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Abstract

Previous studies on two-timescale stochastic
approximation (SA) mainly focused on bound-
ing mean-squared errors under diminishing
stepsize schemes. In this work, we investi-
gate the constant stpesize schemes through
the lens of Markov processes, proving that
the iterates of both timescales converge to
a unique joint stationary distribution in the
Wasserstein metric. We derive explicit geo-
metric and non-asymptotic convergence rates,
as well as the variance and bias introduced by
constant stepsizes in the presence of Marko-
vian noise. Specifically, with two constant
stepsizes o < 3, we show that the biases scale
linearly with both stepsizes as ©(a)+6(3) up
to higher-order terms, while the variance of
the slower iterate (resp., faster iterate) scales
only with its own stepsize as O(«) (resp.,
O(f)). Unlike previous work, our results do
not require additional assumptions such as
B? < « or additional dependence on dimen-
sions. These fine-grained characterizations
allow tail-averaging and extrapolation tech-
niques to reduce variance and bias, improving
mean-squared error bound to O(8* + 1) for
both iterates.

1 Introduction

Stochastic Approximation (SA) is an iterative proce-
dure to find the root of unknown operators from their
noisy samples (Robbins and Monro, 1951). There has
been a long line of work understanding the convergence
behavior of SA both asymptotically (Borkar and Meyn,
2000; Harold et al., 1997) and in a finite-time (Srikant
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and Ying, 2019), with a wide range of applications
including stochastic optimization (Harold et al., 1997;
Moulines and Bach, 2011) and reinforcement learn-
ing (Sutton and Barto, 2018; Lakshminarayanan and
Szepesvari, 2018; Srikant and Ying, 2019).

Two-Timescale Stochastic Approximation (TTSA) is
a variant of the SA algorithm, designed to find the
root of two intertwined operators (Borkar, 1997). In
particular, given two operators F' and G, we aim to find
the solution (x*, y*) satisfying the fixed-point equations

F(z*,y*) =0,
G(z*,y*) =0.

This work considers linear TTSA with constant step-
sizes driven by Markovian data as the following:

T = T — a(F (e, ye) + 0" (24, 413 &),
Yer1 = Yt — Be(G (e, ye) + w¥ (24, Y13 &)

where oy = «, By = 8 > 0 are constant stepsizes for
slower and faster iterates respectively, F' and G are
linear operators, and w® and wY are linear Markovian
noises driven by exogenous Markovian states & (see
Section 2 for precise formulation).

t>0, (1)

The updates in (1) arise in many applications: examples
include popular reinforcement learning algorithms such
as actor-critic (Konda and Tsitsiklis, 1999; Haarnoja
et al., 2018) and gradient temporal-difference (GTD)
methods (Maei et al., 2009; Szepesvari, 2022), and
iterative algorithms for stochastic Bilevel optimization
(Colson et al., 2007; Ghadimi and Wang, 2018; Hong
et al., 2023; Kwon et al., 2023). The core idea of
TTSA is the use of different stepsizes for two iterations,
which establishes a hierarchy between the two fixed-
point equations. For example, in actor-critic algorithms
(Haarnoja et al., 2018), the y-variable minimizes the
temporal-difference (TD) error, while the z-variable
represents policy parameters to maximize long-term
rewards. To ensure that the policy parameters are
updated based on accurate value estimates, we set
B > a, meaning that y converges faster, staying close
to the minimizer of the TD-error given the current
policy parameter x.
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Classical results have established asymptotic conver-
gence of TTSA with diminishing step sizes, oy, 8 — 0,
under the requirement of order-wise different timescales,
i.€., % — 0 (Borkar, 1997; Konda and Tsitsiklis, 2004;
Mokkadem and Pelletier, 2006). With the recent ad-
vances in large-scale optimization, several papers have
focused on analyzing the finite-time convergence of
TTSA under similar vanishing step-size conditions. Ear-
lier analyses reported suboptimal convergence rates of
O(t~2/3) (Dalal et al., 2018; Doan, 2022), which have
been improved to the best possible rate of O(t~!) in
more recent studies as long as 8?2 < «; (Kaledin et al.,
2020; Dalal et al., 2020; Haque et al., 2023; Doan, 2024;
Han et al., 2024; Hu et al., 2024). The key to recent
improvements lies in eliminating the need for dimin-
ishing stepsize ratios, achieved through a more refined
analysis of the cross-correlations between the two in-
tertwined iterations (Kaledin et al., 2020; Haque et al.,
2023; Han et al., 2024).

More recently, SA with constant stepsizes has attracted
attention due to its simplicity, fast convergence, and
good empirical performance, both for single- and two-
timescale cases (see Section 1.1 for details). How-
ever, existing results for TTSA are often limited to
only providing upper bounds for E[||x; — 2*||3] and
E[lly: —y*(z¢)||3], i.e., mean-squared errors (MSE) from
the fixed point of operators, leaving the non-asymptotic
behavior of TTSA iterations with constant stepsizes
unexplored. Through the lens of the Markov process
on TTSA iterations, we break down the sources of
MSE and demonstrate the advantages of a finer under-
standing, particularly when employing techniques like
tail-averaging and extrapolation.

Our Contributions. We study the behaviors of
Markovian TTSA iterations (1) with constant stepsizes.
We focus on linear TTSA when the two operators F, G
and Markovian noise fields w®,w? are linear in the
iterates. Our contributions are summarized as follows:

e While the iterates do not converge pointwise with
constant stepsizes, under the standard assump-
tions for TTSA, we show that the joint process
(z¢,yt, &) of iterates and Markovian noises con-
verges to a unique biased stationary distribution.

e For the stationary distribution of slower iterates
ZToo, we show that its bias has a dominating term
growing linearly with a and 3, while its variance
is O(«). Therefore, the asymptotic MSE of order
O(a) for slower iterates reported in prior work
(which requires the assumption 82 < «) in fact
admits the following bias-variance decomposition:

+E[[lzos — Elzoo]|I3]

variance: O(«)

E[zoo] — 2|3

squared-bias: O(a+3)2

x-MSE <

e Based on our distributional convergence results, we
show the benefits of simple Polyak-Ruppert aver-
aging (Polyak and Juditsky, 1992) and Richardson-
Romberg Extrapolation (Stoer and Bulirsch, 2013)
along with the use of constant stepsizes in TTSA
iterations. Specifically, through combining the
above techniques, we can achieve (1) exponentially-
fast decaying optimization error, (2) variance de-
caying at O(1/t) rate, and (3) order-wise improve-
ment of asymptotic biases:

Ellze —2*[3] = E[l@ — oll3]

optimization error: exp(—0O(t))
+E[|Zoc — E[Zoo]|I3] + |ElZoo] — 23

variance: O(1/t)

reduced-bias: O(8%)

We emphasize that our convergence results do not
impose the restriction 382 < a, or involve addi-
tional dimension-dependent constants as prior work
in Kaledin et al. (2020); Haque et al. (2023); Han et al.
(2024).

1.1 Related Work

The literature on (two-timescale) SA is vast. Here we
discuss prior work most relevant to us.

Weak Convergence of Constant Stepsize SA.
Recent studies have shown that under regularity con-
ditions, SA iterates with constant stepsizes weakly
converge to a stationary distribution (Bhandari et al.,
2018; Dieuleveut et al., 2020; Durmus et al., 2024; Chen
et al., 2024; Lauand and Meyn, 2023; Allmeier and
Gast, 2024). In particular, a line of work has developed
an approach based on the Wasserstein distance mea-
sure when operators are global contraction mapping
(Dieuleveut et al., 2020; Durmus et al., 2021; Huo et al.,
2023; Zhang and Xie, 2024; Lauand and Meyn, 2024).
For cases where operators possess only local contrac-
tion or star-convexity properties, other studies have
shown convergence in total variation distance under ad-
ditional assumptions on the noise distribution’s support
(Yu et al., 2021; Vlatakis-Gkaragkounis et al., 2024).
Our result adopts the approach based on Wasserstein
metrics, providing a more explicit convergence rates
without requiring assumptions on the noise support,
even when the overall iterates (x4, y:) do not exhibit
global contraction.

Existing Results for TTSA. TTSA arises as a
popular iterative solution in various domain; from the
classical iterate-averaging schemes (Polyak and Judit-
sky, 1992) and off-policy reinforcement learning algo-
rithms (Sutton and Barto, 2018) to gradient descent-
ascent algorithms for saddle-point problems (Jin et al.,
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2020) and single-loop algorithms for Bilevel optimiza-
tion (Hong et al., 2023). Asymptotic convergence and
central limit theorems for TTSA with diminishing step
sizes were initially established for linear cases with
ii.d. noise (Konda and Tsitsiklis, 2004), followed by
extensions to non-linear and Markovian noise settings
(Mokkadem and Pelletier, 2006; Hu et al., 2024).

More recent work has shifted focus to non-asymptotic
results, deriving finite-time convergence rates for both
linear (Dalal et al., 2018, 2020) and nonlinear cases
(Kaledin et al., 2020; Han et al., 2024; Haque et al.,
2023). However, these studies primarily address MSE
bounds with diminishing stepsizes. In contrast, we
investigate distributional convergence under constant
stepsizes, providing explicit decoupling of biases and
variances. Additionally, we establish new results for
tail-averaging and extrapolation in TTSA schemes.

2 Problem Setup

Let F : R% x R% — R% and G : R% x R% — R%
be linear mean-field operators in the following form:

F(z,y) = Juix + Jioy + b1,
G('T7y) = Jle + J221/ + b27

where Jii1,...,Joo (resp., b1,b2) are fixed matrices
(resp., vectors), and linear Markovian noises defined as
the following:

w(z,y;§) = Wi (§)z + Wiz (§)y + i (§),
w’(z,y;€) = War(§)x + Waa(§)y + ua(§).

Let Jmax := max; jeq12} ||Jijllop be the smoothness
parameter of the system. The first assumption is on
the mean-field operators being Hurwitz:

Assumption 1. The matrices —Jos and —A := —Jy1+
J12J2_21J21 are Hurwitz, that is, all real parts of the
eigenvalues of Jao and A are strictly positive.

Therefore, a fixed point in the slower timescale is
uniquely defined y*(z) = —J5' (Jo1x + by) for every z,
and the target joint fixed point (x*,y*) is given as:

513* = 7A71(b1 — J12J2_21b2)
y* = *J2_21(J211’* -+ bg)

Assumption 1 is standard in the study of TTSA to
ensure the stability of the system (Gupta et al., 2019;
Doan, 2022). The main difference from single timescale
SA is the star-type stability of slower iterations, i.e., we
only assume that —H(x) := —F(z,y*(z)) is Hurwitz,
F(z,y)
G(z,y)
fore, existing results for single-timescale SA cannot be
directly applied.

while the entire operation — { may not. There-

Next, we assume that the noise fields are controlled by
a geometrically mixing exogenous (i.e., state evolves
independent of TTSA iterations) Markov chain {& };>o:

Assumption 2. Let {&}¢>0 be an exogenous Marko-
vian chain on a countable state-space = with a transi-
tion kernel P and a unique stationary distribution .
Furthermore, {&;}1>0 is geometrically mizing:

[P"mo =l < eop™,

for some absolute constant c, > 0, p € [0,1) and any
iniatial distribution & ~ mg for alln > 1.

We also assume that the noise fields are bounded and
unbiased at the stationary limit:

Assumption 3. For all j € {1,2} and £ € Z, we have

Vi, j € {1,2},
, Vi e {1,2}.

