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Abstract

Previous studies on two-timescale stochastic
approximation (SA) mainly focused on bound-
ing mean-squared errors under diminishing
stepsize schemes. In this work, we investi-
gate the constant stpesize schemes through
the lens of Markov processes, proving that
the iterates of both timescales converge to
a unique joint stationary distribution in the
Wasserstein metric. We derive explicit geo-
metric and non-asymptotic convergence rates,
as well as the variance and bias introduced by
constant stepsizes in the presence of Marko-
vian noise. Specifically, with two constant
stepsizes ↵ < �, we show that the biases scale
linearly with both stepsizes as ⇥(↵)+⇥(�) up
to higher-order terms, while the variance of
the slower iterate (resp., faster iterate) scales
only with its own stepsize as O(↵) (resp.,
O(�)). Unlike previous work, our results do
not require additional assumptions such as
�2 ⌧ ↵ or additional dependence on dimen-
sions. These fine-grained characterizations
allow tail-averaging and extrapolation tech-
niques to reduce variance and bias, improving
mean-squared error bound to O(�4 + 1

t
) for

both iterates.

1 Introduction

Stochastic Approximation (SA) is an iterative proce-
dure to find the root of unknown operators from their
noisy samples (Robbins and Monro, 1951). There has
been a long line of work understanding the convergence
behavior of SA both asymptotically (Borkar and Meyn,
2000; Harold et al., 1997) and in a finite-time (Srikant
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and Ying, 2019), with a wide range of applications
including stochastic optimization (Harold et al., 1997;
Moulines and Bach, 2011) and reinforcement learn-
ing (Sutton and Barto, 2018; Lakshminarayanan and
Szepesvari, 2018; Srikant and Ying, 2019).

Two-Timescale Stochastic Approximation (TTSA) is
a variant of the SA algorithm, designed to find the
root of two intertwined operators (Borkar, 1997). In
particular, given two operators F and G, we aim to find
the solution (x⇤, y⇤) satisfying the fixed-point equations

(
F (x⇤, y⇤) = 0,

G(x⇤, y⇤) = 0.

This work considers linear TTSA with constant step-
sizes driven by Markovian data as the following:

xt+1 = xt � ↵t(F (xt, yt) + wx(xt, yt; ⇠t)),

yt+1 = yt � �t(G(xt, yt) + wy(xt, yt; ⇠t)),
t � 0, (1)

where ↵t ⌘ ↵, �t ⌘ � > 0 are constant stepsizes for
slower and faster iterates respectively, F and G are
linear operators, and wx and wy are linear Markovian
noises driven by exogenous Markovian states ⇠t (see
Section 2 for precise formulation).

The updates in (1) arise in many applications: examples
include popular reinforcement learning algorithms such
as actor-critic (Konda and Tsitsiklis, 1999; Haarnoja
et al., 2018) and gradient temporal-difference (GTD)
methods (Maei et al., 2009; Szepesvári, 2022), and
iterative algorithms for stochastic Bilevel optimization
(Colson et al., 2007; Ghadimi and Wang, 2018; Hong
et al., 2023; Kwon et al., 2023). The core idea of
TTSA is the use of different stepsizes for two iterations,
which establishes a hierarchy between the two fixed-
point equations. For example, in actor-critic algorithms
(Haarnoja et al., 2018), the y-variable minimizes the
temporal-difference (TD) error, while the x-variable
represents policy parameters to maximize long-term
rewards. To ensure that the policy parameters are
updated based on accurate value estimates, we set
� � ↵, meaning that y converges faster, staying close
to the minimizer of the TD-error given the current
policy parameter x.
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Classical results have established asymptotic conver-
gence of TTSA with diminishing step sizes, ↵t,�t ! 0,
under the requirement of order-wise different timescales,
i.e., ↵t

�t
! 0 (Borkar, 1997; Konda and Tsitsiklis, 2004;

Mokkadem and Pelletier, 2006). With the recent ad-
vances in large-scale optimization, several papers have
focused on analyzing the finite-time convergence of
TTSA under similar vanishing step-size conditions. Ear-
lier analyses reported suboptimal convergence rates of
O(t�2/3) (Dalal et al., 2018; Doan, 2022), which have
been improved to the best possible rate of O(t�1) in
more recent studies as long as �2

t
. ↵t (Kaledin et al.,

2020; Dalal et al., 2020; Haque et al., 2023; Doan, 2024;
Han et al., 2024; Hu et al., 2024). The key to recent
improvements lies in eliminating the need for dimin-
ishing stepsize ratios, achieved through a more refined
analysis of the cross-correlations between the two in-
tertwined iterations (Kaledin et al., 2020; Haque et al.,
2023; Han et al., 2024).

More recently, SA with constant stepsizes has attracted
attention due to its simplicity, fast convergence, and
good empirical performance, both for single- and two-
timescale cases (see Section 1.1 for details). How-
ever, existing results for TTSA are often limited to
only providing upper bounds for E[kxt � x⇤k22] and
E[kyt�y⇤(xt)k22], i.e., mean-squared errors (MSE) from
the fixed point of operators, leaving the non-asymptotic
behavior of TTSA iterations with constant stepsizes
unexplored. Through the lens of the Markov process
on TTSA iterations, we break down the sources of
MSE and demonstrate the advantages of a finer under-
standing, particularly when employing techniques like
tail-averaging and extrapolation.

Our Contributions. We study the behaviors of
Markovian TTSA iterations (1) with constant stepsizes.
We focus on linear TTSA when the two operators F,G
and Markovian noise fields wx, wy are linear in the
iterates. Our contributions are summarized as follows:

• While the iterates do not converge pointwise with
constant stepsizes, under the standard assump-
tions for TTSA, we show that the joint process
(xt, yt, ⇠t) of iterates and Markovian noises con-
verges to a unique biased stationary distribution.

• For the stationary distribution of slower iterates
x1, we show that its bias has a dominating term
growing linearly with ↵ and �, while its variance
is O(↵). Therefore, the asymptotic MSE of order
O(↵) for slower iterates reported in prior work
(which requires the assumption �2  ↵) in fact
admits the following bias-variance decomposition:

x-MSE ⇣ kE[x1]� x⇤k22| {z }
squared-bias: O(↵+�)2

+E[kx1 � E[x1]k22]| {z }
variance: O(↵)

.

• Based on our distributional convergence results, we
show the benefits of simple Polyak-Ruppert aver-
aging (Polyak and Juditsky, 1992) and Richardson-
Romberg Extrapolation (Stoer and Bulirsch, 2013)
along with the use of constant stepsizes in TTSA
iterations. Specifically, through combining the
above techniques, we can achieve (1) exponentially-
fast decaying optimization error, (2) variance de-
caying at O(1/t) rate, and (3) order-wise improve-
ment of asymptotic biases:

E[kx̃t � x⇤k22] ⇣ E[kx̃t � x̃1k22]| {z }
optimization error: exp(�⇥(t))

+ E[kx̃1 � E[x̃1]k22]| {z }
variance:O(1/t)

+ kE[x̃1]� x⇤k22| {z }
reduced-bias:O(�4)

.

We emphasize that our convergence results do not
impose the restriction �2  ↵, or involve addi-
tional dimension-dependent constants as prior work
in Kaledin et al. (2020); Haque et al. (2023); Han et al.
(2024).

1.1 Related Work

The literature on (two-timescale) SA is vast. Here we
discuss prior work most relevant to us.

Weak Convergence of Constant Stepsize SA.

Recent studies have shown that under regularity con-
ditions, SA iterates with constant stepsizes weakly
converge to a stationary distribution (Bhandari et al.,
2018; Dieuleveut et al., 2020; Durmus et al., 2024; Chen
et al., 2024; Lauand and Meyn, 2023; Allmeier and
Gast, 2024). In particular, a line of work has developed
an approach based on the Wasserstein distance mea-
sure when operators are global contraction mapping
(Dieuleveut et al., 2020; Durmus et al., 2021; Huo et al.,
2023; Zhang and Xie, 2024; Lauand and Meyn, 2024).
For cases where operators possess only local contrac-
tion or star-convexity properties, other studies have
shown convergence in total variation distance under ad-
ditional assumptions on the noise distribution’s support
(Yu et al., 2021; Vlatakis-Gkaragkounis et al., 2024).
Our result adopts the approach based on Wasserstein
metrics, providing a more explicit convergence rates
without requiring assumptions on the noise support,
even when the overall iterates (xt, yt) do not exhibit
global contraction.

Existing Results for TTSA. TTSA arises as a
popular iterative solution in various domain; from the
classical iterate-averaging schemes (Polyak and Judit-
sky, 1992) and off-policy reinforcement learning algo-
rithms (Sutton and Barto, 2018) to gradient descent-
ascent algorithms for saddle-point problems (Jin et al.,
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2020) and single-loop algorithms for Bilevel optimiza-
tion (Hong et al., 2023). Asymptotic convergence and
central limit theorems for TTSA with diminishing step
sizes were initially established for linear cases with
i.i.d. noise (Konda and Tsitsiklis, 2004), followed by
extensions to non-linear and Markovian noise settings
(Mokkadem and Pelletier, 2006; Hu et al., 2024).

More recent work has shifted focus to non-asymptotic
results, deriving finite-time convergence rates for both
linear (Dalal et al., 2018, 2020) and nonlinear cases
(Kaledin et al., 2020; Han et al., 2024; Haque et al.,
2023). However, these studies primarily address MSE
bounds with diminishing stepsizes. In contrast, we
investigate distributional convergence under constant
stepsizes, providing explicit decoupling of biases and
variances. Additionally, we establish new results for
tail-averaging and extrapolation in TTSA schemes.

2 Problem Setup

Let F : Rdx ⇥ Rdy ! Rdx and G : Rdx ⇥ Rdy ! Rdy

be linear mean-field operators in the following form:

F (x, y) = J11x+ J12y + b1,

G(x, y) = J21x+ J22y + b2,

where J11, . . . , J22 (resp., b1, b2) are fixed matrices
(resp., vectors), and linear Markovian noises defined as
the following:

wx(x, y; ⇠) = W11(⇠)x+W12(⇠)y + u1(⇠),

wy(x, y; ⇠) = W21(⇠)x+W22(⇠)y + u2(⇠).

Let Jmax := maxi,j2{1,2} kJijkop be the smoothness
parameter of the system. The first assumption is on
the mean-field operators being Hurwitz:
Assumption 1. The matrices �J22 and �� := �J11+
J12J

�1
22 J21 are Hurwitz, that is, all real parts of the

eigenvalues of J22 and � are strictly positive.

Therefore, a fixed point in the slower timescale is
uniquely defined y⇤(x) = �J�1

22 (J21x+ b2) for every x,
and the target joint fixed point (x⇤, y⇤) is given as:

x⇤ = ���1(b1 � J12J
�1
22 b2)

y⇤ = �J�1
22 (J21x

⇤ + b2).

Assumption 1 is standard in the study of TTSA to
ensure the stability of the system (Gupta et al., 2019;
Doan, 2022). The main difference from single timescale
SA is the star-type stability of slower iterations, i.e., we
only assume that �H(x) := �F (x, y⇤(x)) is Hurwitz,

while the entire operation �

F (x, y)
G(x, y)

�
may not. There-

fore, existing results for single-timescale SA cannot be
directly applied.

Next, we assume that the noise fields are controlled by
a geometrically mixing exogenous (i.e., state evolves
independent of TTSA iterations) Markov chain {⇠t}t�0:
Assumption 2. Let {⇠t}t�0 be an exogenous Marko-
vian chain on a countable state-space ⌅ with a transi-
tion kernel P and a unique stationary distribution ⇡.
Furthermore, {⇠t}t�0 is geometrically mixing:

kPn⇡0 � ⇡k1  c⇢⇢
n,

for some absolute constant c⇢ > 0, ⇢ 2 [0, 1) and any
initial distribution ⇠0 ⇠ ⇡0 for all n � 1.

We also assume that the noise fields are bounded and
unbiased at the stationary limit:
Assumption 3. For all j 2 {1, 2} and ⇠ 2 ⌅, we have

E⇠⇠⇡[Wij(⇠)] = 0, 8i, j 2 {1, 2},
E⇠⇠⇡[ui(⇠)] = 0, 8i 2 {1, 2}.

Furthermore, for all ⇠ 2 ⌅, the following holds:

kWij(⇠)kop  Wmax, kui(⇠)k2  umax, 8i, j 2 {1, 2}.

for some constants Wmax, umax � 0. For simplicity, we
further assume that Wmax  Jmax.

The above two assumptions are common in the analysis
of SA schemes with Markovian noises (Dalal et al., 2020;
Huo et al., 2023). We introduce the notion of noise
variances in our setting:

�2
x
:= max

⇠2⌅
kW11(⇠)x

⇤ +W12(⇠)y
⇤ + u1(⇠)k22,

�2
y
:= max

⇠2⌅
kW21(⇠)x

⇤ +W22(⇠)y
⇤ + u2(⇠)k22, (2)

which reflect the mean-squared fluctuation of the
stochastic update around the fixed point.

We study the convergence of TTSA iterations (1) via
L2-Wasserstein distance (Villani et al., 2009). Let
P2(Rd) denote the space of square-integrable distri-
butions on Rd where d := dx + dy. Note that L2-
Wasserstein distance between two distributions µ and
⌫ in P2(Rd) is defined as the following:

W2(µ, ⌫) :=

✓
inf

�2⇧(µ,⌫)

Z

Rd⇥Rd

ku� vk22 d�(u, v)
◆1/2

,

where ⇧(µ, ⌫) is a set of all possible couplings with
marginal distributions µ and ⌫. To study the distri-
bution convergence of the joint iterate-data sequence
(xt, yt, ⇠t)t�0, we slightly extend the definition above
to add hamming distance in ⌅. Let P2(Rd ⇥ ⌅) be the
set of distributions µ̄ on Rd ⇥⌅ with the property that
the marginal of µ̄ on Rd is square-integrable.
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Definition 1. For any two probability measures µ, ⌫
in P2(Rdx+dy ⇥⌅) over (x, y, ⇠), we define the distance
between µ and ⌫ as

W̄2(µ, ⌫) := inf
�2⇧(µ,⌫)

n
E((xt,yt,⇠t),(x0

t,y
0
t,⇠

0
t))⇠�

⇥
1 {⇠t 6= ⇠0

t
}+ kxt � x0

t
k22 + kyt � y0

t
k22
⇤1/2 o

, (3)

where ⇧(µ, ⌫) is a set of all possible couplings with
marginal distributions µ, ⌫.

