
Journal of Machine Learning Research 25 (2024) 1-55 Submitted 5/22; Revised 8/24; Published 9/24

Structured Optimal Variational Inference for Dynamic

Latent Space Models

Peng Zhao pzhao@udel.edu

Department of Applied Economics and Statistics
University of Delaware
Newark, DE 19716, USA

Anirban Bhattacharya anirbanb@stat.tamu.edu

Debdeep Pati debdeep@stat.tamu.edu

Bani K. Mallick bmallick@stat.tamu.edu

Department of Statistics
Texas A&M University
College Station, TX 77843, USA

Editor: Ji Zhu

Abstract

We consider a latent space model for dynamic networks, where our objective is to estimate
the pairwise inner products plus the intercept of the latent positions. To balance posterior
inference and computational scalability, we consider a structured mean-field variational
inference framework, where the time-dependent properties of the dynamic networks are
exploited to facilitate computation and inference. Additionally, an easy-to-implement block
coordinate ascent algorithm is developed with message-passing type updates in each block,
whereas the complexity per iteration is linear with the number of nodes and time points. To
certify the optimality, we demonstrate that the variational risk of the proposed variational
inference approach attains the minimax optimal rate with only a logarithm factor under
certain conditions. To this end, we first derive the minimax lower bound, which might be
of independent interest. In addition, we show that the posterior under commonly adopted
Gaussian random walk priors can achieve the minimax lower bound with only a logarithm
factor. To the best of our knowledge, this is the first such a throughout theoretical analysis
of Bayesian dynamic latent space models. Simulations and real data analysis demonstrate
the e�cacy of our methodology and the e�ciency of our algorithm.
Keywords: Variational inference, dynamic network, hierarchical models, message-passing,
posterior concentration

1. Introduction

Statistical analysis of network-valued data is rapidly gaining popularity in modern scientific
research, with applications in diverse domains such as social, biological, and computer
sciences to name a few. While there is now established literature on static networks (see,
e.g., the survey articles by Goldenberg et al., 2010, Snijders, 2011 and Newman, 2018), the
literature studying dynamic networks, that is, networks evolving over time, continues to
show rapid growth; see Xing et al. (2010); Yang et al. (2011); Xu and Hero (2014); Ho�
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(2015); Sewell and Chen (2015); Matias and Miele (2017); Durante et al. (2017a); Durante
and Dunson (2018); Pensky (2019) for a flavor.

The latent class model proposed in Ho� et al. (2002); see also Handcock et al. (2007);
Ho� (2008); Krivitsky et al. (2009); Ma et al. (2020); constitutes an important class of
static network models and has been widely used in visualization (Sewell and Chen, 2015),
edge prediction (Durante et al., 2017b) and clustering (Ma et al., 2020). Latent space
models represent each node i by a latent Euclidean vector xi, with the likelihood of an
edge Yij between nodes i and j entirely characterized through some distance or discrepancy
d(xi, xj) between the respective latent coordinates. Dynamic extensions of latent space
models (Sarkar and Moore, 2005; Sewell and Chen, 2015; Friel et al., 2016; Sewell and
Chen, 2017; Liu and Chen, 2022; Loyal and Chen, 2023) are also available, which assume
a Markovian evolution of the latent positions. We focus on statistical and computational
aspects of variational inference in such dynamic latent space models in this article.

To set some preliminary notation, consider a network of n individuals observed over T

time points. For 1 Æ i ”= j Æ n, let Yijt denote the observed data corresponding to an edge
between nodes i and j at time t. For example, Yijt œ {0, 1} may denote the absence/presence
of an edge, or Yijt œ R could indicate a measure of association between nodes i and j. Let
Y t = (Yijt) œ Rn◊n denote the n ◊ n network matrix at time t (with only the o�-diagonal
part relevant), and let Y = {Y t}T

t=1 denote the observed data. We formulate our latent
space model using the commonly used negative inner product d(xit, xjt) = ≠xÕ

itxjt as the
discrepancy measure (Durante et al., 2017b; Ma et al., 2020), where xit œ Rd denotes the
latent Euclidean position of node i at time t and xÕ denotes the transpose of a vector x.
The observed data likelihood then takes the form

P (Y | X , —) =
TŸ

t=1

Ÿ

1Æi”=jÆn

P (Yijt | —, xit, xjt), (1)

where P (Yijt | —, xit, xjt) is decided by —+xÕ
itxjt, and X = {Xt}T

t=1, with Xt = [x1t, ..., xnt]Õ œ
Rn◊d the matrix of the latent positions at time t and d is defined as the dimension of the
latent space. To model the evolution of the latent positions, assume a Markov process

xi1 ≥ N (0, ‡
2
0Id), i = 1, ..., n.

xi(t+1) | xit ≥ N (xit, ·
2Id), i = 1, ..., n, t = 1, ..., T ≠ 1,

(2)

where Id is a d ◊ d identity matrix.
To alleviate computational ine�ciencies of sampling-based posterior inference, poste-

rior approximations based variational inference have been developed where the variational
posteriors of latent positions across all times are either directly (Liu and Chen, 2022) or
implicitly (Sewell and Chen, 2017) assumed to be independent. In the paper by Sewell and
Chen (2017), the variational family is presented in a joint form of q(X ) in their parametriza-
tion. However, in Section 2.2 of the supplementary document, the derivation only needs a
fully factorized structure of the latent positions, and their algorithm for variational inference
only obtains the marginal distributions q(xit) instead of joint ones. In dynamic models,
where there is already a priori dependence between the latent states over time, assuming
such an independent structure is restrictive and can lead to inconsistent estimation (Wang
and Titterington, 2004).
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In this article, we consider a more flexible structured mean-field (SMF) variational family,
which only assumes a nodewise factorization. An e�cient block coordinate ascent algorithm
targeting the optimal SMF solution is developed, which scales linearly in the network size
and retains the O(nT ) per-iteration computational cost of mean field (MF) by carefully
constructing message-passing (MP) updates within each block to exploit the specific nature
of the temporal dependence. Moreover, we empirically demonstrate that our algorithm
achieves faster convergence across a wide range of simulated and real data examples. We
also exhibit the mean of the optimal SMF solution to retain the same convergence rate as
the exact posterior mean, providing strong support for its statistical accuracy. Overall, SMF
achieves an optimal balance between the statistical accuracy of the exact posterior and the
computational convenience of MF, retaining the best of both worlds. Loyal and Chen (2023)
developed a similar SMF variational approach, and a coordinate ascent variational inference
(CAVI) algorithm was introduced for a latent space model aimed at dynamic multilayer
networks. Their study emphasized the algorithmic and computational perspectives, while
one of our key emphasis is on deriving theoretical risk bounds for the proposed variational
inference method below.

To adaptively learn the initial and transition standard derivations, we adopt priors

‡
2
0 ≥ Inverse-Gamma (a‡0 , b‡0) , ·

2 ≥ Gamma (c· , d· ) , (3)

and incorporate them into our SMF framework. Although an inverse-gamma prior on the
transition variance ·

2 (e.g., Sewell and Chen, 2015) leads to simple conjugate updates, it
is now well-documented that an inverse-gamma prior on a lower-level variance parameter
in Bayesian hierarchical models has undesirable properties when a strong shrinkage e�ect
towards the prior mean is desired (Gelman, 2006; Gustafson et al., 2006; Polson and Scott,
2012). In contrast, adopting a Gamma prior (3) on ·

2 places su�cient mass near the origin,
which aids our subsequent theoretical analysis and also retains closed-form updates in the
form of Generalized inverse Gaussian distributions (Jorgensen, 2012).

From a theoretical perspective, statistical analysis of variational posteriors has received
major attention recently (Pati et al., 2018; Wang and Blei, 2019; Alquier and Ridgway,
2020; Yang et al., 2020; Zhang and Gao, 2020). In particular, motivated by the recent de-
velopment of Bayesian oracle inequalities for –-Rényi divergence risks (Bhattacharya et al.,
2019), Alquier and Ridgway (2020) and Yang et al. (2020) proposed a theoretical framework,
named –-Variational Bayes (–-VB), to analyze the variational risk of tempered or fractional
posteriors in terms of –-Rényi divergences. Under the –-VB framework, statistical optimal-
ity of variational estimators can be guaranteed by su�cient prior concentration around the
true parameter and appropriate control on the Kullback–Leibler (KL) divergence between
a specific variational distribution and the prior. We adopt and extend their framework
to derive Bayes risk bounds under the variational posterior towards the recovery of the
latent positions in an appropriate metric. A novel ingredient of our theory is the ability
to provide statistical analysis for SMF variational family q(X , ·, ‡0) = q(X )q(·)q(‡0) given
hierarchically specified prior distributions of the form p(X , ·, ‡0) = p(X | ·, ‡0)p(·)p(‡0).

The proof technique of Alquier and Ridgway (2020) and Yang et al. (2020), where a
specific variational candidate is constructed by truncating the prior to a small neighborhood
around the true parameters, has become common for providing statistical guarantees of
variational estimates. However, this technique cannot be directly applied to MF variational

3



Zhao et al.

families endowed with a hierarchical prior specification, as the truncated distribution may
not be a candidate in MF variational family due to the dependence through the global prior
in the hierarchy. Previous literature (Liu and Chen, 2022) avoids this issue by treating the
upper-level parameters of the hierarchical prior as fixed constants, thus losing the adaptivity.
Bai et al. (2020) developed statistical guarantees for full MF variational distribution in the
context of regression with global local hierarchical priors. While their algorithm used a full
MF family, their theoretical results are proven assuming a dependence between the upper
and lower-level parameters of the hierarchy leading to a richer family rather than a fully
factorized MF. On the other hand, our theoretical results and algorithm are both developed
using the same structured mean-field family where the global parameter in the hierarchy is
assumed to be independent of the remaining parameters.

In addition, we exhibit the optimality of our proposed variational estimator by showing
its rate of convergence to be optimal up to a logarithmic term. En route, we identify an
appropriate parameter space for the latent positions and derive information-theoretic lower
bounds. To the best of our knowledge, this is the first derivation of a minimax lower bound
for dynamic latent space models. In fact, the only other work we are aware of that studies
minimax rates for dynamic network models is Pensky (2019) in the context of dynamic
stochastic block models.

Finally, the computational and theoretical framework developed here can be safely
adapted to the case where di�erent nodes are equipped with di�erent initials and tran-
sitions to capture nodewise di�erences:

xi1 ≥ N (0, ‡
2
0iId), xi(t+1) | xit ≥ N (xit, ·

2
i Id),

‡
2
0i ≥ Inverse-Gamma (a‡0 , b‡0) , ·

2
i ≥ Gamma (c· , d· ) ,

(4)

for i = 1, ..., n ; t = 1, ..., T ≠ 1. Due to space constraints, we present the computation and
theoretical results for such nodewise adaptive priors (4) in Section A.7 of the supplementary
material.

In summary, the contributions of our paper can be summarized as follows:

1. Through the use of an SMF variational family, we proposed a CAVI algorithm, which
o�ers an improvement over MF variational inference with minimal additional compu-
tational cost. Although our work was developed concurrently with Loyal and Chen
(2023), which also adopts an SMF variational family, our approach is distinct in that
it utilizes message passing rather than a variational Kalman smoother as in Loyal and
Chen (2023);

2. A detailed theoretical analysis of the lower bound for the squared error loss associ-
ated with su�ciently smooth latent variables is presented, which is a first practice
for dynamic latent space models to our best knowledge. In addition, we develop con-
traction rates of the posterior and its variational approximation of the proposed SMF
procedure. To our best knowledge, such an analysis is the first result in the literature
on Bayesian dynamic latent space models;

3. This technique for analyzing MF variational families for hierarchical prior distributions
contributes to filling a gap in the recent literature regarding the analysis of variational
inference for hierarchical prior distributions.
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Notation. For a vector x, we use ÎxÎ2, ÎxÎ1, ÎxÎŒ to represent its ¸2, ¸1 and ¸Œ
norms and xÕ as its transpose. For a matrix A, let ÎAÎF be its Frobenius norm. We use

and 1 to denote the identity matrix and vector with all ones. Suppose P and Q are
probability measures on a common probability space with a dominating measure µ, and let
p = dP/dµ, q = dQ/dµ. We use DKL {p || q} =

s
p log(p/q)dµ to denote the KL divergence

between the density p and q. In addition, we use D– {x || x0} = log
s

p
–
xp

1≠–
x0 dµ to denote

the Rényi divergence of order – between the density px and px0 . Given sequences an and
bn, we denote an = O(bn) or an . bn if there exists a constant C > 0 such that an Æ Cbn

for all large enough n. Similarly, we define an & bn. In addition, let an = o(bn) to be
limnæŒ an/bn = 0. Let PX denote a probability distribution with parameter X, and pX

denote the corresponding density function. Denote Ex as the expectation taken with respect
to a variable x. Let N (µ, ‡) be the normal distribution with mean µ and variance ‡ while
N(x; µ, ‡) be the normal density function of value x with mean µ and variance ‡. For any
subset of B of �, we use �(B) to denote the probability of prior distribution taken on the
set B.

2. Posterior Convergence of Dynamic Latent Space Models

Our main objective is to theoretically analyze the proposed SMF variational inference
scheme. To this end, we first need to determine the appropriate parameter space to ensure
that the variational posterior can converge at a near minimax rate. Since variational infer-
ence is an approximation of posterior inference, we will first establish that the –-fractional
posterior (a variant of posterior) can achieve the minimax optimal rate for some specific
parameter space. This will provide us with the necessary tools to prove the properties of
the variational posterior. One of the su�cient conditions for optimal concentration of the
–-variational posterior is that the –-posterior itself be well behaved (Yang et al., 2020),
which in turn is guaranteed by Bhattacharya et al. (2019) through the optimal prior mass
condition. In addition, the –-fractional posterior can indicate the optimal rate at which the
upper-level parameters, such as scales, need to concentrate.

In this section, we first identify a suitable parameter space (7) for the unknown latent
positions and obtain an information-theoretic lower bound to the rate of recovery (relative
to a loss function defined subsequently) for said parameter space in Theorem 2. Such
minimax lower-bound results for dynamic networks are scarce, and therefore this may be of
independent interest. Next, under mild conditions on the evolution of the latent positions,
we show in Theorem 3 that the rate of contraction of the fractional posterior matches the
lower bound. We expand the posterior convergence result to include a prior on the transition
variance.

2.1 Modeling Framework

We first state our assumptions on the data-generating process. Assume data is generated
according to (1) with true latent position X ú = {Xú

t }T
t=1. We assume that —

ú = 0 for
simplicity in theoretical analysis. Therefore, the network is assumed to be dense. As —

in Equation (1) is unknown and approaches negative infinity for sparse networks, further
research is needed to develop theoretical results for sparse networks in the Bayesian la-
tent space model. We consider Gaussian or Bernoulli distributions for the observed links,
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respectively,

Yijt
ind.≥ N (xúÕ

it xú
jt, ‡

2), 1 Æ i ”= j Æ n, t = 1, ..., T, or

Yijt
ind.≥ Bernoulli

Ë
1/{1 + exp(≠xúÕ

it xú
jt)}

È
, 1 Æ i ”= j Æ n, t = 1, ..., T,

(5)

where xú
it œ Rd is the ith row of Xú

t and designates the true latent coordinate of individual
i at time t. The Gaussian likelihood can be considered a natural Bayesian alternative
for estimating low-rank latent positions through singular value decomposition (SVD). It is
worth noting that the optimization objective of SVD is associated with the best low-rank
approximation in terms of the Frobenius norm, which implies that a Gaussian-likelihood
type of Bayesian alternative can be used. On the other hand, the Bernoulli likelihood, which
is a natural way to model binary responses, is widely used in the network and dynamic
literature; see, for instance, Ho� et al. (2002); Sewell and Chen (2015); Ma et al. (2020);
Zhang et al. (2020).