Furthermore, for all £ € 2, the following holds:
[Wij ()llop < Winax, [[ui(€)ll2 < umax, Vi, j € {1,2}.

for some constants Winax, Umax > 0. For simplicity, we
further assume that Winax < Jmax-

The above two assumptions are common in the analysis
of SA schemes with Markovian noises (Dalal et al., 2020;
Huo et al., 2023). We introduce the notion of noise
variances in our setting:

02 = mex W11 (&)™ + Wiz (&)y* + ur (9|13,

o2 = max [War(€)z* + Waa(§)y* +ua(E)[3, (2)

which reflect the mean-squared fluctuation of the
stochastic update around the fixed point.

We study the convergence of TTSA iterations (1) via
L2-Wasserstein distance (Villani et al., 2009). Let
P5(R?) denote the space of square-integrable distri-
butions on R? where d := d, + dy. Note that Lo-
Wasserstein distance between two distributions p and
v in Pa(RY) is defined as the following:

1/2
= ( inf —v|3dr
W) o= (nt [ - olBare))

where II(u,v) is a set of all possible couplings with
marginal distributions p and v. To study the distri-
bution convergence of the joint iterate-data sequence
(e, Yt, & )e>0, we slightly extend the definition above
to add hamming distance in Z. Let P2(R? x =) be the
set of distributions i on R? x Z with the property that
the marginal of /i on R? is square-integrable.
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Definition 1. For any two probability measures u,v
in Po(R¥éFdv x Z) over (z,y,&), we define the distance
between pu and v as

i) =

(& # &+l — il + v — i3]} )

where II(u,v) is a set of all possible couplings with
marginal distributions p,v.

{E«wt,yhsn,(z;y;,sg>>~r

To establish the finite-time convergence of TTSA itera-
tions (1), we define a few error metrics. Let Q,,Q, > 0
be the unique solutions of the Lyapunov equations

QJCA + ATQQ: = Ia
QyJa2 + JQEQy =1

The solutions @, @y, which are guaranteed to exist
since —A, —Jog are Hurwitz under Assumption 1 (Chen,
1984), are used for constructing the drift of potentials in
our analysis. For the slower and faster iterates, we use
|- lg, and || - [|q, norms respectively, and define y, :=
||Qx||(;pl and ju,, = ||Qy||;p1 Note that owmin(A) = pe/2
and omin(Qz) > ||A||;pl/2, and similarly for @, and
tty. Consequently, we let the condition number of two

Ky Jmax
l”bl'

and Ky 1= Jimax

iterations as kK, := m
Y

Notation. For a positive definite matrix @ > 0 let
|lz|lg := V& TQu for a vector z. With a general real-
valued matrix A, we define [[A||q := max) -1 [|Az]q-
Let {(a,b)q := a' Qb for two vectors a, b. For two real-
valued matrices A, B, we denote (A, B) = Tr(A'B).
We define 1-Schatten norm ||A||; := ), |0:(A)| as the
absolute sum of singular values (sometimes we call it S*-
norm), and co-Schatten norm ||Al|s := max; |o;(A4)]
be the maximum singular value, which is equivalent
to matrix operator norm ||A||op. For a positive semi-
definite matrix @ > 0, [|Q[1 = Tr(Q) = >_, Qi; is the
sum of diagonal elements. For a random vector x, we
denote the covariance V(z) := E[(x — E[z])(z — E[z]) T].
We often use shorthands wf := w”(z¢, ys; &) and wy =
wY (xy, yr; &). We denote the fixed point of the faster
iterates given x as y*(z), such that G(z,y*(z)) = 0.
If we just write y*, then it means y*(z*). For two
probability distributions p, ¢, we denote ||p —q||1 as the
total-variation distance between p and q. We use the
notation O(-) to hide absolute constants, and Op(-) to
omit up to polynomial factors in instance-dependent
constants (smoothness, minimum eigenvalues, and noise
variances) and up to logarithmic factors in stepsizes.

3 Main Results

We start with two conditions for stepsizes to ensure
the stability of TTSA iterations:

Assumption 4. We assume that the stepsizes («, 3)
satisfy the following:

C1 « Co
BTa < T 22’ B < P (4)
max vy vy yha
log(apia /cp)

where T, = with some sufficiently small
absolute constants c1,co > 0.

The first condition in (4) ensures [ less than the inverse
smoothness of operators, and the second condition
bounds the ratio between two-timescale iterations. We
mention that the dependence on the condition numbers
is not fully optimized. In the sequel, we start with a fine-
grained convergence in MSE in Section 3.1. We then
show the convergence in distribution and characterize
the biases and variances of the limit distribution in 3.2,
which is followed by our final result on tail-averaging
and extrapolation in Section 3.3.

3.1 Convergence in MSE

We analyze the MSE convergence of linear TTSA in
terms of the centered iterates z; := x; — x*, 7 =
Yyt — y*(x¢). To this end, we first rewrite the stochastic
recursion as the following:

Lemma 3.1. Let Ty = ¢ — z*, §r = y+ —y*(x¢). Then
equation (1) can be rewritten as:
Ty = (I — al)Ty — adiofe — aw™ (4, yi; &)
Utr1 = (I — BJ22)Ps — BwY(ws, y; &t)
— adyyt Jor (Ji2Ge + ATy + 0" (v, y5&))  (5)

Note that the slower iterates view the error in faster
iterates as an additional noise. We are now ready to
state our first main convergence theorem with constant
step-sizes.

Theorem 3.2. Suppose Assumptions 1-3 hold, and
the step sizes a, B satisfy Assumption 4. Then, for all
t > 0 following the TTSA recursion (1), we have
E[|[7:[13,] < exp(—apat/4)Vo + Op(ad? + (a + §%)ay),
E[[7:1%),] < exp(—Bhyt/2)Uo + Op(8) exp(—apst/4) Vo
+ Op((e/B + Bacs + Boy),
where we define potential functions as Uy =
Ell5ol3,) + Os($)IQy/ *Elgoz ], and Vo =
2

Elllzol2, ]+ O»(5)Ellgo I3, ]+ O(3) QY *Elgoag 1.
The theorem states that after sufficiently large itera-

tions t > a1, the convergence of TTSA in MSE can
be characterized as the following:

1. limy_oo ]E[HitH?QI} = Op(a)o2 + Op(a + ,82)05.
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2. lim o0 E[[[71]13,] = O (% n aﬂ) o2 + Op(B)o2.

To our best knowledge, this is the first result that ex-
plicitly characterizes the fine-grained scaling of MSE
w.r.t. the stepsizes and noise variances of each itera-
tion. The work in Dalal et al. (2018); Srikant and Ying
(2019) only obtained an O(82/a) asymptotic bound for
the slower iterate. More recent work in Kaledin et al.
(2020); Haque et al. (2023) obtained an O(«) asymp-
totic bound but required 82 < «, hence not strong
enough to reveal the dependence on . Our result
shows that noises from slower iterates only change x;
by O(«), while noises from faster iterates influence x;
by O(a + 3?), without requiring 3% < a.

3.2 Convergence to a Limit Distribution

Now we state the distributional convergence of the
process (¢, yt, &) in Wasserstein distance as defined
in Definition 1. We require a mild assumption on the
fourth-order moments of initial distributions:

Assumption 5. We assume that the fourth-order
moments of the initial distribution are bounded, i.e.,
E[||Zol[3 + [[7oll3] < oo

Our main theorem establishes the linear convergence
of the Markovian process (¢, yt,&t)i>0 in Wa-distance
to a unique stationary distribution:

Theorem 3.3. Suppose Assumptions 1-3 hold, and
step sizes a, B satisfy Assumption 4. If we start from an
arbitrary initial distribution (xo,yo,&o0) ~ po Satisfying
Assumption 5, then there exists a unique stationary
distribution p such that the process (xi,yt,&) ~
linearly converges in Wh-distance:

W3 (e, 1) < Op(1) - exp(—aupigt/8).

Furthermore, there exists vectors Ef , 5? independent of
a, B with ||bF |2, [[bY]|2 = Op(1) fori € {1,2}, such that
fO’f’ (-Too7 yoo7€00) ~ W,

Elzoo — z*] = ab? + Bb% + 04(5?),

. sy, 7w 9 (6)
Elyoo — y"(zo0)] = ab] + b3 + Op(37),

and variances of Too and Yoo are bounded by

Tr(V(zeo)) = Op(e), Tr(V(yoo)) = Op(B).  (7)

A few remarks follow below. First, the theorem states
that any sequence following TTSA (1) converges to
some unique stationary distribution depending on prob-
lem instances and step sizes. Given the existence of
the unique stationary distribution u, henceforth, we
can define random variables from the limit distribution

(xoo’yooagoo) ~ M.

Second, the limit distribution has a bias, whose dom-
inating term grows linearly with the stepsizes. The
B-wise growth in the bias of faster iterates y; is not sur-
prising in light of known results for Markovian single-
timescale SA (Lauand and Meyn, 2023; Huo et al.,
2023). More interesting is the bias of the slower iter-
ates x;, which also grows linearly with 5, even though
the size of the update is only O(«) in each slow iter-
ation. This is a unique phenomenon of two-timescale
SA: the slower iterate effectively views the error from
faster iterates, y; — y*(x¢), as additional “biased” noise.

Finally, the theorem shows that the limit distribution of
slower iterates has an interesting property: the bias in z
(slower iterates) is dominated by the faster step-size 3,
while its variance only scales with the slower step-size a.
This is another key property of two-timescale SA that
has been overlooked in prior work. In particular, we
can deduce that the asymptotic MSE of slower iterates
is resulted from two factors:

a(o2 +o7) + BPo,
—_——

~——

squared bias

21 <

Elllzee —2™(2] =

variance

Focusing separately on the two iterates, we have the
following more fine-grained convergence results:

Corollary 3.4. Suppose Assumptions 1-5 hold. Define
Uo := E[llzo — Elzc]ll3] + E[llgo — E[ga] 3] + O#(8),
and Vo = E[||xo — E[zoo]|13] + Op(a/B)Uo. Then for all
t > 0, we have the bounds

W3 (11e(5e), 1(Fo0)) < Op(B) exp(—apat/8)Vo
+ Op(1) exp(—Suyt/8)Uo,
W (1 (1), 11(T00)) < Op(1) exp(—apiat/8)Vo.
This corollary explicitly states how the optimization

error decays from arbitrary initial points, and will be
used in showing the convergence of tail-averaging next.

3.3 Tail-Averaging and Extrapolation

Using the explicit characterization of bias and variance
in Theorem 3.3, we derive improved convergence rates
for tail-averaging and extrapolation.

3.3.1 Averaging

We first consider the tail-averaging variant of Polyak-
Ruppert averaging (Jain et al., 2018):

t t
1 1

~;:7 ’ ~::7 ’ 8

Tt Pa—_— E Ters Ye t—to E ye, (8)

t'=to t'=tq

where tg > a~! is the length of the warm-up period.
With the result from Theorem 3.2, we can analyze the
MSE of tail-averaged sequence:
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Figure 1: Bias (top) and variance (bottom) versus /3
at different o for the slower iterate ;.

Theorem 3.5. Suppose Assumptions 1-5 hold and
to > Claug)™t for some sufficiently large absolute
constant C' > 0. Then for all t >t

Bl —a*[) = 0n(68%) + T2,
0r (1+ /e
Bl — 181~ 0%+ 24 - )

In the above result, we omitted an additional optimiza-
tion error exp(—cayi,to) since it is dominated by other
terms with to > 1/(au,). As we can observe, O(3?) is
attribted to the squared-bias, and O(1/t) convergence
is the variance decaying effect of tail-averaging. We also
observe that the faster iterates has extra O(}/82/a)-
term. In part, this is because we measure the MSE of
g¢ from y* = y*(z*), not from y*(&;). However, we are
not fully aware whether this is an artifact of an analysis,
or can be removed, and we leave the question as an
open problem. Note that when 82 < a, both iterates
enjoy the same O(1/t)-decaying rate of variances as if
the two iterates are decoupled.