To establish the finite-time convergence of TTSA itera-
tions (1), we define a few error metrics. Let Qx, Qy � 0
be the unique solutions of the Lyapunov equations

Qx�+�>Qx = I,

QyJ22 + J>
22Qy = I.

The solutions Qx, Qy, which are guaranteed to exist
since ��,�J22 are Hurwitz under Assumption 1 (Chen,
1984), are used for constructing the drift of potentials in
our analysis. For the slower and faster iterates, we use
k · kQx and k · kQy norms respectively, and define µx :=
kQxk�1

op and µy := kQyk�1
op . Note that �min(�) � µx/2

and �min(Qx) � k�k�1
op /2, and similarly for Qy and

µy. Consequently, we let the condition number of two
iterations as x := yJmax

µx
and y := Jmax

µy
.

Notation. For a positive definite matrix Q � 0 let
kxkQ :=

p
x>Qx for a vector x. With a general real-

valued matrix A, we define kAkQ := maxkxkQ=1 kAxkQ.
Let ha, biQ := a>Qb for two vectors a, b. For two real-
valued matrices A,B, we denote hA,Bi = Tr(A>B).
We define 1-Schatten norm kAk1 :=

P
i
|�i(A)| as the

absolute sum of singular values (sometimes we call it S1-
norm), and 1-Schatten norm kAk1 := maxi |�i(A)|
be the maximum singular value, which is equivalent
to matrix operator norm kAkop. For a positive semi-
definite matrix Q ⌫ 0, kQk1 = Tr(Q) =

P
i
Qii is the

sum of diagonal elements. For a random vector x, we
denote the covariance V(x) := E[(x�E[x])(x�E[x])>].
We often use shorthands wx

t
:= wx(xt, yt; ⇠t) and wy

t
:=

wy(xt, yt; ⇠t). We denote the fixed point of the faster
iterates given x as y⇤(x), such that G(x, y⇤(x)) = 0.
If we just write y⇤, then it means y⇤(x⇤). For two
probability distributions p, q, we denote kp� qk1 as the
total-variation distance between p and q. We use the
notation O(·) to hide absolute constants, and OP(·) to
omit up to polynomial factors in instance-dependent
constants (smoothness, minimum eigenvalues, and noise
variances) and up to logarithmic factors in stepsizes.

3 Main Results

We start with two conditions for stepsizes to ensure
the stability of TTSA iterations:

Assumption 4. We assume that the stepsizes (↵,�)
satisfy the following:

�⌧↵  c1
Jmax2

y
2
x

,
↵

�
 c2

3
y
x

. (4)

where ⌧↵ := log(↵µx/c⇢)
log ⇢

with some sufficiently small
absolute constants c1, c2 > 0.

The first condition in (4) ensures � less than the inverse
smoothness of operators, and the second condition
bounds the ratio between two-timescale iterations. We
mention that the dependence on the condition numbers
is not fully optimized. In the sequel, we start with a fine-
grained convergence in MSE in Section 3.1. We then
show the convergence in distribution and characterize
the biases and variances of the limit distribution in 3.2,
which is followed by our final result on tail-averaging
and extrapolation in Section 3.3.

3.1 Convergence in MSE

We analyze the MSE convergence of linear TTSA in
terms of the centered iterates x̄t := xt � x⇤, ȳt :=
yt � y⇤(xt). To this end, we first rewrite the stochastic
recursion as the following:
Lemma 3.1. Let x̄t = xt�x⇤, ȳt = yt� y⇤(xt). Then
equation (1) can be rewritten as:

x̄t+1 = (I � ↵�)x̄t � ↵J12ȳt � ↵wx(xt, yt; ⇠t)

ȳt+1 = (I � �J22)ȳt � �wy(xt, yt; ⇠t)

� ↵J�1
22 J21(J12ȳt +�x̄t + wx(xt, yt; ⇠t)) (5)

Note that the slower iterates view the error in faster
iterates as an additional noise. We are now ready to
state our first main convergence theorem with constant
step-sizes.
Theorem 3.2. Suppose Assumptions 1-3 hold, and
the step sizes ↵,� satisfy Assumption 4. Then, for all
t � 0 following the TTSA recursion (1), we have

E[kx̄tk2Qx
]  exp(�↵µxt/4)V0 +OP(↵�

2
x
+ (↵+ �2)�2

y
),

E[kȳtk2Qy
]  exp(��µyt/2)U0 +OP(�) exp(�↵µxt/4)V0

+OP((↵/� + �)↵�2
x
+ ��2

y
),

where we define potential functions as U0 :=

E[kȳ0k2Qy
] + OP(

↵

�
)kQ1/2

y E[ȳ0x̄>
0 ]k1, and V0 :=

E[kx̄0k2Qx
]+OP(

↵
2

�2 )E[kȳ0k2Qy
]+OP(

↵

�
)kQ1/2

y E[ȳ0x̄>
0 ]k1.

The theorem states that after sufficiently large itera-
tions t � ↵�1, the convergence of TTSA in MSE can
be characterized as the following:

1. limt!1 E[kx̄tk2Qx
] = OP(↵)�2

x
+OP(↵+ �2)�2

y
.
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2. limt!1 E[kȳtk2Qy
] = OP

⇣
↵

2

�
+ ↵�

⌘
�2
x
+OP(�)�2

y
.

To our best knowledge, this is the first result that ex-
plicitly characterizes the fine-grained scaling of MSE
w.r.t. the stepsizes and noise variances of each itera-
tion. The work in Dalal et al. (2018); Srikant and Ying
(2019) only obtained an O(�2/↵) asymptotic bound for
the slower iterate. More recent work in Kaledin et al.
(2020); Haque et al. (2023) obtained an O(↵) asymp-
totic bound but required �2  ↵, hence not strong
enough to reveal the dependence on �. Our result
shows that noises from slower iterates only change xt

by O(↵), while noises from faster iterates influence xt

by O(↵+ �2), without requiring �2  ↵.

3.2 Convergence to a Limit Distribution

Now we state the distributional convergence of the
process (xt, yt, ⇠t) in Wasserstein distance as defined
in Definition 1. We require a mild assumption on the
fourth-order moments of initial distributions:
Assumption 5. We assume that the fourth-order
moments of the initial distribution are bounded, i.e.,
E[kx̄0k42 + kȳ0k42] < 1.

Our main theorem establishes the linear convergence
of the Markovian process (xt, yt, ⇠t)t�0 in W̄2-distance
to a unique stationary distribution:
Theorem 3.3. Suppose Assumptions 1-3 hold, and
step sizes ↵,� satisfy Assumption 4. If we start from an
arbitrary initial distribution (x0, y0, ⇠0) ⇠ µ0 satisfying
Assumption 5, then there exists a unique stationary
distribution µ such that the process (xt, yt, ⇠t) ⇠ µt

linearly converges in W̄2-distance:

W̄2
2 (µt, µ)  OP(1) · exp(�↵µxt/8).

Furthermore, there exists vectors b̄x
i
, b̄y

i
independent of

↵,� with kb̄x
i
k2, kb̄yi k2 = OP(1) for i 2 {1, 2}, such that

for (x1, y1, ⇠1) ⇠ µ,

E[x1 � x⇤] = ↵b̄x1 + �b̄x2 +OP(�
2),

E[y1 � y⇤(x1)] = ↵b̄y1 + �b̄y2 +OP(�
2),

(6)

and variances of x1 and y1 are bounded by

Tr(V(x1)) = OP(↵), Tr(V(y1)) = OP(�). (7)

A few remarks follow below. First, the theorem states
that any sequence following TTSA (1) converges to
some unique stationary distribution depending on prob-
lem instances and step sizes. Given the existence of
the unique stationary distribution µ, henceforth, we
can define random variables from the limit distribution
(x1, y1, ⇠1) ⇠ µ.

Second, the limit distribution has a bias, whose dom-
inating term grows linearly with the stepsizes. The
�-wise growth in the bias of faster iterates yt is not sur-
prising in light of known results for Markovian single-
timescale SA (Lauand and Meyn, 2023; Huo et al.,
2023). More interesting is the bias of the slower iter-
ates xt, which also grows linearly with �, even though
the size of the update is only O(↵) in each slow iter-
ation. This is a unique phenomenon of two-timescale
SA: the slower iterate effectively views the error from
faster iterates, yt � y⇤(xt), as additional “biased” noise.

Finally, the theorem shows that the limit distribution of
slower iterates has an interesting property: the bias in x
(slower iterates) is dominated by the faster step-size �,
while its variance only scales with the slower step-size ↵.
This is another key property of two-timescale SA that
has been overlooked in prior work. In particular, we
can deduce that the asymptotic MSE of slower iterates
is resulted from two factors:

E[kx1 � x⇤k22] ⇣ ↵(�2
x
+ �2

y
)

| {z }
variance

+ �2�2
y| {z }

squared bias

Focusing separately on the two iterates, we have the
following more fine-grained convergence results:
Corollary 3.4. Suppose Assumptions 1-5 hold. Define
U0 := E[kx0 � E[x1]k22] + E[kȳ0 � E[ȳ1]k22] + OP(�),
and V0 := E[kx0�E[x1]k22] +OP(↵/�)U0. Then for all
t � 0, we have the bounds

W2
2 (µt(ȳt), µ(ȳ1))  OP(�) exp(�↵µxt/8)V0

+OP(1) exp(��µyt/8)U0,

W2
2 (µt(xt), µ(x1))  OP(1) exp(�↵µxt/8)V0.

This corollary explicitly states how the optimization
error decays from arbitrary initial points, and will be
used in showing the convergence of tail-averaging next.

3.3 Tail-Averaging and Extrapolation

Using the explicit characterization of bias and variance
in Theorem 3.3, we derive improved convergence rates
for tail-averaging and extrapolation.

3.3.1 Averaging

We first consider the tail-averaging variant of Polyak-
Ruppert averaging (Jain et al., 2018):

x̃t :=
1

t� t0

tX

t0=t0

xt0 , ỹt :=
1

t� t0

tX

t0=t0

yt0 , (8)

where t0 & ↵�1 is the length of the warm-up period.
With the result from Theorem 3.2, we can analyze the
MSE of tail-averaged sequence:
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Figure 1: Bias (top) and variance (bottom) versus �
at different ↵ for the slower iterate xt.

Theorem 3.5. Suppose Assumptions 1-5 hold and
t0 > C(↵µx)�1 for some sufficiently large absolute
constant C > 0. Then for all t > t0

E[kx̃t � x⇤k22] = OP(�
2) +

OP(1)

t� t0
,

E[kỹt � y⇤k22] = OP(�
2) +

OP

⇣
1 +

p
�2/↵

⌘

t� t0
.

In the above result, we omitted an additional optimiza-
tion error exp(�c↵µxt0) since it is dominated by other
terms with t0 � 1/(↵µx). As we can observe, O(�2) is
attribted to the squared-bias, and O(1/t) convergence
is the variance decaying effect of tail-averaging. We also
observe that the faster iterates has extra O( 1

t

p
�2/↵)-

term. In part, this is because we measure the MSE of
ỹt from y⇤ = y⇤(x⇤), not from y⇤(x̃t). However, we are
not fully aware whether this is an artifact of an analysis,
or can be removed, and we leave the question as an
open problem. Note that when �2  ↵, both iterates
enjoy the same O(1/t)-decaying rate of variances as if
the two iterates are decoupled.

3.3.2 Extrapolation

When tail-averaging can reduce the variance, extrap-
olation can reduce the biases of each iterate. As one
example, using the fact that biases of iterates grow
linearly with step sizes, we can extrapolate two se-
quences, (x↵,�

t
, y↵,�

t
) and (x2↵,2�

t
, y2↵,2�

t
) with pairing

stepsizes (↵,�) and (2↵, 2�). The extrapolated iterates

Figure 2: Bias (top) and variance (bottom) versus �
at different ↵ for the faster iterate yt.

are computed as

⇣x
t
:= 2x̃↵,�

t
� x̃2↵,2�

t
, ⇣y

t
:= 2ỹ↵,�

t
� ỹ2↵,2�

t
.

As a corollary of our main theorems, we have the follow-
ing result characterizing the MSE of the extrapolated
sequences. Extrapolation achieves reduced biases by
canceling out the leading ↵ and � terms in the asymp-
totic biases (6), improving the MSE bounds of both
iterates from �2 to �4.

Corollary 3.6. Suppose Assumptions 1-5 hold and
t0 > C(↵µx)�1 for some sufficiently large absolute
constant C > 0. Then for all t > t0,

E[k⇣x
t
� x⇤k22] = OP(�

4) +
OP(1)

t� t0
,

E[k⇣y
t
� y⇤k22] = OP(�

4) +
OP

⇣
1 +

p
�2/↵

⌘

t� t0
.

Remark 1. If one uses pairing stepsizes (↵,�) and
(↵, 2�), then only the leading � terms in the asymptotic
biases (6) are cancelled.

Remark 2. It is possible to further reduce the order of
bias via higher-order extrapolation using more than two
sets of stepsizes as in Huo et al. (2023, 2024), though
it comes at the price of potentially slower convergence
and higher variance due to using additional stepsizes
(Durmus et al., 2021; Srikant and Ying, 2019).
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(a) Absolute error in the slower timescale. (b) Absolute error in the faster timescale.

Figure 3: Comparison of Tail-Averaging (TA) and Richard-Romberg (RR) extrapolation in �.

(a) Absolute error in the slower timescale. (b) Absolute error in faster timescale.

Figure 4: Comparison of Tail-Averaging (TA), RR extrapolation in �, and RR extrapolation in both � and ↵.

4 Experiments

We consider the TTSA iteration (1) in dimension
dx = dy = 2 driven by a 10-state, irreducible, ape-
riodic Markov chain. We construct the transition ma-
trix randomly and choose J11, J12, J21, J22 such that
Assumption 1 hold.

We tested the dependence of the bias and variance
of both iterates with respect to ↵ and � by varying
each individually. After the tail-averaged iterates con-
verged, we calculated the bias as the average distance
between the averaged iterate and the true solution, and
calculated the variance TrV(·) as the average square
distance from the iterate to the sample mean of the
iterates. For the dependence on �, we held ↵ constant
and varied � between 0.03 and 0.07. For the depen-
dence on ↵, we held � constant and varied ↵ between
0.0001 and 0.0005.