Fractional posterior: We adopt the expanded framework of a fractional posterior
(Walker and Hjort, 2001), where the usual likelihood P (Y | X ) is raised to a power – œ (0, 1)
to form a pseudo-likelihood P–(Y | X ) := [P (Y | X )]–, which then leads to a fractional
posterior P–(X , ·, ‡0 | Y) Ã P–(Y | X ) p(X | ·, ‡0)p(·)p(‡0). Denote the ‘ ball for KL
divergence neighborhood centered at X ú as

Bn,T (X ú; ‘) :=
;

X œ � :
⁄

pX ú log(pX ú

pX
)dµ Æ n(n ≠ 1)T ‘

2
,

⁄
pX ú log2(pX ú

pX
)dµ Æ n(n ≠ 1)T ‘

2
<

,

(6)

where µ is the Lebesgue measure and � is the parameter space of X . Consider a sub-
set B of the parameter space �, we use �–(B | Y) =

s
B[P (Y | X )]–P (X)dX /{

s
�[P (Y |

X )]–P (X)dX } to denote the –-fractional posterior. Then our technique of analyzing frac-
tional posterior is the following Lemma, adapted from Theorem 3.1 in Bhattacharya et al.
(2019):

Lemma 1 (Contraction of fractional posterior distributions) Fix – œ (0, 1). As-
sume ‘n,T satisfies n

2
T ‘

2
n,T Ø 2 and

� (Bn,T (X ú
, ‘n,T )) Ø e

≠n2T ‘2
n,T .

Then, for any D Ø 2 and t > 0,

�–

3 1
n(n ≠ 1)T D– (X , X ú) Ø D + 3t

1 ≠ –
‘
2
n,T | Y

4
Æ e

≠tn2T ‘2
n,T

holds with PX ú probability at least 1 ≠ 2/

Ó
(D ≠ 1 + t)2

n
2
T ‘

2
n,T

Ô
.

In contrast to the theory of original posterior distributions, which requires additional
conditions (for details, refer to Ghosal et al., 2000), the prior mass condition (6) is su�cient
to ensure optimal concentration of fractional posterior. This is advantageous in the theo-
retical analysis of fractional posteriors because verifying the other conditions for complex
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parameter spaces can be a challenging exercise. On the other hand, the fractional power –

only appears as a multiple factor and will not a�ect the main rate with respect to n and T .
In related literature, the –-variational posterior has been considered instead of the original
one to facilitate theoretical analysis (see, for example, Linero and Yang, 2018; Martin and
Tang, 2020; Jeong and Ghosal, 2021; Liu and Chen, 2022). They have also concluded that
the concentration rates do not vary based on the choice of –. When – = 1/2, the Hellinger
divergence h(p, q) is commonly used, and it is related to the D1/2(p, q) = ≠2 log(1≠h

2(p, q)),
as discussed in Section 2.2 of Bhattacharya et al. (2019).

2.2 Lower Bounds to the Risk

We first examine the optimal lower bound under a suitable parameter space. To capture
a smooth evolution of the latent coordinates over time, we assume the following parameter
space for the latent position matrices:

PWD(L) :=
I

X :
Tÿ

t=2

nÿ

i=1
Îxit ≠ xi(t≠1)Î2 Æ L

J

. (7)

Here, PWD abbreviates point-wise dependence. The quantity L; which may depend on n

or T ; provides an aggregate quantification of the overall ‘smoothness’ in the evolution of
the latent coordinates.

Given an estimator X̂ of X ú, we consider the squared loss to formulate the minimax
lower bound. Observe that the latent positions are only identifiable up to rotation, and
thus the loss function above is formulated in terms of the Gram matrix corresponding to
the latent position matrix, which is rotation invariant.

Theorem 2 (Minimax lower bound) Suppose the data generating process follows Equa-
tion (5). For X œ PWD(L), with n ≠ d + 1 Ø 16, n Ø 2d, T Ø 4, and d fixed, we have:

inf̂
X

sup
X œPWD(L)

EX

S

U 1
n(n ≠ 1)T

Tÿ

t=1

nÿ

i”=j=1

1
x̂Õ

itx̂jt ≠ x
Õ
itxjt

22
T

V & min
I

L
2
3

n
4
3 T

2
3

,
1
n

J

+ 1
nT

.

While there is a sizable literature on minimax lower bounds for various static network models
(Abbe and Sandon, 2015; Gao et al., 2015, 2016; Zhang and Zhou, 2016; Klopp et al., 2017),
similar results for dynamic networks are scarce. To the best of our knowledge, only Pensky
(2019) conducted such an analysis for dynamic stochastic block models, and there are no
such results for latent space models. We prove the lower bound using a construction of a
subset of low-rank latent states in Equation (A.1) in the appendix, which is adapted from
the general construction of rank-one estimation of low-rank decomposed models (Vu and
Lei, 2012; Birnbaum et al., 2013) to account for the network structure. We believe that
such a construction can be used to analyze other latent space models for networks.

Theorem 2 characterizes the dependence of the lower bound on the number of time
points T , the size of the network n, and the smoothness parameter L. We assume the
latent dimension d to be a fixed constant in our calculations and refrain from making the
dependence of the lower bound on d explicit. For fixed n, T , the term L

2/3
n

≠4/3
T

≠2/3 is an
increasing function of L, implying that smoother transitions lead to better rates. However,
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the rate cannot be faster than 1/(nT ) even if L is arbitrarily small because under the
extreme situation where all the latent positions X1, ..., XT are the same, we still need to
estimate a matrix of latent positions X1 with O(n) parameters given O(n2

T ) observations.
On the other hand, if L is large enough so that T

Ô
n/L = o(1), the lower bound is 1/n,

which is equivalent to estimating each network separately ignoring the dependence. Finally,
if n is fixed, the lower bound as a function of L and T reduces to O(L2/3

T
≠2/3), which is

the minimax rate for total variation denoising (Donoho and Johnstone, 1998; Mammen and
van de Geer, 1997).

2.3 Convergence Rates of Fractional Posterior and Variational Risk

In this subsection, we show that under mild additional conditions, the minimax lower bound
can be matched by the fractional posterior under the Gaussian random walk prior (2). First,
we impose an identifiability condition in terms of a norm restriction:

Îxú
itÎ2 Æ C, ’ i = 1, ..., n, t = 1, ..., T, for some constant C > 0. (8)

Condition (8) requires that all the latent positions are norm-bounded by a constant, which is
mild and reasonable considering the loss is in the inner product form. Under the above con-
dition (8), all the probabilities induced by the inner product pxú

it,xú
jt

:= 1/{1+exp(≠xúÕ
it xú

jt)}
are bounded away from 0 and 1 for the Bernoulli likelihood. Such an assumption is common
for logistic models.

We additionally assume a homogeneity condition where we require that there exists a
constant C0 > 0, such that

Îxú
it ≠ xú

i(t≠1)Î2 Æ C0L/(nT ), ’ i = 1, ..., n, t = 1, ..., T. (9)

If the true transitions satisfy (9), it is immediate they lie in the PWD class defined in (7).
The homogeneity condition is compatible with random generating processes in the literature
(Sewell and Chen, 2015)) such as a Gaussian random walk with bounded transition variance.
Indeed, as long as X

ú
ijt ≠ X

ú
ij(t≠1) for all i, j, t are sub-Gaussian random variables centered

at zero and sub-Gaussian norm bounded by ·
ú, using a concentration inequality for the

maximal of sub-Gaussian random variables (Lemma 17), we have

P

3
max
i,j,t

|Xú
ijt ≠ X

ú
ij(t≠1)| Ø

Ò
2·ú2{log(nTd) + t}

4
Æ 2e

≠t
. (10)

Therefore, with probability 1 ≠ 2/(nTd), the homogeneity condition (9) holds when ·
ú Æ

C0L/(4nT log(nTd)). Similar conditions amounting to smooth transitions of the edge prob-
abilities in a dynamic stochastic block model can also be found in Pensky (2019).

When considering binary likelihood and aiming for the convergence of the Frobenius
norm of the di�erence between inner products, we also have a technical assumption for the
prior: consider the event Bp = {ÎxitÎ2 Æ C4, ’i ”= j = 1, ..., n, t = 1, ..., T} for a constant
C4 > max Îxú

itÎ2.

We consider the prior restricted on event Bp(X ), �̃ := �(· fl Bp(X ))/�(Bp(X )), (11)

to replace the original prior such that �̃(Bc
p) = 0. Without ambiguity, we still use �(·) to

denote �̃(). However, the assumption is used for technical simplicity in the proof of the

8



Structured Optimal Variational Inference

Theorem, ensuring the connecting probabilities are controlled at a specific rate as in the
literature (e.g., Ma et al., 2020; Zhang et al., 2022a,b), while not used in the algorithm.
In particular, adopting such a restriction will only result in a negligible di�erence between
using the original prior. A similar phenomenon is also reported in Remark 2 in Ma et al.
(2020).

Under the above conditions, we have the following theorem:

Theorem 3 (Fractional posterior convergence with the fixed hyperparameters)

Suppose the true data generating process satisfies Equation (5), X ú œ PWD(L) with 0 Æ
L = o(Tn

2), and conditions (8) and (9) hold. Suppose d is a known fixed constant. Let
‘n,T = L

1/3
/(T 1/3

n
2/3)+


log(nT )/(nT ). Then, under the Gaussian random walk prior on

X defined in Equation (2) and choosing ‡0 as a fixed constant and ·
2 = c1{‘n,T L/(nT ) +

log2(nT )/(nT
2)} for some constants c1 > 0; we have for n, T æ Œ,

�–

3 1
n(n ≠ 1)T D– (X , X ú) Ø M‘

2
n,T | Y

4
æ 0.

In addition, if condition (11) also holds, we also have

E

S

U�–

Y
]

[
1

n(n ≠ 1)T

Tÿ

t=1

nÿ

i”=j=1

1
xÕ

itxjt ≠ xúÕ
it xú

jt

22
Ø M‘

2
n,T | Y

Z
^

\

T

V æ 0, (12)

with PX ú probability converging to one, where M > 0 is a large enough constant.

Theorem 3 demonstrates that the minimax lower bound can be matched by the fractional
posterior under specific choices of the hyperparameters ‡ and · . In particular, the choice of
· ensues from an interplay between the smoothness of the Gaussian random walk prior and
the truth. If · is too small, the prior over-smoothes and fails to optimally capture the truth,
while if · is too large, then the prior under-smoothes, leading to overfitting. In particular,
the smallest choice of ·

2 is at the rate of log2(nT )/(nT
2), which corresponds to the smallest

error rate


log(nT )/(nT ). Moreover, Theorem 3 implies that when the dependence is weak
(L is larger than T

Ô
n), applying Gaussian random walk priors with small transitions could

damage the convergence rate of estimation accuracy. Besides, the rate implies that as long
as the number of networks T is at least at the order of L/

Ô
n, the temporal dependence

can be utilized to gain a rate no slower than the order of static network


1/n. The proof
of Theorem 3 is based on transforming the Gaussian random walks into initial estimations
together with Brownian motions initialed at zero and traditional techniques of calculating
the shifted small ball probability for Brownian motions (e.g., Van der Vaart and Van Zanten,
2008).

Theorem 4 (Fractional posterior convergence with hierarchical priors) Suppose the
true data generating process satisfies Equation (5), X ú œ PWD(L) with 0 Æ L = o(Tn

2),
and conditions (8) and (9) hold. Suppose d is a known fixed constant. Let ‘n,T = L

1/3
/(T 1/3

n
2/3)+

log(nT )/(nT ). Then, under the Gaussian random walk prior on X defined in Equation (2)
and adopting priors (3) for ‡0 and · , we have for n, T æ Œ,

�–

3 1
n(n ≠ 1)T D– (X , X ú) Ø M‘

2
n,T | Y

4
æ 0.

9



Zhao et al.

In addition, if condition (11) also holds, we also have

E

S

U�–

Y
]

[
1

n(n ≠ 1)T

Tÿ

t=1

nÿ

i”=j=1

1
xÕ

itxjt ≠ xúÕ
it xú

jt

22
Ø M‘

2
n,T | Y

Z
^

\

T

V æ 0, (13)

with PX ú probability converging to one, where M > 0 is a large enough constant.

Theorem 4, which is practically more relevant than Theorem 3, shows that the hier-
archical prior on X specified by X | ‡

2
0, ·

2 as in (2) and endowing the hyperparameters
‡

2 and ·
2 with priors as in (3) leads to the same rate of contraction without knowledge

of the smoothness parameter L. The Gamma prior on the transition variance ·
2 places

su�cient mass around the ‘optimal choice’ in Theorem 3, which is a key ingredient in the
proof of Theorem 4. We comment that the current proof technique does not work with an
inverse-gamma prior on ·

2, with zero density at the origin.

3. Structured Mean-field in Latent Space Models

Variational approximations of fractional posteriors have also recently gained prominence
(Bhattacharya et al., 2019; Alquier and Ridgway, 2020; Yang et al., 2020) — from a com-
putational point of view, minor changes are needed while Bayes risk bounds for purely
fractional powers (– < 1) require fewer conditions than the usual posterior (– = 1). Further-
more, as with the usual posterior, optimal convergence of the fractional posterior directly
implies rate-optimal point estimators constructed from the fractional posterior. Variational
inference approximates the posterior distribution p(X , —, ·, ‡0 | Y) Ã P (Y | X , —) p(X |
·, ‡)p(·)p(‡0)p(—) by its closest member in KL divergence from a pre-specified family of
distributions �:

q̂(X , —, ·, ‡0) = argmin
q(X ,—,·,‡0)œ�

DKL {q(X , —, ·, ‡0) || p(X , —, ·, ‡0 | Y)}

= argmin
q(X ,—,·,‡0)œ�

≠ Eq

;
log

3
p(Y, X , —, ·, ‡0)

q(X , —, ·, ‡0)

4<
,

(14)

where the term Eq{log(p(X , —, ·, ‡0 | Y)/q(X , —, ·, ‡0))} is called evidence-lower bound
(ELBO).

3.1 The Structured Mean-field Family

For dynamic latent space models with fixed initial and transition scales ‡0 and · , the
mean-field (MF) variational family (Liu and Chen, 2022) assumes the form

q(X , —) =
5 TŸ

t=1

nŸ

i=1
q(xit)

6
q(—). (15)

The variational posterior under MF can be obtained through CAVI to maximize the ELBO
(e.g., see Blei et al., 2017):

q
(new)(—) Ã exp[E≠—{log p(X , —, Y)}]; q

(new)(xit) Ã exp[E≠xit{log p(X , —, Y)}], (16)

10
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xit xjt

Yijt

t = 1, ..., T ; i ”= j = 1, ..., n

xit xjt

Yijt

xi(t+1) xj(t+1)

Yij(t+1)

t = 1, ..., T ≠ 1; i ”= j = 1, ..., n

xit xjt

Yijt

xi(t+1) xj(t+1)

Yij(t+1)

t = 1, ..., T ≠ 1; i ”= j = 1, ..., n

Figure 1: Graph representations for MF, SMF and exact posterior predictive distribution
for latent space model given a fixed —, ·, ‡0. Conditional on Y, the graph structure
formed by latent positions are nT isolated nodes for MF, n separated chains with
length T for SMF and a graph with many loops for posterior.

where E≠—, E≠xit are the expectations taken with respect to the densities q(X ) and# rT
t=1

r
j ”=i q(xjt)

$
q(—), respectively. On the other hand, Sewell and Chen (2017) adopted

a likelihood function where the dependence across time of X is captured by latent labels Z.
According to their Equation (22), they adopted a joint variational posterior for latent posi-
tions q(X ) with the assumption of independence among X in the variational family leading
to independence of X across time q(X ) =

rT
t=1

rn
i=1 q(xit). To see this more clearly, the

algorithm in Section 2.2 of their supplementary material for the variational inference in-
dicates to compute only all marginal distributions q(xit), rather than joint ones q(X ) in
the variational posterior. Our proposed structured MF (SMF) variational family is instead
given by

q(X , —, ·, ‡0) =
5 nŸ

i=1
qi(xi·)

6
q(—)q(·)q(‡0), (17)

where xi· = [xÕ
i1, xÕ

i2, ..., xÕ
iT ]Õ. Compared to MF, SMF does not enforce additional inde-

pendence across time points qit,i(t+1)(xit, xi(t+1) = qit(xit)qi(t+1)(xi(t+1)) for i = 1, ..., n,
t = 1, ..., T ≠ 1. Figure 1 o�ers a visual comparison of the dependence structures among
MF, SMF, and posterior predictives.