3.3.2 Extrapolation

When tail-averaging can reduce the variance, extrap-
olation can reduce the biases of each iterate. As one
example, using the fact that biases of iterates grow
linearly with step sizes, we can extrapolate two se-
quences, (7, y%?) and (2?7, y?*?") with pairing
stepsizes (a, 8) and (2, 28). The extrapolated iterates

0.302

0.3
0.298
=0.206 |
|
> 0.204
[
0292}

0.291

0.288
0.055 0.0552 0.0554 0.0556 0.0558 0.056

0.0562

4.1

—e—a = 0.0003

—¢—a =0.0005

—e—a =0.0007
3.6 : : : :
0.055 00552 0.0554 0.0556 0.0558 0.056 0.0562
3

Figure 2: Bias (top) and variance (bottom) versus /3
at different « for the faster iterate ;.

are computed as

~of 20,2 — gnB _ 20,2
(F =2z — 770 Y= 2 — g

As a corollary of our main theorems, we have the follow-
ing result characterizing the MSE of the extrapolated
sequences. Extrapolation achieves reduced biases by
canceling out the leading o and 8 terms in the asymp-
totic biases (6), improving the MSE bounds of both
iterates from 2 to B*.

Corollary 3.6. Suppose Assumptions 1-5 hold and
to > Claug)™t for some sufficiently large absolute
constant C' > 0. Then for all t > tg,

Op
BlIGE - o1 = 0n(5") + P27,

Op 14+ ﬁ2/a
el -1 - 0ty + 224 — )

Remark 1. If one uses pairing stepsizes («, 3) and
(a, 2f3), then only the leading B terms in the asymptotic
biases (6) are cancelled.

Remark 2. [t is possible to further reduce the order of
bias via higher-order extrapolation using more than two
sets of stepsizes as in Huo et al. (2023, 2024), though
it comes at the price of potentially slower convergence
and higher variance due to using additional stepsizes
(Durmus et al., 2021; Srikant and Ying, 2019).
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lo* —a

RR 3=0.04, 0.08

10° 10 10° 10° 107 10°
iteration

(a) Absolute error in the slower timescale.

RR 3=0.04, 0.08

10° 10 10° 10° 107 10°
iteration

(b) Absolute error in the faster timescale.

Figure 3: Comparison of Tail-Averaging (TA) and Richard-Romberg (RR) extrapolation in .

0 ——TA (a. ) = (0.0003,0.02)
-~ RR (a, f) = (0.0003,0.02), (0.0003,0.04)
--~RR (o, ) = (0.0003,0.02), (0.0006,0.04)

iteration

(a) Absolute error in the slower timescale.

——TA (. 4) = (0.0003,002)
--~RR (a, 4) = (0.0003,0.02), (0.0003,0.04)
-—-RR (a, 4) = (0.0003,0.02), (0.0006,0.04)

iteration

(b) Absolute error in faster timescale.

Figure 4: Comparison of Tail-Averaging (TA), RR extrapolation in /3, and RR extrapolation in both 3 and .

4 Experiments

We consider the TTSA iteration (1) in dimension
d, = dy = 2 driven by a 10-state, irreducible, ape-
riodic Markov chain. We construct the transition ma-
trix randomly and choose Ji1, Ji2, J21, Jo2 such that
Assumption 1 hold.

We tested the dependence of the bias and variance
of both iterates with respect to a and 8 by varying
each individually. After the tail-averaged iterates con-
verged, we calculated the bias as the average distance
between the averaged iterate and the true solution, and
calculated the variance Tr V() as the average square
distance from the iterate to the sample mean of the
iterates. For the dependence on 3, we held a constant
and varied 8 between 0.03 and 0.07. For the depen-
dence on «, we held 8 constant and varied o between
0.0001 and 0.0005.

For the slower iterate z;, Figure 1 shows that the
bias scales with both  and «, while the variance is
dependent mostly on « only. For the faster iterate y,
Figure 2 shows that the bias depends both on 8 and
«, and the variance depends on 3. Both results are
consistent with our theory.

We also tested the effects of tail-averaging (TA) and
Richardson-Romberg (RR) extrapolation with a sim-

ilar setup. We fixed @« = 0.0003 and let § =
{0.01,0.02,0.04,0.08}. In Figure 3, for each 3, we
plotted the absolute errors achieved by tail-averaging
at stepsize 8 (labeled as “TA 8 = stepsize”), as well as
the errors achieved by RR extrapolation with stepsizes
B and 208 (labeled as “RR 8 = stepsize, 2xstepsize”),
which aims to cancel the § term in the bias. Com-
pared to the TA iterates (solid line), the corresponding
RR extrapolated iterate (the dashed line of the same
color) achieved lower errors, corresponding to reduced
asymptotic biases.

In addition, we examined the effectiveness of applying
RR extrapolation to cancel both the o and [ bias
terms. Letting a = 0.0003,3 = 0.02, we compared
RR extrapolating on only 8 (using stepsizes 3, @ and
283, a) with RR extrapolating on both 8 and « (using
stepsizes B, and 2f,2«). In Figure 4, we see that
while the former (red curves) already reduced a large
amount of the bias, the latter (black curves) reduced it
even further, as predicted by our theoretical results.

5 Proof Outline

We outline the proofs of our main theorems. We focus
on slower iterates; similar ideas apply to faster iterates.
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5.1 Proof Outline of Theorem 3.2

The first step is to analyze the descent formula for each
iterate separately. For the slower iterate, we have

E(|Z11015,] = E[I(T — al)z |3, ] + 20 E[(Z;, w])q,]
T
+ 20 E[(Z¢, J129t) 0. ] +o(a).
—_———

T

The term T would have been 0 if the noise sequence
were martingale, and can be effectively handled with
Markovian noises in a standard way by exploiting As-
sumption 2. More pressing issue is handling T5: with
naively applying Young’s inequality to bound (i), i.e.,
with (Zy, Ji2B) < (c||@¢]|?+ L222(|3]|?), the asymptotic
error easily end up being O(%/a) as in Dalal et al.
(2018); Gupta et al. (2019), and such an approach can
be improved up to at best O(8) (Doan, 2022).

Recent results in Kaledin et al. (2020); Haque et al.
(2023) directly analyzed the descent behavior of ||T%||op,
achieving O(«a) asymptotic error for the slower iterate.
However, using operator norm often results in extra de-
pendence on dimensions d, dy, despite the smoothness
condition Jyax = O(1) in operator norm.

Our tweak for this issue is simple: to track the conver-
gence of cross-correlation norm, we employ the Schatten
S'-measure for HQ%/Z]E[QJJZ] |l1, where Q%/Q term is in-
corporated to ensure decreasing Lyapunov potential
with asymmetric operators. The S'-norm is the best
suited for exploiting the smoothness condition without
incurring dimension dependence, thanks to the Holder’s
inequality for matrix Schattern norm:

[AB[[x < [|AlL][Bllec = [[All1][Bllop-

Leveraging this property, we can construct the potential
function as the sum of three terms (omitting constants):

ala+5°)
B

With similar techniques for analyzing the faster iterates
and cross-correlation norms, we can obtain a clean
O(«) asymptotic error without additional dimension
dependence. The full proof is given in Appendix B.

_ _ o _
Eflzllg,] + Elll7:15,] + BIIQ;/QE[ytx?]Hl.

5.2 Proof Outline of Theorem 3.3

Once we have the MSE convergence result, extending
the strategies in prior work for the single-timescale SA
(Dieuleveut et al., 2020; Huo et al., 2023), we first con-
sider two coupling sequences via sharing the common
noise sequence (x},y}, &) and (27,97,&). The idea

is to show that the coupled sequences &7 := z} — 7,

0y = yt — y? converge linearly (Lemma B.1),

xT xT a
E[157]12) < exp(—cat) -E [60 12+ ﬂnagn%} .

Then we can design two sequences coupled in such
d ..

a way that (2,97,&) < (¢},1, 911, &+1). Combining

the two results, the sequence (z},y}, &) converges in Lo-

Wasserstein distribution to a unique stationary point.

The remaining details can be found in Appendix B.2.

Bias and Variance Turning to the stationary dis-
tributions of the iterates, we observe that ., satisfies

Tootr1 = (I — @A) Too — aJ12§00 — W,
E[j;oo+l|€oo+1 = 5] = E[foomoo = €]a V§ €.

Conditioned on the event &1 = £, we have £, ~
P1(-[€), where PT is the adjoint of the transition kernel
P. Using this relation, we can construct a station-
ary equation for E[Z|¢x = &], and find the explicit
expression for biases by integrating the conditional
expectation over a stationary distribution =, i.e.,

Efz.] = / Efao €0 = €] dr(€) = b + BB + O(af).

The variance of g, is relatively simple to bound:
Tr(V(¥oo)) < Elllfoe — ¥ (Z0)[13] < O(B).

However, showing the variance upper bound O(«) can
not be derived in the same fashion since the MSE bound
for Zo, is O(a + ($%). To derive this, we also construct
a stationary equation for the covariance:

E[Zoot1Z041/€00+1 = €] = E[TocT|é0 = €], VE € E,

and show that S'-norm of the above is O(«). Using
the inequality Tr(A) < ||A||; completes the proof.

6 Conclusion

We analyze Markovian Linear TTSA with constant
stepsizes. We show that both iterations converge ge-
ometrically to a unique stationary distribution, even
in the absence of global contraction properties. We
provide a precise characterization of the biases and
variances in terms of the stepsizes, and establish the
advantages of tail-averaging and extrapolation. Build-
ing off our results, several intriguing questions emerge.
For instance, how would the behavior change if the
Markovian states were dependent on the TTSA iterates,
as in on-policy reinforcement learning with constant
stepsizes? Additionally, can we extend our conver-
gence guarantees in Wasserstein distance for a broader
class of functions, such as those satisfying the Polyak-
Lojasiewicz condition? These questions are remained
to be explored in future works.
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A Technical Lemmas

Lemma A.1. For any two real matrices A, B, we have
Te(ATB) < [|AT By < Al Bllx = [ Allop|| Bll1-
Lemma A.2. For a positive definite matriz Q > 0 and any real matriz A, the following holds:
14l = 1Q*AQ ™ lop.

Lemma A.3. For a positive definite matriz @ > 0, and for any vectors x,y and a matrix M,

(@.9)q < lzlelylle, (Mz,z)q < [|M|lop|2[I,
Mzl < [Mellzlle < VA(@)IM|oplz]e;

where k(Q) = ‘;‘"L((QQ)) is the condition number of Q.

Lemma A.4 (Lemma C.13 in Haque et al. (2023)). Let —A be a Hurwitz matriz and Q be the solution to

ATQ+QA=1. 9)
Then for all € € |0, %} , for any matrix B, we have
IQllop1AIIZ,
(I —€eA)Bllg < (1— pe)||Bllg,

where = m In particular, ||I —eAllg <1 — pe.

Lemma A.5. For any two positive definite matrices Q1, Q2 and a vector x, we have

g (Q1)
lell, < 22555 - Il

A.1 Auxiliary Lemmas

We list some useful facts and lemmas here.

