

Track: Rising Stars of Mechanical Engineering Celebration & Showcase

Surajit Dey, and Ravi Kiran Yellavajjala
School of Sustainable Engineering and the Built Environment, Arizona State University

IMECE2024-148670
Poster # RS82

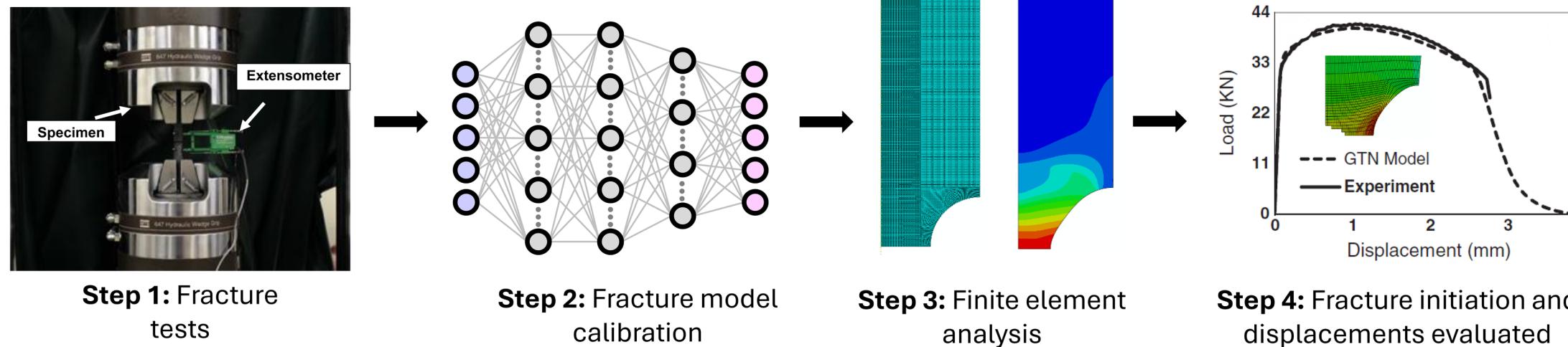
Project Objectives and Goals

Goal: To efficiently automate the prediction of load-displacement behavior until fracture of structural steel.

Objectives: (a) To develop a geometry-specific, data-driven surrogate model to predict load-displacement behavior and ductility of cylindrically notched metal specimens; (b) To validate the proposed data-driven surrogate model by comparing its predictions with experimental fracture data.

Background

Conventional fracture prediction



GTN fracture model

GTN Equations

GTN Performance

$$\phi(\sigma_e, \sigma_h, f^*, \epsilon_y) = \left(\frac{\sigma_e}{\sigma_y}\right)^2 + 2f^*q_1 \cosh\left(q_2 \frac{3\sigma_h}{2\sigma_y}\right) - 1 - q_3 f^{*2} = 0 \quad (1)$$

$$f^* = \begin{cases} f_c & f \leq f_c \\ f_c + K(f - f_c) & f_c < f < f_F \\ f_F & f \geq f_F \end{cases} \quad (2)$$

$$A = \frac{f_N}{s_N\sqrt{2\pi}} \exp\left(-\frac{1}{2} \frac{(\epsilon_{eff} - \epsilon_N)^2}{s_N^2}\right) \quad (3)$$