For the slower iterate xt, Figure 1 shows that the
bias scales with both � and ↵, while the variance is
dependent mostly on ↵ only. For the faster iterate yt,
Figure 2 shows that the bias depends both on � and
↵, and the variance depends on �. Both results are
consistent with our theory.

We also tested the effects of tail-averaging (TA) and
Richardson-Romberg (RR) extrapolation with a sim-

ilar setup. We fixed ↵ = 0.0003 and let � =
{0.01, 0.02, 0.04, 0.08}. In Figure 3, for each �, we
plotted the absolute errors achieved by tail-averaging
at stepsize � (labeled as “TA � = stepsize”), as well as
the errors achieved by RR extrapolation with stepsizes
� and 2� (labeled as “RR � = stepsize, 2⇤stepsize”),
which aims to cancel the � term in the bias. Com-
pared to the TA iterates (solid line), the corresponding
RR extrapolated iterate (the dashed line of the same
color) achieved lower errors, corresponding to reduced
asymptotic biases.

In addition, we examined the effectiveness of applying
RR extrapolation to cancel both the ↵ and � bias
terms. Letting ↵ = 0.0003,� = 0.02, we compared
RR extrapolating on only � (using stepsizes �,↵ and
2�,↵) with RR extrapolating on both � and ↵ (using
stepsizes �,↵ and 2�, 2↵). In Figure 4, we see that
while the former (red curves) already reduced a large
amount of the bias, the latter (black curves) reduced it
even further, as predicted by our theoretical results.

5 Proof Outline

We outline the proofs of our main theorems. We focus
on slower iterates; similar ideas apply to faster iterates.
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5.1 Proof Outline of Theorem 3.2

The first step is to analyze the descent formula for each
iterate separately. For the slower iterate, we have

E[kx̄t+1k2Qx
] = E[k(I � ↵�)x̄tk2Qx

] + 2↵E[hx̄t, w
x

t
iQx ]| {z }

T1

+ 2↵E[hx̄t, J12ȳtiQx ]| {z }
T2

+o(↵).

The term T1 would have been 0 if the noise sequence
were martingale, and can be effectively handled with
Markovian noises in a standard way by exploiting As-
sumption 2. More pressing issue is handling T2: with
naively applying Young’s inequality to bound (ii), i.e.,
with hx̄t, J12ȳti  (ckx̄tk2+ Jmax

4c kȳtk2), the asymptotic
error easily end up being O(�2/↵) as in Dalal et al.
(2018); Gupta et al. (2019), and such an approach can
be improved up to at best O(�) (Doan, 2022).

Recent results in Kaledin et al. (2020); Haque et al.
(2023) directly analyzed the descent behavior of kT2kop,
achieving O(↵) asymptotic error for the slower iterate.
However, using operator norm often results in extra de-
pendence on dimensions dx, dy, despite the smoothness
condition Jmax = O(1) in operator norm.

Our tweak for this issue is simple: to track the conver-
gence of cross-correlation norm, we employ the Schatten
S1-measure for kQ1/2

y E[ȳtx̄>
t
]k1, where Q1/2

y term is in-
corporated to ensure decreasing Lyapunov potential
with asymmetric operators. The S1-norm is the best
suited for exploiting the smoothness condition without
incurring dimension dependence, thanks to the Holder’s
inequality for matrix Schattern norm:

kABk1  kAk1kBk1 = kAk1kBkop.

Leveraging this property, we can construct the potential
function as the sum of three terms (omitting constants):

E[kx̄tk2Qx
] +

↵(↵+ �2)

�
E[kȳtk2Qy

] +
↵

�
kQ1/2

y
E[ȳtx̄>

t
]k1.

With similar techniques for analyzing the faster iterates
and cross-correlation norms, we can obtain a clean
O(↵) asymptotic error without additional dimension
dependence. The full proof is given in Appendix B.

5.2 Proof Outline of Theorem 3.3

Once we have the MSE convergence result, extending
the strategies in prior work for the single-timescale SA
(Dieuleveut et al., 2020; Huo et al., 2023), we first con-
sider two coupling sequences via sharing the common
noise sequence (x1

t
, y1

t
, ⇠t) and (x2

t
, y2

t
, ⇠t). The idea

is to show that the coupled sequences �x
t
:= x̄1

t
� x̄2

t
,

�y
y
:= ȳ1

t
� ȳ2

t
converge linearly (Lemma B.1),

E[k�x
t
k22] . exp(�c↵t) · E


k�x0k22 +

↵

�
k�y0k22

�
.

Then we can design two sequences coupled in such
a way that (x2

t
, y2

t
, ⇠t)

d
= (x1

t+1, y
1
t+1, ⇠t+1). Combining

the two results, the sequence (x1
t
, y1

t
, ⇠t) converges in L2-

Wasserstein distribution to a unique stationary point.
The remaining details can be found in Appendix B.2.

Bias and Variance Turning to the stationary dis-
tributions of the iterates, we observe that x1 satisfies

x̄1+1 = (I � ↵�)x̄1 � ↵J12ȳ1 � ↵wx

1,

E[x̄1+1|⇠1+1 = ⇠] = E[x̄1|⇠1 = ⇠], 8⇠ 2 ⌅.

Conditioned on the event ⇠1+1 = ⇠, we have ⇠1 ⇠
P †(·|⇠), where P† is the adjoint of the transition kernel
P. Using this relation, we can construct a station-
ary equation for E[x̄1|⇠1 = ⇠], and find the explicit
expression for biases by integrating the conditional
expectation over a stationary distribution ⇡, i.e.,

E[x̄1] =

Z

⌅
E[x̄1|⇠1 = ⇠] d⇡(⇠) = ↵b̄x1 + �b̄x2 +O(↵�).

The variance of ȳ1 is relatively simple to bound:

Tr(V(ȳ1))  E[kȳ1 � y⇤(x̄1)k22]  O(�).

However, showing the variance upper bound O(↵) can
not be derived in the same fashion since the MSE bound
for x̄1 is O(↵+ �2). To derive this, we also construct
a stationary equation for the covariance:

E[x̄1+1x̄
>
1+1|⇠1+1 = ⇠] = E[x̄1x̄>

1|⇠1 = ⇠], 8⇠ 2 ⌅,

and show that S1-norm of the above is O(↵). Using
the inequality Tr(A)  kAk1 completes the proof.

6 Conclusion

We analyze Markovian Linear TTSA with constant
stepsizes. We show that both iterations converge ge-
ometrically to a unique stationary distribution, even
in the absence of global contraction properties. We
provide a precise characterization of the biases and
variances in terms of the stepsizes, and establish the
advantages of tail-averaging and extrapolation. Build-
ing off our results, several intriguing questions emerge.
For instance, how would the behavior change if the
Markovian states were dependent on the TTSA iterates,
as in on-policy reinforcement learning with constant
stepsizes? Additionally, can we extend our conver-
gence guarantees in Wasserstein distance for a broader
class of functions, such as those satisfying the Polyak-
Łojasiewicz condition? These questions are remained
to be explored in future works.
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A Technical Lemmas

Lemma A.1. For any two real matrices A,B, we have

Tr(A>B)  kA>Bk1  kAk1kBk1 = kAkopkBk1.

Lemma A.2. For a positive definite matrix Q � 0 and any real matrix A, the following holds:

kAkQ = kQ1/2AQ�1/2kop.

Lemma A.3. For a positive definite matrix Q � 0, and for any vectors x, y and a matrix M ,

hx, yiQ  kxkQkykQ, hMx, xiQ  kMkopkxk2Q,

kMxkQ  kMkQkxkQ 
p
(Q)kMkopkxkQ,

where (Q) = �max(Q)
�min(Q) is the condition number of Q.

Lemma A.4 (Lemma C.13 in Haque et al. (2023)). Let �A be a Hurwitz matrix and Q be the solution to

A>Q+QA = I. (9)

Then for all ✏ 2
h
0, 1

kQkopkAk2
Q

i
, for any matrix B, we have

k(I � ✏A)BkQ  (1� µ✏)kBkQ,

where µ := 1
2kQkop

. In particular, kI � ✏AkQ  1� µ✏.

Lemma A.5. For any two positive definite matrices Q1, Q2 and a vector x, we have

kxk2
Q1

 �max(Q1)

�min(Q2)
· kxk2

Q2
.

A.1 Auxiliary Lemmas

We list some useful facts and lemmas here.
Lemma A.6. For any t � ⌧ , for all i, j 2 {1, 2}, we have

E[hWij(⇠t), vt�⌧u
>
t�⌧

i|Ft�⌧ ] = O(⇢⌧Wmaxkvt�⌧k2kut�⌧k2),
E[hui(⇠t), vt�⌧ i|Ft�⌧ ] = O(⇢⌧umaxkvt�⌧k2).

where vt, ut are any vectors that can be constructed at the tth iteration.
Lemma A.7. Let two intermediate variables:

W x

�(⇠) := W11(⇠)�W12(⇠)J
�1
22 J21,

W y

�(⇠) := W21(⇠)�W22(⇠)J
�1
22 J21.

Then, wx
t
, wy

t
can be rewritten as

wx

t
= W x

�(⇠t)x̄t +W12(⇠t)ȳt +W x

�(⇠t)x
⇤ + u1(⇠t),

wy

t
= W y

�(⇠t)x̄t +W22(⇠t)ȳt +W y

�(⇠t)x
⇤ + u2(⇠t).

Lemma A.8. For any t � ⌧ � ⌧↵, we have

kx̄t � x̄t�⌧k2  4↵⌧ (Jmax(ykx̄tk2 + kȳtk2) + �x + �Jmax�y) ,

kȳt � ȳt�⌧k2  4�⌧ (Jmax(ykx̄tk2 + kȳtk2) + �y) + 4↵y⌧�x.

The following corollary is convenient:
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Corollary A.9. If ↵⌧y  c1�⌧  c2/Jmax holds with absolute constants c1, c2 > 0, then for any t � ⌧ � ⌧↵,

kx̄t�⌧k2  2kx̄tk2 + 8↵⌧Jmaxkȳtk2 + 4⌧ (↵�x + ↵�Jmax�y) ,

kȳt�⌧k2  4�⌧Jmaxykx̄tk2 + 2kȳtk2 + 4⌧ (↵y�x + ��y) .

Lemma A.10. For any t � ⌧ � c log( y

↵µy
) with an absolute constant c > 0, we have

kE[wx

t
ȳ>
t
]k1  µy

8y

E[kȳtk22] +O(J2
maxy)�⌧E[kx̄tk22] +O(⌧)((↵2/�)y�

2
x
+ ��2

y
).

Similarly, we can derive the same upper bound for kE[wy

t
ȳ>
t
]k1.

Lemma A.11. For any t � ⌧ � c log( x
↵µx

) with an absolute constant c > 0, we have

kE[wx

t
x̄>
t
]k1  µx

8x

E[kx̄tk22] +O

✓
↵⌧J2

max + �2⌧2
J4
maxx

µx

◆
E[kȳtk22] +O(⌧)(↵�2

x
+ �2Jmax�

2
y
).

Similarly, we can derive the same upper bound for kE[wy

t
x̄>
t
]k1.

B Proof of Main Theorems

We recall the definition of �x,�y in (2)

�x := max
⇠2⌅

ku1(⇠) +W x

�(⇠)x
⇤k2,

�y := max
⇠2⌅

ku2(⇠) +W y

�(⇠)x
⇤k2.

Recall that we assume �/↵ � y in Assumption 4, and k�kop  Jmaxy.

B.1 Proof of Theorem 3.2

The proof first investigates the convergence of three terms E[kȳtk2Qy
], E[kx̄tk2Qx

], kQ1/2
y E[ȳtx̄>

t
]k1 separately. Then,

by constructing the potential function as the following:

Vt = E[kx̄tk2Qx
] +

O(1)J2
maxy↵(↵+ �2⌧2

↵
Jmax)

µxµy�
E[kȳtk2Qy

] +
O(1)J1/2

maxy↵

µx�
kQ1/2

y
E[ȳtx̄>

t
]k1,

Ut = E[kȳtk2Qy
] +

O(1)J1/2
max2.5

y
↵

µy�
kQ1/2

y
E[ȳtx̄>

t
]k1, (10)

and show that they decay in exponential rates.

B.1.1 Convergence of ȳt

We first study the descent behavior of ȳt:

E[kȳt+1k2Qy
]  E

h
k(I � �J22)ȳtk2Qy

+ ↵2kJ�1
22 J21(J12ȳt +�x̄t + wx

t
)k2

Qy
+ �2kwy

t
k2
Qy

i

+ 2↵
��E[h(I � �J22)ȳt,�J�1

22 J21(J12ȳt +�x̄t + wx

t
)iQy ]

��

+ 2�
��E[h(I � �J22)ȳt,�wy

t
iQy ]

��+ 2↵�
��E[hJ�1

22 J21(J12ȳt +�x̄t � wx

t
), wy

t
iQy ]

�� .

We bound each term:

1. Using Lemma A.4, we have

k(I � �J22)ȳtk2Qy
 (1� µy�)kȳtk2Qy

.
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2. Using the formula in Lemma A.7,

kwy

t
k2
Qy

 O(1) ·
⇣
kQykop(Wmaxy)

2kx̄tk22 + yW
2
maxkȳtk2Qy

+ kQykop�2
y

⌘

 O(1) ·
⇣
Jmax

3
y
kx̄tk22 + yJ

2
maxkȳtk2Qy

+ (1/µy)�
2
y

⌘
,

where we also used Lemma A.3 to have kW22ȳtk2Qy
 (Qy)W 2

maxkȳtk2Qy
, and (Qy) = O(y).

3. Using Cauchy-Schwarz inequality, we have

kJ�1
22 J21(J12ȳt +�x̄t + wx

t
)k2

Qy

 3kJ�1
22 J21(J12 +W12(⇠t))k2Qy

kȳtk2Qy
+ 3kQykopkJ�1

22 J21(�+W x

�(⇠t))k2opkx̄tk22
+ 3kJ�1

22 J21(u1(⇠t) +W x

�(⇠t)x
⇤)k2

Qy

 O(1)
⇣
3
y
J2
maxkȳtk2Qy

+ Jmax
5
y
kx̄tk22 + (2

y
/µy) · �2

x

⌘
.

4. We separate the cross-product term across ȳt and x̄t:
��E[h(I � �J22)ȳt,�J�1

22 J21(J12ȳt +�x̄t + wx

t
)iQy ]

��

 |E[hȳt,�J�1
22 J21(J12ȳt +�x̄t)iQy ]| {z }

(i)

|+ �|E[hJ22ȳt,�J�1
22 J21(J12ȳt +�x̄t)iQy ]| {z }

(ii)

|

+ |E[h(I � �J22)ȳt,�J�1
22 J21w

x

t
iQy ]| {z }

(iii)

|.