Lemma A.6. For anyt > 71, for alli,j € {1,2}, we have
E[(Wij (&), vi—rtt{_ )| Fi—r] = O(p" Winax[ve—r |2 |-~ 12),
E[(ui (&), vi—r) | Fi—r] = O(p" tmax]||ve—r|2)-

tth

where vy, up are any vectors that can be constructed at the iteration.

Lemma A.7. Let two intermediate variables:

WE (&) := W1 (&) — Wia(€)J55' Jr,
£) = Wa(§ — W22(§)J2_21J21~

Then, wf,w! can be rewritten as

wy = WR(&)Te + Wia(&)ge + WR(&)x™ + ui (&),
wy = WX(&)T + Waa (&) T + WX (&)™ + ua(&).

Lemma A.8. For anyt > 1 > 74, we have

12t — iz < dar (JmaX(“nytlb + |Fell2) + o + ﬁJmaxay) )
19t — Gt—rll2 < 4BT (Jmax(ky||Zell2 + |Fell2) + oy) + dakyTo,.

The following corollary is convenient:
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Corollary A.9. If atky < ¢187 < ¢a/Jmax holds with absolute constants c1,co > 0, then for any t > 7 > 74,
[Ze—7ll2 < 2[|Z¢[|2 + 8T Jmax|ell2 + 47 (@02 + ABJmax0y) ,
[Gt—rll2 < 48T Jmaxtiy 1 Zell2 + 2(Gell2 + 47 (akyon + Boy) .

Ky
oty

Lemma A.10. For anyt > 7 > clog(=—=) with an absolute constant ¢ > 0, we have

IEfwf g, ]Il < S%’]E[Ilﬂtllil + O(Jiaxtiy) BTE[|Z: 5] + O(7)((0®/ B)kyos + Bay).
Y

Similarly, we can derive the same upper bound for |E[w}g, ]|1-

Lemma A.11. Foranyt>71 > clog(;T’) with an absolute constant ¢ > 0, we have

T 5 = JI%I XK: —
IBlugal s < BBl + O (arshu -+ 57 2255 ) g ] + O(r) 002 + B

x

Similarly, we can derive the same upper bound for |E[w}z, ]| .

B Proof of Main Theorems
We recall the definition of 0,0, in (2)
72 1= max s (€) + WE(©a"

7y = s us(€) + WE ()"
Recall that we assume /o > Ky in Assumption 4, and ||Aflop < Jmaxky-

B.1 Proof of Theorem 3.2

2 1, Ell7:]13, ], 11QY *El7.#] |1 separately. Then,

The proof first investigates the convergence of three terms E[|| 7|
by constructing the potential function as the following;:

I+ O(1) Jk,

_ OM)J2,  kya(a+ B272 Tmax) _ «a o
_ 2 max [e% 2 1/2 T
Vi =E[[|zg,] + yuwuyﬁ E[l[7:115, B Qs *E[7:z, ]|I1,
~ O(l)Jrln/azxﬁz'sa o
Ur = E[l|7:115,] + e Y —(|Q/ *Eg:x/ 1, (10)
Y

and show that they decay in exponential rates.

B.1.1 Convergence of y;

We first study the descent behavior of g:

Ellgilly,) < E[I( = B22)5ill3, + 195" Jor (hrafie + A7+ wi)llh, + B2, |
+ 2« |E[<(I — ﬁJQQ)ﬂh —J{21J21(J12gt + Az + wf))QyH
+ 28 |E[((I — BJa2) G, —wi)q, ]| + 208 [E[(Jag' o1 (J12Be + AZ¢ — wi), wi)q, ]| -

We bound each term:

1. Using Lemma A.4, we have

(I = BJ22)3elld, < (1= 1y B) 1515,
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2. Using the formula in Lemma A.7,

012, < O01) - (1@ lop(Wanacriy) I3 + Wl 7, + 120 op?)
< O1) - (Tmaxr3llanl3 + my T2acllilll, + (1/m)o2)
where we also used Lemma A.3 to have ||W22§t|\2Qy < R(Qy)WiaXHytHQQy, and k(Qy) = O(ky).
3. Using Cauchy-Schwarz inequality, we have
135" Jo1 (J12Be + AZe + w}) |3,
< 3]\ a1 (Juz + Wiz (&) IG, 1913, + 3l1Qyllop 15" T2 (A + WX (&))II3, 12413
+ 35" o (wr (&) + WA (&) )5,

< O(1) (K3 20cFelB, + Tmaxs3 1703 + (3 /1) - 02)

4. We separate the cross-product term across 3; and Z;:

[E[((I — BJ22)t, —Ja5" Ja1 (Jr2e + ATy + wy))q,]
<|E[(Ge, =g o1 (J12Fs + AT1)) @, ] | + Bl E[(Ja2s, —Ja5' Jor (128t + AZ1)) g, ] |
(i) (44)

+ | E[((I = BJ22)Tt, = I35 Jonwi)q, ] |-
(iti)

For (i), we can derive that
—(i) = E[Tr(g QyJz' Ja1(J12§e + AZy)))
< Tr(E[gg, Q) *1Qy % Jos' Ja1 Ji2) + Te(Blz:y, Qy/%1Qy/ % T3 Ja1 A)
< E[l:ll3,] - 1Qy > Jnt Ja1712Q5 P llop + Q3 *EGez 1111Qy% T35 Je1 Allop
< 1y 2 T Bl1Gel1B, ] + w52 Tl - 1193 *Elge ! 1|1

For (ii), we can simply apply Cauchy-Schwarz inequality with JQBQyJQ_Ql = Jy — Qy, to get
—(it) = E[g;] J52QyJ5' Jor (J125: + AT,)]
=E[7/ (Jos' — Qy)Jo1Ji25e] + E[5 (Vo' — Q) Jo1 J12Ge AT
< Jmaxiy E[I[5:]13] + |E[Z:9] Q421 1Q, "/ (J55" — Qy) 1221 lop
< xBTS, ] + (k5 T lQy Bl 1.
For (iii), we bound the term as
(1) = | Tr(Blwig, )1 = Ba2) " QyJz' Jon)|
< 1Qy T35 Jorllop - IE[wi g, ] 1
< (kg /1y) |E[wi g/ -
Combining (i)-(iii), we get
|E[<(I — BJ22) T, —J231J21(J12§t + Az, + wg:)>Qy]|
< Ry TmaxB15: 13, ] + 3 Tl - 1Qy *Blge@{ Il + (g /1) [ELwi g 1

5. For the cross-product with noise, we get

E[{(I = BJ22)ge,w})q,] < (1/1y) |E[wfg) 1.
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6. For the last term, we simply apply Cauchy-Schwartz inequality and use inequalities used before:

20B|E[(Jg Jor (123t + Ao + wi), w))q, ]| < &*El| 3 Jor (Jiogie + Az + wi) 3, ] + BE[[[wf |3, ]
Hence to summarize, with o < 3/k3 and 8 < 1/(Jmaxks), we get

Ellgi+115,] < (1= 38y /VE[I7e15,] + O (K Jmax) B2E[| 7 13]
+O0(1/py) BP0 + O(r3 /)l + Oy 2 T2 )al| QY *Elzg
+ (26 / ty) o |E[wf g 11 + (2/ 1) BIE[w 5 ]2

Then we can invoke Lemma A.10 with 7 = O(7,), and noting that 3J2, x, < p, to conclude that

ax

Ell|ge1lg,] < (1 = By /2)ElI7e13,] + Ok Jmax) B2 Ell|Z¢ 3]

+O(ky 2 To2)allQy *Elz:g/ |1 + O(1/ py)7a (8705 + ryaa?). (11)
B.1.2 Convergence of 7,
We start with taking squared-|| - ||, norm for the slower iterates:

Ellzer1lg,] S EI( = ad)zlg, + 202 Ti2gelgy, + 207 [wf][3,]
+20|E[((I — al)Te, Ji23t)Q, ] + 20[E[((I — ald)Te, wf), ]| + 20°|E[(127r, wi )@, ]I

Following the similar steps for the analysis of 3;, we show the followings:

1. The main drift term satisfies
(I = al)z:|3, < (1 = pea) |23, -
2. For the squared terms,

112318, < 11QuallopTmax|Fel13, < (Ta/ma) 15215,
”wf”?;u <3 (ﬁm(Wmaxﬁy)QHEt”QQm + ||QZEHOPW§1aX”gtH§ + ”QIHOPU?n)
<O - (kary JaadlZell G, + (a1 1G5 + (1/ 1)o7 -

3. For the cross-product term,
E[(I - ad)zs, Ji29e)Q.]| = | Te(Elgez] | — ad) T Qud12)]
< 1Qy*Ema 1111Q:2Q (1 — a) T QuJ12Q, 2 lop
< (Tl )| Qy *E gz, 1.
4. For the product term with noise, we have
E[{(I — ad)zy, w]) Q)| < |Elwiz! ][11Qullop < (1/ma) [Elwiz ]2
Writing down the intermediate result, with o < 1/(Jaxkzki ), we have

EllZe1lG,] < (1= apa/DE[2e]15,] + O(Jiax/ ha) & Ell|7 3] + O/ i) oo
+ O/ 112)all Qg *E 5 ]Il + (2/ o) |E[wf 2/ ]|
Invoke Lemma A.11 with 7 = O(7,), and we can conclude that

El|Z:41115,] < (1 — ape /2B 215, ] + (J2ax/ 1) (@ + B> 74 Tmax) E[[|7115]
+ a(Jr?;l/a%c/Nx)HQ;/QE[Q@I]”l + (1/Nx) (a27'a0'92c + 01527'2Jmax5505) . (12)
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B.1.3 Convergence of Cross-Correlations in S'-Norm

We start with unfolding the equation:

gt+1i':+1 = (I = BJa2)Ge%, (I — al) — a(I — BJo2)Gi(J1oGs +wi)
— adyy o1 (JioGe + ATy +wi)z, — Bl
+ 0?5y o1 (J12Bt + ATy + Wi ) (AT + Jrafr + wi)
+af - wi (AZy + Jiof + wi) "
The target norm is || - ||; bound on the expectation of the cross-product term. The trick is to multiply Qll,/ % from
left on both sides, and use identity I = Q;l/QQg/Q:

QY *Elge T ]Il < Q)2 (I = BJ22)Qy 2(Qy*Emz ) (I — ad)||y
+al| QA (I — BJn)Qy (@ Elny 1Qy*)Q, 2 T
+allQy/* (I — BJ22)Q, Q" Elwy g/ 1llx
+0l|Qy/? T35 Jor (JoE (5] | + AE[Zz] | + E[wz] )1 + BIIQy *Elw!z/ |1
+0?1Qy? Joy TN E[(J12: + ATy + wi) (AZy + Jiofe + wi) |11
+ aB||E[Qy 2w} (AZy + Jia: + wi) |1

We observe the following:

||Q1/2(I B> )Qy 1/2||Op ||[ /3J22||Qy <1-— ,uyﬂ, and therefore

1Qy/2(I = BJ22)Qy (Qy*Elgea, (I — al)|ly < (1 — 11y B)(1 + aJmaxriy)|Qy *El5e/ 1|1
< (1 - pyB/2) QY *Elgez] |1

2. In all other terms, we use inequality ||Efuv ]|y < 3 (E[||ul|3] + E[[|v]|3]).

We omit some algebraic details, and state the desired bounds:
1Qy * g1 ]l < (1= Buy/2)1Qy *Elge] |l + aJmaxssy* Q4 *Elgi! ] 1
+ (TR EBlIT G, ] + (anlsery ) El1Z: 3]
+ (/i) |E[wf g M1 + (@B max/ /1) | E[wf g/ 1l
+ (B/VE)IIEw}Z, 11 + (aB//11y) (07 + ).

