping problem is NP-complete [18], even when the underlying graph is a
tree [1]. As a result, the research literature has focused on approximation algorithms. Miltzow,
Narins, Okamoto, Rote, Thomas, and Uno gave a 4-approximation [18], which remains the
best known. For the special case of trees, there is a 2-approximation, which was independently
discovered 3 times using different algorithms [2, 31, 35].

From the hardness side, the above work [18] proved that token swapping is APX-hard (on
general graphs). Thus, unless P = NP, token swapping does not admit a PTAS, and instead
there exists some positive constant c for which there is no c-approximation. Regarding this
constant c, they state “We want to point out that a crude estimate for the constant c in [the
NP-hardness result] is c ≈ 1 + 1/1000. We do not believe that it is worth to compute c exactly.
Instead, we hope that future research might find reductions with better constants.” This question
is the main focus of our work.

We also consider the 0/1-weighted version of token swapping, in which each token has a
weight of either 0 or 1, and the cost of a swap is the sum of the weights of the two tokens.
Despite being studied in prior work [8, 1], there is no known approximation algorithm for 0/1-
weighted with any non-trivial approximation ratio. Furthermore, there is no known separation
between 0/1-weighted token swapping and standard token swapping.

1.1 Our Results
Our main result is the first hardness of approximation result for token swapping with an explicit
approximation ratio of “reasonable” magnitude. Specifically, we show that it is NP-hard to
obtain better than a 14/13-approximation:

Theorem 1.1. For any constant ε > 0, it is NP-hard to approximate token swapping on graphs
within a factor of 14/13− ε.

Our result is via a reduction from the label cover problem. We note that our result does not
rely on the Unique Games Conjecture, and is instead a gap-preserving reduction from a regime
of the label cover problem known to be NP-complete.

For 0/1-weighted token swapping, our next result explains the aforementioned gap in the
literature by showing a large separation between the 0/1-weighted and unweighted versions.
Specficially, we show that it is NP-hard to obtain better than an (lnn)-approximation for 0/1-
weighted token swapping:

Theorem 1.2. For any constant ε > 0, it is NP-hard to approximate weighted token swapping
with {0, 1} weights on n vertices within a factor of (1− ε) · lnn.

Our reduction uses a completely different technique from our main result, and is a much
simpler reduction, from the set cover problem. This is notable in comparison to the known
reductions in the token swapping literature, which tend to be quite complicated [1, 8, 18, 9].
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Our final two results are barrier results regarding the algorithm and analysis techniques
that could possibly achieve better than the current best-known approximation ratio of 4 (for
standard unweighted token swapping). All known token swapping algorithms have the natural
property of local optimality : they never perform a swap that brings both tokens farther from
their destinations.1 We show that, strangely, this property must be violated to achieve any
approximation ratio better than 4.

Theorem 1.3. For any δ > 0, there exists a token swapping instance K so that for any locally
optimal swap sequence of length k, (4− δ) ·OPT (K) ≤ k.

In our second barrier result, we show that a proof technique used by all known analyses
of approximation algorithms for token swapping, cannot yield better than a 4-approximation.
See Section 5.2 for more details.

Lastly, in the appendix we provide an alternative algorithm that gives a 4-approximation
for token swapping (in addition to the known algorithm [18]). While the algorithm of [18] is
an extension of the 2-approximation “happy swap algorithm” for trees [2], our algorithm is an
extension of the 2-approximation “cycle algorithm” for trees [35].

1.2 Additional Related Work
The token swapping problem and its variants have been studied from many angles. Exponential-
time algorithms and hardness under the Exponential Time Hypothesis (ETH) were studied
in [18]. Parameterized complexity was studied in [9], where the authors show that token swap-
ping is W[1]-hard when the parameter is the number of swaps, and show further hardness
under ETH. Token swapping has also been studied on a variety of special classes of graphs
including cycles [16], stars [21, 20], brooms [17, 8, 30], complete bipartite graphs [34], complete
split graphs [36], and cliques [10] (dating back to Cayley in 1849). Colored token swapping
has also been studied, where each token has a color and same-colored tokens are indistinguish-
able [18, 8, 9, 33, 33]. There are also several other models of token movement on graphs such as
token sliding, token rotation, and token permutation (see e.g. [28]). See also the introductions
of [8] and [1] for a more details on the wealth of related work.

2 Preliminaries
Definition 2.1. A Token Swapping instance K = (G,T, f1, f2) consists of a graph G =
(V,E), a set of tokens T where |T | = |V |, and two one-to-one assignments f1, f2 : T → V .
We call f1 and f2 the starting and target configurations respectively. A swap along an edge
(u, v) ∈ E switches the locations of the tokens on u and v. The token swapping problem asks
how many swaps are needed to arrive at the target configuration from the starting configuration.

For a token swapping instance K, we denote by OPT (K) the length of the shortest swap
sequence. For a vertex v, we denote by f−1

1 (v) and f−1
2 (v) the tokens that begin and end on v.

When a token t lies on the vertex v1 of the path p = v1, v2, ..., vk, we use the phrase bubbling t
across p to denote the sequence of swaps (v1, v2), (v2, v3), ..., (vk−1, vk).

We also consider the following weighted variant of Token Swapping:

Definition 2.2 (Weighted Token Swapping). An instance of Weighted Token Swapping
W = (G,T,w, f1, f2) consists of a graph G = (V,E), together with a set of tokens T of size

1We compare the notion of a locally optimal algorithm to that of an ℓ-straying algorithm, introduced in prior
work on token swapping for trees [1]. These two notions are incomparable: a swap sequence can have either property
without having the other. However, any algorithm that solves token swapping on general graphs must generate an
Ω(n)-straying swap sequence: consider the example of a cycle where each token wants to shift over by 1. For this
reason, we do not consider ℓ-straying algorithms for general graphs, and focus instead on locally optimal algorithms.
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|V |. The weight function w : T → R≥0 assigns to each token a non-negative real weight. As
in standard Token Swapping, the one-to-one functions f1, f2 : T → V map each token to
a unique vertex, giving the starting aand target configurations of W . The weight of an edge
swap is the sum of the weights of the tokens being swapped. The weight of a swap sequence is
the sum of the weights of the constitutive edge swaps. The output to W is the weight of the
lowest-weight swap sequence from the starting to the target configuration.

3 Hardness for standard token swapping
In this section, we prove Theorem 1.1.

Theorem 1.1. For any constant ε > 0, it is NP-hard to approximate token swapping on graphs
within a factor of 14/13− ε.

This improves on the lower bound presented in [18], which is roughly 1001/1000. We obtain
our lower bound via a gap-preserving reduction from Label-Cover, defined below.

Definition 3.1 (Label Cover). An instance of Label-Cover Φ = (X,Y,E,Σ,Π) consists of a
bipartite graph with vertex set X ∪ Y and edge set E, together with a finite alphabet Σ, and a
set of constraints Π = {Πe : e ∈ E}. Each constraint is a function Πe : Σ → Σ.

A labelling of X ∪ Y is a function λ : X ∪ Y → Σ which assigns a label to each vertex. For
x ∈ X, y ∈ Y , a constraint Π(x,y) is satisfied if Π(x,y)(λ(x)) = λ(y).

We denote by OPT (Φ) the maximum fraction of constraints in Φ which can be satisfied
by any labelling. An instance of the promise problem GapLabel-Cover1,γ(Σ) consists of a
label-cover instance Φ with alphabet Σ, together with the guarantee that either OPT (Φ) = 1
or OPT (Φ) < γ. Here, γ is a positive constant close to 0. The following is a seminal result in
the theory of hardness of approximation.