For (i), we can derive that

�(i) = E[Tr(ȳ>
t
QyJ

�1
22 J21(J12ȳt +�x̄t))]

 Tr(E[ȳtȳ>t Q1/2
y

]Q1/2
y

J�1
22 J21J12) + Tr(E[x̄tȳ

>
t
Q1/2

y
]Q1/2

y
J�1
22 J21�)

 E[kȳtk2Qy
] · kQ1/2

y
J�1
22 J21J12Q

�1/2
y

kop + kQ1/2
y

E[ȳtx̄>
t
]k1kQ1/2

y
J�1
22 J21�kop

 3/2
y

JmaxE[kȳtk2Qy
] + 5/2

y
J1/2
max · kQ1/2

y
E[ȳtx̄>

t
]k1.

For (ii), we can simply apply Cauchy-Schwarz inequality with J>
22QyJ

�1
22 = J�1

22 �Qy, to get

�(ii) = E[ȳ>
t
J>
22QyJ

�1
22 J21(J12ȳt +�x̄t)]

= E[ȳ>
t
(J�1

22 �Qy)J21J12ȳt] + E[ȳ>
t
(J�1

22 �Qy)J21J12ȳt�x̄t]

 JmaxyE[kȳtk22] + kE[x̄tȳ
>
t
Q1/2

y
]k1kQ�1/2

y
(J�1

22 �Qy)J12J21�kop
 J2

maxyE[kȳtk2Qy
] + (2

y
J3/2
max)kQ1/2

y
E[ȳtx̄>

t
]k1.

For (iii), we bound the term as

(iii) = |Tr(E[wx

t
ȳ>
t
](I � �J22)

>QyJ
�1
22 J21)|

 kQyJ
�1
22 J21kop · kE[wx

t
ȳ>
t
]k1

 (y/µy)kE[wx

t
ȳ>
t
]k1.

Combining (i)-(iii), we get
��E[h(I � �J22)ȳt,�J�1

22 J21(J12ȳt +�x̄t + wx

t
)iQy ]

��

 3/2
y

JmaxE[kȳtk2Qy
] + 5/2

y
J1/2
max · kQ1/2

y
E[ȳtx̄>

t
]k1 + (y/µy)kE[wx

t
ȳ>
t
]k1.

5. For the cross-product with noise, we get

|E[h(I � �J22)ȳt, w
y

t
iQy ]  (1/µy)kE[wy

t
ȳ>
t
]k1.
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6. For the last term, we simply apply Cauchy-Schwartz inequality and use inequalities used before:

2↵�|E[hJ�1
22 J21(J12ȳt +�x̄t + wx

t
), wy

t
iQy ]|  ↵2E[kJ�1

22 J21(J12ȳt +�x̄t + wx

t
)k2

Qy
] + �2E[kwy

t
k2
Qy

].

Hence to summarize, with ↵ ⌧ �/3
y

and � ⌧ 1/(Jmax2
y
), we get

E[kȳt+1k2Qy
]  (1� 3�µy/4)E[kȳtk2Qy

] +O(3
y
Jmax)�

2E[kx̄tk22]

+O(1/µy)�
2�2

y
+O(2

y
/µy)↵

2�2
x
+O(5/2

y
J1/2
max)↵kQ1/2

y
E[x̄tȳ

>
t
]k1

+ (2y/µy)↵kE[wx

t
ȳ>
t
]k1 + (2/µy)�kE[wy

t
ȳ>
t
]k1.

Then we can invoke Lemma A.10 with ⌧ = O(⌧↵), and noting that �J2
maxy ⌧ µy to conclude that

E[kȳt+1k2Qy
]  (1� �µy/2)E[kȳtk2Qy

] +O(3
y
Jmax)�

2⌧↵E[kx̄tk22]

+O(5/2
y

J1/2
max)↵kQ1/2

y
E[x̄tȳ

>
t
]k1 +O(1/µy)⌧↵(�

2�2
y
+ 2

y
↵2�2

x
). (11)

B.1.2 Convergence of x̄t

We start with taking squared-k · kQx norm for the slower iterates:

E[kx̄t+1k2Qx
]  E[k(I � ↵�)x̄tk2Qx

+ 2↵2kJ12ȳtk2Qx
+ 2↵2kwx

t
k2
Qx

]

+ 2↵|E[h(I � ↵�)x̄t, J12ȳtiQx ]|+ 2↵|E[h(I � ↵�)x̄t, w
x

t
iQx ]|+ 2↵2|E[hJ12ȳt, wx

t
iQx ]|.

Following the similar steps for the analysis of ȳt, we show the followings:

1. The main drift term satisfies

k(I � ↵�)x̄tk2Qx
 (1� µx↵)kx̄tk2Qx

.

2. For the squared terms,

kJ12ȳtk2Qx
 kQxkopJ2

maxkȳtk22, (J2
max/µx)kȳtk22,

kwx

t
k2
Qx

 3
�
x(Wmaxy)

2kx̄tk2Qx
+ kQxkopW 2

maxkȳtk22 + kQxkop�2
x

�

 O(1) ·
�
x

2
y
J2
maxkx̄tk2Qx

+ (J2
max/µx)kȳtk22 + (1/µx)�

2
x

�
.

3. For the cross-product term,

|E[h(I � ↵�)x̄t, J12ȳtiQx ]| = |Tr(E[ȳtx̄>
t
](I � ↵�)>QxJ12)|

 kQ1/2
y

E[ȳtx̄>
t
]k1kQ1/2

x
Q�1/2

x
(I � ↵�)>QxJ12Q

�1/2
y

kop
 (J3/2

max/µx)kQ1/2
y

E[ȳtx̄>
t
]k1.

4. For the product term with noise, we have

|E[h(I � ↵�)x̄t, w
x

t
iQx ]|  kE[wx

t
x̄>
t
]k1kQxkop  (1/µx)kE[wx

t
x̄>
t
]k1.

Writing down the intermediate result, with ↵ ⌧ 1/(Jmaxx3
y
), we have

E[kx̄t+1k2Qx
]  (1� ↵µx/2)E[kx̄tk2Qx

] +O(J2
max/µx)↵

2E[kȳtk22] +O(1/µx)↵
2�2

x

+O(J3/2
max/µx)↵kQ1/2

y
E[ȳtx̄>

t
]k1 + (2/µx)↵kE[wx

t
x̄>
t
]k1.

Invoke Lemma A.11 with ⌧ = O(⌧↵), and we can conclude that

E[kx̄t+1k2Qx
]  (1� ↵µx/2)E[kx̄tk2Qx

] + (J2
max/µx)(↵

2 + ↵�2⌧2
↵
Jmax)E[kȳtk22]

+ ↵(J3/2
max/µx)kQ1/2

y
E[ȳtx̄>

t
]k1 + (1/µx)

�
↵2⌧↵�

2
x
+ ↵�2⌧2

↵
Jmax

2
x
�2
y

�
. (12)
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B.1.3 Convergence of Cross-Correlations in S1
-Norm

We start with unfolding the equation:

ȳt+1x̄
>
t+1 = (I � �J22)ȳtx̄

>
t
(I � ↵�)� ↵(I � �J22)ȳt(J12ȳt + wx

t
)>

� ↵J�1
22 J21(J12ȳt +�x̄t + wx

t
)x̄>

t
� �wy

t
x̄>
t

+ ↵2J�1
22 J21(J12ȳt +�x̄t + wx

t
)(�x̄t + J12ȳt + wx

t
)>

+ ↵� · wy

t
(�x̄t + J12ȳt + wx

t
)>.

The target norm is k · k1 bound on the expectation of the cross-product term. The trick is to multiply Q1/2
y from

left on both sides, and use identity I = Q�1/2
y Q1/2

y :

kQ1/2
y

E[ȳt+1x̄
>
t+1]k1  kQ1/2

y
(I � �J22)Q

�1/2
y

(Q1/2
y

E[ȳtx̄>
t
])(I � ↵�)k1

+ ↵kQ1/2
y

(I � �J22)Q
�1/2
y

(Q1/2
y

E[ȳtȳ>t ]Q1/2
y

)Q�1/2
y

J>
12k1

+ ↵kQ1/2
y

(I � �J22)Q
�1/2
y

Q1/2
y

E[w̄x

t
ȳ>
t
]k1

+ ↵kQ1/2
y

J�1
22 J21(J12E[ȳtx̄>

t
] +�E[x̄tx̄

>
t
] + E[wx

t
x̄>
t
])k1 + �kQ1/2

y
E[wy

t
x̄>
t
]k1

+ ↵2kQ1/2
y

J�1
22 J21E[(J12ȳt +�x̄t + wx

t
)(�x̄t + J12ȳt + wx

t
)>]k1

+ ↵�kE[Q1/2
y

wy

t
(�x̄t + J12ȳt + wx

t
)>]k1.

We observe the following:

1. kQ1/2
y (I � �J22)Q

�1/2
y kop = kI � �J22kQy  1� µy�, and therefore

kQ1/2
y

(I � �J22)Q
�1/2
y

(Q1/2
y

E[ȳtx̄>
t
])(I � ↵�)k1  (1� µy�)(1 + ↵Jmaxy)kQ1/2

y
E[ȳtx̄>

t
]k1

 (1� µy�/2)kQ1/2
y

E[ȳtx̄>
t
]k1.

2. In all other terms, we use inequality kE[uv>]k1  1
2 (E[kuk

2
2] + E[kvk22]).

We omit some algebraic details, and state the desired bounds:

kQ1/2
y

E[ȳt+1x̄
>
t+1]k1  (1� �µy/2)kQ1/2

y
E[ȳtx̄>

t
]k1 + ↵Jmax

3/2
y

kQ1/2
y

E[ȳtx̄>
t
]k1

+ (↵J3/2
max)E[kȳtk2Qy

] + (↵J1/2
max

5/2
y

)E[kx̄tk22]

+ (↵/
p
µy)kE[wx

t
ȳ>
t
]k1 + (↵�Jmax/

p
µy)kE[wy

t
ȳ>
t
]k1

+ (�/
p
µy)kE[wy

t
x̄>
t
]k1 + (↵�/

p
µy)(�

2
x
+ �2

y
).

Applying Lemma A.11 and A.10, and using ↵ ⌧ �/2
y

in Assumption 4, we can conclude that

kQ1/2
y

E[ȳt+1x̄
>
t+1]k1  (1� �µy/2)kQ1/2

y
E[ȳtx̄>

t
]k1

+O(↵J3/2
max + �3⌧2J9/2

maxx
1/2
y

/µx)E[kȳtk2Qy
] +O

⇣
↵J1/2

max
5/2
y

⌘
E[kx̄tk22]

+O(↵�⌧↵/
p
µy)(�

2
x
+ �2

y
) + (1/

p
µy)(�

3⌧2Jmaxx/µx)�
2
y
. (13)

B.1.4 Overall Convergence

Recall the potential function Vt and Ut in (10):

Vt = E[kx̄tk2Qx
] +

O(1)J2
maxy↵(↵+ �2⌧2

↵
Jmax)

µxµy�
E[kȳtk2Qy

] +
O(1)J1/2

maxy↵

µx�
kQ1/2

y
E[ȳtx̄>

t
]k1,

Ut = E[kȳtk2Qy
] +

O(1)J1/2
max2.5

y
↵

µy�
kQ1/2

y
E[ȳtx̄>

t
]k1.
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We note that � ⌧ 1/(3
y
xJmax) and �/↵ ⌧ 1/(3

y
x) in Assumption 4, and

kx̄tk22  1

�min(Qx)
kx̄tk2Qx

 Jmaxykx̄tk2Qx
,

kȳtk22  1

�min(Qy)
kȳtk2Qy

 Jmaxkȳtk2Qy
.

Putting altogether, we have

Vt+1  (1� ↵µx/2)Vt +
3/2
y

µx

✓
↵2⌧↵ +

Jmaxx⌧2↵
µx

↵�2

◆
�2
y
+

⌧↵yx

µy

↵(↵+ �2Jmax⌧
2
↵
)�2

y
+

↵2⌧↵
µx

�2
x
. (14)

Solving this recursion,

E[kx̄tk2Qx
]  Vt  exp(�↵µxt/2)V0 +

1/2
y

µ2
x

(↵y⌧↵ + �2Jmax
2
x
⌧2
↵
)�2

y
+

⌧↵yx

µyµx

(↵+ �2Jmax⌧
2
↵
)�2

y
+

↵⌧↵
µ2
x

�2
x
,

for all t, hence for all sufficiently large t � ↵�1, we have bounds for E[kx̄tk2Qx
]  OP(↵)�2

x
+OP(↵+ �2)�2

y
.

Next, we consider the potential for faster iterates Ut. We see that

Ut+1  (1� �µy/2)Ut + �23
y
Jmax⌧↵E[kx̄tk22] + (⌧↵/µy)(

2
y
↵2�2

x
+ �2�2

y
)

 (1� �µy/2)Ut + �23
y
J2
max⌧↵ exp(�↵µxt/2)V0

+O

 
2
y
⌧

µy

↵2 +
⌧2J2

max
3
y

µ2
x

↵�2

!
�2
x
+O

✓
⌧

µy

�2

◆
�2
y
, (15)

which yields

E[kytk2Qy
]  Ut  exp(��µyt/2)U0 + �4

y
⌧↵ exp(�↵µxt/4)V0

+O

 
2
y
⌧

µ2
y

↵

�
+

⌧2Jmax4
y

µ2
x

�

!
↵�2

x
+O

✓
⌧

µ2
y

�

◆
�2
y
,

assuming �µy � ↵µx. Thus for sufficiently large t � ↵�1 log(1/�), we have E[kȳtk2Qy
] = OP(↵2/� + ↵�)�2

x
+

OP(�)�2
y
. This concludes the final error rates as t ! 1.