3.2 Computation for SMF

Utilizing the structure of the likelihood and prior, we have

p–(Y, X , —, ·, ‡0) Ã P–(Y | X , —)p(X | ·, ‡0)p(·)p(‡0)p(—)

=
TŸ

t=1

Ÿ

1Æi”=jÆn

P–(Yijt | xit, xjt, —)
nŸ

i=1

I
T ≠1Ÿ

t=1
p(xi(t+1) | xit, ·)p(xi1 | ‡0)

J

◊ p(—)p(·)p(‡0),

(18)

11
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with p(xi(t+1) | xit, ·) Ã exp(≠Îxi(t+1) ≠ xitÎ2
2/(2·

2)) for t = 1, ..., T ≠ 1, where ÎxÎ2
represents its ¸2 norm of a vector x. Based on the variational family (17), the CAVI
updating of q(—) q(·),q(‡0) and qi(xi·), i = 1, ..., n are performed in an alternating fashion.
The update of — is standard and deferred to the supplemental material. We discuss the
updating of the variance components in Section 3.5, and at present focus on the update of
qi. Specifically, suppose q(—), q(·),q(‡0) and qj(xj·), j ”= i are fixed at their current values
and the target is to update qi(xi·). The CAVI scheme gives

qi(xi·) Ã exp

S

UE≠xi·

Y
]

[

Tÿ

t=1

nÿ

j ”=i,j=1
{log P–(Yijt | xit, xjt, —)}

+
T ≠1ÿ

t=1
log p(xi(t+1) | xit, ·) + log p(xi1 | ‡0)

JD

,

(19)

where E≠xit is the expectation taken with respect to the density
# r

j ”=i qj(xj·)
$
q(—)q(·)q(‡0).

Substituting the prior and likelihood (18) into Equation (19), it follows that qi(xi·)
assumes the form:

qi(xi·) = qi1(xi1)
T ≠1Ÿ

t=1
q(xi(t+1) | q(xit)) =

T ≠1Ÿ

t=1

qit,i(t+1)(xit, xi(t+1))
qit(xit)qi(t+1)(xi(t+1))

TŸ

t=1
qit(xit), (20)

which implies that the graph of random variable xi· is structured by a chain from xi1
to xiT . It is important to notice that the structure (20) is not imposed by our variational
family (17), rather a natural consequence of the Markov property of the prior and conditional
independence of the likelihood in Equation (18). Given the above structure (20), computing
the building blocks, i.e., the unary marginals {qit} and binary marginals {qit,i(t+1)}, can be
conducted in an e�cient manner using message-passing (Pearl, 1982). To that end, we first
define the following quantities:

„i1(xi1) = exp{≠µ1/·2Îxi1Î2
2/2 ≠ µ1/‡2

0
Îxi1Î2

2/2}
Ÿ

j ”=i

exp[Eq(—)q(xj1){log P–(Yij1 | xi1, xj1, —)}],

„it(xit) = exp{≠µ1/·2ÎxitÎ2
2/2}

Ÿ

j ”=i

exp[Eq(—)q(xjt){log P–(Yij1 | xit, xjt, —)}], ’t œ {2, ..., T}

Âit,i(t+1)(xit, xi(t+1)) = exp(µ1/·2xÕ
i(t+1)xit), ’t œ {1, ..., T ≠ 1},

(21)

where µ1/·2 = Eq(·)(1/·
2) and µ1/‡2

0
= Eq(‡0)(1/‡

2
0). For the ease of notation, we also

denote Âi0,i1(xi0, xi1) = 1 and ÂiT,i(T +1)(xiT , xi(T +1)) = 1.

Proposition 5 The quantities appearing in the right-hand side of Equation (20) are given
by,

qit(xit) Ã „it(xit)mi(t+1),it(xit)mi(t≠1),it(xit),
qit,i(t+1)(xit, xi(t+1)) Ã „it(xit)„i(t+1)(xi(t+1))mi(t+2),i(t+1)(xi(t+1))mi(t≠1),it(xit),

(22)

where

mi(t+1),it(xit) Ã
⁄

„i(t+1)(xi(t+1))Âit,i(t+1)(xit, xi(t+1))mi(t+2),i(t+1)(xi(t+1))dxi(t+1)

12
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and

mit,i(t+1)(xi(t+1)) Ã
⁄

„it(xit)Âit,i(t+1)(xit, xi(t+1))mi(t≠1),it(xit)dxit

respectively are backward and forward messages for t = 1, ..., T ≠ 1.

In the message-passing literature, messages are computational items that can be reused from
di�erent marginalization queries, which are not necessary to be distributions (see Wain-
wright and Jordan, 2008 for more details). Proposition 5 provides the order of updatings
to obtain qi(xi·): first, the initial backward/forward messages satisfy mi(T +1),iT (xiT ) =
mi0,i1(xi1) = 1. Then the other backward messages are obtained in the backward order
from miT,i(T ≠1)(xi(T ≠1)) to mi2,i1(xi1) and forward messages in the forward order from
mi1,i2(xi2) to mi(T ≠1),iT (xiT ). All messages are calculated based on the graph potentials
in Equation (21), which can be computed analytically in conditionally conjugate Gaussian
models illustrated in the next two subsections. Then updatings of all the unary and binary
marginals are performed simultaneously according to Equation (22). Then the update of
distribution q(xi·) can also be obtained via property (20) thereafter.

The alternate MP updatings lead to an e�cient block coordinate ascent algorithm where
the dynamic structure of the same node is employed through MP within each block. When
updating each node, the time complexity for MP is O(T ), hence the overall complexity per
cycle is O(nT ). For linear state-space models, the established Kalman smoothing (Kalman,
1960) is often employed to obtain marginals of latent states e�ciently. Our proposed algo-
rithm is closely connected to Kalman smoothing. Specifically, we perform MP for a chain
when updating each node, which is equivalent to Kalman smoothing for state-space models
only up to updating rearrangements (Weiss and Pearl, 2010). Similar to the variational
inference literature that uses Kalman smoothing in linear state-space models to replace MP
(Barber and Chiappa, 2006), our proposed algorithm can also be rewritten as blockwisely
implementing Kalman smoothing; see also Loyal and Chen (2023) for a parallel work in a
hierarchical network model using the variational Kalman smoothing approach. We stick to
the message-passing version of the proposed algorithm throughout the paper. Note that
both the SMF and MF variational inference optimization problems are non-convex and can
have many local minima. In order to make sure that the algorithms converge to a good
optimum, multiple random starts can be used. Furthermore, SMF has an advantage over
MF in that its optimization landscape may contain fewer local minima.

3.3 Gaussian Likelihood

We detail the steps of the SMF algorithm for a Gaussian likelihood:

P–(Y | X , —) =
TŸ

t=1

Ÿ

1Æi”=jÆn

1Ô
2fi‡

exp
C

≠–
{Yijt ≠ — ≠ xÕ

itxjt}2

2‡2

D

.

where ‡ is assumed to be known. Suppose at current step, the variational distribution
for node xit follows the normal distribution N (µit, �it), and the MF updating of q(—)
has been already performed so that Eq(—)(—) = µ— (provided in the supplementary ma-
terial). Since „it(xit) and Âit,i(t+1)(xit, xi(t+1)) are proportional to Gaussian densities for
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xit, the MP updating can be implemented in the framework of Gaussian belief propagation
networks. Given node i, suppose „it(xit) is proportional to N(xit; µ̃it, �̃it), which is the
density function of a N (µ̃it, �̃it) distribution evaluated at xit. Denoting mit,i(t+1)(xi(t+1)) Ã
N(xi(t+1); µitæi(t+1), �itæi(t+1)) and mit,i(t≠1)(xi(t≠1)) Ã N(xi(t+1); µitæi(t≠1), �itæi(t≠1)),
and based on calculations of Gaussian conjugate and marginalization using the Schur com-
plement, we have the forward updating steps:

µ(new)
itæi(t+1) Ω ≠·

2

S

U�̃
≠1
it µ̃it + �

≠1
i(t≠1)æitµi(t≠1)æit + –

ÿ

j ”=i

(Yijt ≠ µ—)µjt/‡
2

T

V ;

�
(new)
it,i(t+1) Ω ≠·

4

S

U�̃
≠1
it + �

≠1
i(t≠1)æit + –

ÿ

j ”=i

(µjtµ
Õ
jt + �jt)/‡

2

T

V
≠1

.

Similarly, for the backward updating, we have

µ(new)
itæi(t≠1) Ω ≠·

2

S

U�̃
≠1
it µ̃it + �

≠1
i(t+1)æitµi(t+1)æit + –

ÿ

j ”=i

(Yijt ≠ µ—)µjt/‡
2

T

V ;

�
(new)
it,i(t≠1) Ω ≠·

4

S

U�̃
≠1
it + �

≠1
i(t+1)æit + –

ÿ

j ”=i

(µjtµ
Õ
jt + �jt)/‡

2

T

V
≠1

.

3.4 Bernoulli Likelihood

Next, we consider a Bernoulli likelihood

P–(Yijt | —, xit, xjt) = exp[–Yijt(— + xÕ
itxjt) ≠ – log{1 + exp(— + xÕ

itxjt)}],

where a larger value in ≠xÕ
itxjt results in a smaller probability that nodes i and j are

connected at time t. We adopt the tangent transform approach proposed by Jaakkola
and Jordan (2000) in the present context to obtain closed-form updates that are otherwise
unavailable. The tangent-transform can be viewed as MF variational inference under Pólya–
gamma data augmentation (Durante and Rigon, 2019). Statistical analysis of the tangent-
transform for logistic regression was presented in Ghosh et al. (2022).

By introducing � = {›ijt : i, j = 1, ..., n, t = 1, ..., T} with A(›ijt) = ≠tanh(›ijt/2)/(4›ijt)
and C(›ijt) = ›ijt/2 ≠ log(1 + exp(›ijt)) + ›ijttanh(›ijt/2)/(4›ijt) for any ›ijt, we have the
following lower bound on P–(Yijt | xit, xjt, —):

P –(Yijt | —, xit, xjt; ›ijt) = exp
5
–A(›ijt)(— + xÕ

itxjt)2 + –

3
Yijt ≠ 1

2

4
(— + xÕ

itxjt) + –C(›ijt)
6

.

By replacing P–(Yijt | xit, xjt, —) with its lower bound P –(Yijt | xit, xjt; ›ijt, —), we can
update the posterior distribution of X in the Gaussian conjugate framework given the rest
densities. After updating all the blocks, ›ijt is optimized based on EM algorithm and
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the property of A(›ijt) according to Jaakkola and Jordan (2000): ›
(new)2
ijt = Eq(—,X ){(— +

xÕ
itxjt)2}.

In summary, for Gaussian or Bernoulli likelihood, the SMF framework allows all updat-
ings in the Gaussian conjugate paradigm by only assuming independence between di�erent
nodes in the variational family.

3.5 Updatings of Scales

The updating of scales can also be performed in closed form. Note that with the Gamma(c· , d· )
prior for · , by the CAVI algorithm, we have

q(·2) Ã exp
C

Eq(X )

I

≠
Tÿ

t=2

ÎXt ≠ Xt≠1Î2
F

2·2

J

≠ n(T ≠ 1)d + c· ≠ 1
2 log(·2) ≠ d· ·

2
D

. (23)

Equation (23) implies that the new update of ·
2 under CAVI follows a Generalized inverse

Gaussian distribution (Jorgensen, 2012) with parameter a = 2d· , b = Eq(X ){
qT

t=2 ÎXt ≠
Xt≠1Î2

F /2}, p = 1/2 ≠ n(T ≠ 1)d/2 ≠ c· /2, where Î · ÎF is the Frobenius norm. Then
the moment required in updating X in Equation (21) can be obtained: Eq(·)(1/·

2) =
Ô

aKp+1(
Ô

ab)/
ÓÔ

bKp(
Ô

ab)
Ô

≠ 2p/b, where Kp(·) is the modified Bessel function of the
second kind. When p is large, overflow could happen in directly calculating the value of
Kp(·). To address this issue, expansions of Kp(·) can be performed in the logarithm scale,
which is implemented in R package Bessel (Maechler, 2019).

For the initial variance ‡0 with prior (3), the inverse-Gamma conjugate updating can
be performed:

q(‡2
0) Ã exp

C

Eq(X )

A

≠ÎX1Î2
F

2‡2
0

B

≠
3

nd

2 + a‡0 + 1
4

log(‡2
0) ≠ b‡0

‡2
0

D

. (24)

Hence we have ‡
(new)2
0 ≥ Inverse-Gamma((nd + a‡0)/2, {Eq(X )(ÎX1Î2

F ) + 2b‡0}/2), which
implies µ1/‡2

0
= Eq(‡0)(1/‡

2
0) = (nd + a‡0)/{Eq(X )(ÎX1Î2

F ) + 2b‡0}.
The choice of the priors (3) of the scales leads to both the closed-form updating algo-

rithm in CAVI and the optimal convergence rate detailed in the next section. Finally, it
is important to notice that the above computational framework can be safely extended to
nodewise adaptive priors defined in Equation (4), whose details are in Section A.7 in the
supplementary material.

3.6 Theoretical Results for SMF

To show the theoretical result of the global optimizer of the proposed SMF algorithm. First,
we need the following Lemma, which is adapted from Lemma 3.3 from Yang et al. (2020)
to prove the convergence of the –-fractional variational posterior:
Lemma 6 (Variational risk bound of the –-fractional variational posterior) With
PX ú probability at least 1 ≠ › that for any probability measure qX π pX , we have

⁄
{D– (XÎX ú)} q̂X (X )dX

= –

n(n ≠ 1)T (1 ≠ –)

5
≠

⁄

�
log p (Y | X )

p (Y | X ú)qX (X )dX + D (qX ÎpX )
–

+ log(1/’)
–

6
,
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where q̂X (X ) is the global minimizer of the KL divergence under the –-fractional framework.
Finally, we show in Theorems 7 and 8 below that the Bayes risk bound from Theorem

3 and 4 is retained under the optimal SMF solution q̂ by using Lemma 6. As an impor-
tant upshot, the point estimate obtained from the variational solution retains the same
convergence rate as the fractional posterior.

Theorem 7 (Variational risk bound for marginal VB families) Suppose the true data
generating process satisfies Equation (5), X ú œ PWD(L) with 0 Æ L = o(Tn

2) and condi-
tions (8) and (9) hold. Suppose d is a known fixed constant. Let ‘n,T = L

1/3
/(T 1/3

n
2/3) +

log(nT )/nT . Then if we apply the priors defined in Equation (2), and either the following
(a) or (b) holds:

(a). choosing ‡0 as a fixed constant and ·
2 = c1{‘n,T L/(nT ) + log2(nT )/(nT

2)} for some
constants c1 > 0 and obtaining the optimal variational distribution q̂(X ) under the
SMF family q(X ) =

rn
i=1 qi(xi·);

(b). adopting priors (3) for ‡0 and · and obtaining the optimal variational distribution
q̂(X ) under the SMF family q(X ) =

rn
i=1 qi(xi·);

we have with PX ú probability tending to one as n, T æ Œ,
⁄ 1

n(n ≠ 1)T D– (X , X ú) q̂(X )dX . ‘
2
n,T .

In addition, if condition (11) also holds, we also have

Eq̂(X )

S

U 1
n(n ≠ 1)T

Tÿ

t=1

nÿ

i”=j=1

1
xÕ

itxjt ≠ xúÕ
it xú

jt

22
T

V . ‘
2
n,T . (25)

Theorem 7 (a) and (b) correspond to the strategies adopted in Liu and Chen (2022)
and Bai et al. (2020) respectively. Theorem 7 (a) requires the tuning of hyperparameters,
which loses the adaptive property of posterior under the adopted hierarchical prior as in
Theorem 4. In Theorem 7 (b), the variational inference is performed within a marginal
family, resulting in a richer family than additional independence between X and ·, ‡0 as in
Equation (17). The optimization with respect to the marginal VI family, however, does not
have an analytical expression and will therefore require Monte Carlo approximations (see
discussions in Appendix C in Bai et al., 2020), which is not inconvenient as the algorithm
proposed towards VI family (17). Nevertheless, our following Theorem 8 shows that the
gap between computation and theory can be bridged.