GTN Parameters

q_1, q_2, q_3 Void interaction parameters

f_0 Initial void volume fraction

f_N Void volume fraction at nucleation

f_c Void volume fraction at coalescence

f_F Final void volume fraction

ϵ_N Mean nucleation strain

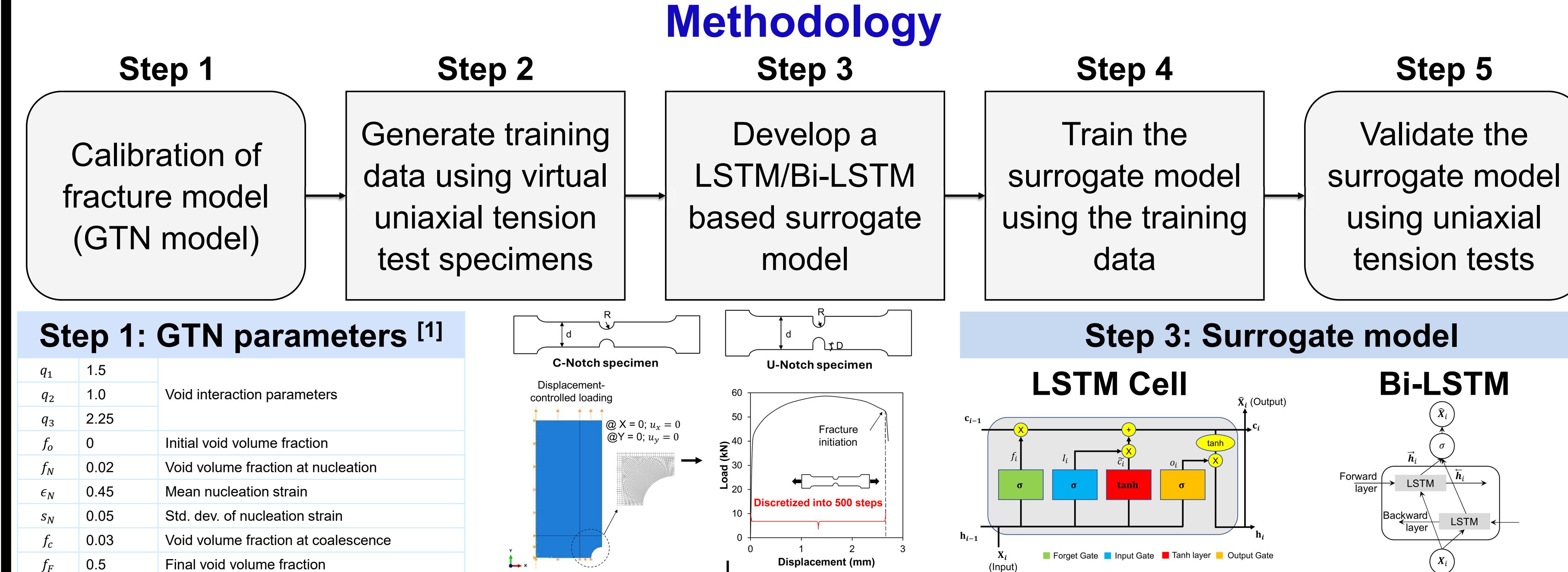
s_N Std. dev. of nucleation strain

• Fracture tests are time and resource-intensive.

• A 2D axisymmetric model with 56,319 linear quadrilateral elements with reduced integration requires **8 hours of simulation time** using 4 CPU cores in ABAQUS (Explicit).

Research Question: Is it possible to develop a **data-driven surrogate model** to reduce computation costs of the finite element analysis of test specimens undergoing ductile fracture?

Surajit Dey, and Ravi Kiran Yellavajjala
School of Sustainable Engineering and the Built Environment, Arizona State University