Theorem 3.2. For any constant γ > 0, there exists a sufficiently large constant |Σ| (dependent
only on γ) such that GapLabel-Cover1,γ(Σ) is NP-hard.

Arora and Lund [4] describe a reduction from 3-SAT which, together with Raz’s Parallel
Repetition Theorem [22], implies that Theorem 3.2 remains true even on instances where the
underlying graph is regular. Moreover, we may take the degree to be at least any arbitrarily
large constant by creating many copies of our graph X ∪ Y and adding a copy of the constraint
Π(x,y) between every copy of x and every copy of y. Note that in such an instance |X| = |Y |.
We use a gap-preserving reduction from label-cover to prove Theorem 1.1.

3.1 Construction
Our reduction maps a label cover instance Φ = (X,Y,E,Σ,Π), where the base graph has degree
d, to a token swapping instance K(Φ) = (G,T, f1, f2) as follows.

We construct G by building a gadget Gad(v) for each v ∈ X ∪ Y , as follows. We begin
building Gad(v) with a base vertex bas(v). We add d additional vertices adjacent to bas(v),
which we call assignment vertices. To each assignment vertex in Gad(v) we identify a unique
edge (v, w) ∈ E (where E is the label cover edge set) incident to v; we call this assignment
vertex asg(v, w). We then create |Σ| paths, each with bas(v) as an endpoint. We call these
paths label paths. If v ∈ X, then each label path in Gad(v) contains d− 1 edges; if v ∈ Y , then
each label path in Gad(v) contains 2d− 1 edges. To each label path in Gad(v) we associate a
unique σ ∈ Σ, and denote this label path by lab(v, σ).

If v ∈ X, then we call Gad(v) a left gadget ; otherwise, we call Gad(v) a right gadget. We
call an assignment vertex a left (resp. right) assignment vertex if it is in a left (resp. right)
gadget. We denote the set of left gadgets by L and the set of right gadgets by R.
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Figure 1: A left and right gadget, joined by a satisfaction path; d = 5, |Σ| = 3.

Whenever it is the case that the label pair (σx, σy) satisfies the constraint Π(x,y), we add
a path of d edges connecting the endpoint of lab(x, σx) opposite bas(x) with the endpoint
of lab(y, σy) opposite bas(y). We call such a path a satisfaction path, and denote it by
sat(x, σx, y, σy).

This gives us our construction for G. An illustration of a left and right gadget connected by a
satisfaction path is given in 1. We construct f1 and f2 as follows. For each (x, y) ∈ E, the tokens
on asg(x, y) and asg(y, x) wish to swap positions with each other. That is, f2(f−1

1 (asg(x, y))) =
asg(y, x), and f2(f

−1
1 (asg(y, x))) = asg(x, y). We will refer to such a token as an assignment

token. We will call an assignment token t where f1(t) is a left (resp. right) assignment vertex
a left (resp. right) assignment token. For t ∈ T that are not assignment tokens, f1(t) = f2(t).
That is, t does not wish to move from its starting position.

The intuition behind the reduction is as follows: if there is a labelling λ satisfying every
constraint in Π, then all the assignment tokens that start in Gad(v) can move to their destination
along the single label path associated with λ(v). Then, any assignment token seeking to enter
Gad(v) can travel along this path, and will in the process swap with many of the assignment
tokens leaving Gad(v), bringing them closer to their destination. If, on the other hand, no good
labelling exists, then having so many efficient swaps becomes impossible.

Now for the formal argument: we obtain our inapproximability lower bound via the following
lemma.

Lemma 3.3. Let Φ = (X,Y,Σ,Π) be a label-cover instance whose graph is d-regular. The
following two claims hold:

• If OPT (Φ) = 1, then OPT (K(Φ)) ≤
(
13
4 d2 + d

)
|X ∪ Y |.

• If OPT (Φ) < γ, then OPT (K(Φ)) >
(
7−γ
2 d2 − 5d

)
|X ∪ Y |.

Given the label-cover instance Φ, the token swapping instance K(Φ) can be computed in
polynomial time. Because we can take d to be an arbitrarily large constant and γ an arbitrarily
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small constant, the hardness result of Theorem 1.1 follows from Lemma 3.3. The next two
sections are devoted to proving the first and second parts of Lemma 3.3, respectively.

3.2 Completeness
Let Φ be a label-cover instance as defined in Lemma 3.3 such that OPT (Φ) = 1. Let λ : X∪Y →
Σ be an optimal labelling. We prove the first half of Lemma 3.3 by providing a swap sequence
for K(Φ) using ( 134 d2 + d)|X ∪ Y | swaps.

We start by assigning an arbitrary order to the vertices in X, and an arbitrary order to
the vertices in Y . We denote the ordered vertices x1, ..., x|X| ∈ X and y1, ..., y|Y | ∈ Y . For
each x ∈ X, the order on Y induces an order on the assignment vertices of Gad(x), given
by asg(x, yi1), asg(x, yi2), ..., asg(x, yid), where i1 < i2 < ... < id. We denote this order by
asg(x)1, asg(x)2, ..., asg(x)d. Similarly, for y ∈ Y , the order on X induces an order on the
assignment vertices of Gad(y), which we denote by asg(y)1, asg(y)2, ..., asg(y)d.

Our swap sequence proceeds in four stages, which we sketch here before a detailed description.
In the first stage, we move the assignment tokens that begin on any left gadget Gad(x) onto
the label path associated with λ(x), that is lab(x, λ(x)). This pushes the tokens which began
on λ(x) onto the assignment vertices in Gad(x). The second phase rearranges the tokens
now on Gad(x)’s assignment vertices so that at the end of Stage 4 they will end up on their
target vertices (which were also their starting vertices). The third stage moves the assignment
tokens that begin on any right gadget Gad(y) onto lab(x, λ(x)). The fourth and final stage
iterates over every y ∈ Y . A given iteration has two phases. In the first phase, we move each
assignment token whose target vertex is in Gad(y) to its target vertex, in the process pushing
the assignment tokens in Gad(y), which are now on lab(y, λ(y)), closer to their destination. In
the second phase, we move each assignment token which started in Gad(y) to its destination.
The non-assignment tokens will finish the swap sequence on their target (that is, their starting)
vertices.

Here is a formal description:

1. For Gad(x) ∈ L:

(a) For k = 1, ..., d:
i. Swap along the edge (asg(x)k,bas(x)).
ii. Bubble f−1

1 (asg(x)k) along the first d− k edges of lab(x, λ(x)).

2. For Gad(x) ∈ L:

(a) For k = 1, ..., ⌊d/2⌋:
i. Swap along the edge (asg(x)k,bas(x)).
ii. Swap along the edge (asg(x)d−k,bas(x)).
iii. Swap along the edge (asg(x)k,bas(x)).

3. For Gad(y) ∈ R:

(a) For k = 1, ..., d:
i. Swap along the edge (bas(y), asg(y)k).
ii. Bubble f−1

1 (asg(y)k) along the first d− k edges of lab(y, λ(y)).

4. For ℓ = 1, ..., |Y |:
(a) For k = 1, ..., d:

i. Let t̃ be the token with destination asg(yℓ)d−k+1. Let x̃ ∈ X be chosen so that t̃
starts in Gad(x̃) (in particular, it will have started on asg(x̃, yℓ)). We will claim
(see: Claim 3.4) that t̃ currently lies on the endpoint of lab(x̃, λ(x̃)) opposite
bas(x̃). Bubble t̃ along the d edges of the satisfaction path it is incident to,
which is sat(x̃, λ(x), yℓ, λ(yℓ)).
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ii. Bubble t̃ along the 2d−1 edges of the right label path it is now incident to, which
is lab(y, λ(y)).

iii. Swap along the edge which brings t̃ to its destination, which is (bas(yℓ), f−1
2 (asg(x̃, yℓ)).