Theorem 8 (Variational risk bound for SMF) Suppose the true data generating pro-
cess satisfies Equation (5), X ú œ PWD(L) with 0 Æ L = o(Tn

2) and conditions (8) and (9)
hold. Suppose d is a known fixed constant. Let ‘n,T = L

1/3
/(T 1/3

n
2/3) +


log(nT )/nT .

Then if we apply the priors defined in Equation (2), and adopt priors (3) for ‡0 and · and
obtaining the optimal variational distribution q̂(X ) under SMF family (17), we have with
PX ú probability tending to one as n, T æ Œ,

⁄ 1
n(n ≠ 1)T D– (X , X ú) q̂(X )dX . ‘

2
n,T .

16



Structured Optimal Variational Inference

In addition, if condition (11) also holds, we also have

Eq̂(X )

S

U 1
n(n ≠ 1)T

Tÿ

t=1

nÿ

i”=j=1

1
xÕ

itxjt ≠ xúÕ
it xú

jt

22
T

V . ‘
2
n,T . (26)

Theorem 8 is the main theorem in this paper that corresponds to the proposed algorithm.
It implies that the independence in the SMF family between X and ·, ‡0 does not bring any
damage to the convergence rate of the optimal variational estimator. Therefore, the pro-
posed VI algorithm enjoys the same adaptive property as the posterior under the adopted hi-
erarchical prior without any loss. The proof strategy of Theorem 8 has a key distinction with
Theorem 7: the mismatch between the hierarchical prior p(X , ·, ‡0) = p(X | ·, ‡0)p(·)p(‡0)
and independent variational family q(X , ·, ‡0) = q(X )q(·)q(‡0) adds some complexity in
the analysis. We construct a candidate in the variational family, which leads to the opti-
mal rate. Specifically, for any chosen ·

ú
, ‡

ú
0 that satisfy the condition in Theorem 7 (a),

construct q̄(X , ·, ‡0) by restricting p(xi(t+1) | xit, ·
ú) to a neighborhood of xú

i(t+1) for all i

and t > 1 and restricting p(xi1 | ‡
ú
0) to a neighborhood of xú

i1 for all i. Also restrict p(·),
p(‡0) to a neighborhood of ·

ú
, ‡

ú
0 (see Equation (A.14) in the appendix). Observe that such

a construction lies within the proposed SMF family (17). By an appropriate choice of the
size of the neighborhood, we can achieve

DKL(q̄(X , ·, ‡0) || p(X , ·, ‡0)) . Tn(n ≠ 1)‘2
n,T .

In addition, by using the decomposition

DKL(q̄(X , ·, ‡0) || p(X , ·, ‡0)) = DKL(q̄(·)||p(·)) + DKL(q̄(‡0)||p(‡0))

+
⁄

q̄(·)q(‡̄0)
⁄

q̄(X ) log q̄(X )
p(X |·, ‡0)dX d·d‡0,

we are able to show that the selected candidate achieves optimal bounds for all three terms
on the right-hand side. We conjecture that this strategy is fairly general and can be applied
to mean-field inference for other Bayesian hierarchical models as well.

4. Simulations and Real Data Analysis

In this section, we will first provide simulation examples to illustrate our results. Then,
we will present two real data examples: the Enron Email data set and the McFarland
Classroom data set.

4.1 Simulation Experiments

We perform replicated simulation studies to compare SMF, MF and MCMC. Throughout
all simulation and real data analyses, we fix the fractional power – = 0.95. We also fix the
hyperparameters a‡0 = 1/2, b‡0 = 1/2 and c· = 1, d· = 1/2 whenever the prior (3) is used.
Simulation results for Gaussian likelihood can be found in Section A.9 in the appendix.

Binary Networks: 25 replicated data sets are generated from (1) with Yijt ≥ Bernoulli
[1/{1 + exp(≠2 + xÕ

itxjt)}] for i ”= j = 1, ..., n and t = 1, ..., T with d = 2. The latent po-
sitions are initialized as xi1 ≥ 0.5N ((1, 0)Õ

, 0.52 ) + 0.5N ((≠1, 0)Õ
, 0.52 ) with subsequent
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draws from xit = xi(t≠1) + ‘t≠1, where given any coordinate j for a fixed node i, we have
[‘ij1, ..., ‘ijT ]Õ ≥ N (0, ·

2((1 ≠ fl) + fl11
Õ)). The transition sd · controls the magnitude

of transition, and the auto-correlation fl controls the positive dependence. As a measure
of discrepancy between the true and estimated probabilities, we use the sample Pearson
correlation coe�cient (PCC, which is also used in other literature, e.g, Sewell and Chen,
2017):

qn
i=1(xi ≠ x̄)(yi ≠ ȳ)/

qn
i=1(xi ≠ x̄)2/

qn
i=1(yi ≠ ȳ) for two lists of probabilities

(x1, ..., xn) and (y1, ..., yn). The number of iterations until convergence is reported to in-
vestigate the computational e�ciency. The stopping criterion is taken to be the di�erence
between training AUCs (area under the curve) in two consecutive cycles not exceeding 0.01.
To implement SMF and MF, we assume the initial variance to be ‡0 = 0.5. The prior for
parameter — is set to N (0, 10).

We compared standard MCMC and SMF in terms of estimation accuracy and compu-
tation time for binary networks. We ran MCMC with 100, 200 and 5000 iterations using
a Gibbs Sampler algorithm, where each coe�cient was sampled from its full conditional
distribution. For the MCMC chain, we discarded the first half of iterations as burn-in and
used the sample means from the last half of iterations to calculate the estimator. We then
compared this accuracy with SMF using the PCC with the true probabilities, as well as
considering computation time. We set the transition smoothness · = 0.01, 0.05, 0.1, sample
size n = 10, 20, 50, time point T = 100, and correlation fl = 0.5. The simulations were
repeated 25 times for each setting. The results are presented in boxplot comparisons shown
in Figure 2 and Figure 3, which illustrate several noteworthy findings: First, the stronger
the dependence across time, the better the performance of SMF in terms of higher PCC
accuracy when · decreases from 0.1 to 0.01. This is because the computation of SMF in-
corporates the dependence across time, resulting in improved performance. However, for
MCMC, the weaker the dependence across time, the better the performance in terms of
higher PCC accuracy when · increases from 0.01 to 0.1. This is because the mixing of the
Markov Chain is a�ected negatively by the dependence across time. Similarly, for MF, the
weaker the dependence across time, the better the performance in terms of higher PCC
accuracy when · increases from 0.01 to 0.1, as weaker dependence will better fit the inde-
pendence structure of MF. Increasing · reduces the gap in estimation accuracy for MCMC
among iterations 100, 200 and 5000, indicating faster mixing of the Markov Chains. Overall,
SMF requires less computation time than MCMC and MF under the given settings while
achieving almost the best estimation accuracy, which is similar to MCMC with 5000 iter-
ations. This indicates that when the dependence across time is strong, SMF significantly
improves computation e�ciency.

In Table 1, we report the median of PCC from 25 simulation experiments for binary
networks with n = 100 and T = 100. The comparison is between the true and estimated
probabilities for SMF with ‡0 = 0.5 and a known · , versus adaptive SMF using (3). It’s
interesting to note that learning the initial and transition variances adaptively using the
prior (3) doesn’t lead to any loss of accuracy compared to when these parameters are known
as a priori.
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Figure 2: Boxplots comparing the estimation accuracy of Pearson Correlation Coe�cient
(PCC) between the estimated and true connected probabilities for SMF, MF,
and various numbers of MCMC iterations. A higher PCC indicates better es-
timation performance for the corresponding method. MC100, MC200 and MC
5000 represent posterior means obtained after 100, 200 and 5000 iterations of
Gibbs samplers, respectively, with the first half of iterations discarded as burn-
in. Among all cases, SMF achieves a similar level of estimation accuracy with
MCMC with 5000 iterations.
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Figure 3: Boxplots comparing the computation time for SMF, MF, and di�erent numbers
of MCMC iterations, as simulated in Figure 2. MC100, MC200 and MC 5000
represent 100, 200 and 5000 iterations of the Gibbs samplers, respectively. Re-
markably, SMF exhibits the shortest computation time while almost achieving
the highest level of estimation accuracy in Figure 2 across all cases.
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· 0.01 0.1
fl 0 0.4 0.8 0 0.4 0.8

Adaptive SMF 0.885 0.888 0.892 0.880 0.910 0.914
SMF 0.887 0.881 0.898 0.897 0.912 0.904

· 0.2 0.3
fl 0 0.4 0.8 0 0.4 0.8

Adaptive SMF 0.907 0.915 0.918 0.908 0.919 0.923
SMF 0.895 0.918 0.915 0.904 0.919 0.931

Table 1: Performance comparisons for binary networks between adaptive SMF and SMF
with known initial and transition variances. The measure compared are the me-
dians of Pearson correlation coe�cient (PCC) between true and estimated proba-
bilities of the repeated simulations.

4.2 Enron Email

Using the Enron email data set (Klimt and Yang, 2004), we compare our model with
the latent space model with the same likelihood but with an inverse Gamma prior on
the transition variance. Enron data consists of emails collected from 2359 employees of
the Enron company. From all the emails, we examine a subset consisting of n = 184
employees communicating among T = 44 months from Nov. 1998 to June 2002 recorded
in the R package networkDynamic (Butts et al., 2020). The networks depict the email
communication status of employees over that period. The edges in the network are ones
if one of the corresponding two employees sent at least one email to the other during that
month. According to the data set, all networks are sparse and many edges remain unchanged
over time. The aim of this study is to determine whether shrinkage on transitions induced
by Gamma prior on transition variance can be beneficial for sparse dynamic networks.
With the dynamic networks, we consider all the edges to be missed with probability p =
0.01, 0.02, ..., 0.1 independently, train the two latent space models without the missed data,
and then make predictions based on the missed data. We use two criteria for comparison:
the testing AUC score and the ratio of true positive detection over all missed edges, which
is defined as the ratio of predictive probability greater than 0.5 when the true edge value
is 1 over all missed edges. Since all networks are extremely sparse and negative predictions
are trivial, the second criterion above is meaningful. The same SMF variational inference
method is used in both latent space models. In both of the latent space models, we assign
a latent dimension of 5 (more results about d = 2, 3, 4 are provided in Section A.9 in the
appendix), the same initialization and stopping criteria. The variational mean of the latent
positions is used to estimate the latent positions.

Figure 4 illustrates a performance comparison between the two approaches. The Gamma
prior leads to a better fit based on the AUC comparison (left subfigure) and improves the
detection of missed links (right subfigure). A Gamma prior shrinks the transitions more
compared to an inverse-Gamma prior so that if two employees communicate at time t, the
predictive probability for them to communicate at time t + 1 is high.
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Figure 4: Comparisons of latent space models between Gamma or Inverse Gamma priors
on the Enron email testing data.

4.3 McFarland Classroom

McFarland’s streaming classroom data set provides interactions of conversation turns from
streaming observations of a class observed by Daniel McFarland in 1996 (McFarland, 2001).
The data set is available in the R package networkDynamic (Butts et al., 2020). The
class comprised of 2 instructors and 18 students. Of the 2 instructors, one is the main
instructor who lectured most of the time, while the other is an assistant. During the class,
the instructors began by providing instructions to all students. Then, the students were
divided into groups and assigned collaborative group work. The two instructors oversaw
the activities across the groups to assist the students. Here, we aim to compare MF and
SMF via prediction accuracy and visualize the dynamic evolution of the latent positions.

We divide the entire class time into 8 equispaced time points. The edges of each of the
8 networks represent whether the two nodes interacted related to the study task during the
entire time period. We chose d = 2 for visualization purposes. A N (0, 10) prior is placed on
the intercept and the prior (3) is adopted for both SMF and MF. First, we compare SMF and
MF in terms of prediction accuracy. For t = 3, 4, ..., 8, the first t≠1 networks are used as the
training data, while the t-th network is used as the test data. The estimated latent positions
at time point t ≠ 1 are used to predict the probabilities of edges between any two nodes at
time t. Then the test AUC scores are obtained from the above-estimated probabilities vs.
the true binary responses at time point t. We repeat the process for 25 times with di�erent
initial values. The boxplots of the test AUC scores for MF and SMF are shown in Figure 5.
From the figure, we can see that except for time point t = 5, where the network structure
changed significantly and the dependence from previous time points may not be meaningful
(see Figure 8 for the change of the connections), SMF consistently performs better than
MF, which again testified to the ability for SMF to capture the dependence across time
better.

Next, we implemented SMF with the networks at all 8 time points under the same hy-
perparameter specification to visualize the dynamic evolution of the latent positions. Since
the latent positions estimated directly from the algorithm are not identifiable, Procrustes
rotation is performed (Ho� et al., 2002) where the latent positions of time t = 2, .., T are
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projected to the locations that are most close to its previous locations (t = 1, ..., T ≠ 1)
through Procrustes rotation. Observe that the inner product is invariant to this trans-
formation. Figure 6 shows the dynamic evolution of the variational mean of the latent
positions for both students and instructors (an animated version of Figure 6 is provided
in the supplementary material). At time point 1 (i.e., at the beginning of the class) the
students indexed by {1, ..., 20}\{7, 14} are approximately grouped into the following clus-
ters (6, 11, 15), (3, 8, 13), (10, 12, 4, 5), (1, 18, 9), (2, 19) and (20, 17, 16). The locations of
the students remained the same until time point 4. From time point 4 to 5, the inner-group
distances between (1, 9, 18) and (4, 5, 10, 12) became smaller, which reflected the real sce-
nario that the students were assigned into groups. Then the group structure of the students
remained similar for the remainder of the class. Overall, the evolution reflected the collab-
orative behavior between certain groups as they performed specific tasks during the class.
As a point of comparison, we also obtained dynamic visualization of the networks via MF
(Figure 7) and the popular ndtv package (ndtv: Network Dynamic Temporal Visualiza-
tion, Bender-deMoll and Morris, 2021). Although ndtv package is known for its dynamic
networks visualizations through animations, static snapshots of the visualizations can also
be created using filmstrip function (Figure 8). First, unlike Figure 6, the latent positions
estimated via MF in Figure 7 did not have a smooth temporal evolution, as the MF as-
sumed independence across the time points. In addition, compared to our visualization in
Figure 6, results from the ndtv package in Figure 8 lacked a clear pattern of the network
evolution. For example, the students indexed {1, 18, 9} stayed close to each other at time
points t = 5, 6, 7 in Figure 6, while in Figure 8, 18 is far away from (1, 9) at time t = 6, while
being connected to 1 at the neighboring time points t = 5, 7. A similar phenomenon can
be seen for student indexed 5 at time t = 5, where in Figure 6 it is close to (4, 10, 12) while
in Figure 8 it is not. The ability of our methodology to borrow information across time
is specifically due to the Markovian structure (2) imposed on the evolution of the latent
positions endowed with the Gamma prior (3) on the transition variance, allowing su�cient
probability near the origin. Thus our methodology revealed a more realistic pattern in the
evolution in Figure 6 compared to MF and ndtv as most of the detected changes remained
concentrated in time t = 4, 5 for the students (when the students formed groups) and 5, 6, 7
for the instructors (after the instructors began assisting the students).

5. Discussion

There are a number of potential extensions of the proposed methodology and theory in this
article. Properties of the Gaussian random walk prior is crucially exploited in our theory
to obtain the optimal variational risk. It would be interesting to explore similar theoretical
optimality results for Gaussian Process priors (e.g., Durante et al., 2017b). Moreover, the
theoretical analysis of the lower bound can be extended to the case that the true latent
positions evolve smoothly over time, like in Pensky (2019).