B.2 Proof of Theorem 3.3

Showing the distributional convergence consists of two steps. First, we setup two sequences {(x1
t
, y1

t
, ⇠t)}t�0,

{(x2
t
, y2

t
, ⇠t)}t�0 coupled with the same sequence of Markovian states {⇠t}t�0. We show that these two sequences

will converge in the squared-L2 expectation sense:

Lemma B.1. Under Assumptions 1-4, for any two sequences coupled with the same Markovian nosie (x1
t
, y1

t
, ⇠t)

and (x2
t
, y2

t
, ⇠t), the following holds:

E[kx1
t
� x2

t
k22]  OP(1) · E


kx1

0 � x2
0k22 +

↵

�
kȳ10 � ȳ20k22

�
exp(�↵µxt/4),

E[kȳ1
t
� ȳ2

t
k22]  OP(1) · E

⇥
kx1

0 � x2
0k22 + kȳ10 � ȳ20k22

⇤
exp(��µyt/4)

+OP(1) · E

kx1

0 � x2
0k22 +

↵

�
kȳ10 � ȳ20k22

�
� exp(�↵µxt/4).

We first prove the above lemma and use it to conclude that the distribution of iteration variables converges in
Wasserstein distance to a unique stationary distribution.
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B.2.1 Proof of Lemma B.1

Let us define �x
t
= x̄1

t
� x̄2

t
, �y

t
= ȳ1

t
� ȳ2

t
. Then the stochastic recursion (1) becomes

�x
t+1 = (I � ↵�)�x

t
� ↵J12�

y

t
� ↵�wx

t
,

and for y, we have

�y
t+1 = (I � �J22)�

y

t
� ↵J�1

22 J21(J12�
y

t
+��x

t
)� (↵J�1

22 J21�
wx

t
+ ��wy

t
),

where the noise differences are given by:

�wx

t
= W x

�(⇠t)�
x

t
+W12(⇠t)�

y

t
,

�wy

t
= W y

�(⇠t)�
x

t
+W22(⇠t)�

y

t
,

where we used the expression in Lemma A.7. This can be considered as the same TTSA recursion with �x = �y = 0.
Therefore, the remaining steps are equivalent to the pilot result with �x = �y = 0, and it leads to

E[k�x
t
k2
Qx

]  exp(�↵µxt/2)V0,

E[k�y
t
k2
Qy

]  exp(��µyt/2)U0 +OP(1)� exp(�↵µxt/4)V0.

where we define

Vt = E[k�x
t
k2
Qx

] +
O(1)J2

maxy↵(↵+ �2⌧2
↵
Jmax)

µxµy�
E[k�y

t
k2
Qy

] +
O(1)J1/2

maxy↵

µx�
kQ1/2

y
E[�y

t
�x
t

>]k1,

Ut = E[k�y
t
k2
Qy

] +
O(1)J1/2

max2.5
y

↵

µy�
kQ1/2

y
E[�y

t
�x
t

>]k1,

This shows that (x̄1
t
, ȳ1

t
), (x̄2

t
, ȳ2

t
) converges exponentially fast with the noise coupling, which in turn means (x1

t
, y1

t
)

and (x2
t
, y2

t
) couples exponentially fast since

x̄1
t
� x̄2

t
= x1

t
� x2

t
,

ȳ1
t
� ȳ2

t
= (y1

t
� y2

t
)� (y⇤(x1

t
)� y⇤(x2

t
)) = y1

t
� y2

t
+OP(kx1

t
� x2

t
k).

B.2.2 Distributional Convergence via Coupling

The steps here mostly follows the proof steps in Huo et al. (2023), Appendix A.2.2. We first consider a sequence
(⇠1

t
, x1

t
, y1

t
)t�0 that starts at (x1

0, y
1
0 , ⇠

1
0) ⇠ µ0 sampled from some initial distribution µ0 where ⇠10 ⇠ ⇡ and (x1

0, y
1
0)

are statistically independent. Then, we similarly define the initial point distribution of the second sequence
(x2

�1, y
2
�1) as the same as (x1

0, y
1
0) and set (x2

0, y
2
0) be the result of one-step stochastic recursion (1), where

⇠2�1 ⇠ P†(·|⇠10). Then we couple the Markovian states ⇠1
t
= ⇠2

t
for all t � 0. Now that we have

(⇠2
t
, x2

t
, y2

t
)

d
= (⇠1

t+1, x
1
t+1, y

1
t+1),

since ⇠10
d
= ⇠11 follws a stationary distribution ⇡, and ⇠1

t
= ⇠2

t
is coupled. Then by definition of Wasserstein distance

(with the optimal coupling), using Lemma B.1, we get

W̄2
2 ((x

1
t
, y1

t
, ⇠1

t
), (x1

t+1, y
1
t+1, ⇠

1
t+1))  C exp(�↵µxt/4), 8t � 0,

and therefore (omitting superscript)
X

t�0

W̄2
2 ((xt, yt, ⇠t), (xt+1, yt+1, ⇠t+1)) 

X

t�0

C exp(�↵µxt/4) < 1,

with ↵ > 0. The probability space over ⌅⇥ Rdx ⇥ Rdy equipped with W̄2-norm is known to be a Polish space
where every Cauchy sequence converges (Villani et al. (2009), Theorem 6.18). Furthermore, convergence in
Wasserstein distance implies weak convergence (Villani et al. (2009), Theorem 6.9), hence weak convergence to
some distribution µ 2 P2(⌅⇥ Rdx ⇥ Rdy ).
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B.2.3 Stationarity of the Limit Distribution

Next, we show that the sequence converges to a unique stationary distribution µ regardless of the initial distribution
µ0. To do so, we first show that the sequence has bounded fourth-order moments:
Lemma B.2. Suppose an initial distribution (⇠0, x0, y0) ⇠ µ0 that satisfies Assumption 5. Then for all t � 0, we
have

E[kxtk42 + kytk42] < OP(1) · E[kx0k42 + ky0k42] +OP(1) · (�4
x
+ �4

y
).

Then we consider two TTSA sequences starting from two arbitrary initial distributions µ1
0, µ

2
0. We start with the

following lemma that is reminiscent of Lemma A.8 in Huo et al. (2023) for (1):
Lemma B.3. For any two TTSA sequences (x1

t
, y1

t
, ⇠1

t
) ⇠ µ1

0 and (x2
t
, y2

t
, ⇠2

t
) ⇠ µ2

0 with bounded fourth-order
moments satisfying Assumption 5, for all t � 0, we have

W2
2 (µ

1
t
(x1

t
), µ2

t
(x2

t
))  OP(1) exp(�↵µxt/8)V0,

W2
2 (µ

1
t
(ȳ1

t
), µ2

t
(ȳ2

t
))  OP(1) (� exp(�↵µxt/8)V0 + exp(��µyt/8)U0) , (16)

where

V0 := W2
2 (µ

1
0(x

1
0), µ

2
0(x

2
0)) +

↵

�
W2

2 (µ
1
0(ȳ

1
0), µ

2
0(ȳ

2
0)) +OP(↵),

U0 := W2
2 (µ

1
0(x

1
0), µ

2
0(x

2
0)) +W2

2 (µ
1
0(ȳ

1
0), µ

2
0(ȳ

2
0)) +OP(�).

Apply Lemma B.3, we have

W̄2(µ
1
t
, µ2

t
) < OP(1) · exp(�↵µxt/8)

t!1�! 0,

which in turn implies that all sequences converge to the unique limit distribution µ.

Lastly, we show that µ is an invariant distribution with µ(⇠) = ⇡. By the geometric mixing property of (⇠t)t�0,
the limit distribution must satisfy µ(⇠) = ⇡ (otherwise, we can derive a contradiction). Thus, for a sequence
(xt, yt, ⇠t) starting from µ with marginal µ(⇠0) = ⇡, we know that µt(⇠t) = ⇡ for all t � 0. Thus, using the
coupling results, we have

W̄2(µ1, µ)  W̄2(µ1, µt+1) + W̄2(µt+1, µ)

 OP(1)W̄2(µ0, µt) + W̄2(µt+1, µ)
t!1�! 0,

where we used µ0 = µ.

B.2.4 Bias Characterization

For analyzing the bias if the limite distribution (x1, y1, ⇠1) ⇠ µ, we start from sending t ! 1 in (1)

x̄t+1 = (I � ↵�)x̄t � ↵J12ȳt � ↵wx(xt, yt; ⇠t),

ȳt+1 = (I � �J22)ȳt � ↵J�1
22 J21(J12ȳt +�x̄t + J21w

x(xt, yt; ⇠t)) + �wy(xt, yt; ⇠t)).

Let

zx(⇠) = E[x1 � x⇤|⇠1 = ⇠],

zy(⇠) = E[y1 � y⇤(x1)|⇠1 = ⇠],

and

wx(⇠) = W11(⇠)E[x1|⇠1 = ⇠] +W12(⇠)E[y1|⇠1 = ⇠] + b1(⇠),

wy(⇠) = W21(⇠)E[x1|⇠1 = ⇠] +W22(⇠)E[y1|⇠1 = ⇠] + b2(⇠).
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We take conditional expectation on ⇠1+1 = ⇠, we have the backward conditional probability ⇠1 ⇠ P †(·|⇠1+1 = ⇠).
Let T : ⌅⇥ R⇤ ! ⌅⇥ R⇤ an unnormalized Markov operator over ⇠:

T {z}(⇠0) =
Z

⇠2⌅
z(⇠)dT (⇠0|⇠).

Using the above notation, we can rewrite the recursion as

zx = P†{(I � ↵�)zx � ↵J12z
y � ↵wx},

zy = P†{(I � �J22)z
y � ↵J�1

22 J21(J12z
y +�zx + wx)� �wy}.

Let ⇧ = 1
N

⇡, and note that ⇧{Wij} = 0 for all i, j 2 {1, 2}. We eventually want to characterize z̄x :=
E[x1 � x⇤] = ⇡{zx} =

R
⇠
zx(⇠)d⇡(⇠) and z̄y := ⇡{zy}. Since ⇡P † = ⇡ by the time-reversing property of the

geometrically mixing chain, this implies

�z̄x + J12z̄
y + ⇡{wx} = 0,

J22z̄
y + ⇡{wy} = 0. (17)

To further proceed, let �x(⇠) = zx(⇠)� ⇡{zx}, �y(⇠) = zy(⇠)� ⇡{zy}, and since (P† �⇧){zx} = (P† �⇧){�x},
we can observe that

(I � P † +⇧){�x} = �↵(P † �⇧){�zx + J12z
y + wx} = �↵(P † �⇧){��x + J12�

y + wx},

(I � P † +⇧){�y} = ��(P † �⇧)

⇢
J22z

y +
↵

�
J�1
22 J21(J12z

y +�zx + wx) + wy

�

= (I � P † +⇧){�x}� �(P † �⇧) {J22�y + wy} . (18)

Then we note that

wy(⇠) = W21(⇠)z
x(⇠) +W22(⇠)z

y(⇠) + u2(⇠) +W21(⇠)x
⇤ �W22(⇠)J

�1
22 J21(z

x(⇠) + x⇤)

= (W21(⇠)�W22(⇠)J
�1
22 J21)z

x(⇠) +W22(⇠)z
y(⇠) + u2(⇠) + (W21(⇠)�W22(⇠)J

�1
22 J21)x

⇤

= W y

�(⇠)(�
x(⇠) + z̄x) +W22(⇠)(�

y(⇠) + z̄y) + u2(⇠) +W y

�(⇠)x
⇤,

wx(⇠) = (W11(⇠)�W12(⇠)J
�1
22 J21)z

x(⇠) +W12(⇠)z
y(⇠) + u1(⇠) + (W11(⇠)�W12(⇠)J

�1
22 J21)x

⇤

= W x

�(⇠)(�
x(⇠) + z̄x) +W12(⇠)(�

y(⇠) + z̄y) + u1(⇠) +W x

�(⇠)x
⇤.

Plugging this back into (17) yields

�z̄x + J12z̄
y + ⇡{W x

� � �x}+ ⇡{W12 � �y} = 0,

J22z̄
y + ⇡{W y

� � �x}+ ⇡{W22 � �y} = 0,

where we define (a � b)(⇠) = a(⇠)b(⇠). In turn, we have

z̄y = �J�1
22 (⇡{W y

� � �x}+ ⇡{W22 � �y}),
z̄x = ���1(⇡{(W x

� � J12J
�1
22 W y

�) � �
x}+ ⇡{(W12 � J12J

�1
22 W22) � �y}). (19)

Rearranging (18) yields

(I � P† +⇧){�x} = �↵(P† �⇧){(�+W x

�) � �x + (J12 +W12) � �y + (u1 +W x

�x
⇤)}

� ↵(P† �⇧){W x

�}z̄x � ↵(P† �⇧){W12}z̄y,
(I � P† +⇧){�y � �x} = ��(P† �⇧){W y

� � �x + (J22 +W22) � �y + (u2 +W y

�x
⇤)}

� �(P† �⇧){W y

�}z̄
x � �(P† �⇧){W22}z̄y. (20)

The operation (I � P† +⇧) is invertible (see Corollary B.6), and thus we can invert the operator (I � P† +⇧).
Putting all relationships together leads us to the recursion:

�x = ↵dx +OP(↵�
x + ↵�y),
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�y = ↵dx + �dy +OP(��
x + ��y), (21)

where

dx := �(I � P† +⇧)�1(P† �⇧){u1 +W x

�x
⇤},

dy := �(I � P† +⇧)�1(P† �⇧){u2 +W y

�x
⇤}, (22)

are independent of the choice of ↵,�. Next, we bound the norm of �x, �y, dx, dy, and thus the norm of z̄x, z̄y.

B.2.5 Additional Preliminaries for Bounding Norms

Before we proceed, we define the notion of norms that we use in the proof. For vector-valued quantities, let us
define kvkL2(⇡) as

kvkL2(⇡) =

sZ

⌅
kvk22d⇡(⇠),

and for the Markov kernel T ,

kT kL2(⇡) := sup
kvkL2(⇡)=1

kT {v}kL2(⇡).

For matrices, we use the conjugate norm-pair k · k1 and k · k1 = k · kop. Specifically, for matrix-valued quantities,
we define kAkS1(⇡) as

kAkS1(⇡) =

Z

⌅
kAk1d⇡(⇠),

and

kAkS1(⇡) =

✓Z

⌅
kAk11d⇡(⇠)

◆1/1
= max

⇠2⌅
kA(⇠)kop.

The following holder’s inequality is crucial to obtain dimension-free bounds on variances:

Lemma B.4. For Markov kernel T and conditional matrix A(⇠), We have

kT AkS1(⇡)  kT kS1(⇡)kAkS1(⇡),

where

kT kS1(⇡) := sup
kY kS1(⇡)1

kT Y kS1(⇡).