(b) For k = 1, ..., d:
i. We will claim (see: Claim 3.5) that f−1

1 (asg(yℓ)k) is of distance k − 1 from the
endpoint of lab(yℓ, λ(yℓ)) opposite bas(yℓ). Bubble f−1

1 (asg(yℓ)k) along the k−1
edges to this endpoint.

ii. Let x̄ ∈ X be the vertex such that f−1
2 (asg(x̄, yℓ)) = f−1

1 (asg(yℓ)k). Bubble
f−1
1 (asg(yℓ)k) along the d edges of sat(x̄, λ(x̄), yℓ, λ(yℓ)).

iii. Bubble f−1
1 (asg(yℓ)k) along the d− 1 edges of lab(x̄, λ(x̄)).

iv. Swap along the edge (bas(x̄), asg(x̄, yℓ)).

Claim 3.4. Consider the start of the ℓ-th iteration, k-th sub-iteration of Stage 4, Phase (a).
Let t̃ and x̃ be as defined in this sub-iteration. At this point in the swap sequence, t̃ lies on the
endpoint of lab(x̃, λ(x)) opposite bas(x̃).

Proof. Let j be the integer so that ℓ is the j-th smallest integer for which there is a satisfaction
path from Gad(x̃) to Gad(yℓ). By our construction, this means the start vertex of t̃ is asg(x̃)j .
Therefore, Step 1(a)ii moves t̃ along the first d−j edges of lab(x̃, λ(x)) to the endpoint opposite
bas(x̃). This means that, at the beginning of Step 4, t̃ is on lab(x̃, λ(x)), and is of distance
j − 1 from the endpoint opposite bas(x̃).

There are j − 1 iterations of Step 4 where Step 4(a)i considers a token from x̃. During each
of these iterations, there is one sub-iteration of 4(b) where Step 4(b)iii bubbles a token from
Gad(yℓ) along lab(x̃, λ(x)) towards bas(x̃). In the process, this token will swap with t̃, bringing
it one spot closer to the endpoint of lab(x̃, λ(x)). At the start of the iteration considering of 4
where t̃ is considered in 4(a), t̃ will be on the endpoint of lab(x̃, λ(x)) opposite bas(x̃).

Claim 3.5. Consider the start of the ℓ-th iteration, k-th sub-iteration of Stage 4, Phase (b).
At this point in the swap sequence, f−1

1 (asg(yℓ)k) is of distance k − 1 from the endpoint of
lab(yℓ, λ(yℓ)) opposite bas(yℓ).

Proof. In Step 3(a)ii, the token starting on asg(yℓ)k was bubbled along the first d− k edges of
lab(yℓ, λ(yℓ)). As such, at the start of Step 4, f−1

1 (asg(yℓ)k) is of distance d+k from the endpoint
of lab(yℓ, λ(yℓ)) opposite bas(yℓ). In Step 4(a), all d assignment tokens with destination in
Gad(yℓ) were bubbled along lab(yℓ, λ(yℓ)), each one swapping with f−1

1 (asg(yℓ)k) once. At
the start of 4(b), then, f−1

1 (asg(yℓ)k) is of distance k − 1 from the endpoint of lab(yℓ, λ(yℓ))
opposite bas(yℓ).

Now, we finish the proof for the completeness case.

Claim 3.6. The above swap sequence brings every token in T to its target vertex.

Proof. Let t ∈ T . We consider six cases. In each case, we show that t ends the swap sequence
on f2(t).

Case 1: f1(t) is an assignment vertex in a left gadget Gad(x). It follows by our
construction that f2(t) is an assignment vertex in a right gadget Gad(y). Because (λ(x), λ(y))
satisfies (x, y), there exists a satisfaction path sat(x, λ(x), y, λ(y)), so there is a path p of
4d edges from f1(t) to f2(t) consisting of: the edge (f1(t),bas(x)), the paths lab(x, λ(x)),
sat(x, λ(x), y, λ(y)), and lab(y, λ(y)), and the edge (bas(y), f2(t)). We argue that the above
swap sequence moves t along p.

Let kX be the index of f1(t) in the order of the assignment vertices of Gad(x). Step 1 moves
t along d− kX + 1 edges of p. Step 2 only affects t if kX = d, in which case t both begins and
ends Step 2 on bas(x). Step 3 does not affect t.

6



Because the order on Gad(x)’s assignment vertices is induced by the order on Y , there are
kX − 1 iterations of Step 4 where there exists (x, yℓ) ∈ E that occur before the iteration where
yℓ = y. In each of these iterations, Step 4(b) has a sub-iteration where x̄ = x, and 4(b)iii
bubbles a token along lab(x, λ(x)), bringing t one edge closer to f2(t).

Therefore, in the iteration of Step 4 where yℓ = y, t begins Step 4(a) on the endpoint of
lab(x, λ(x)) opposite bas(x). There is a sub-iteration of 4(a) where x̃ = x. During this sub-
iteration, 4(a)i bubbles t along the d edges of sat(x, λ(x), y, λ(y)). Step 4(a)ii bubbles t along
the 2d − 1 edges of lab(y, λ(y)), and 4(a)iii brings t to f2(t). All the remaining steps do not
affect t.

Case 2: f1(t) is an assignment vertex in a right gadget Gad(y). By our con-
struction, f2(t) is an assignment vertex in a left gadget Gad(x). Similarly to Case (1), there
is a path p of length 4d from f1(t) to f2(t) consisting of the edge (f1(t),bas(y)), the paths
lab(y, λ(y)), sat(x, λ(x), y, λ(y)), and lab(x, λ(x)), and the edge (bas(x), f2(t)).

Let kY be the index of f1(t) in the order of the assignment vertices of Gad(y). Steps 1 and
2 do not affect t. Step 3 moves t along d − kY + 1 edges of p. There is one iteration of Step 4
where yℓ = y. During this iteration, t is swapped one edge along p for each iteration of 4(a).
Thus, at the beginning of 4(b), t is distance kY − 1 from the endpoint of lab(y, λ(y)) opposite
bas(y).

During the kY -th iteration of 4(b), t is bubbled along kY −1 edges to the end of lab(y, λ(y))
in 4(b)i. During 4(b)ii, x̄ = x, and t is bubbled along the d edges of sat(x, λ(x), y, λ(y)). During
4(b)iii, t is brought to bas(x), and in 4(b)iv t is brought to f2(t).

Case 3: f1(t) is a vertex in a label path in a left gadget Gad(x). By our con-
struction f2(t) = f1(t). Let j = dist(bas(x), f1(t)). Consider the iteration of Step 1 associated
with Gad(x). During the first j sub-iterations of 1(a), t is unaffected by 1(a)i, but 1(a)ii brings
t one edge closer to bas(x). On the j +1-th sub-iteration of 1(a), t begins 1(a)i on bas(x), and
1(a)i brings t to asg(x)j+1. Step 2 brings t to asg(x)d−j . Step 3 does not affect t.

There are d distinct iterations of Step 4 where ℓ is such that (x, yℓ) ∈ E. Because the order
on the assignment vertices of Gad(x) is induced by the order on Y , during the i-th of these d
iterations, it is the case that f2(f

−1
1 (asg(x, yℓ))) = asg(x)i. Therefore, on the (d − j)-th such

iteration, f2(f−1
1 (asg(x, yℓ))) = asg(x)d−j , and there is an iteration of Step 4(b) where 4(b)iv

performs a swap along (bas(x), asg(x)d−j). During each of the remaining j iterations of 4 where
(x, yℓ) ∈ E, there is a sub-iteration of 4(b) where 4(b)iii swaps a token along lab(x, λ(x)), each
reducing t’s distance from f1(t) by 1. Thus, t concludes the swap sequence on its start vertex.