From a methodological point, it is of interest to explore how to perform community
detection after estimating the latent positions. As the latent positions are characterized as
vectors in Euclidean space, it is natural to consider some distance-based approaches like
K-means for clustering. Adapting to the dimension d of the embedding space is also a
challenging problem. Finally, it is also interesting to explore dynamic latent space models
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Figure 5: Boxplot comparing AUC Predictions between SMF and MF for Time Points t = 3
to 8, using di�erent algorithm initializations based on networks from previous
time points. SMF outperforms MF consistently, except at time point 5, where
significant structural changes in the network may hinder the benefit of temporal
dependencies across time points.

with other complex data to fit real-world scenarios, such as continuous-time networks (Loyal,
2024) and dynamic networks with sudden structural changes (Zhao et al., 2022).
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Appendix A. Appendix

A.1 Proof of Theorem 2

Within the networks, we adopt the hypotheses constructions for some low-rank matrices,
while among the networks, we adopt the test constructions similar to the constructions in
total variational literature (Padilla et al., 2017).

For U = {U t}T
t=1 with U t = [u1t, ..., unt]Õ and V = {V t}T

t=1 with V t = [v1t, ..., vnt]Õ, let

d
2(U , V) =

Tÿ

t=1

nÿ

i”=j=1
(uÕ

itujt ≠ vÕ
itvjt)2

,

and
d

2
0(U t, V t) =

nÿ

i”=j=1
(uÕ

itujt ≠ vÕ
itvjt)2

.

Hypothesis constructions for the low-rank part

First, we need the following lemma to obtain sparse Varshamov-Gilbert Bound under Ham-
ming distance for the low-rank subset construction:

Lemma 9 (Lemma 4.10 in Massart, 2007) Let � = {0, 1}n and 1 Æ s Æ n/4. Then
there exists a subset {w

(1)
, ..., w

(M)} µ � such that

1. Îw
(i)Î0 = s for all 1 Æ i Æ M ;

2. Îw
(i) ≠ w

(j)Î0 Ø s/2 for 0 Æ i ”= j Æ M ;

3. log M Ø cs log(n/s) with c Ø 0.233.

Let �M = {w(1)
, ..., w(M)} µ {0, 1}(n≠d+1)/2 constructed based on the above Lemma

(the construction holds under n ≠ d + 1 Ø 8). For each w, we can construct a n ◊ d matrix
as follows:

Uw =
C
vw

0

0 Id≠1

D

with vw =

S

WWWU

1
...

1
‘w

T

XXXV œ Rn≠d+1
, w œ �M (A.1)

where the first (n ≠ d + 1)/2 components for vw are all ones.
The e�ect of this construction is that: for di�erent w1, w2 œ �M , since s/2 Æ Îw1 ≠

w2Î0 Æ 2s and ÎUwÎF Æ
Ô

n, we have

d0(Uw1 , Uw2) Æ ÎUw1U
Õw1 ≠ Uw2U

Õw2ÎF Æ ÎUw1(U Õw1 ≠ U
Õw2)ÎF + Î(Uw1 ≠ Uw2)U Õw2ÎF

Æ 2
Ô

nÎUw1 ≠ Uw2ÎF = 2
Ô

nÎvw1 ≠ vw2Î2 Æ 2
Ô

2ns‘.

In addition, consider A := {i + (n ≠ d + 1)/2 : w1i ”= 0}, B := {j + (n ≠ d + 1)/2 : w2j ”= 0},
C := A fl B, where w1i, w2j are i and jth component of w1 and w2. We have |C| Æ s/2,
|A ≠ C| Ø s/2 and |B ≠ C| Ø s/2. By direct calculation, we have

d
2
0(Uw1 , Uw2) =

n≠d+1ÿ

i”=j

(vw1
i v

w1
j ≠ v

w2
i v

w2
j )2

.
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By only considering the sum for i œ {1, ..., (n≠d+1)/2}, j œ A≠C where v
w1
i = v

w2
i = 1

v
w1
j = ‘ and v

w2
j = 0 and i ”= j, we have

d
2
0(Uw1 , Uw2) Ø

(n≠d+1)/2ÿ

i=1

ÿ

jœA≠C

(‘w1j ≠ ‘w2j)2 Ø s(n ≠ d + 1)
4 ‘

2
.

Hypothesis constructions for the total variational denoising part

As in the total variation denoising literature, we partition the set {1, ..., T} into m groups
S1, S2, ..., Sm such that S1 = {1, ..., k}, S2 = {k + 1, ..., 2k}, ..., Sm = {(m ≠ 1)k + 1, ..., T},
where k will be decided later. Then we have k(m ≠ 1) + 1 Æ T Æ km. For simplicity, we
assume the partition is even T = km, otherwise we can consider T

Õ = km, which has the
same rate with T since km > T > km ≠ k + 1. As in the literature in nonparametric
regression, we need to obtain the optimal order of k or m.

Let w0 = [0, ..., 0]Õ œ R(n≠d≠1)/2 and

U0 =
C
vw0 0

0 Id≠1

D

with vw0 =

S

WWWU

1
...

1
w0

T

XXXV œ Rn≠d+1

and U0 = [U0
, ..., U0]. We need the Varshamov-Gilbert Bound 9 again to introduce another

binary coding: let �r = {„(1)
, ..., „(M0)} µ {0, 1}m, such that Î„(i)Î0 = s0 with s0 Æ m/4

for all 1 Æ i Æ M0 and and Î„(i) ≠ „(j)Î0 Ø s0/2 for 0 Æ i < j Æ M0 and log M0 Ø
cs0 log(m/s0) with c Ø 0.233. The construction holds under m Ø 4.

Then the construction is based on a mixture of product space of �M and group structure
for S1, ...Sm:

�‘ = {X (w,„)
... :

X(w,„)
t = Uw(i)

, ’t œ Sj if „j = 1,

X(w,„)
t = U0

, ’t œ Sj , if „j = 0,

w(i) œ �M , ’i = 1, ..., s0, w(i) are chosen with replacement, „ œ �r},

(A.2)

For example, when „ = (0, 1, 0, 1, 0, 1, ...), X(w,„)
1 ,..,X(w,„)

T is:

U0
, ..., U0

¸ ˚˙ ˝
|S1|

, Uw(1)
, ..., Uw(1)

¸ ˚˙ ˝
|S2|

, U0
, ..., U0

¸ ˚˙ ˝
|S3|

, Uw(2)
, ..., Uw(2)

¸ ˚˙ ˝
|S4|

, ...

We have |�‘| = M0M
s0 . In addition, for U , V œ �‘, we have

d
2(U , V) =

Tÿ

t=1
d

2
0(U t, V t) Ø ks0

s(n ≠ d + 1)
8 ‘

2
.

Besides, the KL divergence between any elements U œ �‘ and U0 can be upper bounded:

DKL(PU || PU0) Æ C0d
2(U , V) Æ 16C0kns0s‘

2
, (A.3)

for some constant C0 > 0 (C0 = 1 for the binary case, C0 = 1/(2‡
2) for the Gaussian case).

We use the following lemma to finally obtain the minimax lower bounds.
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Lemma 10 (Theorem 2.5 in Tsybakov, 2008) Suppose M Ø 2 and (�, d) contains el-
ements ◊0, ..., ◊M such that d(◊i, ◊j) Ø 2s > 0 for any 0 Æ i Æ j Æ M and

qM
i=1 DKL(P◊i , P0)/M Æ

– log M with 0 < – < 1/8. Then we have

inf
◊̂

sup
◊œ�

P◊(d(◊̂, ◊) Ø s) Ø
Ô

M

1 +
Ô

M

A

1 ≠ 2– ≠
Û

2–

log M

B

.

To adopt the above Lemma, it su�ces to show

16C0ks0sn‘
2 Æ – log(M0M

s0) = – log(|�‘|),

with – < 1/8. Let s = (n ≠ d ≠ 1)/8, s0 = m/4, according to lemma 9, it’s enough to set

Tn(n ≠ 1)‘2 Æ cm log 4
4 + cm(n ≠ d ≠ 1) log 4

16 = cm(n ≠ d + 7) log 4
16 , (A.4)

with c = 0.233/C0.
Minimax rate for point-wise dependence

Based on our construction, 2(m≠1)s‘ Æ L should be satisfied, and we consider the following
di�erent cases:

Case 1: If there exist constants c0, c
Õ
0 > 0 such that c

Õ
0/

Ô
nT < L Æ c0(T ≠1)n1/2, which

results in 163
TL

2
/{4sc log 4} < T (T ≠ 1)2, and 163

TL
2
/(4c log 4s) > 36 = 4 ú (4 ≠ 1)2.

Therefore, since n Ø 2d, by assigning ‘ = L/{2(m ≠ 1)s} it is enough to let m satisfy

TL
2

(m ≠ 1)2 Æ 4cms log 4
163 ,

which is
m(m ≠ 1)2 Ø 163

TL
2

4c log 4s
, (A.5)

and m can be chosen within 4 Æ m Æ T . Let m be the least integer such that the above
inequality hold, then there exists a constant c2, such that m Æ c2T

1/3
L

2/3
n

≠1/3, which
implies

ks0
s(n ≠ d + 1)

8 ‘
2 & L

2
3 n

2
3 T

1
3 .

Case 2: If there exists a constant c0 > 0 such that L > c0(T ≠ 1)
Ô

n, which results in
163

TL
2
/{cs log 4} > T (T ≠ 1)2, then we choose m = T , ‘ = c0/

Ô
n such that (m ≠ 1)s‘ Æ

c0(T ≠ 1)
Ô

n Æ L/2. Then

ks0
s(n ≠ d + 1)

8 & Tn.

Case 3: If L < c
Õ
0/

Ô
nT for some constant c

Õ
0 > 0 such that the least integer solution of in-

equality (A.5) satisfying m < 4. Then the above hypothesis construction in Equation (A.2)
doesn’t hold. Instead of considering the construction in Equation (A.2), we consider T

copies of the same matrix, which implies the choice of m is 1. Note that the constraint on
the norm of the di�erence of the matrix is automatically satisfied when all matrices are the
same. By constructing the following subset

�‘ = {X (w) : X(w)
t = Uw

, ’t = 1, ..., T, w œ �M }. (A.6)
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the KL divergence between any elements U œ �‘ and U0 can be upper bounded:

DKL(PU || PU0) Æ C0d
2
0(U t, V t) Æ 16C0Tsn‘

2
, (A.7)

for some constant C0 > 0. Then it su�ces to let

16Tsn‘
2 Æ c(n ≠ d ≠ 1) log 4

16 Æ – log(M).

Therefore, based on the above equation, we need to choose ‘ =


1/(nT ). Then we have

ks0s(n ≠ d + 1)‘2

8 & n.

Finally, based on Markov’s inequality, by combining the above three cases, we have

inf̂
X

sup
X œ�‘

EX

5 1
Tn(n ≠ 1)d

2(X̂ , X )
6
& min

I
L

2
3

n
4
3 T

2
3

,
1
n

J

+ 1
nT

.

Therefore, the final conclusion holds.

A.2 Proof of Theorem 3

Proof As discussed in Bhattacharya et al. (2019), under the prior concentration condition
that

�(Bn,T (X ú; ‘n)) Ø e
≠T n(n≠1)‘2

n,T ,

we can obtain the convergence of the –-divergence:

D–(pX , pX ú) = 1
– ≠ 1 log

⁄
(pX ú)–(pX )1≠–

dµ.

Based on calculation, for Gaussian likelihood, we have max{DKL(pX , pX ú), V2(pX , pX ú)} .q
i”=j,t(xÕ

itxjt ≠ xúÕ
it xú

jt)2 where V2(pX , pX ú) is the second moment of KL ball. For the
Bernoulli likelihood, by Lemma 14, we have

DKL(pX , pX ú) =
⁄

pX ú log(pX ú

pX
)dµ Æ

Tÿ

t=1

nÿ

i”=j=1
(xÕ

itxjt ≠ xúÕ
it xú

jt)2
.

Moreover, we have

V2(pX , pX ú) :=
⁄

pX ú log2(pX ú

pX
)dµ Æ

nÿ

i”=j=1

Tÿ

t=1
2pxú

it,xú
jt

(log
pxú

it,xú
jt

pxit,xjt

)2+2(1≠pxú
it,xú

jt
)(log

1 ≠ pxú
it,xú

jt

1 ≠ pxit,xjt

)2
.

(A.8)
Under the conditions that pxú

it,xú
jt

:= 1/{1 + exp(≠xúÕ
it xú

jt)} is bounded away from 0 and 1.
The right hand side of Equation (A.8) is bounded above by

q
i”=j,t(xÕ

itxjt ≠ xúÕ
it xú

jt)2 multi-
plied by some positive constant. Therefore, we also have max{DKL(pX , pX ú), V2(pX , pX ú)} .q

i”=j,t(xÕ
itxjt ≠ xúÕ

it xú
jt)2 for the binary case. Hence we only need to lower bound the prior
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probability of the set {
q

i”=j,t(xÕ
itxjt ≠ xúÕ

it xú
jt)2 Æ n(n ≠ 1)T ‘

2} ∏ {maxt maxi”=j(xÕ
itxjt ≠

xúÕ
it xú

jt)2 Æ ‘
2}. Given i ”= j, t we have

|xÕ
itxjt ≠ xúÕ

it xú
jt| Æ |(xÕ

it ≠ xúÕ
it )xú

jt| + |xÕ
it(xjt ≠ xú

jt)|
Æ max

i
Îxit ≠ xú

itÎ2(Îxit ≠ xú
itÎ2 + 2Îxú

itÎ2) Æ max
i

Îxit ≠ xú
itÎ2(Îxit ≠ xú

itÎ2 + 2C).

Then when maxi Îxit ≠ xú
itÎ2 Æ ‘/{(2 + c0)C} Æ C for some constants c0 > 1, we have

max
i

Îxit ≠ xú
itÎ2(2C + Îxit ≠ xú

itÎ2) Æ ‘

(2 + c0)C 3C Æ ‘.

Denote E0 = maxi Îxit≠xú
itÎ2 Æ ‘/{(2+c0)C}, E1 = {maxi,j,t |(Xijt≠Xij1)≠(Xú

ijt≠X
ú
ij1)| Æ

‘0}, E2 = {maxi,j |Xij1 ≠ X
ú
ij1| Æ ‘0} with ‘0 = ‘/((2 + c0)C

Ô
d). Then we have

�(E0) Ø � (E1) � (E2) =
Ÿ

i,j

�
A

sup
tØ2

|X̃ijt ≠ X̃
ú
ijt| Æ ‘0

B
Ÿ

i,j

�
1
|Xij1 ≠ X

ú
ij1| Æ ‘0

2
,

where X̃ijt = Xijt ≠ Xij1 for all i, j, t.
Given i, j, ›ijt ≥ N (0, ·

2) for t Ø 2, we can denote X̃ijt =
qt

s=1 ›ijs and (X̃ij2, ..., X̃ijt)Õ ≥
N (0, �0). Denote x̃úÕ

ij = (X̃ú
ij2, ..., X̃

ú
ijt)Õ. Based on multivariate Gaussian concentration

through Anderson’s inequality, we have

�(E1) Ø
Ÿ

i,j

P

A

sup
tØ2

|X̃ijt ≠ X̃
ú
ijt| Æ ‘0

B

Ø
Ÿ

i,j

exp(≠
x̃úÕ

ij�
≠1
0 x̃ú

ij

2 )�
3

sup
t

|X̃ijt| Æ ‘0

4
.