Applying Lemma A.11 and A.10, and using o < 3/ mfj in Assumption 4, we can conclude that
1Qy *ElGe+ 12 4]lh < (1= By /2)1Qy *Elge{ 11
0T+ B I 2woslf L1112, ] + O (o322 Ll 3]
+O(aBta/y Ny)(oz + Uy) +(1/y :uy)(537—2<]maxﬁz/:um)ay’ (13)

B.1.4 Overall Convergence

Recall the potential function V; and U, in (10):

) O(1)J2, kyo(e + B2 Tmax) i1 O(1) Ity _
Vi =E[lzl5,] + () Tma iy . )E[IlytHéyHi( ) QY PR E] |11,
uzuyﬁ’ pa B

Up = E[l17:/l3,] + 1Qy *Elge! 1]1-
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We note that 8 < 1/(k3 Kz Jmax) and f/a < 1/(k3k,) in Assumption 4, and

1

[2¢]3 < m“ftuém < Jmaxnyllftllém,
min xr
_ 1 _
153 < s, < Tl
Putting altogether, we have
53/2 2 TmaxKaTa 0\ o | Takyks 2 2\ 2 2
Vier < (1 —ap./2)Vi + . Ty + ————>af | o, + ——a(a + B ImaxT, )Ty, o (14)
T T Y
Solving this recursion,
1/2
. Ky 2 2\ 2 TakyKa 2 QATa 2
E[||xt||Qz] <V <exp(—apt/2)Vo + —5 (akyTa + 52 JmaxtizTo)oy + ———(a+ 8 JmaxT2 )U + =500

for all ¢, hence for all sufficiently large ¢ > ™!, we have bounds for E[||7]|3, | < Op(@)as + Op(a + ?)o;

Next, we consider the potential for faster iterates U;. We see that

U1 < (1 - Bﬂy/z)Ut + 62“3JmaxTaE[Hthg] (Ta/ﬂy)(”i o’ U + 52 2)
< (1 - /BILLy/2)Ut + ﬂzﬁg‘]max’ra exp(ialu’fﬂt/Q)‘/O

2 272 B
+0 <ﬁ T o + 7max Y 52> o240 (Tﬁ2> 05, (15)
My

,uy /’La:

which yields

IE[HytHéy] < Up < exp(—PBuyt/2)Us + 5&4771 exp(—apt/4)Vy

2 Jmux
+ O HTQ—FTiy,B ooy —|—O< B)Ui,
;B I I

assuming [, > ap,. Thus for sufficiently large ¢t > a~!log(1/3), we have E[Hﬂt”éy] = Op(a?/B + af)o? +
Orp(B)oy. This concludes the final error rates as t — co.

B.2 Proof of Theorem 3.3
Showing the distributional convergence consists of two steps. First, we setup two sequences {(x},v;, &) H>o,

{(z2,y2, &) }+>0 coupled with the same sequence of Markovian states {&; }+>0. We show that these two sequences
will converge in the squared-Ls expectation sense:

Lemma B.1. Under Assumptions 1-/, for any two sequences coupled with the same Markovian nosie (x},y}, &)
and (22,92, &), the following holds:

a _
Efllzf — 27|13] < Op(1) -E [Hﬂ% —x3|l3 + BHZJ& - y%l%} exp(—apgt/4),
Elllg — 97113] < Op(1) - E [[lzg — 23115 + 155 — 95 113] exp(—Buyt/4)
a _
+05(1)-E {Ilwé —z5l13 + Ellyé — yﬁl%} Bexp(—apgt/4).

We first prove the above lemma and use it to conclude that the distribution of iteration variables converges in
Wasserstein distance to a unique stationary distribution.
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B.2.1 Proof of Lemma B.1
Let us define 67 = 7} — z7,6¢ = g} — y7. Then the stochastic recursion (1) becomes
P = —al)of — adi26] — ady",
and for y, we have
671 = (I = BJn)6] — aday o1 (J126] + ASY) — (a5 Jo1 87" + B6,Y),

where the noise differences are given by:

67" = WA (&)oF + Wia(&)dY,
61 = WX(&)0F + Waa(&)dY,

where we used the expression in Lemma A.7. This can be considered as the same TTSA recursion with o, = o, = 0.
Therefore, the remaining steps are equivalent to the pilot result with o, = o, = 0, and it leads to

E[[16711%,] < exp(—apat/2)Va,
E[[167113,] < exp(—Buyt/2)Us + Op(1) B exp(—apat/4)Vo.

where we define

. O(1)J2 kya(a+ B272 Tmax) O(l)J&l/anH a T
V. = EJ|l6* 2 + max' VY oY max E 5y 2 + Yy I/QE 6y51 ,
= E[l67 1, G [lé¢ g, R 1Q,/"El6/67 " ]lI1
O(1) Jal2k25

«
U = E[lI67115,] + L — Q4 *EL57 57 "1

Myﬁ
This shows that (Z},%}), (¥2,5?) converges exponentially fast with the noise coupling, which in turn means (z}, y;)
and (27,4?) couples exponentially fast since

1 -2 1 2
Ly — Ty = Ty — Ty,

U= = v - (@) =y (27) =y — i+ O([lay — 22]).
B.2.2 Distributional Convergence via Coupling

The steps here mostly follows the proof steps in Huo et al. (2023), Appendix A.2.2. We first consider a sequence
(&, 2}, yl )0 that starts at (zd, yd, &5) ~ po sampled from some initial distribution pg where & ~ 7 and (z{,yg)
are statistically independent. Then, we similarly define the initial point distribution of the second sequence
(22 ,,9%,) as the same as (z},y}) and set (23,y3) be the result of one-step stochastic recursion (1), where
€2, ~PI(-|&}). Then we couple the Markovian states &} = ¢2 for all t > 0. Now that we have

d
(537 x%a th) = (ftl+1a 35%+17 yt1+1)a

since & 2 ¢! follws a stationary distribution 7, and & = ¢2 is coupled. Then by definition of Wasserstein distance
(with the optimal coupling), using Lemma B.1, we get

Wg((x%a ytla gtl)a (m%-‘rla ytl-i-h £t1+1)) S Oexp(_auﬂﬂt/4)th Z 07

and therefore (omitting superscript)

szz((fft»ymft)» (415 Y1, €e41)) < ZCexp(—auzt/zl) < o0,

t>0 t>0

with o > 0. The probability space over Z x R% x R% equipped with Wh-norm is known to be a Polish space
where every Cauchy sequence converges (Villani et al. (2009), Theorem 6.18). Furthermore, convergence in
Wasserstein distance implies weak convergence (Villani et al. (2009), Theorem 6.9), hence weak convergence to
some distribution p € P2(E x R x Rv),
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B.2.3 Stationarity of the Limit Distribution

Next, we show that the sequence converges to a unique stationary distribution y regardless of the initial distribution
wo- To do so, we first show that the sequence has bounded fourth-order moments:

Lemma B.2. Suppose an initial distribution (§o,xo,Yo) ~ wo that satisfies Assumption 5. Then for allt > 0, we
have

Eflzllz + lyell2] < 02(1) - Ellzoll3 + llyoll3] + Op(1) - (07 + o).

Then we consider two TTSA sequences starting from two arbitrary initial distributions ug, u2. We start with the
following lemma that is reminiscent of Lemma A.8 in Huo et al. (2023) for (1):

Lemma B.3. For any two TTSA sequences (x},y}, &) ~ us and (22,2, £&2) ~ p3 with bounded fourth-order
moments satisfying Assumption 5, for all t > 0, we have

W2 (il (1), 12 (22)) < Op(1) exp(—ayiat /8) Vo,

W3k (F1): 12 (57)) < O(1) (B exp(—apit/8)Vo + exp(—Bpayt/8)Uo) (16)
where
Vo i= W3 (b (). 13 (23)) + %w%w%)(ys), 13(53)) + Op(a),

Uo == Wi (g (x0) 155(23)) + W3 (120(8o ) 15 (53)) + Or(8).
Apply Lemma B.3, we have

Wa(pg, p17) < Op(1) - exp(—apt/8) =3 0,

which in turn implies that all sequences converge to the unique limit distribution .

Lastly, we show that p is an invariant distribution with p(¢) = w. By the geometric mixing property of (&;)¢>0,
the limit distribution must satisfy p(¢) = 7 (otherwise, we can derive a contradiction). Thus, for a sequence
(¢, yt, &) starting from p with marginal pu(&y) = m, we know that p:(§;) = 7 for all ¢ > 0. Thus, using the
coupling results, we have

Wha(pir, ) < Wi, preg1) + Wa(pieqr, i)
< Op(1)Wa (10, 1) + Wa(pregr, 1) =0,

where we used pg = p.
B.2.4 Bias Characterization

For analyzing the bias if the limite distribution (Zeo, Yoo, o) ~ p, we start from sending ¢ — oo in (1)

Tip1 = (I — al)Ty — adi2fe — aw”™ (x4, ye; &),

U1 = (I — BJa2) G — adyy Jor (JiaGe + ATy + Jorw™ (x4, y1; &) + Bw? (24, y1; &)

Let
27(€) = E[zoc — 2|0 = €],
2Y(€) = ElYoo — ¥ (2e0)[€00 = &,
and
w* (&) = Wi1(§)E[zoléoe = &] + W12(E)E[Yoo|Eoe = &] + 01(€),
w¥(§) = Wa1(§)E[rec |0 = &] + Wa2(§)E[yoo|§oc = &] + b2(€).
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We take conditional expectation on £, 1 = &, we have the backward conditional probability {5 ~ PT(-|€sor1 = ).
Let 7 : 2 x R* - Z x R* an unnormalized Markov operator over &:

T = [ =T,

Using the above notation, we can rewrite the recursion as
2% = PH(I — al)2® — aJi92¥ — aw®},
2¥ =PI — BJaz)2¥ — adyy Joi (J122Y + Az® + w®) — Bu¥}.

Let IT = 1@, and note that II{W;;} = 0 for all 4,5 € {1,2}. We eventually want to characterize z* :=
Elte — x*] = 7{2"} = fg 2%(€)dm(€) and zY := 7{zY}. Since 7PT = 7 by the time-reversing property of the
geometrically mixing chain, this implies

AZ® 4+ J122Y + ’/T{’U.)z} =0,
JooZ¥ + W{wy} =0. (17)

To further proceed, let §%(&) = 2%(€) — w{2*}, 6¥(&) = 2¥(¢) — m{z¥}, and since (PT — ){2*} = (PT — I){6*},
we can observe that

(I — PP+ ){6°} = —a(Pt = IN{Az" + J1p2¥ + w*} = (P! = T){A6” + J126Y + w”},
(I - Pt +10){6¥} = —B(PT —10) {J22zy + %J;;leumzy + AT ) + wy}
= (I — PT+10){6°} — B(PT —T0) {Jp26" + w¥} . (18)
Then we note that
w!(€) = War (€)2"(€) + Waz(€) 2 (€) + ua(€) + War (§)z" — Waz(€)Jay' Jor (27 (€) + «¥)

)
= (Wa1(&) — Waa(§) 5" J21) 2" (€) + Waa(€)2Y () 4 ua(§) + (War (§) — Waz(€)J35' Jo1)z*
= WX()(7(&) + 2°) + Waa(£)(0Y() + 2Y) + ua(§) + WL (&)™,

) §z”
w”(€) = (Wr1(§) — Wi2(€) Ja5' J21)2" (€) + Wi2(€)2Y (&) + ua (§) + (Win(§) — Wiz (€) Jag' Jo1 )2*
= WX((6(&) +2%) + Wia(§)(6¥(§) + 2Y) + ur (§) + WA(§)z™.