Case 4: f1(t) is a vertex in a label path in a right gadget Gad(y), such that
0 ≤ dist(f1(t),bas(y)) ≤ d − 1. Let j = dist(bas(x), f1(t)). Again, f2(t) = f1(t). Steps 1
and 2 do not affect t. Consider the iteration of Step 3 associated with Gad(y). During of the
first j sub-iterations of 3(a), Step 3(a)ii swaps a token with t, decreasing the distance from t to
bas(y) by 1, until t begins the (j+1)-th sub-iteration of 3(a) on bas(y). Then, on the (j+1)-th
sub-iteration of 3(a), Step 3(a)i brings t onto asg(y)d−j .

Consider the iteration of Step 4 where yℓ = y. During the (d − j)-th sub-iteration of 4(a),
Step 4(a)iii performs a swap along (bas(y), asg(y)d−j), bringing t to bas(y). During each of
the j subsequent sub-iterations of 4(a), Step 4(a)ii brings t one spot further from bas(y) along
lab(y, λ(y)). Step 4(b) does not affect t, nor do any subsequent iterations of 4, so t ends the
swap sequence on its target vertex.

Case 5: f1(t) is a vertex in a label path in a right gadget Gad(y), such that
d ≤ dist(f1(t),bas(y)) ≤ 2d − 1. Let j = dist(bas(x), f1(t)). Again, f2(t) = f1(t). Steps
1-3 do not affect t. Consider the iteration of 4 where yℓ = y. During each of the first 2d− 1− j
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sub-iterations of 4(a), Step 4(a)ii performs a swap involving t, bringing t one vertex closer to
the endpoint of lab(y, λ(y)) opposite bas(y). During the (2d− j)-th sub-iteration of 4(a), 4(a)ii
swaps t onto sat(x, λ(x), y, λ(y)), where x ∈ X is the vertex such that f2(f−1

1 (asg(y)d−j)) is an
assignment vertex in Gad(x). All the remaining sub-iterations of 4(a) do not affect t.

During the (j − d + 1)-th sub-iteration of 4(b), Step 4(b)ii swaps t back onto lab(y, λ(y)).
During each of the remaining 2d− j − 1 sub-iterations of 4(b), 4(b)ii brings t one spot closer to
bas(y), so t ends 4(b) at distance j from bas(y), on f1(t).

Case 6: f1(t) is a vertex in a satisfaction path sat(x, σx, y, σy), and is not also
an endpoint of a label path. In this case, f2(t) = f1(t). If λ(x) ̸= σx or λ(y) ̸= σy, then
t is never affected by the swap sequence. Therefore, we assume that λ(x) = σx and λ(y) = σy.
Steps 1, 2, and 3 do not affect t. Step 4 only affects t on the iteration where yℓ = y. During this
iteration, there is one sub-iteration of 3(a) where x̃ = x. During this sub-iteration, Step 4(a)ii
swaps t with a neighboring token, but remains on the satisfaction path. Once Step 4(a) finishes
executing, there is one sub-iteration of 4(b) where x̃ = x. During this sub-iteration, Step 4(b)ii
swaps t back to f1(t).

Now, we count the swaps in the sequence. For each Gad(x) ∈ L, Step 1 performs d(d+1)
2

swaps, resulting in a total of d(d+1)
4 |X∪Y | swaps. For each Gad(x), Step 2 performs at most 3d

2

swaps, for a total of 3d
4 |X∪Y |. Like Step 1, Step 3 performs a total of d(d+1)

4 |X∪Y | swaps. Each
time Step 4(a) is executed, it performs 3d swaps on each of d assignment tokens. Each time Step
4(b) is executed, it performs d(d− 1)/2 swaps on lab(y, λ(y)), as well as 2d swaps for each of d
right-outer tokens. In sum, Step 4 performs 3d2+(d2−d)/2+2d2 = 11d2/2−d/2 swaps on each
iteration, and is executed |Y | = 1

2 |X∪Y | times, accounting for a total of 11
4 d2|X∪Y |− 1

4d|X∪Y |
swaps. In total, the procedure performs

(
13
4 d2 + d

)
|X ∪ Y | swaps.

3.3 Soundness
In this section, we will prove the second half of Lemma 3.3: if OPT (Φ) < γ, then OPT (K(Φ)) >(
7−γ
2 d2 − 5d

)
|X ∪ Y |.

Let Φ be a label-cover instance such that OPT (Φ) < γ, and let SOPT denote the optimal
sequence of swaps on K(Φ). For a token t ∈ T , consider the subsequence of SOPT in which t is
one of the tokens being swapped. This subsequence traces out a walk in G. Consider the path
from f1(t) to f2(t) obtained by removing all the closed sub-walks from this walk. We denote
this path Swap(t).

We now partition the assignment tokens into two types: detour tokens and non-detour
(assignment) tokens.

Definition 3.7 (Detour token). A token t is a detour token if:
• f1(t) is an assignment vertex.
• Swap(t) has more than 4d edges.

We will refer to all other assignment tokens as non-detour tokens. This allows us to introduce
the following notation: detL (resp. detR) is the number of detour tokens t such that f1(t) is a
left (resp. right) assignment vertex. We will denote by Det the set of detour tokens, and Ndet
the set of non-detour tokens.

We obtain lower bounds on two quantities: Bsat, the number of swaps occurring within
satisfaction paths, and BGad, the number of swaps occurring within gadgets.

Bsat ≥ (d2 − 3d)|X ∪ Y |+ d

2
(detL + detR) (1)

BGad >

(
5− γ

2
d2 − 2d

)
|X ∪ Y | − d

2
(detL + detR) (2)
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Combining these inequalities proves the second half of Lemma 3.3.

3.3.1 Swaps on satisfaction paths

First, we prove inequality 1.

Observation 3.8. If t is a detour token, then Swap(t) contains at least three satisfaction paths
as subpaths.

Observation 3.8 follows from the construction of G; any path of length greater than 4d with
a left assignment vertex and a right assignment vertex as endpoints traverses at least three
satisfaction paths.

Thus we can associate to each detour token t a sequence of at least three satisfaction paths.
We refer to the path(s) in this sequence which are not the first or last path as the intermediate
path(s) of t. Each detour token has at least one intermediate path.

Claim 3.9. SOPT contains at least d
2 (detL + detR) swaps where at least one token is a detour

token visiting one of its intermediate paths.

Proof. There are detL + detR detour tokens, each of which participates in at least d swaps on
intermediate paths. Each swap involves at most 2 tokens, hence the bound of d

2 (detL+detR).

Furthermore, let ext(t) denote the number of swaps that t participates in on satisfaction
paths that are not intermediate paths. For t ∈ Det, ext(t) ≥ 2d. For t ∈ Ndet, ext(t) ≥ d.
Unfortunately, we cannot simply add these quantities together to obtain a lower bound on the
number of swaps on satisfaction paths. This is because a swap may be between two different
assignment tokens, so adding these quantities would risk double-counting. However, we can
obtain an upper-bound on the amount of double-counting that can take place, using the following
definition.

Definition 3.10 (Efficient satisfaction swap). A swap between assignment tokens t1 and t2 is
an efficient satisfaction swap if one of the following is the case:

1. neither t1 nor t2 is a detour token,

2. one of t1 or t2 is not a detour token, the other is a detour token not on an intermediate
path, and the swap is contained in Swap(t), where t is the detour token, or

3. t1 and t2 are detour tokens, neither is on an intermediate path, and the swap is contained
in Swap(t), where t is t1 or t2.