Using the results from Markov chain literature, we have the following lemma:

Lemma B.5 (Proposition 22.3.5 in Douc et al. (2018)). Let P be a Markov Kernel on a Boral state-space ⌅ with
invariant probability ⇡. Under Assumption 2, we have

k(P �⇧)kkL2(⇡) 
p
2c⇢⇢

k/2,

k(P �⇧)kkS1(⇡)  2c⇢⇢
k.

The following is the corollary:

Corollary B.6. Under Assumption 2, we have

max
�
k(I � P† +⇧)�1kL2(⇡), k(I � P† +⇧)�1kS1(⇡)

�
 2c⇢/(1� ⇢).
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B.2.6 Norm-Bounds for Stationary Bias

We show that k�xkL2(⇡) = OP(↵), k�ykL2(⇡) = OP(�). First, we note that

k�xkL2(⇡)  ↵(Cx

1 k�xkL2(⇡) + Cx

2 k�ykL2(⇡) + Cx

3 ),

where

C(P,⇡) := k(I � P† +⇧)�1kL2(⇡)kP† �⇧kL2(⇡) 
4c⇢
1� ⇢

= O(⌧↵),

C1 := C(P,⇡)k�+W x

�kL2(⇡)  C(P,⇡)Jmaxy,

C2 := C(P,⇡)kJ12 +W12kL2(⇡)  C(P,⇡)Jmax,

C3 := C(P,⇡)(�x +Wmaxykz̄xkL2(⇡) +Wmaxkz̄ykL2(⇡))

 C(P,⇡)(�x +OP(�)Wmaxy).

The last inequality is because

kz̄ykL2(⇡) =

Z

⌅
kE[ȳ1|⇠]� E[ȳ1]k2⇡(d⇠) 

Z

⌅
E[kȳ1 � E[ȳ1]k2|⇠]⇡(d⇠)

= E[kȳ1 � E[ȳ1]k2]  E[kȳ1k2] = OP(�),

by Theorem 3.2, and similarly, we can also show that kz̄xkL2(⇡) = OP(↵+ �2). Furthermore,

k�ykL2(⇡)  �(C1k�xkL2(⇡) + C2k�ykL2(⇡) + C3) + k�xkL2(⇡),

for the same problem-dependent constants C1, C2, C3 as defined above. This concludes that for ↵ ⌧ � ⌧
1/max(C1, C2), we have

k�xkL2(⇡) = OP(↵), k�ykL2(⇡) = OP(�).

Similarly, we can show that

kdxkL2(⇡) 
O(1)�x

1� ⇢
, kdykL2(⇡) 

O(1)�y

1� ⇢
,

which implies that b̄y1, b̄
y

2 = OP(1) since

kb̄y2k2 =

����J
�1
22

Z

⌅
W22d

yd⇡(⇠)

����
2

 y

✓Z

⌅
kdyk2d⇡(⇠)

◆
 ykdykL2(⇡).

Similarly, we have kb̄y1k2 = OP(1) and b̄x
i
= OP(1) for i = 1, 2. We can plug this result back to (19) to conclude

the bias part of Theorem 3.3.

B.2.7 Dimension-Free Bounds for Variances

We note that the variance of x1 is measured by

kV(x1)k1 = Tr(V(x1)) = Tr(E[(x1 � E[x1])(x1 � E[x1])>]),

where the expectation is taken over the stationary distribution (x1, y1, ⇠1) ⇠ µ, and thus we aim bound
Tr(V(x1)). For y, it is sufficient to bound y1 by O(�). To see this, note that

Tr(V(y1)) = E[ky1 � E[y1]k2] = E[ky1 � y⇤(x⇤)k2] + kE[y1]� y⇤(x⇤)k2

 2E[kȳ1k2] + 2E[ky⇤(x1)� y⇤(x⇤)k2] + kE[y1(x1)� y⇤(x⇤)]k2

 2E[kȳ1k2] + 3yE[kx̄1k2] = OP(�).

Similarly, we also have that

Tr(V(x1)) = OP(↵+ �2),
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and

kE[(x1 � E[x1])ȳ>1]k1 = OP(↵+ �2).

Next, we show that the variance of x1 is strictly in order O(↵), without poly(�) dependence. We first observe
that

(x1+1 � E[x1])(x1+1 � E[x1])>

= (x1 � E[x1])(x1 � E[x1])> � ↵(x1 � E[x1])(�x̄1 + J12ȳ1 + wx

1)>

� ↵(�x̄1 + J12ȳ1 + wx

1)(x1 � E[x1])> + ↵2(�x̄1 + J12ȳ1 + wx

1)(�x̄1 + J12ȳ1 + wx

1)>.

Let us define ⌃x(⇠) and ⌃xy(⇠) as the following:

⌃x(⇠) = E[(x1 � E[x1])(x1 � E[x1])>|⇠1 = ⇠],

⌃xy(⇠) = E[(x1 � E[x1])ȳ>1|⇠1 = ⇠] = E[(x1 � E[x1])(y1 � y⇤(x1))>|⇠1 = ⇠],

⌃y(⇠) = E[ȳ1ȳ>1|⇠1 = ⇠].

We can then rewrite the recursion compactly:

⌃x = P†{⌃x � ↵(A+A>) + ↵2B},

where

A(⇠) = ⌃x(⇠)�+ ⌃xy(⇠)J>
12 + E[(x1 � E[x1])>wx

1|⇠1 = ⇠]

= ⌃x(⇠)(�+W x

�(⇠))
> + ⌃xy(⇠)(J12 +W12(⇠))

> + �x(⇠)(u1(⇠) +W x

�(⇠)E[x1])>,

B(⇠) = (�+W x

�(⇠))⌃
x(⇠)(�+W x

�(⇠))
> + (J12 +W12(⇠))⌃

y(⇠)(J12 +W12(⇠))
>

+ (�+W x

�(⇠))⌃
xy(⇠)(J12 +W12(⇠))

> + (J12 +W12(⇠))⌃
yx(⇠)(�+W x

�(⇠))
>

+ (W x

�(⇠)z
x(⇠) + u1(⇠))(W

x

�(⇠)z
x(⇠) + u1(⇠))

> +O(�x(⇠) + �y(⇠)).

Let ⌃̄x = ⇡{⌃x} = E[⌃x], Dx(⇠) := ⌃x(⇠) � ⌃̄x, and similarly define ⌃̄xy, Dxy. The steady-state equation is
given by

⌃̄x�+�⌃̄x + (⌃̄xyJ>
12 + J12⌃̄

yx) = ↵⇡
�
(W x

�(⇠)z
x(⇠) + u1(⇠))(W

x

�(⇠)z
x(⇠) + u1(⇠))

> 

+OP(↵)(k⌃̄xk1 + k⌃̄xyk1 + k⌃̄yk1 + k�xkL2(⇡) + k�ykL2(⇡))

+OP(kDxkS1(⇡) + kDxykS1(⇡) + k�xkL2(⇡)). (23)

We also note that P†{⌃̄x} = ⌃̄x and (P† �⇧){⌃x} = (P† �⇧){Dx}, and thus similarly to (18),

Dx = �↵(I � P† +⇧)�1(P† �⇧){OP(D
x + ⌃̄x +Dxy + ⌃̄xy + �x)}

+ ↵2(I � P† +⇧)�1(P† �⇧){OP(⌃̄
x + ⌃̄xy + ⌃̄y + �x + �y + 1)}.

Taking k · kS1(⇡) of Dx, with Lemma B.4 and Corollary B.6, we can show that

kDxkS1(⇡)  OP(↵)(kDxkS1(⇡) + kDxykS1(⇡) + k⌃̄xk1 + k⌃̄xyk1) + ↵2OP(1),

where we also used kWijkS1(⇡)  Jmax for i, j 2 {1, 2} by Assumption 3, and used a Cauchy-Schwarz inequality

kABkS1(⇡) 
Z

⇠

kA(⇠)k1kB(⇠)k1d⇡(⇠)  kAkS1(⇡)kBkS1(⇡),

kuv>kS1(⇡) 
Z

⇠

ku(⇠)k2kv(⇠)k2d⇡(⇠)  kukL2(⇡)kvkL2(⇡),

with k�xkL2(⇡) = OP(↵), k�ykL2(⇡) = OP(�). This suggests that as long as kDxykS1(⇡), k⌃̄xk1, k⌃̄xyk1 = oP(1), we
have kDxkS1(⇡) = oP(↵).
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To proceed, we also get the expression for ⌃xy:

⌃xy = P†{⌃xy � �A0 � ↵B0 +O(↵�)},

where

A0(⇠) = ⌃xy(⇠)(J22 +W22(⇠))
> + ⌃x(⇠)W21(⇠) + �x(⇠)(u2(⇠) +W y

�(⇠)E[x1])>,

B0(⇠) = (⌃x(⇠)(�+W x

�(⇠)
> + ⌃xy(⇠)(J12 +W12(⇠))

>)(J�1
22 J21)

>

+ ⌃y(⇠)(J12 +W12(⇠))
> +W x

�(⇠)⌃
yx(⇠) + �y(⇠)(W x

�(⇠)E[x1] + u1(⇠))
>.

and C 0 is appropriately defined. The steady-state equation is

⌃̄xyJ>
22 +

↵

�
⌃̄yJ>

12 = ↵⇡
�
(W x

�(⇠)z
x(⇠) + u1(⇠))(W

y

�(⇠)z
x(⇠) + u2(⇠))

> 

+OP(kDxkS1(⇡) + kDxykS1(⇡) + k�xkL2(⇡)) +OP(↵), (24)

and the system equation is

Dxy = (I � P† +⇧)�1(P† �⇧){�OP(D
x +Dxy + ⌃̄x + ⌃̄xy + �x) + ↵OP(D

y + ⌃̄y + �y) +OP(↵�)}.

Noting that k�xkL2(⇡) = O(↵), k�ykL2(⇡) = O(�), we can show that

kDxykS1(⇡)  OP(�)(kDxkS1(⇡) + kDxykS1(⇡) + k⌃̄xk1 + k⌃̄xyk1) +OP(↵)(kDykS1(⇡) + k⌃̄yk1) +OP(↵�).

Combining these results, we can conclude that

kDxykS1(⇡), kDxkS1(⇡) = OP(↵)(k⌃̄xk1 + k⌃̄xyk1) +OP(↵�).

Now plugging this back to (24), we have

k⌃̄xyk1  y↵

�
k⌃̄yk1 +OP(kDxkS1(⇡) + kDxykS1(⇡) + k�xkL2(⇡)) + oP(↵),

yielding k⌃̄xyk1 = OP(↵) since k⌃̄yk1 = OP(�). Then using these results, from (23), we can derive that

Tr(⌃̄x)+Tr(�⌃̄x��1) = 2Tr(⌃̄x) = 2k⌃̄xk1
 k⌃̄xyJ>

12k1k��1kop +O(↵)k��1kopkW x

� � zx + u1k2L2(⇡) +OP(↵)k⌃̄xk1 + oP(↵).

Therefore, we can conclude that k⌃̄xk1 = OP(↵). Since k⌃̄xk1 = Tr(⌃̄x) = Tr(V(x1)), we obtain the last part of
the theorem.

B.2.8 Proof of Corollary 3.4

This is in fact a corollary of Lemma B.3. To see this, apply Lemma B.3 with µ2
0 = µ, and then note that under

optimal coupling between µ0 and µ,

W2
2 (µ0(x0), µ(x1))  E[kx0 � x1k22]  2E[kx0 � E[x1]k22] + E[kx1 � E[x1]k22]

= 2E[kx0 � E[x1]k22] + 2Tr(V(x1)).

Similarly,

W2
2 (µ0(ȳ0), µ(ȳ1))  2E[kȳ0 � E[ȳ1]k22] + 2Tr(V(ȳ1)).

Then from Theorem 3.3, applying Tr(V(x1)) = OP(↵) and Tr(V(ȳ1)) = OP(�), we have the lemma.
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B.3 Tail Averaging and Extrapolation

B.3.1 Proof of Theorem 3.5

First, let us define Vk, Uk as:

Uk = E[kxk � E[x1]k2] + E[kyk � E[y1]k2] +OP(�),

Vk = E[kxk � E[x1]k2] + ↵

�
E[kyk � E[y1]k2] +OP(↵).

For all k � t0 � (↵µx)�1 log(1/(↵µx)), with Theorem 3.4, we ensure that under an optimal coupling,

E[kxk � E[x1]k2]  E[kxk � x1k2] + Tr(V(x1))  OP(↵),

and similarly, E[kyk � E[y1]k2]  OP(�).

Slower Iterate: We want to analyze

E[kx̃t � x⇤k22] = E[kx̃t � E[x1] + (E[x1]� x⇤)k22]  2E[kx̃t � E[x1]k22] + 2E[kE[x1]� x⇤k22],

where x1 ⇠ µ(x). To show that this quantity is O(↵), it suffices to bound E[kx̃t � E[x1]k2
Qx

] under the optimal
coupling. Rewriting this term,

E[kx̃t � E[x1]k22] =
1

(t� t0)2

tX

k=t0

E[kxk � E[x1]k22] +
2

(t� t0)2

tX

k=t0

tX

l>k

E[hxk � E[x1], xl � E[x1]i].

We first note that by Theorem 3.4, under the optimal coupling between xk and x1, we get

E[kxk � E[x1]k22]  2E[kxk � x1k22] + 2E[kx1 � E[x1]k22]
 exp(�↵µx(k � t0)/8)Vt0 +Tr(V(x1)).

To proceed, we note that

E[kx̃k � E[x1]k22] 
1

(t� t0)2

t�t0X

k=0

(exp(�↵µxk/8)Vt0 +Tr(V(x1)))

+
2

(t� t0)2

tX

k=t0

t�kX

k0>0

E[E[hxk � E[x1], xk+k0 � E[x1]i|Fk]]

 1

(t� t0)2

t�t0X

k=0

(exp(�↵µxk/8)Vt0) +
Tr(V(x1))

t� t0

+
2

(t� t0)2

tX

k=t0

t�kX

k0>0

E[kxk � E[x1]k2 · kE[xk+k0 � x1|Fk]k2].

To bound the second term, we first note that for any k0 > 0, we use an optimal coupling between xk+k0 |Fk and
x1, and again apply Theorem 3.4:

E[kE[xk+k0 |Fk]� E[x1]k22]  E[E[kxk+k0 � x1k22|Fk]]  exp(�↵µxk
0/8)Vk.