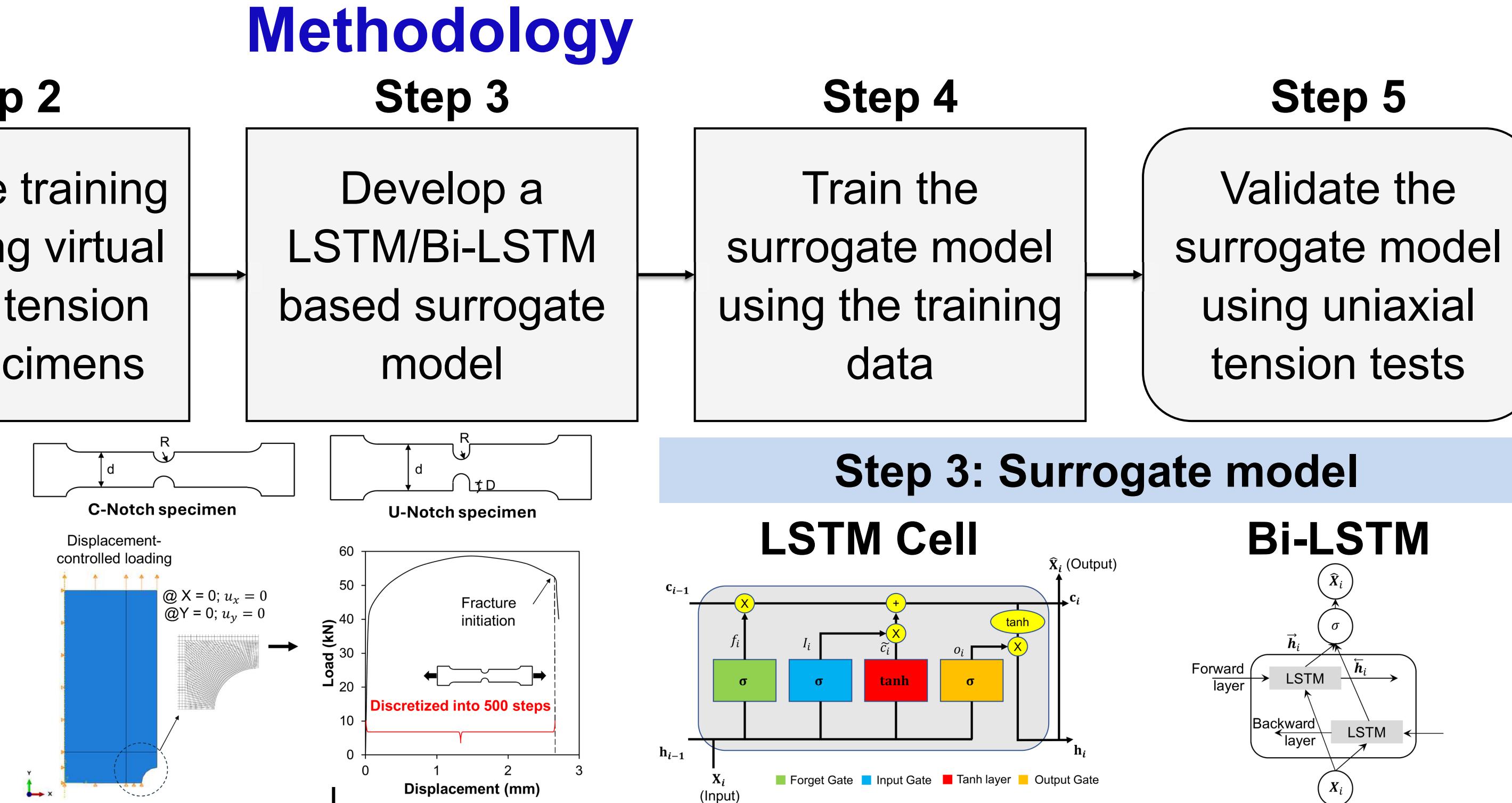
Step 2: Data generation

Calibration

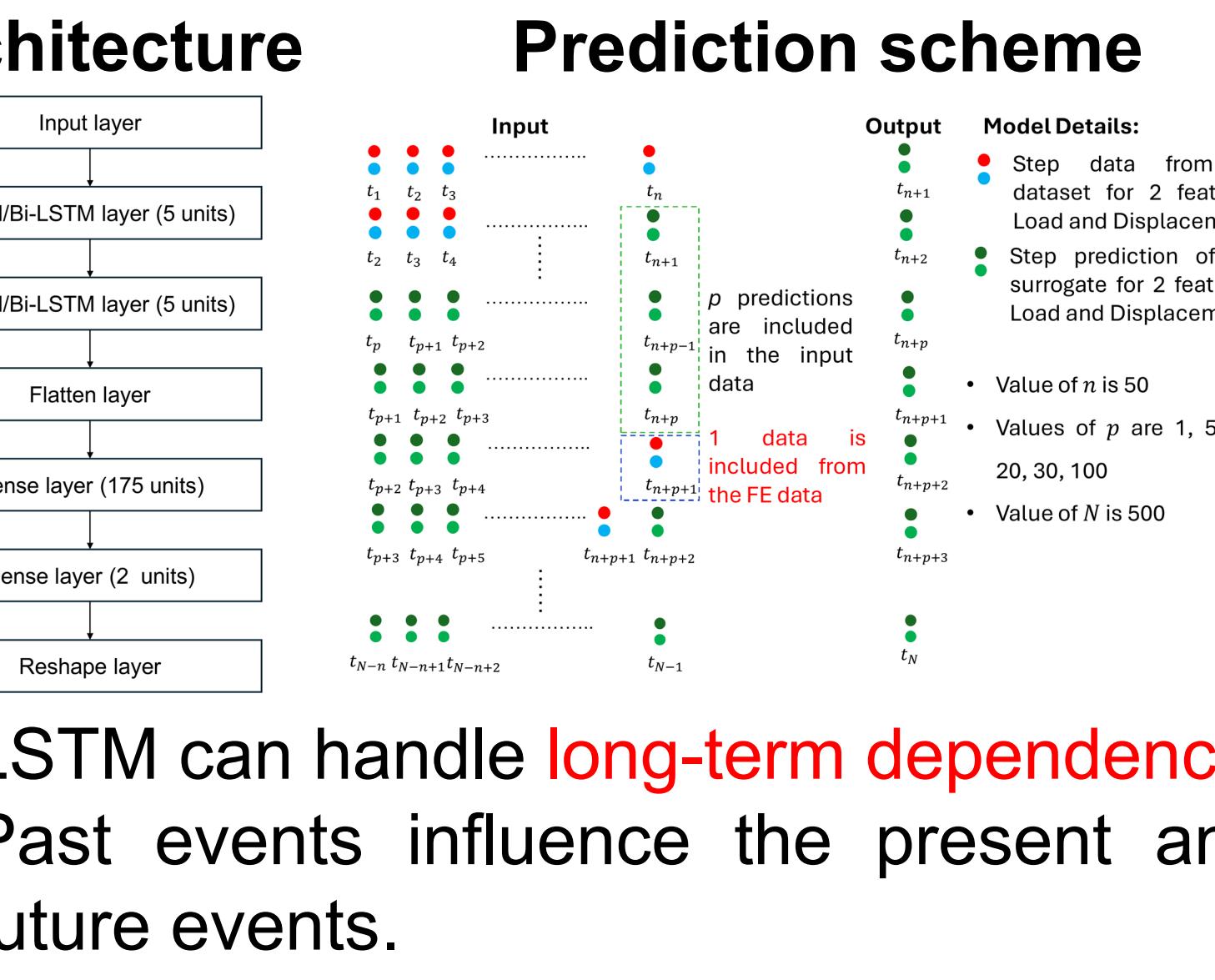
- 42 virtual C-notch and U-notch specimens.
- Specimen dia: 15 to 25 mm
- Notch radii: 0.5 to 2 mm

Validation

- 10 C-notch and U-notch specimens.^[2,3]
- Specimen dia: 12 to 16 mm
- Notch radii: 0.5 to 3 mm