Plugging this back into (17) yields
AZ® + J122Y + m{WZ 0 6%} + m1{Wi2048Y} =0,
J222y + ’/T{Wg [e] (51} + 7T{W22 o 51/} = 0,
where we define (a o b)(€) = a(£)b(£). In turn, we have
2 =~y (m{WX 08"} + m{Waz 00%}),
7% = —ATHr{(W3 — J1aJo' WX) 06} + m{(Wiz — Jia oy Was) 0 ¥ 1). (19)
Rearranging (18) yields
(I =Pt +1){6"} = —a(PT —ID{(A + WX) 06" + (J12 + Wi2) 0 6Y + (us + WXz")}
—a(PT —I){WZ}z" — a(PT — I){Wi2}2,
(I = PT+I){8¥ — 6"} = —B(PT — I{WL 06 + (Joz + Waz) 0 0¥ + (uz + WXz}
— B(PY —I){WX}z" — B(PT — II){Was}2Y. (20)

The operation (I —PT + II) is invertible (see Corollary B.6), and thus we can invert the operator (I — Pt 4 II).
Putting all relationships together leads us to the recursion:

5% = ad”® + Op(ad”® + ad?),
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8Y = ad® + BdY + Op(B86% + B6Y), (21)
where

4" = —(I = PT+ 1) (PT — ) {us + WZa"},
d¥ = —(I = Pt 4+ )7 (PF — ) {up + WXz}, (22)

are independent of the choice of o, 8. Next, we bound the norm of 6%, Y, d*, d?, and thus the norm of z%, z¥.

B.2.5 Additional Preliminaries for Bounding Norms

Before we proceed, we define the notion of norms that we use in the proof. For vector-valued quantities, let us
define [|v||z2(r) as

lollzz(ry = / ollZdn(e),

and for the Markov kernel T,

TNz = sup [ T{v}lL2m)-

””HLZ(W):l

For matrices, we use the conjugate norm-pair | - ||; and || - ||oc = || - |lop- Specifically, for matrix-valued quantities,
we define ||Al[s1(x) as

| Alls ) = / | Al (€),

and

1/00
A5y = ( [ 141E207©) = s 1A
The following holder’s inequality is crucial to obtain dimension-free bounds on variances:
Lemma B.4. For Markov kernel T and conditional matriz A(E), We have
1T Allst () < T lso ()| Allst (),
where

[Tllso@m = sup  [[TY|[so0(xr)-
(1Yl so0 (xy <1

Using the results from Markov chain literature, we have the following lemma:

Lemma B.5 (Proposition 22.3.5 in Douc et al. (2018)). Let P be a Markov Kernel on a Boral state-space Z with
inwvariant probability w. Under Assumption 2, we have

1P = ID)* L2y < /26,02,

(P — TD)¥|| soe () < 2¢,p".

The following is the corollary:

Corollary B.6. Under Assumption 2, we have

max ([[(I — PV + )| z2(ny, |(L = PT+ D) |goo () < 2¢,/(1 = p).
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B.2.6 Norm-Bounds for Stationary Bias
We show that |[67]|z,(x) = Op(a), [|6Y]|L,(x) = Op(B). First, we note that

161 22(x) < a(CT |07 || L2 (x) + C3 0¥ 22(r) + CF),

where
_ 4c
C(P,m) = (I = PT+T0) Y L2 () [IPT = || 2y < ﬁ = 0(7a),
= C(Pv 7T)”A + WA||L2(7T) < C(P ﬂ-) max Ry,
= C(,P’W)”JIQ + W12||L2 () < C(P 7T) max;
i=C(P,7)(00 + Winaxkiyll 2 L2 (r) + Winax[|12¥[| 2(r))
§ C( 77T)( +OP( )Wmaxﬁy)

The last inequality is because

1212y = | IElFo0l€] — Elgisc] |7 (dE) S/_E[llﬂoo—E[ﬂoo]l|2|§]7T(d€)

E[[|goc — Elgoc] %] < E[7s %] = Op(8),

by Theorem 3.2, and similarly, we can also show that ||2%||12(r) = Op(a + 5?). Furthermore,

(1]
I

10Y]| L2y < BIC1I6" | L2(x) + C2l|0Y (| L2(x) + C3) + 167 || L2 (x),

for the same problem-dependent constants C7,Cs, C3 as defined above. This concludes that for o < f <
1/ max(C1, Cs), we have

1672 (x) = Op(a), [10Y|| L2(x) = Op(B)-

Similarly, we can show that

O(1)o®
1-p

O(1)ov
o Nd ey <

A2 m) < = )
I z2e o

which implies that b},b§ = Op(1) since

M2=]

Tyt /_ Waod?dr ()

<y ([ 10ar(©)) < s
2 =

Similarly, we have [|bY||2 = Op(1) and b¥ = Op(1) for i = 1,2. We can plug this result back to (19) to conclude
the bias part of Theorem 3.3.

B.2.7 Dimension-Free Bounds for Variances
We note that the variance of x, is measured by
IV(zeo)lli = Tr(V(zoo)) = Tr(E[(2o0 — E[za]) (20 — Elza]) '),

where the expectation is taken over the stationary distribution (Zeo,¥Yoo,&c0) ~ i, and thus we aim bound
Tr(V(2e)). For y, it is sufficient to bound yo, by O(8). To see this, note that

Te(V(yoo)) = Ellyoe — Elyeo]I°] = Elllgoo — v (") 17] + [Elyee] — y* (@)
< 2E[[1700 %] + 2E[lly" (200) = " (@)*] + | Elyoo (we0) — y* (]I
< 2E[[[Fo0 1] + 35, E[l|Zoo 7] = Op(B).-

Similarly, we also have that

Tr(V(za)) = Opla + %),
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and

IE[(zo0 — Elzec])Foolllt = Op(a + 5%).

Next, we show that the variance of z, is strictly in order O(«), without poly(/3) dependence. We first observe
that

(Tooy1 — E[xm])(xw—&-l - ]E[xoo])T
= (Too — E[oo]) (T — E[mw])T — (Too — E[roo]) (AZ0o + J12¥00 + wgo)T
— (Ao + J12T0o + W) (Too — E[a:oo])T + QQ(AS_COO + J12000 + W) (AZ oo + J12000 + wio)—r

Let us define X% (£) and %*¥(&) as the following:

27(€) = E[(Zoo — E[Too]) (oo — Eltoo]) T |€0e = €],
(€)= E[(Too — E[xw])g;|§oo = =E[(rec — E[roo]) (Yoo — y*(xoo))T|§oo = £,
2Y(€) = Elfoc¥oo |0 = &]-

We can then rewrite the recursion compactly:
¥ =PHUR" —a(A+ AT) +o’B},
where

A(§) = T (O)A + X)) + El(w00 — Elroc]) "o |60 = €]
= S7(E)(A+WE(©)T + (&) (Jra + Wia(€)) T +6°()(ua (€) + WA (§)E[zoo]) T,
B(&) = (A + WX(E)Z" (A +WE(E) " + (Jiz + Wi2(£)ZY(€) (Jr12 + Wi2(€)) T
+ (A +WE(E)E™(E) (12 + Wia(€)) T + (Jiz + Wia(€)) 2V () (A + WX (€))
+ (WX(€)2" (&) + ur ()WL (£)2"(€) +ua ()" + O(6" () + 6Y(€))-

Let Y% = 7{¥*} = E[X?], D*(§) := ¥*(¢) — £%, and similarly define XY, D*¥. The steady-state equation is
given by

STA + AR + (57 + J12807) = am {(WX()2"(€) +ua(€)) (WX (§)2"(€) +ua(€)) " }
+ Op (@) (="Ml + 113711 + 2] + 16" 22(ry + 167]] 2())
+ Op ([ D[ 51 (m) + 1D |l51 () + [16% | L2m))- (23)

We also note that PT{¥*} = £* and (P! — II){X?} = (P — ){D*}, and thus similarly to (18),

D* = —a(I — PT + )~ Y(PT —I1){Op(D?® + £% + D™ 4 2% + §%)}
+2(I =P+ 1)~ YPH —ID{O0p(Z% + T 4+ 2V + 6% +6Y +1)}.

Taking || - [|s1(x) of D*, with Lemma B.4 and Corollary B.6, we can show that
ID*[[s1.(r) < Op(@)(ID" [51() + 1D | 51() + 5711 + [57¥[}1) + ”Op (1),

where we also used ||Wi;|lse(r) < Jmax for 4,7 € {1,2} by Assumption 3, and used a Cauchy-Schwarz inequality
|AB||s1(x) < /£||A(§)|1||B(§)ood7f(§) < A1 (my | Bl 5o () 5
luv T ||s1(x) < /gllu(é“)llzlv(é“)llzdﬂ(ﬁ) < ullz(mlloll L2z,

with [|6%]|L2(x) = Op(c), [|6Y]| 12(x) = Op(B). This suggests that as long as || D™|[s1(xy, [5%]]1, [|[27¥]|1 = op(1), we
have || D*[|g1(x) = op(c).
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To proceed, we also get the expression for X*Y:
X% = PN — A" — aB’' + O(ap)},
where

A'(€) = S™(€)(Jaz + Waa(€)) T + S () War () + 6™ () (u2(€) + WL (OE[za)) T,
B'(€) = (Z"(E)(A+WE©) T +27(&)(Jia + Wia(€)) 1) (Ja3" Ja1) |
+ 3Y(8) (12 + Wi2(€) T + WE(§EY (&) + Y () (W (&)E[zoo] +u1 (€)) T

and C’ is appropriately defined. The steady-state equation is

o

S Ty + 5

STl = am {(WX(€)2"(€) + ur(§) (WL ()27 (€) + ua(€)) " }
+ Op([ID”[| 51 () + 1D |52 () + 167 £2()) + Op(e), (24)
and the system equation is
D™ = (I — P+ 1)~ (P" — I){BOp(D” + D™ + 57 + ™ + §7) + aOp(DY + £¥ 4 6¥) + Op(aB)}.
Noting that [|0% z2(r) = O(a), [[6Y||L2(x) = O(B), we can show that
D™ ||s1(x) < Op(BYID" |51 () + 1D |51y + 1Z7 (1 + [1E7¥][1) + Op(@) (I DY || 51 () + I2¥[]1) + Op ().
Combining these results, we can conclude that
D™ |[51(my, 1D [l 51 (my = Op(@)(IZ" [l + [I57¥]11) + O (B).
Now plugging this back to (24), we have

T Ry & x T T
X1 < %IIEylll + Op([ID"][ 51y + 1D || 52 () + [16% (| 2(m)) + 0p (),

yielding [|X%Y]|; = Op(a) since ||SY||; = Op(B). Then using these results, from (23), we can derive that

Tr(E%)+ Tr(AZTA™Y) = 2 Tr(2%) = 2||27||
< IE TS IA™ op + O(@) A lop[WE 0 2% + wrl[72 () + Op(@)[|IZ7]|1 + 0p ().

Therefore, we can conclude that ||£%|; = Op(a). Since ||X2||; = Tr(X%) = Tr(V(zo0)), we obtain the last part of
the theorem.

B.2.8 Proof of Corollary 3.4

This is in fact a corollary of Lemma B.3. To see this, apply Lemma B.3 with 3 = p, and then note that under
optimal coupling between o and p,

W (ho(@0), 1(700)) < Ell|z0 — woo|3] < 2E[| 20 — E[zec][13] + Ell|[2oc — Elzoo]|I3]
= 2E[||zo — Elze][3] + 2 Tr(V(2s)).

