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Project Objectives and Goals

Future Studies / Recommendations
1. Increase the number of virtual specimens used to 

train the surrogate model.
2. Generalize the surrogate model by adding new 

geometries and materials to the training data.
3. Add physically meaningful mathematical constraints 

to prevent pre-peak load overshooting in the load-
displacement prediction. 

4. Extend this framework to other geometries and 
metals.

5. Improve the post-peak and fracture prediction ability.
6. Incorporate other plasticity and fracture models for 

better material behavior simulation.

Conclusions
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Methodology

Results

1. Surrogate models can be trained by treating load-
displacement data as a time series to predict fracture 
specimens' mechanical behavior and ductility.

2. The surrogate models capturing both forward and 
backward trends are more accurate.

3. The maximum number of steps that can be predicted 
simultaneously without significantly compromising the 
accuracy is 20.

4. This framework can be extended for other material 
systems and loading scenarios.

5. Limitations: a) Surrogate models are geometry and 
material-specific; b) They cannot handle variable 
length sequences.Background
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Conventional fracture prediction

GTN fracture model

GTN Parameters
𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 Void interaction parameters

𝑓𝑓𝑜𝑜 Initial void volume fraction

𝑓𝑓𝑁𝑁
Void volume fraction at 
nucleation

𝑓𝑓𝑐𝑐
Void volume fraction at 
coalescence

𝑓𝑓𝐹𝐹 Final void volume fraction
𝜖𝜖𝑁𝑁 Mean nucleation strain

𝑠𝑠𝑁𝑁
Std. dev. of nucleation 
strain

GTN Equations

• Fracture tests are time and resource-intensive.

• A 2D axisymmetric model with 56,319 linear 
quadrilateral elements with reduced integration requires 
8 hours of simulation time using 4 CPU cores in 
ABAQUS (Explicit).

Research Question: Is it possible to develop a data-driven 
surrogate model to reduce computation costs of the finite 
element analysis of test specimens undergoing ductile 
fracture? 

GTN Performance

Goal: To efficiently automate the prediction of load-
displacement behavior until fracture of structural steel.

Objectives: (a) To develop a geometry-specific, data-
driven surrogate model to predict load-displacement 
behavior and ductility of cylindrically notched metal 
specimens; (b) To validate the proposed data-driven 
surrogate model by comparing its predictions with 
experimental fracture data.

Calibration of 
fracture model 
(GTN model)

Generate training 
data using virtual 
uniaxial tension 
test specimens

Develop a 
LSTM/Bi-LSTM 
based surrogate 

model

Train the 
surrogate model 
using the training 

data

Validate the 
surrogate model 

using uniaxial 
tension tests

Step 1 Step 2 Step 3 Step 4 Step 5

Step 1: GTN parameters [1]
𝑞𝑞1 1.5

Void interaction parameters𝑞𝑞2 1.0
𝑞𝑞3 2.25
𝑓𝑓𝑜𝑜 0 Initial void volume fraction
𝑓𝑓𝑁𝑁 0.02 Void volume fraction at nucleation
𝜖𝜖𝑁𝑁 0.45 Mean nucleation strain
𝑠𝑠𝑁𝑁 0.05 Std. dev. of nucleation strain 
𝑓𝑓𝑐𝑐 0.03 Void volume fraction at coalescence
𝑓𝑓𝐹𝐹 0.5 Final void volume fraction

Step 2: Data generation
Calibration

Validation

• 42 virtual C-notch and U-
notch specimens.

• Specimen dia: 15 to 25 mm
• Notch radii: 0.5 to 2 mm

• 10 C-notch and U-notch 
specimens.[2,3]

• Specimen dia: 12 to 16 mm
• Notch radii: 0.5 to 3 mm

Step 3: Surrogate model

Load step Displacement Load

1 𝑢𝑢𝑓𝑓/500 𝑙𝑙1
2 𝑢𝑢𝑓𝑓/250 𝑙𝑙2
3 3𝑢𝑢𝑓𝑓/500 𝑙𝑙3
⋮ ⋮ ⋮

500 𝑢𝑢𝑓𝑓 𝑙𝑙500

• Ductile fracture is a 
history-dependent 
process.

• Hypothesized load 
displacement until 
fracture as time series 
data.

Bi-LSTM 

Prediction schemeArchitecture

• LSTM can handle long-term dependency.
• Past events influence the present and 

future events.

Step 4: Model training
• Cost function: Mean squared 

error (MSE)
• Metric: Mean absolute error 

(MAE)
• Training : Validation = 80 : 20
• MSE: 4×10-4 ; MAE: 4×10-3 
• 500 Epochs; ADAM optimizer

Step 5: Model validation
Bi-LSTM LSTM 

• Bi-LSTM surrogate model 
simulates better post-
peak softening and 
ductility for p ≤ 30.

• LSTM surrogate model 
yields an acceptable load-
displacement response 
until p = 20.

Limitation: The proposed 
surrogate model is 
geometry and material-
specific but can be 
extended to other 
geometries and materials. 

LSTM Cell
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