Architecture



Prediction scheme

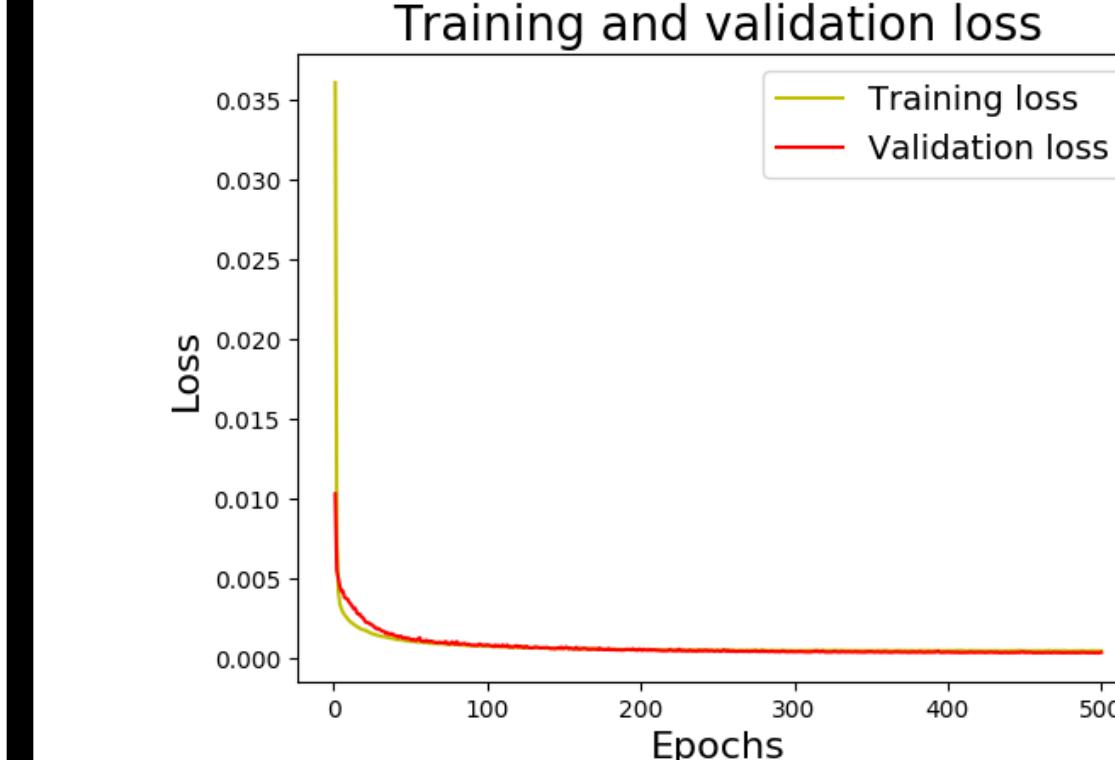
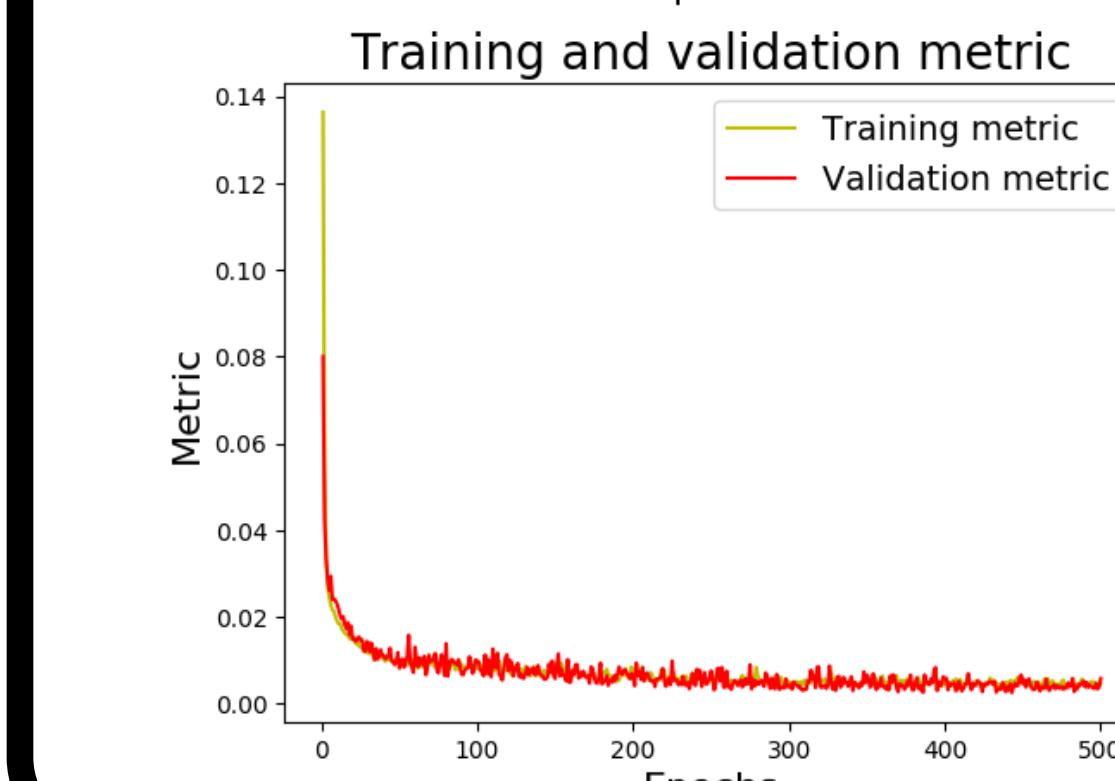
1. Surrogate models can be trained by treating load-displacement data as a time series to predict fracture specimens' mechanical behavior and ductility.
2. The surrogate models capturing both forward and backward trends are more accurate.
3. The maximum number of steps that can be predicted simultaneously without significantly compromising the accuracy is 20.
4. This framework can be extended for other material systems and loading scenarios.