(A.9)

By the definition of �0, we have

≠
x̃úÕ

ij�
≠1
0 x̃ij

ú

2 = ≠
Tÿ

t=2

(X̃ú
ijt ≠ X̃

ú
ij(t≠1))

2

2·2 = ≠
Tÿ

t=2

(Xú
ijt ≠ X

ú
ij(t≠1))

2

2·2 ,

where X̃
ú
ij1 = 0. For the second factor in Equation (A.9) , given i, j, we consider a Gaussian

process {X̃ij(s), 0 Æ s Æ 1} induced by (X̃ij2, ..., X̃ijt) such that X̃ij((s≠2)/(T ≠2)) = X̃ijt,
X̃ij(0) = 0 and all other values are obtained through interpolations: X̃ij(s) = w0X̃ij(t≠1) +
(1 ≠ w0)X̃ijt ’w0 œ (0, 1) with s = w0(t ≠ 3)/(T ≠ 2) + (1 ≠ w0)(t ≠ 2)/(T ≠ 2). Then clearly,
we have

�
A

sup
t=2,...,T

|X̃ijt| Æ ”

B

Ø �
A

sup
sœ[0,1]

|X̃ij(s)| Æ ”

B

,

for any ” > 0. Denote ‡
2(h) = E(X̃(s + h) ≠ X̃(s))2 = hT ·

2. Then ‡
2(h) is linear in h

hence concave. In addition, ‡(h)/(h1/2) =
Ô

T ·2, which is non-decreasing in (0, 1). Based
on Lemma 13, we have

�( sup
0ÆsÆ1

|X̃(s)| Æ ”) Ø C4 exp(≠C3
T ·

2

”2 )
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for ” > 0 with constants C3, C4 > 0.
Therefore, for some constant C3, C4 > 0, we have

�(E1) Ø C4 exp
C

≠
Tÿ

t=2

ÎXú
t ≠ Xú

t≠1Î2
F

2·2 ≠ C3
nT ·

2

‘2

D

Ø C4 exp
C

≠n

Tÿ

t=2
max

i

Îxú
it ≠ xú

i(t≠1)Î
2
2

2·2 ≠ C3
nT ·

2

‘2

D

.

(A.10)

For PWD, with condition (9), we have

�(E1) Ø C4 exp
C

≠≠C
2
0L

2

2nT ·2 ≠ C3
Tn·

2

‘2

D

.

Moreover, by taking that
·

2 = ‘L/(nT )
we can obtain

log �(E1) & ≠L

‘
.

For the initial error concentration �(E2), by the mean-zero Gaussian of Xij1 for all i, j,
we have the concentration:

�(E2) =
Ÿ

i,j

�
1
|Xij1 ≠ X

ú
ij1| Æ ‘0

2
Ø 1

(
Ô

2fi‡0)nd
exp(≠

ÿ

i,j

X
ú2
ij1

2‡2
0

)(2‘)nd

& exp
C

≠ÎXú
1Î2

F

2‡2
0

≠ nd ≠ nd log(1
‘

)
D

.

Note that ‡ is a constant and ÎXú
1Î2

F = O(n). We have log �(E2) & ≠n log(1/‘).
Then the rate ‘n,T = L

1/3
T

≠1/3
n

≠2/3 +


log(nT )/nT can be obtained by letting the
smallest possible ‘n,T such that n(n ≠ 1)T ‘

2
n,T & max{L/‘n,T , n log(1/‘n,T )}.

Finally, this additive rate helps in the choice of the transition · . In particular, when
L < log3/2(nT )


n/T such that L

1/3
T

≠1/3
n

≠2/3 .


log(nT )/nT , the choice of · can be
relaxed as long as ≠ log �(E1) . n log(nT ). Therefore, let ·

2 = log2(nT )/(nT
2) in this

case, we have
Tn·

2
/‘

2
n,T . n log(nT ), and L

2
/(nT ·

2) = n log(nT ). (A.11)
Therefore, the final choice of · that guarantees the optimal convergence rate satisfies ·

2 =
log2(nT )/(nT

2) + ‘n,T L/(nT ).
By Theorem 3.1 in Bhattacharya et al. (2019), the prior concentration �(Bn,T (X ú; ‘n,T )) Ø

exp(≠Tn(n ≠ 1)‘2
n,T ) implies that the posterior contraction of the averaged –-divergence

for any 0 < – < 1 is at the rate ‘
2
n,T . For the Gaussian case, by the direct calculation

(Gil et al., 2013), we can obtain that the –-divergence is lower bounded by the squared
loss function up to some constant factor when the variance of the likelihood is fixed. For
binary case, based on the boundness of the truth and Lemma 16, which indicates that the
1/2 divergence is lower bounded by the squared loss function up to some constant factor,
we can achieve the results in equation (12).
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A.3 Proof of Theorem 4

Proof Let ‡
ú2
0 = 1 and ·

ú2 = ‘n,T L/(nT ) + log2(nT )/(nT
2). In the proof of Theorem 3,

we show the prior concentration conditional on ‡0 = c1‡
ú
0 and · = c2·

ú for any constants
c1, c2 > 0 is su�cient:

≠ log{�(Bn,T (X ú; ‘n,T ) | c1‡
ú
0, c2·

ú)} . Tn(n ≠ 1)‘2
n,T .

Therefore, by limiting on the subset N(‡ú
0, ·

ú) = {|‡2
0 ≠ ‡

2ú
0 | Æ ‡

2ú
0 /2, |·2 ≠ ·

2ú| Æ ·
2ú

/2} ,
we have ≠ log �(Bn,T (X ú; ‘n) | ‡0, ·) . Tn(n ≠ 1)‘2

n,T . Then
⁄

N(‡ú
0 ,·ú)

�(Bn,T (X ú; ‘n) | ‡0, ·)p(·)p(‡0)d·‡0

& P (|·2 ≠ ·
ú2| Æ ·

ú2
/2)P (|‡2

0 ≠ ‡
ú2
0 | Æ ‡

ú2
0 /2) exp(≠Tn(n ≠ 1)c0‘

2
n,T ),

for some constant c0 > 0. For ‡0, with the Inverse-gamma(a‡0 , b‡0) prior where a‡0 , b‡0 are
constants, we have

P (|‡2
0 ≠ ‡

ú2
0 | Æ ‡

ú2
0 /2) = P (1/2 Æ ‡

2
0 Æ 3/2),

which is a fixed constant. For · , with the Gamma(c· , d· ) prior where c· , d· are constants,
we have

P (|·2 ≠ ·
ú2| Æ ·

ú2
/2) =

⁄ 3‘n,T L/(2nT )+3 log2(nT )/(2nT 2)

‘n,T L/(2nT )+log2(nT )/(2nT 2)
fc· ,d· (·2)d·

2

Ø min
|·2≠·ú2|Æ·ú2/2

fc· ,d· (·2)
Ó

‘n,T L/(2nT ) + log2(nT )/(2nT
2)

Ô
,

where fc· ,d· (·2) is the density function of Gamma(c· , d· ) prior. When |·2 ≠ ·
ú2| Æ ·

ú2
/2,

we have

≠ log{ min
|·2≠·ú2|Æ·ú2/2

fc· ,d· (·2)} . ·
ú2 ≠ log(·ú2) . ‘n,T L/(nT ) + log2(nT )/(4nT

2) + log(nT ).

Note that ‘n,T = o(1) due to L = o(n2
T ), we have

‘n,T L/(nT ) . L/(nT ) . n . n log(nT ) . n(n ≠ 1)T ‘
2
n,T .

In addition, log2(nT )/(4nT
2) + log(nT ) . n(n ≠ 1)T ‘

2
n,T holds.

Moreover, we also have ≠ log(‘n,T L/(nT ) + log2(nT )/(2nT
2)) . log(nT ) . n(n ≠

1)T ‘
2
n,T . Therefore, we showed that under the prior �, it holds that ≠ log �(|·2 ≠ ·

ú2| Æ
·

ú2
/2) . Tn(n ≠ 1)‘2

n,T . Hence we have

�(Bn,T (X ú; ‘n)) Ø exp(≠Tn(n ≠ 1)M‘
2
n,T )

for large enough constant M > 0. With the choice ‘
new
n,T =

Ô
M‘n,T , we showed that the

prior concentration is su�cient enough, and the rest of the proof is similar with Theorem 3
by applying Theorem 3.1 in Bhattacharya et al. (2019).
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A.4 Proof of Proposition 5

Suppose q(—), q(·), q(‡0) and q(xj·) , j ”= i are given. By the definition of ELBO and
Equation (18), we have

ELBO =
T ≠1ÿ

t=1

⁄
qit,i(t+1)(xit, xi(t+1)) log Âit,i(t+1)(xit, xi(t+1))dX

+
⁄

qit(xit) log „it(xit)dX ≠
Tÿ

t=1

⁄
qit(xit) log qit(xit)dX

≠
T ≠1ÿ

t=1

⁄
qit,i(t+1)(xit, xi(t+1)){log qit,i(t+1)(xit, xi(t+1))

≠ log qit(xit) ≠ log qi(t+1)(xi(t+1))}dX + other term.

By introducing Lagrange multiplier ⁄it,i(t+1)(xi(t+1)) and ⁄it,i(t≠1)(xi(t≠1)) for the marginal-
ization conditions, for the term related with qit,i(t+1)(xit, xi(t+1)), we have:

log Âit,i(t+1)(xit, xi(t+1)) ≠ log
qit,i(t+1)(xit, xi(t+1))

qit(xit)qi(t+1)(xi(t+1))
≠ ⁄it,i(t+1)(xi(t+1)) ≠ ⁄i(t+1),it(xit) + constant = 0.

For the term related to qit(xit), we have:

log „it(xit) ≠ log qit(xit) + ⁄i(t+1),it(xit) + ⁄i(t≠1),it(xit) + constant = 0.

Then by combining the above result, we have:

qit(xit) Ã „it(xit) exp(⁄i(t+1),it(xit) + ⁄i(t≠1),it(xit)). (A.12)

Moreover, we have

qit,i(t+1)(xit, xi(t+1)) Ã „it(xit)„i(t+1)(xi(t+1))Âit,i(t+1)(xit, xi(t+1))
· exp(⁄i(t+2),i(t+1)(xi(t+1)) + ⁄i(t≠1),it(xit)).

(A.13)

Finally, based on the marginalization property of qit,i(t+1)(xit, xi(t+1)), we have the back-
ward updating:

exp(⁄i(t+1),it(xit)) Ã
⁄

„i(t+1)(xi(t+1))Âit,i(t+1)(xit, xi(t+1)) exp(⁄i(t+2),i(t+1)(xi(t+1)))dxi(t+1)

and forward updating:

exp(⁄it,i(t+1)(xi(t+1))) Ã
⁄

„it(xit)Âit,i(t+1)(xit, xi(t+1)) exp(⁄i(t≠1),it(xit))dxit.

Let mit,i(t+1)(xi(t+1)) = exp(⁄it,i(t+1)(xi(t+1))) and mit,i(t≠1)(xi(t≠1)) = exp(⁄it,i(t≠1)(xi(t≠1))).
The Equation (22) directly follows Equation (A.12) and (A.13) after plugging in the forward
and backward messages and therefore the proposition is proved.
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A.5 Proof of Theorem 7

Proof The proof is based on Theorem 3.3 in Yang et al. (2020), where we need to provide
upper bounds for

≠
⁄

log P (Y | X )
P (Y | X ú)q(X )dX

and
DKL(q(X ) || p(X )),

where q(X ) is a variational distribution in the SMF family and p(X ) is the prior. Based on
the definition of E0 in the proof in subsection A.2, we have

Bn,T (X ú; ‘) ∏ E0 := {max
i,t

Îxit ≠ xú
itÎ2 Æ ‘0},

with ‘0 = c1‘n,T , for constant c1 > 0. The above constraint can be written in a separate
form:

E0 = fli,t{Îxit ≠ xú
itÎ2 Æ ‘0}.

Then we can choose q(X ) in the following way:

q(X ) Ã
nŸ

i=1

TŸ

t=2
p(xit | xi(t≠1)) {Îxit ≠ xú

itÎ2 Æ ‘0}
nŸ

i=1
p(xi1) {Îxi1 ≠ xú

i1Î2 Æ ‘0},

where p(xit | xi(t≠1) and p(xi1) are components of priors. Note that the above variational
distribution belongs to the SMF distribution family. We prove the above two bounds based
on the current construction of q(X ). First, by Fubini’s theorem and the definition of the
prior, we have

EX ú

5
≠

⁄

X
q(X ) log P (Y | X )

P (Y | X ú)dX
6

=
⁄

X
≠ EX ú

5
log P (Y | X )

P (Y | X ú)

6
q(X )dX

Æ
⁄

Bn(X ú,‘)
DKL [P (Y | X ú) ||P (Y | X )] q(X )dX Æ n(n ≠ 1)T ‘

2
.

Similarly, for the variance, by Jensen’s inequality and Fubini’s theorem, we have

VarX ú

5⁄

X
q(X ) log P (Y | X )

P (Y | X ú)dX
6

Æ EX ú

5⁄

X
q(X ) log P (Y | X )

P (Y | X ú)dX
62

Æ
⁄

Bn(X ú,‘)
V2 [P (Y | X ú) ||P (Y | X )] q(X )dX Æ n(n ≠ 1)T ‘

2
.
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Therefore, by Chebyshev’s inequality, for any D > 1, based on the first and second moments
of the above bounds, we have

PX ú

5⁄

X
q(X ) log P (Y | X )

P (Y | X ú)dX Æ ≠Dn(n ≠ 1)T ‘
2
6

Æ PX ú

5⁄

X
q(X ) log P (Y | X )

P (Y | X ú)dX

≠ E

;⁄

X
q(X ) log P (Y | X )

P (Y | X ú)dX
<

Æ ≠(D ≠ 1)n(n ≠ 1)T ‘
2
6

Æ VarX ú

5⁄

X
q(X ) log P (Y | X )

P (Y | X ú)dX
6

/

1
(D ≠ 1)2

n
2(n ≠ 1)2

T
2
‘
4
2

Æ 4
(D ≠ 1)2n(n ≠ 1)T ‘2

holds with probability 1 ≠ 1/{(D ≠ 1)2
n(n ≠ 1)T ‘

2}.
This proves that when n(n ≠ 1)T ‘ æ Œ, we have

≠
⁄

log P (Y | X )
P (Y | X ú)q(X )dX Æ Dn(n ≠ 1)T ‘

2

with probability converging to one.
In addition, based on the construction of the variational family, we have

DKL(q(X )||p(X )) = ≠ log(�(E0)),

since for any probability measure µ and measurable set A with µ(A) > 0, we have DKL(µ(· fl
A)/µ(A) || µ) = ≠ log(µ(A)). By the proof in subsection A.2, we have ≠ log(�(E0)) .
≠ log(�(E1flE2)) . max{L/‘, n log(1/‘)} for PWD(L) with Lipschitz condition. Therefore,
the convergence of the –-divergence follows by Theorem 3.3 in Yang et al. (2020). Finally,
the –-divergence is lower bounded by the loss according to the final part of the proof of
Theorem 3.

A.6 Proof of Theorem 8

Proof Note that the prior now satisfies p(X , ·, ‡0) = p(X | ·, ‡0)p(·)p(‡0) and the vari-
ational distribution instead satisfies q(X , ·, ‡0) =

rn
i=1 qi(xi·)q(·)q(‡0). Let ‡

ú2
0 = 1 and

·
ú2 = ‘n,T L/(nT ) + log2(nT )/(nT

2), we consider the following variational distribution:

q(X , ·, ‡0) Ã
nŸ

i=1

TŸ

t=2
p(xit | xi(t≠1), ·

ú) {Îxit ≠ xú
itÎ2 Æ c1‘n,T }

◊
nŸ

i=1
p(xi1 | ‡

ú
0) {Îxi1 ≠ xú

i1Î2 Æ c1‘n,T }

◊p(·) {·
ú2

< ·
2

< ·
ú2

e
‘2

n,T }p(‡0) {‡
ú2
0 < ‡

2
0 < ‡

ú2
0 e

‘2
n,T },

(A.14)
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where c1 is the constant used in the proof of Theorem 7. Given the prior, we still check the
conditions

≠
⁄

log P (Y | X )
P (Y | X ú)q(X , ·, ‡0)dX d·d‡0 . Tn(n ≠ 1)‘2

n,T (A.15)

DKL(q(X , ·, ‡0) || p(X , ·, ‡0)) . Tn(n ≠ 1)‘2
n,T (A.16)

First, the condition (A.15) directly follows the proof of Theorem 7 given the MF structure
q(X , ·, ‡0) = q(X )q(·)q(‡0).