Let ksat denote the number of efficient satisfaction swaps in SOPT . Combining Definition 3.10
with Claim 3.9, we obtain the following inequality:

Bsat ≥
d

2
(detL + detR) +

∑
t∈Det

ext(t) +
∑

t∈Ndet

ext(t)− ksat

which implies that

Bsat ≥
d

2
(detL + detR) + 2d(detL + detR) + d

(
d|X ∪ Y | − (detL + detR)

)
− ksat. (3)

We give an upper bound on ksat. We do so by proving individual upper bounds on each of the
three types of efficient satisfaction swaps outlined in Definition 3.10.

Swaps of type 1: neither t1 not t2 is a detour token. Because the label-cover graph is simple,
each edge (x, y) ∈ E is mapped by our reduction to a unique pair of assignment vertices, those
being asg(x, y) and asg(y, x). Therefore, any satisfaction path sat(x, σx, y, σy) is traversed
by at most two non-detour assignment tokens, those being f−1

1 (asg(x, y) and f−1
1 (asg(y, x).

9



It follows that any non-detour token can swap on a satisfaction path with at most one other
non-detour token Because there are d|X ∪Y | − (detL + detR) non-detour assignment tokens, we
obtain the following upper bound on swaps of type 1:

1

2

(
d|X ∪ Y | − (detL + detR)

)
.

Swaps of type 2: one of t1 or t2 is not a detour token, and the other is a detour token not on
an intermediate path. Again, any satisfaction path sat(x, σx, y, σy) is traversed by at most two
non-detour assignment tokens, those being f−1

1 (asg(x, y) and f−1
1 (asg(y, x). A detour token

moving across sat(x, σx, y, σy) can swap with only one, depending on the direction in which it
is moving. Because each detour token traverses exactly two non-intermediate satisfaction paths,
the number of swaps of type 2 is at most:

2(detL + detR)

Swaps of type 3: t1 and t2 are detour tokens, but neither is on an intermediate path. Each
detour token participates in at most a combined 2d swaps on the first and last satisfaction paths
that it visits. Each of these swaps involves at most 2 such tokens, implying that the number of
swaps of type 3 is at most:

d(detL + detR).

Combining these bounds with inequality 3, we are left with the following lower bound on Bsat:

Bsat ≥
d

2
(detL + detR) + d

(
d|X ∪ Y | − (detL + detR)

)
+ 2d(detL + detR)

− 1

2

(
d|X ∪ Y | − (detL + detR)

)
− 2(detL + detR)− d(detL + detR)

= d2|X ∪ Y |+ 3d

2
(detL + detR)−

d

2
|X ∪ Y | −

(
d+

5

2

)
(detL + detR)

=

(
d2 − d

2

)
|X ∪ Y |+

(
d− 5

2

)
(detL + detR)

≥
(
d2 − 3d

)
|X ∪ Y |+ d

2
(detL + detR)

as desired.

3.3.2 Swaps on gadgets

Next, we prove inequality 2:

BGad >

(
5− γ

2
d2 − 2d

)
|X ∪ Y | − d

2
(detL + detR).

Any assignment token t participates in at least 3d− 2 swaps within label paths: d− 1 swaps on
a left label path and 2d−1 swaps on a right label path. Moreover, we can identify the two label
paths, one in a left gadget and one in a right gadget, which come at either end of Swap(t). We
refer to these paths as the first and last legs of t. Note that the first leg of t comes in the gadget
containing t’s start vertex, and the last leg comes in the gadget containing t’s target vertex.

A swap which corresponds to an edge in the first leg of one token t1 and the last leg of
another token t2 we will call an efficient gadget swap. Note that such a swap appears in both
Swap(t1) and Swap(t2). We denote the number of efficient gadget swaps in SOPT by kGad, and
we denote the number of efficient gadget swaps occurring within the gadget Gad(v) by kGad(v).
We observe that

BGad ≥ (3d2 − 2d)|X ∪ Y | − kGad (4)
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and we seek an upper bound on kGad accordingly.
To this end, we define the outflow of a label path p to be the number of tokens whose first

leg is p, and the inflow of p to be the number of tokens whose last leg is p. For Gad(v) ∈ L∪R,
we call the label path in Gad(v) with the maximum outflow (resp. inflow) the out-dominant
(resp. in-dominant) label path of Gad(v). We denote by out(Gad(v)) (resp. in(Gad(v))) the
outflow (resp. inflow) of the out-dominant (resp. in-dominant) label path in Gad(v). We obtain
two inequalities.

Claim 3.11. For any gadget Gad(v),

• kGad(v) ≤ d(out(Gad(v)))

• kGad(v) ≤ d(in(Gad(v))).

Proof. We prove the first inequality. Let t ∈ T be an assignment token. Suppose f2(t) is in
Gad(v). Then t participates in at most out(Gad(v)) efficient gadget swaps on Gad(v), as at
most out(Gad(v)) such swaps can occur on the label path taken by t. There are d tokens t
where f2(t) is an assignment vertex in Gad(v), hence the bound of d(out(Gad(v))). The proof
of the second inequality is symmetric.

Claim 3.12. If OPT (Φ) < γ, then∑
x∈X

out(Gad(x)) +
∑
y∈Y

in(Gad(y)) <
(
1 + γ

2

)
d|X ∪ Y |+ detL

∑
x∈X

in(Gad(x)) +
∑
y∈Y

out(Gad(y)) <
(
1 + γ

2

)
d|X ∪ Y |+ detR

Proof. We prove the first half of the claim; the proof of the second half is symmetric. Suppose
for contradiction the first inequality does not hold. The left side of the inequality counts two
quantities: (a) the total outflow from the out-dominant label path of each left gadget, plus (b)
the total inflow to the in-dominant label path of each right gadget. Each left assignment token
can contribute at most 1 to (a) and at most 1 to (b). Because d|X ∪ Y | is the total number
of assignment tokens and the graph is regular (so |X| = |Y |), there are exactly (d/2)|X ∪ Y |
left assignment tokens. As a result, even if the maximum number of left assignment tokens
are contributing to only one of (a) or (b), at least γ

2 (d|X ∪ Y |) + detL contribute to both.
Therefore, there are at least γ

2 (d|X ∪ Y |) non-detour tokens starting in left gadgets which have
an out-dominant label path as a first leg and an in-dominant label path as a last leg. Let t
be such a token. Because t is a non-detour token, there is a satisfaction path between t’s first
and last legs. By our construction, the constraint in the label cover instance associated with
t is satisfied by the labelling corresponding to t’s first and last legs. Consider a labelling of Φ
which assigns to x ∈ X the label corresponding to the out-dominant label path of Gad(x), and
to y ∈ Y the label corresponding to the in-dominant label path of Gad(y). There are at least
γ|E| constraints satisfied by this labelling, which is a contradiction.

We average the inequalities in Claim 3.11 and rearrange some terms to obtain the new bound
for any Gad(v):

kGad(v)

d
≤ out(Gad(v)) + in(Gad(v))

2

and we average the two inequalities in Claim 3.12 to obtain∑
v∈X∪Y

out(Gad(v)) + in(Gad(v))
2

<

(
1 + γ

2

)
d|X ∪ Y |+ detL + detR

2
.
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Combining these bounds, we arrive at the following inequality:∑
v∈X∪Y

kGad(v)

d
<

1 + γ

2
d|X ∪ Y |+ detL + detR

2

which implies

kGad <
1 + γ

2
d2|X ∪ Y |+ d

2
(detL + detR)

which, combined with inequality 4:

BGad ≥ (3d2 − 2d)|X ∪ Y | − kGad

implies inequality 2:

BGad >

(
5− γ

2
d2 − 2d

)
|X ∪ Y | − d

2
(detL + detR).