Similarly,

W3 (110 (50): 1T )) < 2E[[[50 — E[goc][13] + 2 Tr(V(gc )

Then from Theorem 3.3, applying Tr(V(z«)) = Op(«) and Tr(V(Js)) = Op(5), we have the lemma.
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B.3 Tail Averaging and Extrapolation
B.3.1 Proof of Theorem 3.5
First, let us define Vi, Uy as:

Ui = Elllox — Elzoo] 1] + Elllye — Elyso][I°] + Op(8),
Vi = Ef 2k — Elzoo]||*] + %]E[Hyk — Efyso]|’] + Oe(a).

For all k > tg > (aug) 'log(1/(au,)), with Theorem 3.4, we ensure that under an optimal coupling,
Ell|zr — Elzee][?] < Elllor — zooll*] + Tr(V(2o0)) < Op(a),
and similarly, E[|lyx — E[yo]||?] < Op(8).
Slower Iterate: We want to analyze
Ef|z — 2" |3] = E[lZ¢ — Elzoo] + (Elzee] — 2)3] < 2E[[|Z¢ — E[zec][13] + 2E[|Elzoc] — 2™ [13],

where 2o, ~ pu(z). To show that this quantity is O(a), it suffices to bound E[||Z; — E[z]||3, ] under the optimal
coupling. Rewriting this term,

t

Bl ~ Elewllf] = s O Ellee ~ Elewllfl + o 3 3 D Bl Bl 2~ Bl

k=to k=to 1>k
We first note that by Theorem 3.4, under the optimal coupling between xj and ., we get
El|lo% — Efvcl3] < 2E[k — e8] + 2E[][200 — Elioc] 3]
< exp(—apg(k —t0)/8)Vi, + Tr(V(2ao)).
To proceed, we note that

t—to

- 1
Efl#x — Elzoo]|l3] < i—to? > (exp(=apgh/8)Vi, + Tr(V(2o0)))

k=0
t otk
+ﬁ Z Z xk_ }7xk+k:’ _E[xoo}”]:k”
k=to k’>0
< ﬁ Z (exp(—apu.k/8) Vi) + %ﬁ:}))

t t—k

s 2 3 Bl ~ Elowlla - [Blowssr - 2uclFil )

To bound the second term, we first note that for any &’ > 0, we use an optimal coupling between x4/ |Fr and
Zoo, and again apply Theorem 3.4:

E[[E[@k+r | Fi] — Elzoo]l3) < E[E[|rtr — Tooll3|Frl] < exp(—apgk’ /8)Vi

Using Cauchy-Schwarz inequality, we have

t

t—k
> D Elllzr — Elza]llz - |Elzrsn — zoc Fillle]

k=to k’'>0
< Z\/]E |z — E[zso]|3] <Z \/]E (lzrrr — Tooll3 |fk]]>

k=tgo k'>0
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<Zm Wk<z - = Oplt— o),

(0%
k—to Ha

where we used that Vj, = Op(«) for all k > ¢y. Plugging this, we can conclude that

Op(l)

[ 2k — Elao] 3] < £

Faster Iterate: In this case, we first note that
19 =y 113 < 2019 =y (@15 + 2]ly"(7) —y* ()3
< 417 — E[Foo]ll + 4IE[Foc] 13 + 265 [ Z: — 213,

where i, 1= ﬁ Zi,:to 7. The second term is squared-bias in order Op(3?), and the third term inherits the
error analysis from slower iterates. Thus, we focus on bounding the first term.

Following the same process for slower iterates, we first note that

E[||§: — E[goo |13 QZEnyk— [Fso]13] QZZE (5 — Elfoc], 5t — Elgoc))]

k=to I>k
1 _ _
< =t Z E[l|7r — Elgoo]|I3]
07" k=to
9 t t
+ t—t)? > Elgk — Elgoolllz - 1EFkrrr — ool Fill2].
00" =ty 1>k

For the first term, we invoke Corollary 3.4, under optimal coupling, we have
E([|gx — ElFoo] 3] < 2E[[|7k — Fooll3] + 2E[[|Fo0 — Elfioo][I5]
< Bexp(—apq(k —to)/8)Vi, + exp(—Buy(k — to)/8)Ut, + Tr(V(¥os))-
For the second term, with Corollary 3.4, we have
E[||E[gk+r | Fr] — ElFoo]ll3] < E[E[|Fh+r — ool [31Fx]] < B exp(—apk'/8)Vi + exp(—Buyk' /8) Uk,
and again using Cauchy-Schwarz inequality, we can show that

t t—k

> D Ellgr — Elgoo]llz - 1EGk+r — Fool Filll2]

k=to k' >0
< Z \/E 17k — El¥oo)||3] <Z \/E T+ — Too I3 |]:kﬂ>

k=tg k’>0
t
3 e \/ﬂVk VU /8% 1
= k—to Uk ( Qg ﬂ ) < Op(t — o) ( Q@ Hg e ﬂy)

On the other hand, we can apply Cauchy-Schwarz inequality in different ways:

t t—k

> Elgk — Elgoo]ll2 - [E@r+4 — ool Filll2]

k=to k'>0

< Z \/E 17 — ElFoo]lI3] <Z \/E Gk — oo I3 Ifk]]>

k=tg k’>0

— % t L - BV Uk o (t — 3/2 B B '
g\/ﬁkgoﬁ <,/ 1/ﬁu><0t to) (F \/7)
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Summarizing the results, we can conclude that

ﬁE[”@k — 4" (@) — E[gao][13] S t Wt — t— to

This concludes Theorem 3.5.

B.3.2 Proof of Corollary 3.6

We note that

E[IGF —a*[12] < 2E[lI¢? — E[(2223%7 — a37)]3] + 2| E[(2235 % — 2%7)] — «*3
< 16E[| &> — E[e2*)|3] + 4E[|#5" - Elzg’)l3] + 2| E[(2220% — 2%”)] - 2*|5.  (25)

Note that from Theorem 3.3,
20%F — 2028 _ pr = 2(2%F — *) — (220 — 2*) = Op(B?).

The first and second terms in (25) can be bounded by Op(1)/(t — to), following exactly same steps in the proof of
Theorem 3.5. The result for faster iterates can also be derived similarly.

C Deferred Proofs

C.1 Proof of Lemma 3.1

The stochastic approximation equation becomes

(X1 —2%) = (2 — 27) — aF (x4, y" (@) + a(F (@, y" (21)) — F(ze, y) — aw® (2, ye; &)
= (2 — 2%) — aH(x) — adia(ye — y* (@) — awf (x4, Y15 &),
(Y41 — ¥ (@e41)) = (Y — Y (@) + (Y (21) — " (@e41)) — BG(2e, ye) — Bw? (e, ye; &)
= (g —y" (1) — g o1 (w1 — me41) — BG (w1, y1) — Pw? (w4, 345 )
= (g — ¥ (@) — gz Jor (F (e, ye) + w! (w1, 05.&)) — BG (e, ye) — Bw? (e, ye: &)
= (g —y" (1) — sy’ J21(F($t’yt) H(x¢) + H(zt)) — BG (¢, Y1)
— g Jonw® (e, yr; &) — Bw? (e, ye; &)

=

Using H(z*) =0, G(z,y*(x)) = 0, we can rewrite the recursion as (5).

C.2 Proof of Lemma B.2
We can start with a coarse bound on ||yt+1||éy:
15641115, < I = BI22)7ellE, + 0|1 J5' To1 (Jiage + Aze +wi)gy, + B2 [w! [,
2 [(I = BJ22)Ge, T35 Jor (Jiofhe + ATy +w])) g, |

+ 28 (I = BJa2)ie, —wi)q, | + 208 |(Jaz Jo1 (Ji2fe + AZy — wi), wi)q, |
< (1= Buy/2)|5:15, + Op(B) 12415 + Op(a)a + Op(B)o;

Thus, taking the square on both sides, we get

2. (00(8%)]|2:]3 + Op(@)o? + Op(B)02)

b < (1= By /22 1Gelly, +2(1 — By /215
+ (Op (821213 + Op(@)02 + Op(B)02)”
< (1= By /DTl g, + (Op(BH)1Z¢]l3 + Op(@)oy + Op(B)ay) -

G411



Constant Stepsize Two-Timescale Linear Stochastic Approximation

Similarly for z;, we have
[Ze1015, < T = ad)zlly, + 20| Ti2g:l[5), + 202 [wi |,
+2a((I — al)zy, Ji2ge) Q] + 2a[{(I — al)zy, wi)q, | + 207 [(J1281, wi) Q. |
< (1= apa /2|75, + Op()||7]I3 + Or(@)o?,
and thus,
1Ze111lg, < (1= ape/D|Zllg, + Or(@)|7:ll2 + Op(a)oy

Op( 1)a

Taking potential V; = ]E[||i"t|\‘é2$ ||yt||Q ], we have

Vis1 < (1= ape /4) Ve + Op(a) (05 + 03)a
which leads to
E[l|7ellg,] < Vi < exp(—apst/4)Vo + Op(oy + o).
Plugging this back to the recursion for y, we also have
Ellg:le,] < exp(=Buat/4Ell7ollg,] + Op(0r + ay).

Converting || - ||, and || - |, to || - ||2 norm concludes the lemma.

C.3 Proof of Lemma B.3

The proof strategy is to consider three cases separately when ¢ is small and large. Let ¢; > 0 be some sufficiently
large absolute constant.

Case (i) t < c¢; - 7,: In this case, consider optimal coupling between p, u2, and apply Lemma A.8:
Efllzy — 27[I3] < 3E[|zp — 23/13] + 3E[||z; — xéllz] + 3E[||lz; — ]3]
< 3W3 (g (), 115 (23)) + Op(a®72).

Since in this case exp(—au,t/4) > 1/2 for t < O(1)74 < 1/(ap), the = part in the inequality (16) holds. The y
part of (16) can be shown similarly.

Case (ii) c¢; -7, < t: We consider a coupling on &! and &2 first. Let v!, 2 be probability distributions over
= x E such that

VH(EL€2) o 1 {€! = €2} - min(ul(€1), u2(€)),
V2(61,€2) o max(0, ik (€1) — u2(€1)) x max(0, j2(6%) — uA(%)):

(
! (n(€1), 12(€2)), and v? with probability

~ ui(el) and (a2,42) ~ p2(J€2). When
> 0, and invoke Lemma B.1 to show that

The coupling distribution decides v+ with probability 1 —

TV
V(L (€1), 52(€2)) to sample (¢1,€2). Then it samples (v1,yl)
t

v! is selected, we couple two sequences by setting £ = &2 for all

(0%
Eflz; —7[I3 | '] < Op(1) - E {Ilwi — a3+ Ellyi =23 | '] exp(—aps(t — 7)/4),

where we also took expectation over the optimal coupling for (z1,yl)|¢) and (22, y2)|€2. When v? is selected, we
let the two sequences independently evolve, and using Lemma B.2 to show that

Ell|lz; — x7]|5 -1 {v*}] < OP(l)\/E[HﬂCt — 2|3+ gt — 52113 - VTV(L(EL), 2 (€2)
< Op(1 \/E Nt + 2213+ 17203 + 15713] - V/TV(ui(EL), 12 (£2)
< VOp(1)TV(pk (E1), 42 (€2)).
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Given the above results, let ¢ > 0 be another sufficiently large absolute constant. Now if ¢ < ¢olog(8/ )/ (auis),
then we set T = ¢17,/4 such that t > 47. With TV(ul(€}), u2(£2)) < p7 < (pe)?M) < exp(—apu,t/4), we have

(0%
Ellzf — 73] < Op(1) - E |||z} — 22|15 + Bllyi — 423 + Op(a) | exp(—apat/8)
< Op(1) - Vo exp(—ap,t/8).