Then by the chain rule of KL divergence, we have

DKL(q(X , ·, ‡0) || p(X , ·, ‡0)) = DKL(q(·)||p(·)) + DKL(q(‡0)||p(‡0))

+
⁄

q(·)q(‡0)
⁄

q(X ) log q(X )
p(X |·, ‡0)dX d·d‡0.

(A.17)

With the Gamma(c· , d· ) prior and ‘n,T < 1, we have

DKL(q(·)||p(·)) = ≠ log(P (·ú2
< ·

2
< ·

ú2
e

‘2
n,T ))

Æ ≠ log( min
·ú2<·2<·ú2e

‘2
n,T

fc· ,d· (·2)(e‘2
n,T ≠ 1))

(i)
Æ ≠ log(‘2

n,T ) ≠ log( min
·ú2<·2<·ú2e

‘2
n,T

fc· ,d· (·2))

(ii)
. Tn(n ≠ 1)‘2

n,T ≠ log( min
·ú2<·2<·ú2e

‘2
n,T

fc· ,d· (·2)),

(A.18)

where in (i) we use e
x ≠ 1 Ø x for any x and (ii) is because ‘

2
n,T Ø log(nT )/(nT ). In

addition, by a similar approach with proof in Theorem 4, we have

≠ log( min
·ú2<·2<·ú2e

‘2
n,T

fc· ,d· (·2)) . ·
ú2 ≠ log(·ú2) . n(n ≠ 1)T ‘

2
n,T .

With ‘n,T < 1, we have 1 < ‡
2
0 < e in the constrained region, where the density of

Inverse-Gamma(a‡0 , b‡0) is lower bounded by a constant. Hence,

DKL(q(‡0)||p(‡0)) = ≠ log(P (‡ú2
0 < ‡

2
0 < ‡

ú2
0 e

‘2
n,T )) . ≠ log(‘2

n,T )
(i)
. Tn(n ≠ 1)‘2

n,T ,

(A.19)

where (i) is due to ‘
2
n,T Ø log(nT )/(nT ). For the third term of the KL divergence, we have

⁄
q(X ) log q(X )

p(X |·, ‡0)dX =
⁄

E0
q(X ) log p(X |·ú

, ‡
ú
0)

p(X |·, ‡0) dX ≠ log(�(E0 | ·
ú
, ‡

ú
0)).

Note that we already have ≠ log(�(E0 | ·
ú
, ‡

ú
0)) . Tn(n ≠ 1)‘2

n,T by the proof of the prior
concentration in subsection A.2.

Moreover, we have the density,

p(X | ·, ‡0) = 1
(
Ô

2fi)nT d
exp

I

≠n(T ≠ 1)d
2 log(·2) ≠ nd

2 log(‡2
0) ≠ ÎX1Î2

F

2‡2
0

≠
qT

t=2 ÎXt ≠ Xt≠1Î2
F

2·2

J

,
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which implies that

log p(X |·ú
, ‡

ú
0)

p(X |·, ‡0) = n(T ≠ 1)d
2 log(·2) ≠ n(T ≠ 1)d

2 log(·ú2) + nd

2 log(‡2
0) ≠ nd

2 log(‡ú2
0 )

+ÎX1Î2
F

2‡2
0

≠ ÎX1Î2
F

2‡ú2
0

+
qT

t=2 ÎXt ≠ Xt≠1Î2
F

2·2 ≠
qT

t=2 ÎXt ≠ Xt≠1Î2
F

2·ú2 .

With the constrained region ·
ú2

< ·
2

< ·
ú2

e
‘2

n,T and ‡
ú2
0 < ‡

2
0 < ‡

ú2
0 e

‘2
n,T , we have,

log p(X |·ú
, ‡

ú
0)

p(X |·, ‡0) Æ n(T ≠ 1)d
2 ‘

2
n,T + nd

2 ‘
2
n,T . Tn(n ≠ 1)‘2

n,T ,

which implies that the third term of the KL divergence (A.17) is also bounded by Tn(n ≠
1)‘2

n,T . Therefore, we proved that condition (A.16) is satisfied.
Finally, the conclusion holds by applying similar arguments in the final part of the proof

of Theorem 7.

A.7 Nodewise Adaptive Priors

In this section, we consider the likelihood (1) with nodewise adaptive priors:

xi1 ≥ N (0, ‡
2
0iId), xi(t+1) | xit ≥ N (xit, ·

2
i Id),

‡
2
0i ≥ Inverse-Gamma (a‡0 , b‡0) , ·

2
i ≥ Gamma (c· , d· ) ,

(A.20)

for i = 1, ..., n; t = 1, ..., T ≠ 1 to capture the nodewise level di�erences. The SMF are now
in the following form:

q(X , · , ‡0, —) =
nŸ

i=1
qi(xi·)q(·i)q(‡0i)q(—). (A.21)

First, there are only minimal changes in the computational framework. First, for the qi(xi·)
updatings, we have the graph potentials xi· as follows:

„i1(xi1) = exp{≠µ1/·2
i
Îxi1Î2

2/2 ≠ µ1/‡2
0i

Îxi1Î2
2/2}

Ÿ

j ”=i

exp[Eq(—)q(xj1){log P–(Yij1 | xi1, xj1, —)}],

„it(xit) = exp{≠µ1/·2
i
ÎxitÎ2

2/2}
Ÿ

j ”=i

exp[Eq(—)q(xjt){log P–(Yij1 | xit, xjt, —)}], ’t œ {2, ..., T}

Âit,i(t+1)(xit, xi(t+1)) = exp(µ1/·2
i
xÕ

i(t+1)xit), ’t œ {1, ..., T ≠ 1},

where µ1/·2
i

= Eq(·i)(1/·
2
i ) and µ1/‡2

0i
= Eq(‡0i)(1/‡

2
0i). Then the updating of qi(xi·) follows

the same MP framework under the above revised potentials. In addition, for the updating
of scales, we have
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q
(new)(·2

i ) Ã exp
C

Eqi(xi·)

I

≠
Tÿ

t=2

Îxit ≠ xi(t≠1)Î2
2

2·2
i

J

≠ (T ≠ 1)d + c· ≠ 1
2 log(·2

i ) ≠ d· ·
2
i

D

.

q
(new)(‡2

0i) Ã exp
C

Eq(xi1)

A

≠Îxi1Î2
2

2‡2
0i

B

≠
3

d

2 + a‡0 + 1
4

log(‡2
0i) ≠ b‡0

‡2
0i

D

.

(A.22)

Therefore, we can obtain the that new update of q(·2
i ) follows a Generalized inverse Gaussian

distribution with parameter a = 2d· , b = Eqi(xi·){
qT

t=2 Îxit ≠ xi(t≠1)Î2
2/2}, p = 1/2 ≠ (T ≠

1)d/2 ≠ c· /2. Then the moment required in updating xit can be obtained: Eq(·i)(1/·
2
i ) =

Kp+1(
Ô

b)/
ÓÔ

bKp(
Ô

b)
Ô

≠ 2p/b, where Kp(·) is the modified Bessel function of the second

kind. In addition, the new update of ‡
(new)2
0i ≥ Inverse-Gamma((d+a‡0)/2, {Eq(xi1)(Îxi1Î2

2)+
2b‡0i}/2), which implies µ1/‡2

0i
= Eq(‡0i)(1/‡

2
0i) = (d + a‡0)/{Eq(xi1)(Îxi1Î2

2) + 2b‡0}.
To capture a smooth evolution of the latent coordinates over time for each node, we

assume the following parameter space for the latent positions:

PWAD(L) :=
;

X : Îxit ≠ xi(t≠1)Î2 Æ Li

nT
, L = [L1, ..., Ln], L := ÎLÎŒ

<
, (A.23)

where PWAD denotes point-wise adaptive dependence. The theoretical results can also be
obtained similarly:

Theorem 11 (Fractional posterior convergence rate for nodewise adaptive priors)

Suppose the true data generating process satisfies Equation (5), X ú œ PAWD(L) with
0 Æ L = o(Tn

2) and condition (8) holds. Suppose d is a known fixed constant. Let
‘n,T = ÎLÎ1/3

2 /(T 1/3
n

1/2) +


log(nT )/(nT ). Then if we apply the priors defined in Equa-
tion (2) and adopt priors (A.20) for ‡0i and ·i, we have for n, T æ Œ,

E

S

U�–

Y
]

[
1

Tn(n ≠ 1)

Tÿ

t=1

nÿ

i”=j=1

1
x̂Õ

itx̂jt ≠ xúÕ
it xú

jt

22
Ø M‘

2
n,T | Y

Z
^

\

T

V æ 0, (A.24)

with PX ú probability converging to one, where M > 0 is a large enough constant.

Proof The proof is similar to the proof of Theorem 4 in Section A.3. It su�ces to show
that the prior concentration for the set N(‡ú

0, ·
ú) = {|‡2

0i ≠ ‡
ú2
0 | Æ ‡

ú2
0 /2, |·2

i ≠ ·
ú2| Æ

·
ú2

/2, i = 1, .., n} is su�ciently large. Due to the independence of the prior, we have

≠ log P (|‡2
0i ≠ ‡

ú2
0 | Æ ‡

ú2
0 /2, i = 1, ..., n) = ≠ log{P (|‡2

01 ≠ ‡
ú2
0 |)n} . n . n(n ≠ 1)T ‘

2
n,T .

Similarly,

≠ log P (|·2
i ≠ ·

ú2| Æ ·
ú2

/2, i = 1, ..., n) = ≠n log{P (|·2
1 ≠ ·

ú2| Æ ·
ú2

/2)}
. ≠n log(‘n,T L/(nT ) + log2(nT )/(2nT

2)) + n·
ú2 ≠ n log(·ú2).

Since log2(nT )/(nT
2) Æ ·

ú2 Æ L/(nT )+log2(nT )/(nT
2), we have ≠n log(log2(nT )/(2nT

2)) .
n log(nT ); n·

ú2 Æ L/T +log2(nT )/T
2 . n log(nT ) and ≠n log(·ú2) . n log(nT ). Therefore,

39



Zhao et al.

we show that ≠ log �(N(‡ú
0, ·

ú)) . n(n≠1)T ‘
2
n,T , then the rest of the proof follows the same

with Section A.3 by the improved bound ÎXú
t ≠ Xú

t≠1Î2
F Æ ÎLÎ2

2/(n2
T

2) in equation A.10.

Theorem 12 (Variational risk bound for nodewise adaptive SMF) Suppose the true
data generating process satisfies Equation (5), X ú œ PAWD(L) with 0 Æ L = o(Tn

2) and
condition (8) holds. Suppose d is a known fixed constant. Let ‘n,T = ÎLÎ1/3

2 /(T 1/3
n

1/2) +
log(nT )/(nT ). Then if we apply the priors defined in Equation (2) and adopt pri-

ors (A.20) for ‡oi and ·i for i = 1, ..., n and obtaining the optimal variational distribution
q̂(X ) under nodewise adaptive SMF family (A.21), we have with PX ú probability tending to
one as n, T æ Œ,

Eq̂(X )

S

U 1
Tn(n ≠ 1)

Tÿ

t=1

nÿ

i”=j=1

1
x̂Õ

itx̂jt ≠ xúÕ
it xú

jt

22
T

V . ‘
2
n,T . (A.25)

Proof We consider the following variational distribution:

q(X , ·, ‡0) Ã
nŸ

i=1

TŸ

t=2
p(xit | xi(t≠1), ·

ú) {Îxit ≠ xú
itÎ2 Æ c‘n,T }

◊
nŸ

i=1
p(xi1 | ‡

ú
0) {Îxi1 ≠ xú

i1Î2 Æ c‘n,T }

◊
nŸ

i=1
p(·i) {·

ú2
< ·

2
i < ·

ú2
e

‘2
n,T }

nŸ

i=1
p(‡0i) {‡

ú2
0 < ‡

2
0i < ‡

ú2
0 e

‘2
n,T }.

(A.26)

After the change of the priors and variational family, first by Equation (A.19) and
≠n log(‘2

n,T ) . n log(nT ), we have

DKL(q(‡0)||p(‡0)) = ≠n log(P (‡ú2
0 < ‡

2
01 < ‡

ú2
0 e

‘2
n,T )) . ≠n log(‘2

n,T ).Tn(n ≠ 1)‘2
n,T .

Similarly, by Equation (A.18), we also have

DKL(q(· )||p(· )) = ≠n log(P (·ú2
< ·

2
1 < ·

ú2
e

‘2
n,T ))

. ≠n log(‘2
n,T ) ≠ n log( min

·ú2<·2<·ú2e
‘2
n,T

fc· ,d· (·2))

. Tn(n ≠ 1)‘2
n,T .

Moreover, we have the density,

p(X | · , ‡0) = 1
(
Ô

2fi)nT d
exp

I

≠
nÿ

i=1

(T ≠ 1)d
2 log(·2

i ) ≠
nÿ

i=1

d

2 log(‡2
0i)

≠
nÿ

i=1

Îxi1Î2
2

2‡2
0i

≠
qn

i=1
qT

t=2 Îxit ≠ xi(t≠1)Î2
2

2·2
i

J

,
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which implies that

log p(X |· ú
, ‡ú

0)
p(X |· , ‡0) =

nÿ

i=1

(T ≠ 1)d
2 log(·2

i ) ≠ n(T ≠ 1)d
2 log(·ú2) +

nÿ

i=1

d

2 log(‡2
0i) ≠ nd

2 log(‡ú2
0 )

+
nÿ

i=1

Îxi1Î2
2

2‡2
0i

≠ ÎX1Î2
F

2‡ú2
0

+
qn

i=1
qT

t=2 Îxit ≠ xi(t≠1)Î2
2

2·2
i

≠
qT

t=2 ÎXt ≠ Xt≠1Î2
F

2·ú2 ,

where · ú = (·ú
, ·

ú
, ..., ·

ú)Õ and ‡ú
0 = (‡ú

0, ‡
ú
0, ..., ‡

ú
0)Õ. With the constrained region ·

ú2
<

·
2

< ·
ú2

e
‘2

n,T and ‡
ú2
0 < ‡

2
0 < ‡

ú2
0 e

‘2
n,T , we have,

log p(X |· ú
, ‡ú

0)
p(X |· , ‡0) Æ n(T ≠ 1)d

2 ‘
2
n,T + nd

2 ‘
2
n,T . Tn(n ≠ 1)‘2

n,T .

Then the rest of the proofs follow the same with proof of Theorem (7) in Section A.6.

A.8 Auxiliary Lemmas

Lemma 13 (Small ball probability, Theorem 1.1 in Shao, 1993) Let {X(t), 0 Æ t Æ
1} be a real-valued Gaussian process with mean zero, X(0) = 0 and stationary increments.
Denote ‡

2(h) = E(X(t+h)≠X(t))2 for 0 Æ t Æ t+h Æ 1. If ‡
2(h) is concave and ‡(h)/h

–

is non-decreasing in (0, 1) for some – > 0, then we have

P ( sup
0ÆtÆ1

|X(t)| Æ C–‡(x)) Ø exp(≠2/x),

where C– = 1 + 3e


fi/–.

Lemma 14 (Upper bound for binary KL divergence) Let pa = 1/(1+exp(≠a)) and
pb = 1/(1 + exp(≠b)). Define Pa and Pb as the Bernoulli measures with probability pa and
pb. Then we have

DKL(Pa || Pb) + DKL(Pb || Pa) Æ (pa ‚ pb)(a ≠ b)2
.

Proof

DKL(Pa || Pb) + DKL(Pb || Pa) = (pa ≠ pb) log pa

pb
+ (pb ≠ pa) log 1 ≠ pa

1 ≠ pb

= (pa ≠ pb) log
3

pa

1 ≠ pa

1 ≠ pb

pb

4
=

; 1
1 + exp(≠a) ≠ 1

1 + exp(≠b)

<
log(ea

e
≠b)

= (a ≠ b)
; 1

1 + exp(≠a) ≠ 1
1 + exp(≠b)

<
.