4 Hardness for 0/1-Weighted Token Swapping
In this section, we will prove the following theorem:

Theorem 1.2. For any constant ε > 0, it is NP-hard to approximate weighted token swapping
with {0, 1} weights on n vertices within a factor of (1− ε) · lnn.

We proceed via a reduction from the Set Cover problem, defined below.

Definition 4.1 (Set Cover). An instance of Set-Cover Φ = (U, {Si}1≤i≤k) consists of a finite
universe set U , together with subsets S1, ..., Sk ⊆ U . We seek to find the size of the smallest
collection of subsets in {S1, ..., Sk} so that each element of U is in at least one subset.

Dinur and Steurer [13] prove the following theorem:

Theorem 4.2. For any constant δ > 0, it is NP-hard to approximate Set Cover within a
factor of (1− δ) · ln(|U |+ k).

We give a gap-preserving reduction from Set Cover to Weighted Token Swapping.

Construction Given a Set Cover instance Φ = (U, {Si}1≤i≤k), we produce a Weighted
Token Swapping instance K as follows. For each u ∈ U , we create two vertices, v1u and v2u.
We also create two tokens, each of weight 0, t1u and t2u, so that f1(t1u) = v2u and f1(t

2
u) = v1u, and

f2(t
1
u) = v1u and f2(t

2
u) = v2u. That is, the tokens on v1u and v2u wish to swap with each other.

For each Si ∈ {Si}1≤i≤k, we create a single vertex vi. We also create a token ti of weight 1 such
that f1(ti) = f2(ti) = vi, that is, the token starting on vi wishes to stay there. Finally, for each
u ∈ Si, we add the edges (v1u, vi) and (v2u, vi). An example of such a construction is given in
Fig. 2.

We make the following claim.

Claim 4.3. OPT (K) = 2 ·OPT (Φ).

Before giving the proof, we note that the above claim is enough to prove Theorem 1.2. The
number of vertices n in the Weighted Token Swapping is 2|U | + k. Therefore, to attain a
reduction from (1− δ) ln(|U |+ k)-approximate Set Cover, we set ε (a constant dependent on
δ) to be sufficiently small so that (1− ε) ln(n) = (1− ε) ln(2|U |+ k) ≤ (1− δ) ln(|U |+ k). The
proof of Claim 4.3 is given below.
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Figure 2: The graph for a weighted token swapping instance constructed from a set cover
instance with U = {u,w, x, y} and S1 = {u,w}, S2 = {w, x}, and S3 = {w, x, y}. Pairs
of black vertices correspond to elements of U , while blue vertices correspond to sets. Two
tokens from blue vertices must be displaced for tokens on black vertices to be moved to their
destinations.

Proof. First, we show OPT (K) ≤ 2 · OPT (Φ). Let F ⊆ {Si}1≤i≤k be the smallest family of
input subsets covering U . We perform the following sequence of swaps. For each Si ∈ F , let
a ∈ Si be an arbitrary element of Si which is not contained in any other set in F (such an a
must exist, or we could remove Si from F ). We perform the following sequence of swaps, which
will bring t1u and t2u to their destinations, for any u ∈ Si.

1. Swap t1a with ti, so t1a is on vi.

2. For any u ∈ Si so that u ̸= a and t1u and t2u have not already been moved to their target
vertices:

(a) Swap t1u with t1a.
(b) Swap t1u with t2u.
(c) Swap t2u with t1a.

This brings t1u and t2u to their destinations, and t1a again on vi.

3. Swap t1a with t2a.

4. Swap t2a with ti.

This brings t1u and t2u to their destinations for every u ∈ Si, and leaves ti on its destination
vertex. Moreover, the only two steps in the above sub-sequence involving a weight-1 token are
1 and 4, so the total weight of the sequence is 2. Because we repeat the sequence for every
Si ∈ F , the total weight of the optimal swap sequence is at most 2 · |F | = 2 ·OPT (Φ).

Now, we show 2 ·OPT (Φ) ≤ OPT (K). Let Tmoved be the set of weight-1 tokens moved from
their starting vertex in the optimal swap sequence on K. Each such token contributes at least
2 to the weight of the optimal swap sequence, as each token is moved from its start vertex, and
during a later swap is moved back (because no two weight-1 tokens have adjacent start vertices,
there is no double-counting between these swaps). For each u ∈ U , the tokens t1u and t2u want to
switch positions with each other, but can only do so if an adjacent weight-1 token is displaced
from its start vertex. A weight-1 token is only adjacent to t1u and t2u, however, if it corresponds
to an input subset Si. Therefore, at least OPT (Φ) weight-1 tokens must be displaced from their
start vertices, so OPT (K) ≥ 2 ·OPT (Φ).
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5 Additional barriers to improved algorithms
In this section, we discuss two barriers to obtaining a (4−ε)-approximation for unweighted token
swapping on graphs. The first barrier is against a broad class of algorithms that encompasses
all known approximation algorithms for token swapping. The second barrier shows that the
technique used to prove approximation factors for existing algorithms cannot be used to prove
an approximation factor of 4− ε for any ε > 0.

5.1 A barrier against a general class of algorithms
We define the following property for swap sequences on a Token Swapping instance.

Definition 5.1 (Local Optimality). A swap sequence is locally optimal if every swap between
tokens t1 and t2 does not move both t1 and t2 further from their destinations.

All known algorithms for token swapping on trees or on general graphs work by returning
the length of a swap sequence that is locally optimal.

Theorem 1.3. For any δ > 0, there exists a token swapping instance K so that for any locally
optimal swap sequence of length k, (4− δ) ·OPT (K) ≤ k.

We construct a token swapping instance K as follows. See Fig. 3. Let p and q be parameters
to be decided later. We can assume p is even. We begin with a cycle Cout of length p ·q. Starting
with an arbitrary vertex, we label the vertices v0, ..., vp·q−1 in one direction (say, clockwise)
around the cycle. We partition the vertices of Cout into p consecutive “segments." For any
0 ≤ i ≤ p− 1, the vertices {viq, ..., viq+(q−1)} form the i-th segment. If i is even, we call such a
segment an even segment ; else it is an odd segment. For any j so that vj is in an even segment,
the token starting on vj has target vertex vj+2q (mod pq). If vj is in an odd segment, the token
starting on vj has target vertex vj−2q (mod pq). That is, each token in an even segment wants to
move to the corresponding vertex in the next even segment in the clockwise direction, while each
token in an odd segment wants to move to the next odd segment over in the counter-clockwise
direction. For each 0 ≤ j ≤ pq, we add a path Pj of 2q− 2 edges between vj and vj+2q. All the
vertices on this path (except the endpoints in Cout) wish to stay on their start vertices. We call
these paths inner paths. We call the vertices in Cout outer vertices, and all other vertices inner
vertices. Tokens that begin on outer vertices (which also have destinations on outer vertices)
we call outer tokens ; other tokens are inner tokens. Outer tokens with start and target vertices
in even segments we will call even tokens ; other outer tokens we will call odd tokens. Note that
each outer token begins on a vertex connected to its target vertex by an inner cycle. The outer
cycle, together with a single inner cycle, is depicted in Fig. 3.

Claim 5.2. OPT (K) ≤ pq2.

Proof. Here is a swap sequence bringing every token to its destination vertex:

1. For j = 0, ..., pq − 1:

(a) If f−1
1 (vj) is an odd token, bubble it counter-clockwise around Cout across q edges.

