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Ductile Fracture: Gurson-Tvergaard-Needleman (GTN) model

• GTN model has both the deviatoric and 
hydrostatic stress dependence unlike the 𝐽𝐽2 
plasticity model.

• Simulates damage by tracking a single damage 
variable – void volume fraction.

Important Observation: Softening due to void 
growth is not significant in high strength low alloy 
steels.

Research Question: Is it possible to predict DF 
without material softening while leveraging the 
predictive power of GTN Model?

Material Agnostic data-driven 
uncoupled fracture model
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Objectives

• To develop a fast-to-compute, data-driven approach for high-fidelity prediction of 
fracture initiation in ductile metals.

• To validate the proposed material agnostic approach by comparing its predictions 
to experimental fracture data for steel and aluminum.
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Overall Methodology

Stage 1: Fracture data Generation

Fracture 
dataset

TS-ANN

Stage 2: Training and configuration of Neural Network Model

TS-ANN

𝑱𝑱𝟐𝟐

FEM Analysis

Stage 3: Prediction of fracture using TS-ANN model
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Single Element 
Analysis 

Stage 1 – Generation of fracture data

615,600 data points 
generated

GTN Parameters Min. Max. Inc. Level

Initial void volume fraction (𝑓𝑓𝑜𝑜) 0.0 0.008 0.002 5

Nucleation void volume fraction (𝑓𝑓𝑁𝑁) 0.002 0.01 0.002 5

Mean nucleation plastic strain (𝜀𝜀𝑁𝑁) 0.1 0.5 0.1 5

Std. deviation of nucleation strain (𝑠𝑠𝑁𝑁) 0.025 0.01 0.025 5

Failure void volume fraction (𝑓𝑓𝐹𝐹) 0.01 0.05 0.005 10

Stress triaxiality (𝜂𝜂) 0.33 2.0 0.25 9
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𝑧𝑧 

𝑝𝑝𝑥𝑥 

𝑝𝑝𝑦𝑦 

𝑝𝑝𝑧𝑧 

Hardening Parameters Min. Max. Inc. Level

Strength coefficient (𝑘𝑘) 600 1200 200 4

Strain hardening exponent (𝑛𝑛) 0.1 0.3 0.05 5

• Negative 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 are constrained and 
positive 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 are applied with load.

• 𝑝𝑝𝑦𝑦 and 𝑝𝑝𝑥𝑥 are calculated from triaxiality (𝜂𝜂) 
with prescribed 𝑝𝑝𝑧𝑧.

• Modelled in Abaqus standard using porous plasticity option
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Material k n 𝜀𝜀𝑜𝑜 Use

Mild Steel (AISI 1018) 600 0.22 0.005 General-purpose construction

Dual-Phase Steel (DP600) 780 0.20 0.01 High strength, auto-grade

Stainless Steel (304) 1100 0.45 0.002 Piping

Titanium Ti-6Al-4V 950 0.15 0.003 Pressure vessels

Nickel Alloy (Inconel 718) 1200 0.25 0.005 Jet engines, Turbines

Aluminum 2024-T351 500 0.15 0.002 Common aerospace alloy

Why Swift Hardening?
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Stage-2 – Training and configuration of neural network model

Two stage Neural Network • Larger Subnet-1 used only at the start 
of the analysis

• Smaller Subnet-2 used at each GQ 
point at each time step during the 
analysis

• Significant reduction of computational 
time

40,000 floating point operations 
reduced to 40 per GQ per time step
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Stage-2 – Configured Network – Subnet-1

Subnet-1

Attributes Subnet-1

No. of input features 7

No. of outputs 5

No. of hidden layers (HL) 3

Activation function for hidden layers ELU

Activation function for output layer ELU

No. of neural network parameters 19,299

216

inputs HL-1

latent
outputs

72

24

7

𝑓𝑓𝑜

𝑓𝑓𝑁

𝜀𝜀𝑁

𝑠𝑠𝑁

𝑓𝑓𝐹

5

HL-2

HL-3

𝑘𝑘

𝑛𝑛
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Stage-2 – Configured Network – Subnet-2

Subnet-2

Property Subnet-2

No. of input features 6

No. of output features 1

No. of hidden layers (HL) 1

Activation function for hidden layers ELU

Activation function for output layer ELU

No. of neural network parameters 65

latent
outputs

𝜂𝜂

6

HL-1

8

𝜀𝜀𝐹
1

output
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Stage-2 – ELU Activation function

ELU activation function

ϕ z = �
𝑧𝑧 𝑖𝑖𝑖𝑖 𝑧𝑧 > 0
𝛼𝛼 𝑒𝑒𝑧𝑧 − 1  𝑖𝑖𝑖𝑖 𝑧𝑧 ≤ 0

• No gradient saturation

• Faster learning because of no positive bias 
shift

• Standard value of 𝛼𝛼 = 1 is used  



EMI 2017, UC San Diego, California| June 4-7, 2017 | 11

WCSMO-10, Orlando, FL | May 19-24, 2013 | 11 of 30 

EMI 2025, California May | 27-30 | 11

Stage-2 – Training and configuration of neural network model – Performance 

Only 1.0% data exceeds 5% error
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Stage 3: Prediction of fracture using TS-ANN model – FEM integration
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10.0

R25

All in mm.