Without loss of generality, we can assume a > b, then by exp(x) Ø 1 + x, we have

1
1 + exp(≠a) ≠ 1

1 + exp(≠b) = e
≠b ≠ e

≠a

(1 + exp(≠a))(1 + exp(≠b))

Æ 1 ≠ e
b≠a

(1 + e≠a)(1 + eb) Æ pa(1 ≠ e
b≠a) Æ pa(a ≠ b).
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Lemma 15 (Upper bound of second order KL moment) Let pa = 1/(1 + exp(≠a))
and pb = 1/(1 + exp(≠b)). Define Pa and Pb as the Bernoulli measures with probability pa

and pb. Then we have
⁄

Pa log2
3

Pa

Pb

4
dµ Æ

5
pa

(pa · pb)2 + 1 ≠ pa

(1 ≠ pa ‚ pb)2

6
(pa ‚ pb)2(a ≠ b)2

.

Proof Note that
⁄

Pa log2
3

Pa

Pb

4
dµ = pa log2

3
pa

pb

4
+ (1 ≠ pa) log2

31 ≠ pa

1 ≠ pb

4
.

We have

log2
3

pa

pb

4
= log2

3
pa ‚ pb

pa · pb
≠ 1 + 1

4
Æ

3
pa ‚ pb ≠ pa · pb

pa · pb

42
=

3
pa ≠ pb

pa · pb

42
.

Similarly,

log2
31 ≠ pa

1 ≠ pb

4
= log2

3(1 ≠ pa) ‚ (1 ≠ pb)
(1 ≠ pa) · (1 ≠ pb)

≠ 1 + 1
4

Æ
3

pa ≠ pb

1 ≠ pa ‚ pb

42
.

For the (pa ≠ pb)2 term, by exp(x) Ø 1 + x, we have

1
1 + exp(≠a ‚ b) ≠ 1

1 + exp(≠a · b) = e
≠a·b ≠ e

≠a‚b

(1 + exp(≠a ‚ b))(1 + exp(≠a · b))

Æ 1 ≠ e
a‚b≠a·b

(1 + ea·b)(1 + e≠a‚b) Æ (pa ‚ pb)(1 ≠ e
a‚b≠a·b) Æ (pa ‚ pb)(a · b ≠ a ‚ b).

Lemma 16 (Lower bound of the 1/2 divergence) Let pa = 1/(1 + exp(≠a)) and pb =
1/(1 + exp(≠b)). Define Pa and Pb as the Bernoulli measures with probability pa and pb.

1. Suppose that there exist constants c, C > 0 such that c < a, b < C, then we have

D 1
2
(Pa, Pb) & (b ≠ a)2

.

2. Suppose that a, b æ ≠Œ such that pa, pb æ 0, then we have

D 1
2
(Pa, Pb) & exp {a · b} (b ≠ a)2

.

Proof

D 1
2
(pa, pb) = ≠2 log(1 ≠ h

2(pa, pb)) Ø 2h
2(pa, pb) =

Ë
(Ôpa ≠ Ô

pb)2 + (


1 ≠ pa ≠


1 ≠ pb)2
È

.
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For the first conclusion, since a, b are bounded, pa, pb are bounded away form 0 and 1, and
(Ôpa + Ô

pb), (
Ô

1 ≠ pa +
Ô

1 ≠ pb) are bounded from 0 as well. Hence,

D 1
2
(pa, pb) &

Ë
(Ôpa ≠ Ô

pb)2(Ôpa + Ô
pb)2 + (


1 ≠ pa ≠


1 ≠ pb)2(


1 ≠ pa +


1 ≠ pb)2

È

& (pa ≠ pb)2 (i)=
; exp(x)

(1 + exp(x))2

<2
(a ≠ b)2 & (a ≠ b)2

.

where (i) is because the mean value theorem and a < x < b is bounded.
For the second conclusion, when the probabilities pa, pb are converging to zeros, for the

term (Ôpa ≠ Ô
pb)2, by the mean value theorem of function Ô

px with respect to x, we have

(Ôpa ≠ Ô
pb)2 Ø

A
exp(x)


1 + exp(x)

2(1 + exp(x))2

B2
(a ≠ b)2

(i)
& e

a·b(a ≠ b)2
,

where (i) is because exp(x) is the order of exp{a · b} for a · b < x < a ‚ b. For the term
(
Ô

1 ≠ pa ≠
Ô

1 ≠ pb)2, note that
Ô

1 ≠ pa +
Ô

1 ≠ pb is still bound away from 0, we have

(


1 ≠ pa ≠


1 ≠ pb)2 & (pa ≠ pb)2 =
; exp(x)

(1 + exp(x))2

<2
(a ≠ b)2 & e

(2a)·(2b)(a ≠ b)2
,

for a < x < b. Finally, exp(a · b)(a ≠ b)2 dominates when the sum of the two lower bounds
is taken into account.

Lemma 17 (Probability bound for maximal of sub-Gaussian random variables)

Let X1, ..., Xn be independent sub-Gaussian random variables with mean zero and sub-
Gaussian norm upper bounded by ‡. Then we have for every t > 0,

P

;
max

i=1,...,n
|Xi| Ø

Ò
2‡2(log n + t)

<
Æ 2e

≠t
.

Proof By union bound and the sub-Gaussianity, we have

P

;
max

i=1,...,n
|Xi| Ø u

<
Æ

nÿ

i=1
P{|Xi| Ø u} Æ 2ne

≠ u2
2‡2 ,

by choosing u =


2‡2(log n + t), the conclusion is proved.

A.9 Additional Simulation Examples

Gaussian Networks: 25 replicated data sets are generated from Yijt ≥ N (0.1+xÕ
itxjt, 0.12)

for i ”= j = 1, ..., n and t = 1, ..., T where n = 100, T = 100, d = 2. Let xi1 ≥ N ((0, 0)Õ
, ·

2 ),
and transitions xit = xi(t≠1) + ‘t≠1, where given any coordinate j for a fixed node i, let
[‘ij1, ..., ‘ijT ]Õ ≥ N (0, ·

2 ). The iterations are stopped when the di�erence between predic-
tive RMSEs in two consecutive cycles is less than 10≠3. In the algorithm, both the initial
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· 0.001 0.005 0.01 0.05 0.1 0.5
MF 0.0101 0.0105 0.0129 0.0219 0.0205 0.0211

SMF 2.34 ◊10≠3 5.97 ◊10≠3 9.53 ◊10≠3 0.0200 0.0206 0.0210

Table 2: Performance comparison for Gaussian networks between SMF and MF. The mea-
sure is the median of root mean square error for estimation of the latent distances
of the repeated simulations.
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Figure 9: Comparison of recovery of the inner product x
úÕ
itx

ú
it for estimating —̂ using the

algorithm in the left vs correctly specifying —̂ = 0 in the right. The algorithm
estimates —̂ = 0.0148 when — is assumed unknown. The x-axis is the true inner
products xúÕ

it xú
jt and the y-axis is the estimated inner products x̂Õ

itx̂jt.

and transition variances are learned adaptively with prior (3). The prior for the intercept
is set to N (0, 10). Table 2 shows the mean of the 25 replicated simulations. Clearly, SMF
performs much better than MF in parameter recovery when the transition is small. The
result again reinforces that when the dependence among latent positions is significant, SMF
should be adopted.

Reused simulation case: For the many simulation cases in this subsection, we
use 25 replicated data sets generated from the following case: Yijt ≥ N (xÕ

itxjt, 0.12) for
i ”= j = 1, ..., n and t = 1, ..., T where n = 20, T = 20, d = 2. Let xi1 ≥ N ((0, 0)Õ

, ·
2 ),

and transitions xit = xi(t≠1) + ‘t≠1, where given any coordinate j for a fixed node i, let
[‘ij1, ..., ‘ijT ]Õ ≥ N (0, ·

2 ). The prior is set in the same way as the above.
Recovery of inner products: We consider a simulation case regarding visualization

of the recovery of xÕ
itxjt, by showing the comparison of estimated x̂Õ

itx̂jt vs the truth xúÕ
it xú

jt.
The data is generated for one realization of the ‘Reused simulation case’ with —

ú = 0 and
the two following scenarios: 1. Using our algorithm with estimating —̂ as unknown beta
case; 2. Specify —̂ = 0 as known beta case. We then compare the true inner products xúÕ

it xú
jt

and the estimated inner products x̂Õ
itx̂jt without adding the estimated intercept for both

cases. The simulation is provided in Figure 9: In the figure above, it is evident that the
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Figure 10: Performance comparison for Gaussian networks of estimation of SMF and MF
across di�erent hyperparameters of d· for Gamma distribution with c· = 1.

estimation of inner products remains accurate even when the value of — is estimated in the
algorithm instead of being correctly specified at —

ú = 0. This is due to the good estimate of
—̂ = 0.0148. The theoretical explanations behind this intriguing phenomenon are reserved
for future research.

Sensitivity analysis with respect to the choice of Hyperparameters: For the
Gamma prior, we test the sensitivity of the hyperparameters c· and d· . We fix c· = 1 and
change d· from 0.1 to 2 with 20 grids and repeat 25 simulations of the ‘Reused simulation
case’ and the result is shown in Figure 10. On the other hand, we also fix d· = 1/2 and
change c· from 0.1 to 2 with 20 grids and repeat 25 simulations of the ‘Reused simulation
case’, and the result is shown in Figure 11.

Sensitivity analysis with respect to the choice of –: We compared the e�ect of
di�erent – values in our model. We use 11 grids for –

=0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99. We repeat the simulation
of the ‘Reused simulation case’ for 25 times. The simulation result is shown in Figure 12.
As can be seen from the figure, the results are consistent and suggest that the choice of –

does not a�ect the outcome.
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Figure 11: Performance comparison for Gaussian networks of estimation of SMF and MF
across di�erent hyperparameters of c· for Gamma distribution with d· = 1/2.
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Figure 12: Performance comparison for Gaussian networks of estimation of SMF and MF
across di�erent –.

Sensitivity analysis with respect to the choice of latent dimensions for En-

ron’s email data: In the Enron email data set, we found that the d = 5 case provides a
good comparison between our method and using an inverse Gamma prior. Our method con-
sistently performed better than using the inverse Gamma prior. Here we have also shown the
comparison results for d = 2, 3, 4 in Figure 13. We observed that d = 2, 3, 4, 5 showed simi-
lar behavior, where using the Gamma prior consistently outperformed the inverse Gamma
prior for the transition variance.
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Figure 13: Comparison using Enron’s email data set between Gamma prior and Inverse
Gamma prior on the transition variance, with cases for d = 2, 3, 4 displayed
from top to bottom.

Nodewise adaptive priors: Our new simulations demonstrate that node adaptivity
can improve estimation accuracy when di�erent nodes have di�erent transition scales. We
consider a scenario where 90% nodes remain static across all time (so that their corre-
sponding Li can be seen as 0), while only the rest 10% of nodes change over time. For the
changing node, we use · as the true transition standard derivation to control the magni-
tude of changes: xit | xi(t≠1) ≥ N (xi(t≠1), ·

2Id). The other settings are similar: we use
25 replicated data sets are generated from Yijt ≥ Bernoulli(xÕ

itxjt) for i ”= j = 1, ..., n and
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Figure 14: Performance comparison for nodewise adaptive prior on variance vs. common
transition variance across di�erent · as the transition standard derivation 10%
of changing nodes, while the rest 90% of nodes stay static across all time points.

t = 1, ..., T where n = 20, T = 50, d = 2. Let xi1 ≥ N ((0, 0)Õ
, 0.1 ), where given any

coordinate j for a fixed node i. We compare the estimation accuracy between the node-
wise adaptive priors (4) and common variance priors (3) across di�erent values of · such
as · = 0.05, 0.1, 0.5, 1. Figure 14 illustrates the performance between nodewise adaptive
priors and common priors. When · = 0.05, 0.1 is small, the common variance prior per-
forms most the same or slightly better than nodewise adaptive priors because di�erences
in the magnitude of change for di�erent nodes may not be large enough and both methods
may converge at the same rate. However, when · = 0.5, 1 are not close to zero, nodewise
adaptive priors perform much better than the common variance prior. This is reasonable
as the di�erences in the change of scale between di�erent nodes are large in these cases
and introducing nodewise adaptivity can capture the true data-generating process more
precisely.

A.10 MF Updatings for —

Suppose the prior for — is N (µ—, ‡
2
—). For Gaussian likelihood, the updating for — can be

obtained

q̂(—) Ã exp[E≠—{log p–(X , —, Y)}] Ã exp[E≠—{log P–(Y | X , —)} + log p(—)]

Ã exp

S

UE≠—

Y
]

[–

Tÿ

t=1

ÿ

i”=j

≠(Yijt ≠ — ≠ xÕ
itxjt)2

2‡2

Z
^

\ ≠ (— ≠ µ—)2

2‡2
—

T

V

Ã exp

S

U
Tÿ

t=1

ÿ

i”=j

≠–
—

2 ≠ 2—(Yijt ≠ µÕ
itµjt)

2‡2 ≠ (— ≠ µ—)2

2‡2
—

T

V .
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Therefore, q
(new)(—) is the density of N (µ(new)

— , ‡
(new)
— ), with

‡
(new)2
— =

Ó
‡

≠2
— + –Tn(n ≠ 1)‡≠2

Ô≠1
, µ

(new)
— = ‡

(new)2

—

Y
]

[‡
≠2
— µ— +

ÿ

i”=j

ÿ

t

–‡
≠2(Yijt ≠ µÕ

itµjt)

Z
^

\ .

For the binary case, the updating for — after tangent transformation can also be obtained

q
(new)(—; �) Ã exp[EX {log P –(Y | X , —; �)} + log p(—)]

Ã exp

S

U
ÿ

i”=j

ÿ

t

– {A(›ijt)} —
2 +

ÿ

i”=j

ÿ

t

–

;
Yijt ≠ 1

2 + 2A(›ijt)µÕ
itµjt

<
— ≠ 1

2‡
≠2
— —

2 + µ—‡
≠2
— —

T

V .

Therefore, q
(new)(—; �) is the density of N (µ(new)

— , ‡
(new)
— ), with

‡
(new)2
— =

Y
]

[‡
≠2
— ≠ 2–

ÿ

i”=j

ÿ

t

A(›ijt)

Z
^

\
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(new)2
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U‡
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— µ— +
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i”=j

ÿ

t

–

;
Yijt ≠ 1

2 + 2A(›ijt)µÕ
itµjt

<T

V .

A.11 MF Updatings for X

The updating for — in MF is the same with SMF. For updating X in the Gaussian case, we
have

q̂(xit) Ã exp[E≠xit{log p–(X , —, Y)] Ã exp[E≠xit{log P–(Y | X , —)} + log p(X )}]

Ã exp

S

UE≠xit

Y
]

[
ÿ

i”=j

≠–
(Yijt ≠ — ≠ xÕ

itxjt)2

2‡2 ≠
Îxit ≠ xi(t≠1)Î2

2·2 ≠
Îxit ≠ xi(t+1)Î2

2·2

Z
^

\

T

V

Ã exp

S

U

Y
]

[
ÿ

i”=j

≠–
≠2(Yijt ≠ µ

(new)
— )xÕ

itµjt + xÕ
it(µjtµ

Õ
jt + �jt)xit

2‡2 ≠
ÎxitÎ2 ≠ 2xitµi(t≠1)

2·2

≠
ÎxitÎ2 ≠ 2xitµi(t+1)

2·2

JD

.

Therefore, q
(new)(xit) is the density of N (µ(new)

it , �
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it ), with

�
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Y
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[2·
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Õ
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≠2µi(t≠1) + ·

≠2µi(t+1) +
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i”=j
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≠2(Yijt ≠ µ

(new)
— )µjt

R

b .

For the binary case, here we derive the updating formula under the mean-filed approxi-
mation for X after performing the tangent approximation. For the mean-field updating for
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xit, we have:

q̂(xit) Ã exp[E≠xit{log p
–
(X , —, Y)] Ã exp[E≠xit{log P –(Y | X , —)} + log p(X )}]

Ã exp
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