2. For j = 0, ..., pq − 1:

(a) If f−1
1 (vj) is an odd token, bubble it counter-clockwise around Cout across q edges.

We check that the above swap sequence brings every token to its target vertex. No swap occurs
on an edge in an inner cycle, so none of the inner tokens are displaced. Because the vertices are
considered in each loop in ascending order, whenever a token f−1

1 (vj) which began in an odd
segment is bubbled q edges counter-clockwise, the token f−1

1 (vj−1) was just bubbled q edges
counter-clockwise itself during the previous iteration (if vj−1 is in an odd segment). Therefore,
f−1
1 (vj) only swaps with even tokens. Thus, each token which began in an odd segment winds
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Figure 3: An (incomplete) graph for a token swapping instance where p = 8, q = 4. The
diagram depicts the outer cycle and one inner cycle, but leaves out the remaining inner cycles
for legibility. In the outer cycle, vertices in even segments are colored blue, while those in
odd segments are colored black. The token starting on v0 has target v8, the token starting
on v8 has target v16, the token starting on v16 has target v24, and the token starting on v24
has target v0.

up being bubbled counter-clockwise 2q times, and each token which began in an even segment
is bubbled clockwise 2q times.

Claim 5.3. Let S be the shortest locally optimal swap sequence bringing every token to its
destination, and let k be the length of S. Then 4pq2 − 5pq − 8q2 ≤ k.

We observe that for 0 ≤ j ≤ 2q − 1, the inner paths Pj , Pj+2q, Pj+4q, ..., Pj+q(p−1) form a
cycle, which we will call the j-th inner cycle, denoted Cin

j . Moreover, every token begins on
a vertex in the same inner cycle as its target vertex. Claim 5.3 will follow from the next two
claims.

Claim 5.4. Let a, b ∈ V be in the same inner cycle Cin
j , and let Pa,b be a path from a to b

containing at least one edge not in Cin
j . Then dist(a, b) + 2 ≤ |Pa,b|, where |Pa,b| is the number

of edges in Pa,b.

Proof. We will prove the claim in two steps. First, we will modify Pa,b to obtain a path P ′
a,b

which is the same length as Pa,b and which does not contain any edges from inner cycles other
than Cin

j , but which contains at least one edge from Cout. Then, we will show that any path
from a to b which contains edges from (and only from) both Cin

j and Cout has length at least
dist(a, b) + 2.

Suppose Pa,b contains edges outside of Cin
j . If Pa,b does not contain edges from a different

inner cycle, then we set P ′
a,b to Pa,b and move on to the argument in the next paragraph.

Otherwise, Pa,b contains an edge e from a different inner cycle. Let ℓ be such that Cin
ℓ is the

inner cycle containing e. Suppose e is, in particular, the first edge to appear in Pa,b which is in
an inner cycle other than Cin

j . Therefore, e is incident to a vertex vℓ′ so that ℓ′ ≡ ℓ (mod 2q),
and e is contained in either Pℓ′ or Pℓ′−2q. We can assume by symmetry that e is contained in
Pℓ′ . Because Pa,b is a shortest path, it is simple. By the construction of the graph then, Pa,b

contains the entirety of Pℓ′ . Let vj′ be the last vertex in Cin
j preceding vℓ′ in Pa,b. Because e is

15



incident to an outer vertex, the path between vj′ and vℓ′ only has edges in Cout. The length of
the sub-path of Pa,b from the appearance of vj′ to vℓ′+2q is then |ℓ′ − j′| + 2q − 2. We replace
this sub-path with the following path: the shortest path in Cin

j from vj′ to vj′+2q, then the
shortest path in Cout from vj′+2q to vℓ′+2q. The length of this path is at most |ℓ′ − j′|+2q− 2,
so we have not increased the length of Pa,b, but we have decreased the number of edges from an
inner cycle other than Cin

j . We repeat this procedure until we obtain a path P ′
a,b which does

not contain any edges from inner cycles other than Cin
j .

We have a simple path P ′
a,b which contains edges only from Cin

j and Cout, and at least one
edge from Cout. Then there exists a consecutive sub-path in P ′

a,b of edges from Cout of length 2q,
as this is the number of edges needed to go from one vertex in Cin

j to another while traversing
Cout. However, this sub-path can be replaced by the sub-path of length 2q − 2 between its
endpoints using only edges from Cin

j . Therefore, dist(a, b) + 2 ≤ |P ′
a,b| = |Pa,b|.

For a, b in Cin
j , and for c not in Cin

j which is a neighbor of a, it is the case that dist(a, b) <
dist(c, b). Otherwise, there would be a path from a to b containing the edge (a, c) of length at
most dist(a, b) + 1, even though (a, c) is not in Cin

j , which contradicts Claim 5.4. Because each
token starts in the same inner cycle as its target vertex, this implies that any swap across an
edge in Cout is not locally optimal. We proceed by proving a lower bound on the number of
swaps needed to bring all the tokens in Cin

j to their target vertex without leaving Cin
j .

Claim 5.5. For any j, the number of swaps needed to bring all of the tokens on Cin
j to their

target vertices while swapping only along edges in Cin
j is greater than 2pq − 5p/2− 4q.

Proof. Suppose without loss of generality that vj is in an even segment; by our construction,
all the other outer vertices in Cin

j are also in even segments. Moreover, each outer vertex in
Cin

j begins with a token which wants to move to the closest outer vertex in Cin
j in the clockwise

direction, of distance 2q − 2 away. All inner tokens want to stay on their start vertices. Note
that Cin

j has length p(q − 1), and contains p/2 outer vertices.
In a given swap, one token in Cin

j is moved clockwise, and the other is moved counter-
clockwise. For a token t, let clock(t) be the number of swaps in the optimal swap sequence
on Cin

j in which t is moved clockwise, and counter(t) the number of times its moved counter-
clockwise.

Let tin be an inner token in Cin
j . Because tin has the same start and target vertex, clock(tin)−

counter(tin) ≡ 0 (mod p(q − 1)). If tout is an outer vertex in Cin
j , then similarly clock(tout) −

counter(tout) ≡ 2q − 2 (mod p(q − 1)). Because each swap moves one token clockwise and
one token counter-clockwise,

∑
tin∈Cin

j
clock(tin)− counter(tin) = 0. It follows that there is at

least one token tcounter ∈ Cj
in where counter(tcounter) > clock(tcounter) (else, each token in Cj

in

would end the swap sequence on its start vertex). Moreover, by our construction, the distance
from tcounter’s start vertex to its target vertex in the counter-clockwise direction is at least
p(q − 1)− 2q + 2, so counter(tcounter)− clock(tcounter) ≥ p(q − 1)− 2q + 2.

If there is an additional token t′counter so that p(q − 1) − 2q + 2 ≤ counter(t′), then there
are at least 2(p(q − 1)− 2q) > 2pq − 5p/2− 4q swaps in the optimal swap sequence, as desired.
Otherwise, there are at least p/2−1 outer tokens in Cin

j which are not moved counter-clockwise
at least p(q− 1)− 2q times. Each is involved in at least 2q− 2 swaps where it is the token being
moved clockwise. Moreover, at most 1 of these swaps is with tcounter, because if a pair of tokens
swap at least twice, then both swaps can be removed to yield an equivalent swap sequence. This
results in a total of at least

(p/2− 1)(2q − 3) + counter(tcounter) ≥ (p/2− 1)(2q − 3) + p(q − 1)− 2q

> 2pq − 5p/2− 4q

swaps, as desired.
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Because there are 2q inner cycles, the total number of swaps taken by a sequence with only
locally optimal swaps is at least 2q(2pq − 5p/2 − 4q) = 4pq2 − 5pq − 8q2, proving Claim 5.3.
We set p, q to be large enough so that 4pq2 overtakes the smaller-order terms, so that for the
parameter δ,

4− δ < (4pq2 − 5pq − 8q2)/pq2 < 4.