On the other hand, if ¢ > ¢y log(8/a)/(aps), then we take 7 = /8. In this case, we instead invoke the MSE
result in Theorem 3.2, which gives

Eflzr — 27[3] < 2E[[lz7]13] + 2E[||77 3] < Op(1) - exp(—apa7/4) < Op(a),

Elllgr — 9213) < 2E[|lg7[13] + 2E[[|5713]
< Op(1) - (exp(—BhyT/4) + Bexp(—apu,7/4)) < Op(a).

Together with TV(ul(£1), u2(£2)) < pt/® < exp(—au,t/4), we get the same conclusion that
a
Eflz; — 2f[3] < Op(1) - E |[laz — 27]13 + Bllyi = Y13 + Op(a) | exp(—apst/8)
< Op(1) - Vo exp(—aupuzt /8).
The inequality for y in (16) can also be similarly proven.
D Proof of Technical Lemmas

D.1 Proof of Lemma A.1

This result follows immediately from the fact that Tr(AB) < ||AB||1, and Holder’s inequality applied to matrix
p-Schattern norm.

D.2 Proof of Lemma A.2

By definition of ||A|g, we start from
JAlI3 = max |Az]3 = max (z7ATQAz) = max (2 Q '/?ATQAQ '/%z)

lzle< llzlle<1 lIzll2<1
= max [QV2AQ Y28 = QY2 AQ 2 R,
z 271

D.3 Proof of Lemma A.3
By definition for (-,-)q,
(@, 1) =2"Qy < [T Q*|1Q"*yll> = zlellyle-
Next, we observe that
(Ma,z)q =2 M'Qu =Tr(za" M'Q) < [|Qza||1]|M||op-
Then since Qzz ' is a rank-1 matrix, we have
1Qzz" |1 = Qa2 = VaT Qu = ||z[lo-
Finally, by definition of || - ||,
Mzl < [Mlqllzlle-
Then, note that
M]3 = 1QV2MQ™' 213, < w(Q)IIM]2,,

yielding the proof.
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D.4 Proof of Lemma A.5
This can be shown from the definition of Q-norm:

Umax(Ql)

2 _ T < 2<7 2'
lolfy, = =7 Qi < omax(@u)llf < 2L,

D.5 Proof of Lemma A.6
Let m, = P¢,(-|Fi—+) be a distribution over =. By Assumption 2,
s — 7l < oo™

Furthermore, we know that

Thus,

E[(Wij (&), te—rvf_ )| Fior] < Benn[(Wi (€), ut—rv,_ )] + Winax|te—r vl |1 |- — ||y

< Whnax [ [2]lvi—rll2 - ¢op

The second inequality also follows similarly.

D.6 Proof of Lemma A.7

Note that z; = Z; +x* and y; = 7 — Jzal Jo1ZTs + J{zl Jorx*. Plugging these to wf = Wiy (&)xe + Wi2(& )y +ua (&)
and similarly to w! yields the expressions.

D.7 Proof of Lemma A.8

By the recursion in (5),

[Ze1llz < (1 + allA + WX (Elop)|1Zt]l2 + a([[ 12 + Wiz () lop [9e]l2 + [WA (€)™ + ua(&e)l2)
<(1+ Ry maX>||xt||2 + a( maX||yt||2 + Uz)
<«

1Zer1 — jt” (’iy Imax||Zt ]2 + JmaX||ytH2 +0z).

Similarly, we have

||yt+1||2 (1+5JmaX)||yt”2 +5( maxf{y”xt”2 +0y)+’€y (“meaXHi'tHQ +JmaX||37t||2 +02),
yt+l - yt 2 > max || Yt |2 max Py || Lt ||2 Oy Ry Hy max || Tt||2 max gt 2 Ox)-
[ l2 < B(Jmax||Fell2 + , [Zell2 + oy) + Ky [Zell2 + Jmax||Gell2 + o)

Adding two equations,

FyllZesallz + [1Geallz < (14 28Jmax) (hy | Zell2 + [17ell2) + Boy + aryos.

Solving this recursively, we get

RyllZell2 + 19ell2 < (1 + 287 Jmax) (ky[|Ze -~ |2 + [15:-[l2) + 7(Boy + aryoy).

Using this result, we have

t t

2 =2 olla < Y Z = Ticalls € admax Y, (KyllZillz + [Till2) + a0
i=t—7+1 i=t—7+1

< 2aTJmax (Kyl|Zi—r |2 + |Ge=+1l2) + 2aT0y + aBJTmaxToy.
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Similarly,

t t

1Ge = Gerllz < D7 18— Gimalla < B+ ary)Jmax D (yllZallz + 115ill2) + 7(Boy + aryo0)
i=t—7+1 i=t—7+1

< 27 T8 (g 71 ll2 + [0 2) + 27 (g, + Bo).
Finally, from these two equations, note that
byllZe = Ze—rll2 + 19 — Ge—rll2 < 8BJmaxT (kyl|Z¢ll2 + [|7ell2) + 8(akyos + Boy).
Plugging this back with ||Zi—+|l2 < |Z¢]l2 + |Tt — Te—r |2 and ||Ge—r|l2 < ||Ttll2 + [|T: — Gt—r]l2, We get the lemma.
D.8 Proof of Lemma A.10
To begin with, we start with unfolding the expression as
Elwig, ] = EWii(&)zeg/ ] + EWi2(6)5:9; | + E[ur (£)7 -
To proceed, we first note that
EW11(&)%:5, ] = EWi1 (§0)T 5] + BIW11 (&) (Z — T1—1)7 ] + EWi1 (60T (5 — §e—+) ).

For each term in the above, we have the following inequalities:

1. Using the mixing-time assumption, we can show that
IEW1 (&) Te—rg/ ]Il < p7 - E[E[max Wi (€)Te—r g, 1| Fer]]

< pTWmaxE[||§7t—7—gtT—7—H1] = pTWmaxE[”ft—THQHgt—TH?]
< O)p" Wanax B[ 2413 + 19:3 + o* Km0 + 527707

a2
< SEE[5l3] + o Wanax - O | —52Elll@:]3] + 7 (a*k202 + 8%2) |
32K, Ky

2. For the next term, we apply Lemma A.8 and Corollary A.9:

IEW1 (€)@ — Te—r) G-t < WinaxBI|(Z0 — Z0—)5 - [11]
< aTJmaxWax E[(’iyl|jt||2 + ||gt||2)||gt—r||2] + aTWmaX(Uw + BJmany>E[Hgt—r||2]
< 0(1) - a7 (ElBTmaxty |12e]13 + (ky | Zell2ll7ell2 + 1|7:113) + (o507 + 5207)])
+0(1) - aTJimax (00 + BImax0y) (Jmax By Tl Te|| + |9l + T(aryou + Boy))

) Ella

2 2
o liy Jmax

< BV R[5 ]3] + 0(1) 720527 ( B2 Juna +
32ﬂy

JI%]axK”U 2.2 2 2 2 2 2
+ O | 222 ) (aP7%02 + I aBPT ay).
Hy

We can simplify it further later, using the condition that o < 8/k, and Wiax < Jmax-
3. For the last term, similarly,
IEW11(€)Ze(Fe — Ge—r) N1 < WinaxB[||Z¢]2]| G — Te—r ||2]
OV BT ax - Bl(ky [ Zell2 + 13ell2) [ Ze 2] + O T Jman B[ Z4 2] (a0 + Boy)

<
< O(1)Br g axEliy |23 + [|7:]13] + O()7((a?/ B)kyol + Boy).
Combining these inequalities, and given that 7 <k, 2/ Jmax in Assumption 4, we can conclude that

IE[Wa1 (60723 ]l < %E[Ilﬂtllgl + OB iy Bl Z[|3] + O (02 / B)rsyos + Bay) .
Y
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Similarly, we can also show that

IE[W2 ()76, 111 < 16 E[|7:]13] + O) BT sty ElllZ: 5] + O(V)7((0?/B) sy 07 + Boy).-

For the last one, we proceed as

IE[u1 ()7 1 < IEfur (§)7 )l + IE[us () @ — Ge—r) Tl
< P umaxE[|e—r ll2] + umaxE[[|Ge — Fe—r]l2]
< 0( )(P7 + BT Imax) UmaxE[ky | Z¢ |2 + [|F¢]2] + Ttmax (kg0 + Boy)
O(1)BT T2 o Elry | 215 + [17:]13] + O() (o) B)kyos + Boy),

where in the last inequality, we use umax < 0y. Combining all the above inequalities yields the lemma.
D.9 Proof of Lemma A.11
To begin with, we start with unfolding the expression as
E[wiz)] = EWi1(&)%:2, | + EWi2(&)7:2, | + E[u (&) ).
To proceed, we first note that
E[Whi1(6)%:%] | = BWi1 (&) T2 ,] + W1 (&) (T — To-7)T ;] + E[Wi1 (&) T4(T4 — To—r) ).
For each term in the above, we have the following inequalities:
1. Using the mixing-time assumption, we can show that
IE[W1 ()Tl < o7 E[E[max W11 (6)7: - P2y 1| Fe]]

< P WinaxEB[[|Ze—r2(_ 1] = " WinaxE[|| 2 ||3]
< O()p" Wanax B[l|Z:e[[3 + 02 T30 15213 + o*7%07)

e _ . _
< B2 3] + 07 s OBl 1]3] + 720%0)

2. For the next term, we apply Lemma A.8 and Corollary A.9:

W11 (&) (T4

—Z-) T < WanaxB[| (@ — Ze—7)Z,_ 1]

O(1)at JmaxWmnax - [(’inth2 + |1Fell2) 1Tt~ [l2] + O(1)aTWinax (0w +5Jmax0y)E[”ftf'rH2]
O(1) - ar T (Bley |25 + 5:15 + 720 (07 + B2 J30c03))

L _

2K [Hth }J’_O( )aTJrgnax [HytH%]"‘( ) (J +62 max ;)
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where we use the condition that a7 < 1/(Jmaxk2) and Winax < Jmax-

Combining these inequalities, and given that ST <k, 2/ Jmax in Assumption 4, we can conclude that

2
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We also need to check the cross term:
EWi2(&)7:%, | = EWi2(&)Ze—r 0] + EW12(&) (e — Ge—r )T ] + EWi2 ()0 (T — Te—r) ).
First term can be bounded similarly using the geometric mixing assumption. For the second term,

IEWi2(&) @ — Ge-r)T 7]l < Winax B[ (G — Ge—r)T/_[l1]
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For the third term, similarly, we have
IEW12(6)7e(Fe — Ze—r) 11 < WinaxEll|7e(Ze — Ze—7) T [11]
< O()ardgay - El(kyllzellz + 17l12) 17t 2] + O(1) 7 Jimax (a0 + B2 Jmaxoy JE[]| ¢ 2]

< LL B3] + 00T+ 5 T BIIGIE] + O (0707 + B o)

For the last one, we proceed as

IEfu1(€)7 1l < [1E[ur &)zl + 1E[u1 (&) (@ — ze—r) Tl
S pTumaxE[”(EtfﬂrHZ} + umaxE[Hi’t - i't77'H2]
S (PT + OéTJmax)umaXE[’iy”:zt”Q + ||Z7t||2} + TUmaxX0 g

< ar Bl |25 + 115 3] + Taos,

where in the last inequality, we use umax < 0. Combining all the above inequalities yields the lemma.
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