• A572 –notched tensile specimens

• One unnotched and three notched specimens used

• Involves various range of triaxiality - stress triaxiality at critical 
section varies 0.33 to 1.6

Notch C0 C1 C2 C3
R 0 1.0 2.0 3.0

calibration

validation

Source : Sajid, H. U., & Kiran, R. (2018). Influence of high stress triaxiality on mechanical strength of ASTM A36, ASTM A572 and ASTM A992 steels. Construction and 
Building Materials, 176, 129-134.

Stage 3: Prediction of fracture using TS-ANN model – A572
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Stage 3: Calibration of TS-ANN model – A572

Specimen
Failure deformation 𝑢𝑢𝑓𝑓  (mm) Relative 

error
 (%)Experiment TS-ANN

C0 11.26 10.29 -8.6
C3 2.62 2.82 -6.1

TS-ANN 
Parameters 𝑓𝑓𝑜𝑜 𝑓𝑓𝑁𝑁 𝑓𝑓𝐹𝐹 𝜀𝜀𝑁𝑁 𝑠𝑠𝑁𝑁

Calibrated value 0.0015 0.0019 0.042 0.50 0.05

C3

3.0mm

C0
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Stage 3: Prediction of fracture using TS-ANN model – A572

Specimen
Failure deformation 𝑢𝑢𝑓𝑓  (mm) Error (%)

Experiment GTN TS-ANN GTN TS-ANN

C1 5.39 5.25 5.5 -2.6 2.0

C2 2.93 3.26 3.19 11.3 8.9

C1

1.0mm

C2

2.0mm
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• Aluminum alloy 2024-T351 – Circular arc notched tensile specimens

• One unnotched with 6mm dia. and three notched specimens with 
9mm core dia. And 16mm outer dia. used

• Involves various range of triaxiality - stress triaxiality at critical section 
varies 0.33 to 1.4

Notch R0 R4 R6.5 R13
R 0 4 6.5 13

calibration

validation

Source : Šebek, F., Petruška, J., & Kubík, P. (2018). Lode dependent plasticity coupled with nonlinear damage accumulation for ductile fracture of aluminium alloy. Materials & 
Design, 137, 90-107.

Stage 3: Prediction of fracture using TS-ANN model – Aluminum

All in mm.
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Stage 3: Calibration of TS-ANN model – Aluminum

Specimen
Failure deformation 𝑢𝑢𝑓𝑓  (mm)

Experiment TS-ANN

R0 6.22 6.5
R13 1.35 1.13

TS ANN 
parameters 𝑓𝑓𝑜𝑜 𝑓𝑓𝑁𝑁 𝑓𝑓𝐹𝐹 𝜀𝜀𝑁𝑁 𝑠𝑠𝑁𝑁

Calibrated value 0.0085 0.009 0.023 0.10 0.05

R4
4.0mm

R0
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Stage 3: Prediction of fracture using TS-ANN model – Aluminum

Specimen
Failure deformation 

𝑢𝑢𝑓𝑓 (mm) Error

Experiment TS-ANN TS-ANN

R6.5 0.69 0.81 16.7

R13 0.87 3.19 0.3

R6.5

6.5mm

R13

13.0mm
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TS-ANN Model – Computational Performance

A572 Elements Nodes 
Mean Runtime (s) Speedup 

factorGTN TS-ANN

C0 2200 2295 640 41 15.6

C1 2976 3092 380 64 6

C2 3676 3809 320 32 10

C3 4236 4385 292 41 7.1 3-16 times faster than 
coupled GTN model

T351 Elements Nodes 
Mean Runtime (s) Speedup 

factorGTN TS-ANN

R0 1710 1798 340 34 10

R4 2898 3008 132 39 3.3

R6.5 2852 2961 132 40 3.3

R13 2745 2852 160 34 4.7
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Important Takeaways

• Fracture analysis runtime ranged from 30-60s for 2000-4000 elements 
• 3-16 times faster than coupled GTN analysis
• Can be scaled for large structures

• Material agnostic data-driven model
• Extend to other fracture models
• Calibration of model parameters is easy

• Incorporates the high-fidelity of a coupled micromechanical model
• Fracture initiation predictions are within 17%
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Thank you for your attention 
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