This proves Theorem 1.3.

5.2 A barrier against a proof technique
All known approximation algorithms for token swapping on general graphs and trees [18] [35]
[2] use the following approach to bound the approximation factor. Given a Token Swapping
instance K, consider the quantity total(K), the sum across K’s tokens of the distance from the
token’s start vertex to its target vertex:

total(K) :=
∑
t∈T

dist(f1(t), f2(t)).

We observe that 1
2 total(K) ≤ OPT (K), as each swap moves at most two tokens closer to their

destinations. Proofs of correctness for approximation algorithms then show that they yield
swap sequences of length at most c · total(K), which implies that the given algorithm is a 2c-
approximation. A natural approach to obtaining a (4 − ε)-approximation for token swapping
on graphs, then, is to show that on any input an algorithm yields a swap sequence of length at
most c · total(K), for some c < 2. Below, we show that this approach will not work.

Theorem 5.6. For any δ > 0, there exists a token swapping instance K so that OPT (K) ≥
(2− δ) · total(K).

We give the following construction. Let p, q be positive integer parameters to be specified
later. Our Token Swapping instance K consists of a cycle of length p · q. Starting with
an arbitrary vertex, we label the vertices v0, ..., vp·q−1 clockwise around the cycle. For each
0 ≤ i ≤ p − 1, the token starting on vi·q has destination v(i+1)·q (mod pq) (that is, it wants to
move q spots clockwise). All other tokens begin on their target vertices.

In this construction, total(K) = pq. The next claim will allow us to prove Theorem 5.6.

Claim 5.7. OPT (K) ≥ 2pq − 2q − p+ 1.

Proof. The proof is similar to that for Claim 5.5. For a token t, let clock(t) be the number of
times t is involved in a swap that moves it clockwise, and counter(t) then number of times it is
moved counter-clockwise. Because each swap moves one token clockwise and one token counter-
clockwise,

∑
t∈T clock(t) − counter(t) = 0. It follows that there is at least one token tcounter

where counter(tcounter) > clock(tcounter) (else, every token would end the swap sequence on its
start vertex). Moreover, counter(tcounter)− clock(tcounter) ≥ pq− q, as by our construction the
distance from each token’s start vertex to target vertex is at least pq−q in the counter-clockwise
direction.

If there is an additional token t′counter so that pq − q ≤ counter(t′counter), then tcounter and
t′counter combined participate in at least 2pq − 2q swaps, proving the claim. Otherwise, there
are at least p− 1 tokens which have the property that they do not start on their target vertex,
and they are not moved counter-clockwise at least pq − q times, which, by our construction,
means each needs to be moved clockwise at least q times. Because each swap moves exactly one
token clockwise, there are at least (p − 1)q swaps involving these tokens. Moreover, each such
token swaps at most once with tcounter, because if a pair of tokens swap at least twice, then
both swaps can be removed to yield an equivalent swap sequence. This results in a total of at
least pq − q + (p− 1)q − (p− 1) = 2pq − p− 2q + 1 swaps, as desired.
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Thus, we can set p, q to be large enough that the following inequality holds:

(2qp− p− 2q + 1)/pq > (2− δ).

This proves 5.6. Therefore, any (4 − ε)-approximation for Token Swapping would require a
strategy for lower-bounding OPT (K) that differs substantially from present techniques.
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A New 4-approximation
We give a new 4-approximation for Token Swapping on graphs, inspired by the 2-approximation
for trees given by [35].

Given a token swapping instance K = (G,T, f1, f2) on n vertices, we observe that the
functions f1 and f2 induce a permutation π on [n], which maps a vertex v to the target of
the token starting on v. Moreover, π can be decomposed in polynomial time into cycles π =
C1 ◦ ... ◦Ck. The cycle Ci consists of vertices vi,0, ..., vi,ℓi−1, where the destination for the token
starting on vi,j is vi,j+1 (mod ℓi). That is, f2(f−1

1 (vi,j)) = vi,j+1 (mod ℓi). Our algorithm proceeds
in k phases. In the i-th phase, the tokens in Ci are brought to their targets, while all other
tokens end the phase on the same vertices they started it on. Below is a formal description.

1. For each i = 1, ..., k:

(a) For each j = ℓi − 1, ℓi − 2, ..., 1:
i. Set ti,j−1 to be the token currently on vi,j−1, set ti,j to be the token currently on

vi,j , and set pi,j to be a shortest path between them.
ii. Bubble ti,j−1 along pi,j until it reaches vi,j .
iii. Bubble ti,j in reverse order along pi,j until it reaches vi,j−1.

Claim A.1. For i ∈ [k], for j′ ∈ {0, ..., ℓ1 − 1}, the token which begins the i-th phase on vi,j′

ends the phase on vi,j′+1.

Proof. If j′ ̸= ℓi−1, then during the iteration of the inner loop where j = j′ + 1, the token
beginning the iteration on vi,j′ is moved during Step ii to vi,j′+1. If, during any other iteration
of the inner loop, this token is knocked from its current vertex by Step ii, it is moved back by
Step iii.

If j′ = ℓi−1, then the token which begins the i-th phase on vi,j′ is set to ti,j during every
iteration of the inner loop. In the first iteration, j = ℓi − 1, and this token is on vi,ℓi−1. In the
inductive case, it is brought from vi,j to vi,j−1 by Step iii. of the iteration.

Moreover, each token which begins the i-th phase on a vertex not in Ci ends the phase on the
same vertex. If it is displaced by Step ii during a given iteration of the inner loop, then it is
moved back to the vertex it was previously on during Step iii. As a consequence, Claim A.1
implies that each token that starts on a vertex in Ci is moved to its destination during the i-th
phase. Next, we will show that the algorithm is indeed a 4-approximation.

Claim A.2. Let OPT (K) be length of the shortest swap sequence for K, and let ALG(K) be
the length of the swap sequence returned by the above algorithm. Then OPT (K) ≤ ALG(K) ≤
4 ·OPT (K).
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Proof. Let total(K) denote the sum of the distances between tokens and their targets in K:

total(K) :=
∑
t∈T

dist(f1(t), f2(t)).

Then 1
2 total(k) ≤ OPT (K), as each swap can bring at most two tokens closer to their target

vertex. We will show that ALG(K) < 2 · total(K).
Because each vertex is contained in exactly one cycle in π, we can rewrite total(K) as:

total(K) =
k∑

i=1

ℓi−1∑
j=0

dist(f1(f−1
2 (vi,j)), vi,j)

=
k∑

i=1

ℓi−1∑
j=0

dist(vi,j−1 (mod ℓi), vi,j).

For each iteration of the inner loop in the swap sequence, there is a unique choice of i ∈ [k],
j′ ∈ {0, ..., ℓi − 2}, so that i = i′ and j = j′ + 1. During this iteration, Step ii performs
dist(vi,j , vi,j+1) swaps, and Step iii performs dist(vi,j , vi,j+1) − 1 swaps. Therefore, the total
number of swaps in the sequence is:

ALG(K) =
k∑

i=1

ℓi−1∑
j=1

2 · dist(vi,j−1, vi,j)− 1

<
k∑

i=1

ℓi−1∑
j=0

2 · dist(vi,j−1 (mod ℓi), vi,j)

= 2 · total(K),

as desired.
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