Using Cauchy-Schwarz inequality, we have

tX

k=t0

t�kX

k0>0

E[kxk � E[x1]k2 · kE[xk+k0 � x1|Fk]k2]


tX

k=t0

q
E[kxk � E[x1]k22] ·

 
t�kX

k0>0

q
E[E[kxk+k0 � x1k22|Fk]]

!
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
tX

k=t0

p
Vk ·

p
Vk

↵µx


tX

k=t0

1

µx

= OP(t� t0),

where we used that Vk = OP(↵) for all k � t0. Plugging this, we can conclude that

E[kx̃k � E[x1]k22] 
OP(1)

t� t0
.

Faster Iterate: In this case, we first note that

kỹt � y⇤k22  2kỹt � y⇤(x̃t)k22 + 2ky⇤(x̃t)� y⇤(x⇤)k22
 4k˜̄yt � E[ȳ1]k22 + 4kE[ȳ1]k22 + 22

y
kx̃t � x⇤k22,

where ˜̄yk := 1
t�t0

P
t

t0=t0
ȳt. The second term is squared-bias in order OP(�2), and the third term inherits the

error analysis from slower iterates. Thus, we focus on bounding the first term.

Following the same process for slower iterates, we first note that

E[k˜̄yt � E[ȳ1]k22] =
1

(t� t0)2

tX

k=t0

E[kȳk � E[ȳ1]k22] +
2

(t� t0)2

tX

k=t0

tX

l>k

E[hȳk � E[ȳ1], ȳl � E[ȳ1]i]

 1

(t� t0)2

tX

k=t0

E[kȳk � E[ȳ1]k22]

+
2

(t� t0)2

tX

k=t0

tX

l>k

E[kȳk � E[ȳ1]k2 · kE[ȳk+k0 � ȳ1|Fk]k2].

For the first term, we invoke Corollary 3.4, under optimal coupling, we have

E[kȳk � E[ȳ1]k22]  2E[kȳk � ȳ1k22] + 2E[kȳ1 � E[ȳ1]k22]
 � exp(�↵µx(k � t0)/8)Vt0 + exp(��µy(k � t0)/8)Ut0 +Tr(V(ȳ1)).

For the second term, with Corollary 3.4, we have

E[kE[ȳk+k0 |Fk]� E[ȳ1]k22]  E[E[kȳk+k0 � ȳ1k22|Fk]]  � exp(�↵µxk
0/8)Vk + exp(��µyk

0/8)Uk,

and again using Cauchy-Schwarz inequality, we can show that

tX

k=t0

t�kX

k0>0

E[kȳk � E[ȳ1]k2 · kE[ȳk+k0 � ȳ1|Fk]k2]


tX

k=t0

q
E[kȳk � E[ȳ1]k22] ·

 
t�kX

k0>0

q
E[E[kȳk+k0 � ȳ1k22|Fk]]

!


tX

k=t0

p
Uk ·

✓p
�Vk

↵µx

+

p
Uk

�µy

◆
 OP(t� t0)

 r
�2

↵

1

µx

+
1

µy

!
.

On the other hand, we can apply Cauchy-Schwarz inequality in different ways:

tX

k=t0

t�kX

k0>0

E[kȳk � E[ȳ1]k2 · kE[ȳk+k0 � ȳ1|Fk]k2]


tX

k=t0

q
E[kȳk � E[ȳ1]k22] ·

 
t�kX

k0>0

q
E[E[kȳk+k0 � ȳ1k22|Fk]]

!


p
t� t0

tX

k=t0

p
Uk ·

 s
�Vk

↵µx

+

s
Uk

�µy

!
 OP(t� t0)

3/2

 
�

p
µx

+

s
�

µy

!
.
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Summarizing the results, we can conclude that

1

(t� t0)2
E[k(ỹk � y⇤(x̃k))� E[ȳ1]k22] 

OP(1)

t� t0
+min

0

@
r

�2

↵

OP(1)

t� t0
,

s
OP(�)

t� t0

1

A .

This concludes Theorem 3.5.

B.3.2 Proof of Corollary 3.6

We note that

E[k⇣x
t
� x⇤k22]  2E[k⇣x

t
� E[(2x2↵,2�

1 � x↵,�

1 )]k22] + 2kE[(2x2↵,2�
1 � x↵,�

1 )]� x⇤k22
 16E[kx̃2↵,2�

t
� E[x2↵,2�

1 ]k22] + 4E[kx̃↵,�

t
� E[x↵,�

1 ]k22] + 2kE[(2x2↵,2�
1 � x↵,�

1 )]� x⇤k22. (25)

Note that from Theorem 3.3,

2x↵,�

1 � x2↵,2�
1 � x⇤ = 2(x↵,�

1 � x⇤)� (x2↵,2�
1 � x⇤) = OP(�

2).

The first and second terms in (25) can be bounded by OP(1)/(t� t0), following exactly same steps in the proof of
Theorem 3.5. The result for faster iterates can also be derived similarly.

C Deferred Proofs

C.1 Proof of Lemma 3.1

The stochastic approximation equation becomes

(xt+1 � x⇤) = (xt � x⇤)� ↵F (xt, y
⇤(xt)) + ↵(F (xt, y

⇤(xt))� F (xt, yt))� ↵wx(xt, yt; ⇠t)

= (xt � x⇤)� ↵H(xt)� ↵J12(yt � y⇤(xt))� ↵wx

t
(xt, yt; ⇠t),

(yt+1 � y⇤(xt+1)) = (yt � y⇤(xt)) + (y⇤(xt)� y⇤(xt+1))� �G(xt, yt)� �wy(xt, yt; ⇠t)

= (yt � y⇤(xt))� J�1
22 J21(xt � xt+1)� �G(xt, yt)� �wy(xt, yt; ⇠t)

= (yt � y⇤(xt))� ↵J�1
22 J21(F (xt, yt) + wf (xt, yt; ⇠t))� �G(xt, yt)� �wy(xt, yt; ⇠t)

= (yt � y⇤(xt))� ↵J�1
22 J21(F (xt, yt)�H(xt) +H(xt))� �G(xt, yt)

� ↵J�1
22 J21w

x(xt, yt; ⇠t)� �wy(xt, yt; ⇠t).

Using H(x⇤) = 0, G(x, y⇤(x)) = 0, we can rewrite the recursion as (5).

C.2 Proof of Lemma B.2

We can start with a coarse bound on kȳt+1k2Qy
:

kȳt+1k2Qy
 k(I � �J22)ȳtk2Qy

+ ↵2kJ�1
22 J21(J12ȳt +�x̄t + wx

t
)k2

Qy
+ �2kwy

t
k2
Qy

+ 2↵
��h(I � �J22)ȳt,�J�1

22 J21(J12ȳt +�x̄t + wx

t
)iQy

��

+ 2�
��h(I � �J22)ȳt,�wy

t
iQy

��+ 2↵�
��hJ�1

22 J21(J12ȳt +�x̄t � wx

t
), wy

t
iQy

��

 (1� �µy/2)kȳtk2Qy
+OP(�

2)kx̄tk22 +OP(↵)�
2
x
+OP(�)�

2
y
.

Thus, taking the square on both sides, we get

kȳt+1k4Qy
 (1� �µy/2)

2kȳtk4Qy
+ 2(1� �µy/2)kȳtk2Qy

�
OP(�

2)kx̄tk22 +OP(↵)�
2
x
+OP(�)�

2
y

�

+
�
OP(�

2)kx̄tk22 +OP(↵)�
2
x
+OP(�)�

2
y

�2

 (1� �µy/4)kȳtk4Qy
+
�
OP(�

2)kx̄tk42 +OP(↵)�
4
x
+OP(�)�

4
y

�
.
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Similarly for x̄t, we have

kx̄t+1k2Qx
 k(I � ↵�)x̄tk2Qx

+ 2↵2kJ12ȳtk2Qx
+ 2↵2kwx

t
k2
Qx

+ 2↵|h(I � ↵�)x̄t, J12ȳtiQx ]|+ 2↵|h(I � ↵�)x̄t, w
x

t
iQx |+ 2↵2|hJ12ȳt, wx

t
iQx |

 (1� ↵µx/2)kx̄tk2Qx
+OP(↵)kȳtk22 +OP(↵)�

2
x
,

and thus,

kx̄t+1k4Qx
 (1� ↵µx/4)kx̄tk4Qx

+OP(↵)kȳtk42 +OP(↵)�
4
x
.

Taking potential Vt = E[kx̄tk4Qx
+ OP(1)↵

�
kȳtk4Qy

], we have

Vt+1  (1� ↵µx/4)Vt +OP(↵)(�
4
x
+ �4

y
),

which leads to

E[kx̄tk4Qx
]  Vt  exp(�↵µxt/4)V0 +OP(�

4
x
+ �4

y
).

Plugging this back to the recursion for y, we also have

E[kȳtk4Qy
]  exp(��µxt/4)E[kȳ0k4Qy

] +OP(�
4
x
+ �4

y
).

Converting k · kQx and k · kQy to k · k2 norm concludes the lemma.

C.3 Proof of Lemma B.3

The proof strategy is to consider three cases separately when t is small and large. Let c1 > 0 be some sufficiently
large absolute constant.

Case (i) t  c1 · ⌧↵: In this case, consider optimal coupling between µ1
0, µ

2
0, and apply Lemma A.8:

E[kx1
t
� x2

t
k22]  3E[kx1

0 � x2
0k22] + 3E[kx1

t
� x1

0k22] + 3E[kx1
t
� x1

0k22]
 3W2

2 (µ
1
0(x

1
0), µ

2
0(x

2
0)) +OP(↵

2⌧2).

Since in this case exp(�↵µxt/4) > 1/2 for t < O(1)⌧↵ ⌧ 1/(↵µx), the x part in the inequality (16) holds. The y
part of (16) can be shown similarly.

Case (ii) c1 · ⌧↵ < t: We consider a coupling on ⇠1
⌧

and ⇠2
⌧

first. Let ⌫1, ⌫2 be probability distributions over
⌅⇥ ⌅ such that

⌫1(⇠1, ⇠2) / 1
�
⇠1 = ⇠2

 
·min(µ1

⌧
(⇠1), µ2

⌧
(⇠2)),

⌫2(⇠1, ⇠2) / max(0, µ1
⌧
(⇠1)� µ2

⌧
(⇠1))⇥max(0, µ2

⌧
(⇠2)� µ1

⌧
(⇠2)).

The coupling distribution decides ⌫1 with probability 1 � TV(µ1
⌧
(⇠1

⌧
), µ2

⌧
(⇠2

⌧
)), and ⌫2 with probability

TV(µ1
⌧
(⇠1

⌧
), µ2

⌧
(⇠2

⌧
)) to sample (⇠1

⌧
, ⇠2

⌧
). Then it samples (x1

⌧
, y1

⌧
) ⇠ µ1

⌧
(·|⇠1

⌧
) and (x2

⌧
, y2

⌧
) ⇠ µ2

⌧
(·|⇠2

⌧
). When

⌫1 is selected, we couple two sequences by setting ⇠1
t
= ⇠2

t
for all t � 0, and invoke Lemma B.1 to show that

E[kx1
t
� x2

t
k22 | ⌫1]  OP(1) · E


kx1

⌧
� x2

⌧
k22 +

↵

�
ky1

⌧
� y2

⌧
k22 | ⌫1

�
exp(�↵µx(t� ⌧)/4),

where we also took expectation over the optimal coupling for (x1
⌧
, y1

⌧
)|⇠10 and (x2

⌧
, y2

⌧
)|⇠2

⌧
. When ⌫2 is selected, we

let the two sequences independently evolve, and using Lemma B.2 to show that

E[kx1
t
� x2

t
k22 · 1

�
⌫2
 
]  OP(1)

q
E[kx1

t
� x2

t
k42 + kȳ1

t
� ȳ2

t
k42] ·

p
TV(µ1

⌧
(⇠1

⌧
), µ2

⌧
(⇠2

⌧
)

 OP(1)
q
E[kx1

t
k42 + kx2

t
k42 + kȳ1

t
k42 + kȳ2

t
k42] ·

p
TV(µ1

⌧
(⇠1

⌧
), µ2

⌧
(⇠2

⌧
)


p

OP(1)TV(µ1
⌧
(⇠1

⌧
), µ2

⌧
(⇠2

⌧
)).
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Given the above results, let c2 > 0 be another sufficiently large absolute constant. Now if t  c2 log(�/↵)/(↵µx),
then we set ⌧ = c1⌧↵/4 such that t > 4⌧ . With TV(µ1

⌧
(⇠1

⌧
), µ2

⌧
(⇠2

⌧
)) < ⇢⌧ ⌧ (µx↵)O(1)  exp(�↵µxt/4), we have

E[kx1
t
� x2

t
k22]  OP(1) · E


kx1

⌧
� x2

⌧
k22 +

↵

�
ky1

⌧
� y2

⌧
k22 +OP(↵)

�
exp(�↵µxt/8)

 OP(1) · V0 exp(�↵µxt/8).

On the other hand, if t > c2 log(�/↵)/(↵µx), then we take ⌧ = t/8. In this case, we instead invoke the MSE
result in Theorem 3.2, which gives

E[kx1
⌧
� x2

⌧
k22]  2E[kx̄1

⌧
k22] + 2E[kx̄2

⌧
k22]  OP(1) · exp(�↵µx⌧/4) ⌧ OP(↵),

E[kȳ1
⌧
� ȳ2

⌧
k22]  2E[kȳ1

⌧
k22] + 2E[kȳ2

⌧
k22]

 OP(1) · (exp(��µy⌧/4) + � exp(�↵µx⌧/4)) ⌧ OP(↵).

Together with TV(µ1
⌧
(⇠1

⌧
), µ2

⌧
(⇠2

⌧
)) < ⇢t/8  exp(�↵µxt/4), we get the same conclusion that

E[kx1
t
� x2

t
k22]  OP(1) · E


kx1

⌧
� x2

⌧
k22 +

↵

�
ky1

⌧
� y2

⌧
k22 +OP(↵)

�
exp(�↵µxt/8)

 OP(1) · V0 exp(�↵µxt/8).

The inequality for y in (16) can also be similarly proven.

D Proof of Technical Lemmas

D.1 Proof of Lemma A.1

This result follows immediately from the fact that Tr(AB)  kABk1, and Hölder’s inequality applied to matrix
p-Schattern norm.

D.2 Proof of Lemma A.2

By definition of kAkQ, we start from

kAk2
Q
= max

kxkQ1
kAxk2

Q
= max

kxkQ1
(x>A>QAx) = max

kzk21
(z>Q�1/2A>QAQ�1/2z)

= max
kzk21

kQ1/2AQ�1/2zk22 = kQ1/2AQ�1/2k2op.