5. Limitations: a) Surrogate models are geometry and material-specific; b) They cannot handle variable length sequences.

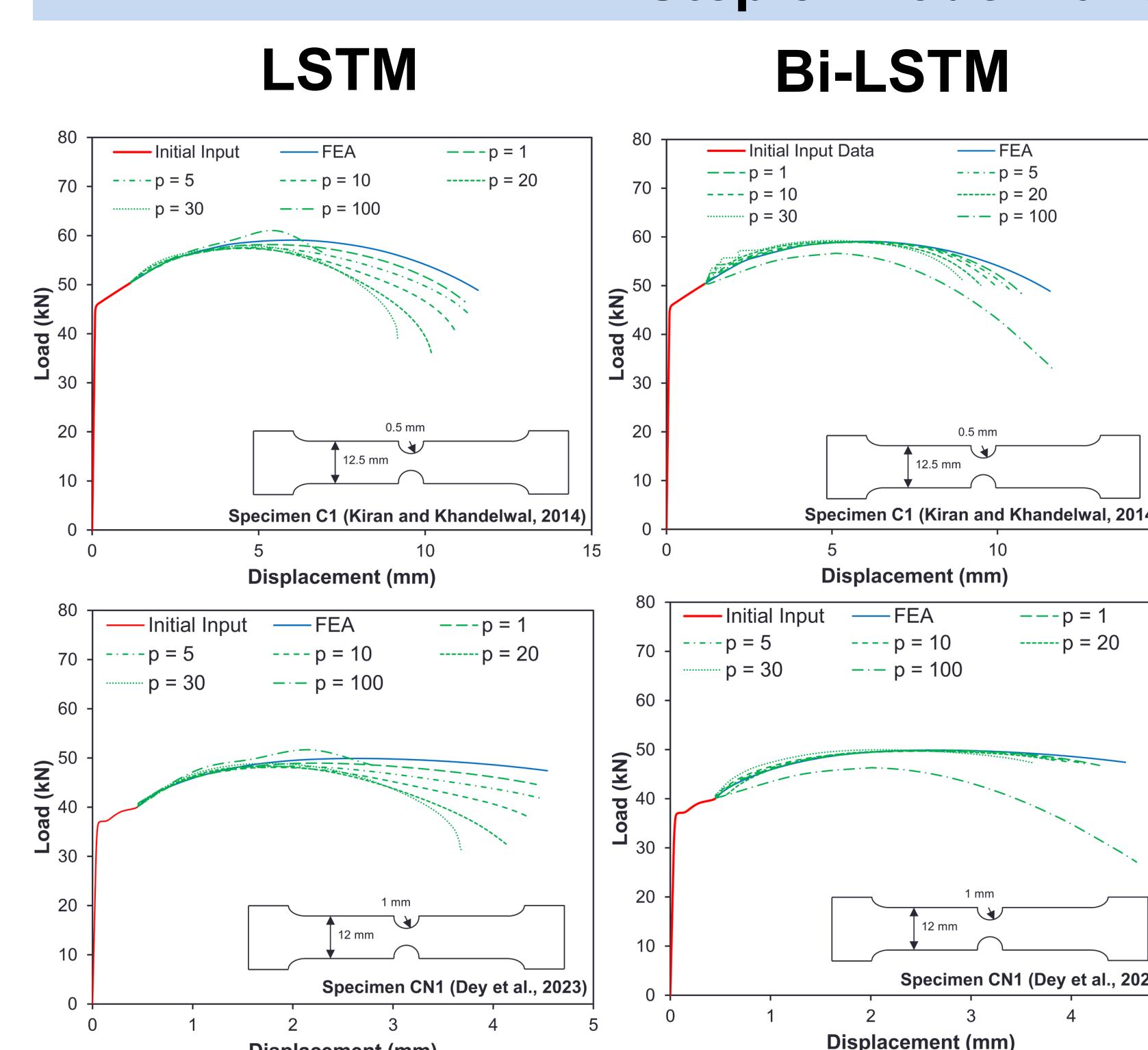
Results

Step 4: Model training

- Cost function: Mean squared error (MSE)
- Metric: Mean absolute error (MAE)
- Training : Validation = 80 : 20
- MSE: 4×10^{-4} ; MAE: 4×10^{-3}
- 500 Epochs; ADAM optimizer



Step 5: Model validation



- Bi-LSTM surrogate model simulates better post-peak softening and ductility for $p \leq 30$.
- LSTM surrogate model yields an acceptable load-displacement response until $p = 20$.

Limitation: The proposed surrogate model is geometry and material-specific but can be extended to other geometries and materials.

Future Studies / Recommendations

1. Increase the number of virtual specimens used to train the surrogate model.
2. Generalize the surrogate model by adding new geometries and materials to the training data.
3. Add physically meaningful mathematical constraints to prevent pre-peak load overshooting in the load-displacement prediction.
4. Extend this framework to other geometries and materials.
5. Improve the post-peak and fracture prediction ability.
6. Incorporate other plasticity and fracture models for better material behavior simulation.

Acknowledgments

The research presented in this presentation was supported by the National Science Foundation under CAREER award # 2329562. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

- [1] Kiran R, Khandelwal K. Gurson model parameters for ductile fracture simulation in ASTM A992 steels. *Fatigue & Fracture of Engineering Materials & Structures* 2014;37:171–83.
- [2] Kiran R, Khandelwal K. Experimental Studies and Models for Ductile Fracture in ASTM A992 Steels at High Triaxiality. *Journal of Structural Engineering* 2014;140:04013044.
- [3] Dey S, Kiran R, Ulven C. Experimental Evaluation of Microvoid Characteristics and Relationship with Stress and Strain for Ductile Fracture. *Journal of Materials in Civil Engineering* 2024;36:04023573. <https://doi.org/10.1061/JMCEE7.MTENG-16698>.