D.3 Proof of Lemma A.3

By definition for h·, ·iQ,

hx, yiQ = x>Qy  kx>Q1/2k2kQ1/2yk2 = kxkQkykQ.

Next, we observe that

hMx, xiQ = x>M>Qx = Tr(xx>M>Q)  kQxx>k1kMkop.

Then since Qxx> is a rank-1 matrix, we have

kQxx>k1 = kQxx>k2 =
p
x>Qx = kxkQ.

Finally, by definition of k · kQ,

kMxkQ  kMkQkxkQ.

Then, note that

kMk2
Q
= kQ1/2MQ�1/2k2op  (Q)kMk2op,

yielding the proof.
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D.4 Proof of Lemma A.5

This can be shown from the definition of Q-norm:

kxk2
Q1

= x>Q1x  �max(Q1)kxk22  �max(Q1)

�min(Q2)
kxk2

Q2
.

D.5 Proof of Lemma A.6

Let ⇡⌧ = P⇠t(·|Ft�⌧ ) be a distribution over ⌅. By Assumption 2,

k⇡⌧ � ⇡k1  c⇢⇢
⌧ .

Furthermore, we know that
Z

⌅
Wij(⇠)d⇡(⇠) = 0.

Thus,

E[hWij(⇠), ut�⌧v
>
t�⌧

i|Ft�⌧ ]  E⇠⇠⇡[hWij(⇠), ut�⌧v
>
t�⌧

i] +Wmaxkut�⌧v
>
t�⌧

k1k⇡⌧ � ⇡k1
 Wmaxkut�⌧k2kvt�⌧k2 · c⇢⇢⌧ .

The second inequality also follows similarly.

D.6 Proof of Lemma A.7

Note that xt = x̄t+x⇤ and yt = ȳt�J�1
22 J21x̄t+J�1

22 J21x⇤. Plugging these to wx
t
= W11(⇠t)xt+W12(⇠t)yt+u1(⇠t)

and similarly to wy

t
yields the expressions.

D.7 Proof of Lemma A.8

By the recursion in (5),

kx̄t+1k2  (1 + ↵k�+W x

�(⇠t)kop)kx̄tk2 + ↵(kJ12 +W12(⇠t)kopkȳtk2 + kW x

�(⇠t)x
⇤ + u1(⇠t)k2)

 (1 + ↵yJmax)kx̄tk2 + ↵(Jmaxkȳtk2 + �x),

kx̄t+1 � x̄tk2  ↵(yJmaxkx̄tk2 + Jmaxkȳtk2 + �x).

Similarly, we have

kȳt+1k2  (1 + �Jmax)kȳtk2 + �(Jmaxykx̄tk2 + �y) + y↵(yJmaxkx̄tk2 + Jmaxkȳtk2 + �x),

kȳt+1 � ȳtk2  �(Jmaxkȳtk2 + Jmaxykx̄tk2 + �y) + y↵(yJmaxkx̄tk2 + Jmaxkȳtk2 + �x).

Adding two equations,

ykx̄t+1k2 + kȳt+1k2  (1 + 2�Jmax)(ykx̄tk2 + kȳtk2) + ��y + ↵y�x.

Solving this recursively, we get

ykx̄tk2 + kȳtk2  (1 + 2�⌧Jmax)(ykx̄t�⌧k2 + kȳt�⌧k2) + ⌧(��y + ↵y�x).

Using this result, we have

kx̄t � x̄t�⌧k2 
tX

i=t�⌧+1

kx̄i � x̄i�1k2  ↵Jmax

tX

i=t�⌧+1

(ykx̄ik2 + kȳik2) + ↵⌧�x

 2↵⌧Jmax (ykx̄t�⌧k2 + kȳt�⌧k2) + 2↵⌧�x + ↵�Jmax⌧�y.
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Similarly,

kȳt � ȳt�⌧k2 
tX

i=t�⌧+1

kȳi � ȳi�1k2  (� + ↵y)Jmax

tX

i=t�⌧+1

(ykx̄ik2 + kȳik2) + ⌧(��y + ↵y�x)

 2⌧Jmax� (ykx̄t�⌧k2 + kȳt�⌧k2) + 2⌧(↵y�x + ��y).

Finally, from these two equations, note that

ykx̄t � x̄t�⌧k2 + kȳt � ȳt�⌧k2  8�Jmax⌧(ykx̄tk2 + kȳtk2) + 8(↵y�x + ��y).

Plugging this back with kx̄t�⌧k2  kx̄tk2 + kx̄t � x̄t�⌧k2 and kȳt�⌧k2  kȳtk2 + kȳt � ȳt�⌧k2, we get the lemma.

D.8 Proof of Lemma A.10

To begin with, we start with unfolding the expression as

E[wx

t
ȳ>
t
] = E[W11(⇠t)x̄tȳ

>
t
] + E[W12(⇠t)ȳtȳ

>
t
] + E[u1(⇠t)ȳ

>
t
].

To proceed, we first note that

E[W11(⇠t)x̄tȳ
>
t
] = E[W11(⇠t)x̄t�⌧ ȳ

>
t�⌧

] + E[W11(⇠t)(x̄t � x̄t�⌧ )ȳ
>
t�⌧

] + E[W11(⇠t)x̄t(ȳt � ȳt�⌧ )
>].

For each term in the above, we have the following inequalities:

1. Using the mixing-time assumption, we can show that

kE[W11(⇠t)x̄t�⌧ ȳ
>
t�⌧

]k1  ⇢⌧ · E[E[max
⇠t2⌅

kW11(⇠t)x̄t�⌧ ȳ
>
t�⌧

k1|Ft�⌧ ]]

 ⇢⌧WmaxE[kx̄t�⌧ ȳ
>
t�⌧

k1] = ⇢⌧WmaxE[kx̄t�⌧k2kȳt�⌧k2]
 O(1)⇢⌧WmaxE[kx̄tk22 + kȳtk22 + ↵22

y
⌧2�2

x
+ �2⌧2�2

y
]

 µy

32y

E[kȳtk22] + ⇢⌧Wmax ·O
 
↵2µ2

y

2
y

E[kx̄tk22] + ⌧2(↵22
y
�2
x
+ �2�2

y
)

!
.

2. For the next term, we apply Lemma A.8 and Corollary A.9:

kE[W11(⇠t)(x̄t � x̄t�⌧ )ȳ
>
t�⌧

]k1  WmaxE[k(x̄t � x̄t�⌧ )ȳ
>
t�⌧

k1]
 ↵⌧JmaxWmax · E[(ykx̄tk2 + kȳtk2)kȳt�⌧k2] + ↵⌧Wmax(�x + �Jmax�y)E[kȳt�⌧k2]
 O(1) · ↵⌧J2

max

�
E[�Jmax

2
y
kx̄tk22 + (ykx̄tk2kȳtk2 + kȳtk22) + (↵22

y
�2
x
+ �2�2

y
)]
�

+O(1) · ↵⌧Jmax(�x + �Jmax�y)(Jmax�y⌧kx̄tk+ kȳtk+ ⌧(↵y�x + ��y))

 µy

32y

E[kȳtk22] +O(1)J2
max

2
y
⌧2
✓
�2Jmax +

↵2yJ2
max

µy

◆
E[kx̄tk22]

+O

✓
J2
maxy

µy

◆�
↵2⌧2�2

x
+ J2

max↵�
2⌧2�2

y

�
.

We can simplify it further later, using the condition that ↵ ⌧ �/y and Wmax  Jmax.

3. For the last term, similarly,

kE[W11(⇠t)x̄t(ȳt � ȳt�⌧ )
>]k1  WmaxE[kx̄tk2kȳt � ȳt�⌧k2]

 O(1)�⌧J2
max · E[(ykx̄tk2 + kȳtk2)kx̄tk2] +O(1)⌧JmaxE[kx̄tk2](↵y�x + ��y)

 O(1)�⌧J2
maxE[ykx̄tk22 + kȳtk22] +O(1)⌧((↵2/�)y�

2
x
+ ��2

y
).

Combining these inequalities, and given that �⌧ ⌧ �2
y

/Jmax in Assumption 4, we can conclude that

kE[W11(⇠t)x̄tȳ
>
t
]k1  µy

16y

E[kȳtk22] +O(1)�⌧J2
maxyE[kx̄tk22] +O(1)⌧

�
(↵2/�)y�

2
x
+ ��2

y

�
.
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Similarly, we can also show that

kE[W12(⇠t)ȳtȳ
>
t
]k1  µy

16y

E[kȳtk22] +O(1)�⌧J2
maxyE[kx̄tk22] +O(1)⌧((↵2/�)y�

2
x
+ ��2

y
).

For the last one, we proceed as

kE[u1(⇠t)ȳ
>
t
]k1  kE[u1(⇠t)ȳ

>
t�⌧

]k1 + kE[u1(⇠t)(ȳt � ȳt�⌧ )
>]k1

 ⇢⌧umaxE[kȳt�⌧k2] + umaxE[kȳt � ȳt�⌧k2]
 O(1)(⇢⌧ + �⌧Jmax)umaxE[ykx̄tk2 + kȳtk2] + ⌧umax(↵y�x + ��y)

 O(1)�⌧J2
maxE[ykx̄tk22 + kȳtk22] +O(1)⌧((↵2/�)y�

2
x
+ ��2

y
),

where in the last inequality, we use umax  �y. Combining all the above inequalities yields the lemma.

D.9 Proof of Lemma A.11

To begin with, we start with unfolding the expression as

E[wx

t
x̄>
t
] = E[W11(⇠t)x̄tx̄

>
t
] + E[W12(⇠t)ȳtx̄

>
t
] + E[u1(⇠t)x̄

>
t
].

To proceed, we first note that

E[W11(⇠t)x̄tx̄
>
t
] = E[W11(⇠t)x̄t�⌧ x̄

>
t�⌧

] + E[W11(⇠t)(x̄t � x̄t�⌧ )x̄
>
t�⌧

] + E[W11(⇠t)x̄t(x̄t � x̄t�⌧ )
>].

For each term in the above, we have the following inequalities:

1. Using the mixing-time assumption, we can show that

kE[W11(⇠t)x̄t�⌧ x̄
>
t�⌧

]k1  ⇢⌧ · E[E[max
⇠t2⌅

kW11(⇠t)x̄t�⌧ x̄
>
t�⌧

k1|Ft�⌧ ]]

 ⇢⌧WmaxE[kx̄t�⌧ x̄
>
t�⌧

k1] = ⇢⌧WmaxE[kx̄t�⌧k22]
 O(1)⇢⌧WmaxE[kx̄tk22 + ↵2J2

maxkȳtk22 + ↵2⌧2�2
x
]

 µx

32x

E[kx̄tk22] + ⇢⌧JmaxO(↵2µ2
x
E[kȳtk22] + ⌧2↵2�2

x
).

2. For the next term, we apply Lemma A.8 and Corollary A.9:

kE[W11(⇠t)(x̄t � x̄t�⌧ )x̄
>
t�⌧

]k1  WmaxE[k(x̄t � x̄t�⌧ )x̄
>
t�⌧

k1]
 O(1)↵⌧JmaxWmax · E[(ykx̄tk2 + kȳtk2)kx̄t�⌧k2] +O(1)↵⌧Wmax(�x + �Jmax�y)E[kx̄t�⌧k2]
 O(1) · ↵⌧J2

max

�
E[ykx̄tk22 + kȳtk22 + ⌧2↵2(�2

x
+ �2J2

max�
2
y
)
�

 µx

32x

E[kx̄tk22] +O(1)↵⌧J2
maxE[kȳtk22] + (↵⌧)3(�2

x
+ �2J2

max�
2
y
),

where we use the condition that ↵⌧ ⌧ 1/(Jmax2
x
) and Wmax  Jmax.

Combining these inequalities, and given that �⌧ ⌧ �2
y

/Jmax in Assumption 4, we can conclude that

kE[W11(⇠t)x̄tx̄
>
t
]k1  µx

16x

E[kx̄tk22] + ↵⌧J2
maxE[kȳtk22] + ↵⌧�2

x
.

We also need to check the cross term:

E[W12(⇠t)ȳtx̄
>
t
] = E[W12(⇠t)x̄t�⌧ ȳ

>
t�⌧

] + E[W12(⇠t)(ȳt � ȳt�⌧ )x̄
>
t�⌧

] + E[W12(⇠t)ȳt(x̄t � x̄t�⌧ )
>].

First term can be bounded similarly using the geometric mixing assumption. For the second term,

kE[W12(⇠t)(ȳt � ȳt�⌧ )x̄
>
t�⌧

]k1  WmaxE[k(ȳt � ȳt�⌧ )x̄
>
t�⌧

k1]
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 O(1)�⌧J2
max · E[(ykx̄tk2 + kȳtk2)kx̄t�⌧k2] +O(1)⌧Jmax(↵y�x + ��y)E[kx̄t�⌧k2]

 µx

32x

E[kx̄tk22] +O(1)
�2⌧2J4

maxx

µx

E[kȳtk22] +O

 
↵2⌧2J2

max
2
y
x

µx

�2
x
+

x�2⌧2J2
max

µx

�2
y

!
.

For the third term, similarly, we have

kE[W12(⇠t)ȳt(x̄t � x̄t�⌧ )
>]k1  WmaxE[kȳt(x̄t � x̄t�⌧ )

>k1]
 O(1)↵⌧J2

max · E[(ykx̄tk2 + kȳtk2)kȳtk2] +O(1)⌧Jmax(↵�x + �2Jmax�y)E[kȳtk2]

 µx

32x

E[kx̄tk22] +O(1)⌧J2
max(↵+ �2Jmax)E[kȳtk22] +O

�
↵⌧�2

x
+ �2⌧Jmax�

2
y

�
.

For the last one, we proceed as

kE[u1(⇠t)x̄
>
t
]k1  kE[u1(⇠t)x̄

>
t�⌧

]k1 + kE[u1(⇠t)(x̄t � x̄t�⌧ )
>]k1

 ⇢⌧umaxE[kx̄t�⌧k2] + umaxE[kx̄t � x̄t�⌧k2]
 (⇢⌧ + ↵⌧Jmax)umaxE[ykx̄tk2 + kȳtk2] + ⌧umax↵�x

 ↵⌧J2
maxE[ykx̄tk22 + kȳtk22] + ⌧↵�2

x
,

where in the last inequality, we use umax  �x. Combining all the above inequalities yields the lemma.
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